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Abstract

We compare Naive Bayes and Support Vector Machines on the task of multiclass
text classification. Using a variety of approaches to combine the underlying
binary classifiers, we find that SVMs substantially outperform Naive Bayes. We
present full multiclass results on two well-known text data sets, including the
lowest error to date on both data sets. We develop a new indicator of binary
performance to show that the SVM’s lower multiclass error is a result of its
improved binary performance. Furthermore, we demonstrate and explore the
surprising result that one-vs-all classification performs favorably compared to
other approaches even though it has no error-correcting properties.
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1 Introduction and Related Work

Multiclass text classification involves the assigning of one of m > 2 labels to test
documents. There are many ways to approach this problem. One, called Error-
Correcting Output Coding (ECOC), is to learn a number of different binary
classifiers and use the outputs of those classifiers to determine the label for
a new example. An advantage of this method is that the problem of binary
classification is well studied. ECOC merely bridges the gap between binary
classification and multiclass classification. The Support Vector Machine (SVM)
has proven to be an effective binary text classifier. Through experiments on
two data sets, we show that the SVM can also be an effective multiclass text
classifier when used with ECOC.

In 1997 Joachims published results on a set of binary text classification
experiments using the Support Vector Machine. The SVM yielded lower error
than many other classification techniques. Yang and Liu followed two years
later with experiments of their own on the same data set [1999]. They used
improved versions of Naive Bayes (NB) and k-nearest neighbors (kNN) but still
found that the SVM performed at least as well as all other classifiers they tried.
Both papers used the SVM for binary text classification, leaving the multiclass
problem (assigning a single label to each example) open for future research.

Berger and Ghani individually chose to attack the multiclass problem using
Error-correcting Output Codes (ECOC) with NB as the binary classifier[1999]
[2000]. Ghani found the greatest reduction in error on Industry Sector, a data
set with 105 classes. In parallel, Allwein et al. wrote an article on using ECOC
with loss functions for multiclass classification in non-text domains [2000]. They
presented a “unifying framework” for multiclass classification, encouraging the
use of loss functions, especially when the classifier is optimized for a particular
one.

We bridge these bodies of work by applying ECOC to multiclass text classi-
fication with the SVM as the binary learner. We achieve the lowest-known error
rate on both the Industry Sector and 20 Newsgroups data sets. Surprisingly, we
find that one-vs-all performs comparably with matrices that have high row- and
column-separation. Binary performance plays a key role in these results. We
see this through the introduction of a new measure, ROC breakeven. We show
that trends in binary performance are directly reflected in multiclass error. In
particular, improved binary performance allows for low error with the one-vs-all
matrix even though it has no error-correcting properties. Allwein et al. give
theoretical arguments that the loss function used should match that used to
optimize the binary classifier [2000]. We found that the most important aspect
of the loss function is to contribute confidence information, and that in practice,
other loss functions perform equally well.
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2 Error-Correcting Output Coding

Error-correcting output coding (ECOC) is an approach for solving multiclass
categorization problems originally introduced by Dietterich and Bakiri [1991].
It reduces the multiclass problem to a group of binary classification tasks and
combines the binary classification results to predict multiclass labels.

R is the code matrix. It defines the data splits which the binary classifier is
to learn. Ri· is the ith row of the matrix and defines the code for class i. R·j
is the jth column of the matrix and defines a split for the classifier to learn.
R ∈ {−1, +1}m × {−1, +1}l where m is the number of classes and l is the
number of partitionings (or length of each code). In a particular column, R·j ,
−1 and +1 represent the assignment of the classes to one of two partitions. We
use three different matrices, 1) the one-vs-all (OVA) matrix, where the diagonal
is filled with +1’s and is otherwise filled with −1 entries, 2) the Dense matrix
[Allwein et al., 2000], where entries are independently determined by flipping a
fair coin, assigning +1 for heads and −1 for tails, and 3) BCH codes, a matrix
construction technique that yields high column- and row-separation [Ghani,
2000]. We use the 63-20 and 63-105 BCH codes1 that Ghani has made available
on-line at http://www.cs.cmu.edu/∼rayid/ecoc.

Let (f1, . . . , fl) be the classifiers trained on the partitionings indicated in the
code matrix. Furthermore, let g : � → � be the chosen loss function. Then,
the multiclass classification of a new example, x is

Ĥ(x) = argminc∈{1,...,m}
l∑

i=1

g(fi(x)Rci). (1)

Allwein et al. give a full description of the code matrix classification framework
and give loss functions for various models [2000]. As suggested by Allwein et
al., we use “hinge” loss, g(z) = (1 − z)+, for the SVM. Naive Bayes does not
optimize a loss function, but we use the “hinge” loss since it gives the lowest
error in practice.

3 Classification Algorithms

Here we briefly describe the two classification algorithms used for experiments
in this paper.

3.1 Naive Bayes

Naive Bayes is a simple Bayesian text classification algorithm. It assumes that
each term in a document is drawn independently from a multinomial distribution
and classifies according to the Bayes optimal decision rule. Each class has its
own set of multinomial parameters, θc. We estimate parameters via Maximum

1We use sub-matrices of the 63-column code for 15- and 31-column matrices.
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a Posteriori (MAP) using the training data. A new document, d, is assigned
the label

Ĥ(d) = argmaxc p(d|θ̂c)p(c). (2)

Using Dc to denote the training data for class c, we use parameter estimates

θ̂c = argmaxθ p(Dc|θ)p(θ). (3)

A Dirichlet parameter prior, p(θ), with hyper-parameters αi = 2 ∀i gives an
estimate of θ̂c

k = Nc
k+1

Nc+V for word k, where N c
k is the number of times word k

occurred in class c, N c is the total number of word occurrences in class c and
V is the size of the vocabulary. Using a flat class prior, p(c) = 1

m , our decision
rule is

Ĥ(d) = argmaxc

∏
k

(
N c

k + 1
N c + V

)fk

(4)

See Rennie for more [2001]. Chakrabarti et al. use a flat parameter prior and
expectation to derive the same parameter estimates [Chakrabarti et al., 1997].
McCallum and Nigam give an explanation of the distinction between the tradi-
tional Naive Bayes classifier and the one commonly used for text classification
[McCallum and Nigam, 1998].

3.2 The Support Vector Machine

The Support Vector Machine is a classifier, originally proposed by Vapnik, that
finds a maximal margin separating hyperplane between two classes of data
[1995]. An SVM is trained via the following optimization problem:

argminw

1
2
‖w‖2 + C

∑
i

ξi, (5)

with constraints

yi(xi · w + b) ≥ 1 − ξi ∀i. (6)

For more information, see Burges’ tutorial and Cristianini and Shawe-Taylor’s
book [1998] [2000]. There are non-linear extensions to the SVM, but Yang and
Liu found the linear kernel to outperform non-linear kernels in text classification
[1999]. In informal experiments, we also found that linear performs at least as
well as non-linear kernels. Hence, we only present linear SVM results. We use
the SMART ltc2 transform; the SvmFu package is used for running experiments
[Rifkin, 2000].

2The list of SMART weightings can be found at
http://pi0959.kub.nl:2080/Paai/Onderw/Smart/examp 10.html.
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3.3 Relative efficiency of NB and the SVM

Naive Bayes and the linear SVM are both highly efficient and are suitable for
large-scale text systems. As they are linear classifiers, both require a simple
dot product to classify a document. The implication by Dumais et al. that
the linear SVM is faster to train than NB is incorrect [1998]. Training NB is
faster since no optimization is required; only a single pass over the training set is
needed to gather word counts. The SVM must read in the training set and then
perform a quadratic optimization. This can be done quickly when the number
of training examples is small (e.g. < 10000 documents), but can be a bottleneck
on larger training sets. We realize speed improvements with chunking and by
caching kernel values between the training of binary classifiers.

4 Data Sets

For our experiments, we use two well-known data sets, 20 Newsgroups and In-
dustry Sector [McCallum and Nigam, 1998; Slonim and Tishby, 1999; Berger,
1999; Ghani, 2000]. We use rainbow to pre-process the text documents into
feature-vector form [McCallum, 1996]. Documents that are empty after pre-
processing (23 for 20 Newsgroups, 16 for Industry Sector) are not used. The
code and pre-processed data we used for our experiments can be found at
http://www.ai.mit.edu/people/jrennie/ecoc-svm/.

20 Newsgroups is a data set collected and originally used for text classifica-
tion by Lang [1995].3 It contains 19,997 documents evenly distributed across 20
classes. We remove all headers and UU-encoded blocks, and skip stoplist words
and words that occur only once.4 The vocabulary size is 62,061. We randomly
select 80% of documents per class for training and the remaining 20% for test-
ing. This is the same pre-processing and splitting as McCallum and Nigam used
in their 20 Newsgroups experiments [McCallum and Nigam, 1998].

The Industry Sector data is a collection of corporate web pages organized
into categories based on what a company produces or does.5 There are 9649
documents and 105 categories. The largest category has 102 documents, the
smallest has 27. We remove headers, and skip stoplist words and words that
occur only once.6 Our vocabulary size is 55197. We randomly select 50% of
documents per class for training and the remaining 50% for testing.

We conduct our experiments on 10 test/train splits and report average per-
formance. To gauge performance for different amounts of training documents,
we create nested training sets of 800, 250, 100 and 30 documents/class for 20
Newsgroups and (up to) 52, 20, 10 and 3 documents/class for Industry Sector.

3The 20 Newsgroups data set can be obtained from
http://www.ai.mit.edu/people/jrennie/20Newsgroups/.

4Our 20 Newsgroups pre-processing corresponds to rainbow options “–istext-avoid-
uuencode –skip-header -O 2.”

5We obtained the Industry Sector data set from http://www-
2.cs.cmu.edu/∼TextLearning/datasets.html.

6Our Industry Sector pre-processing corresponds to rainbow options “–skip-header -O 2.”
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When a class does not have the specified number of documents, we use all of
the training documents for that class.

Text classification experiments often include a feature selection step which
may improve classification. McCallum and Nigam performed feature selection
experiments on the 20 Newsgroups data set and an alternate version of the
Industry Sector data set [1998]. Feature selection did not improve accuracy for
20 Newsgroups and improved accuracy only slightly on Industry Sector. In our
own experiments, we found feature selection to only increase error. We use the
entire vocabulary in our experiments.

5 Results

The SVM consistently outperforms Naive Bayes, but the difference in perfor-
mance varies by matrix and amount of training data used. On the Industry
Sector data set, the disparity for the OVA matrix between the SVM and Naive
Bayes is especially marked. Our analysis (§ 5.4) shows that this is a direct result
of differences in binary performance. A new measure of binary classification,
ROC breakeven (§ 5.3), allows us to see this close connection. Other factors,
such as the loss function and the independence of binary classifiers show less
influence. Our results include the best-known multiclass error on both data sets.

5.1 Multiclass classification

The SVM always outperforms Naive Bayes on the multiclass classification task.
Table 1 shows multiclass error for a variety of conditions. The SVM achieves 10-
20% lower error than Naive Bayes for most of the 20 Newsgroups experiments.
The differences are larger for Industry Sector. When all training documents are
used, the SVM achieves 80% and 48% less error for the OVA and 63-column
BCH matrices, respectively. On both data sets, the lowest error is found using
the SVM with a 63-column BCH matrix. BCH consistently outperforms Dense;
the under-performance of the 15-column BCH matrix is a result of using a sub-
matrix of the 63-column BCH.7

With the SVM, the OVA matrix performs well even though it has no error-
correcting properties and experiments on non-text data sets have shown it to
perform poorly [Allwein et al., 2000]. OVA performs about as well as BCH
even though its row- and column-separation is small. OVA has a row- and
column-separation of 2; The 63-column BCH matrix has a row-separation of 31
and a column-separation of 49.8 Some have suggested that OVA is inferior to
other methods [Ghani, 2000; Guruswami and Sahal, 1999]. These results show

7The BCH matrix is optimized to maximize row- and column-separation. A sub-matrix of
a BCH matrix will not necessarily exhibit the same row- and column-separation properties as
one that is optimized for that size. However, except where noted, we find little degradation
in using sub-matrices.

8We define row-separation to be the average over all rows of the smallest Hamming distance
between the row and all other rows: 1

n

∑n
i=1 minj �=i Hamming(ri, rj). Column-separation is

defined analogously.
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20 Newsgroups 800 250 100 30
SVM NB SVM NB SVM NB SVM NB

OVA 0.131 0.146 0.167 0.199 0.214 0.277 0.311 0.445
Dense 15 0.142 0.176 0.193 0.222 0.251 0.282 0.366 0.431
BCH 15 0.145 0.169 0.196 0.225 0.262 0.311 0.415 0.520
Dense 31 0.135 0.168 0.180 0.214 0.233 0.276 0.348 0.428
BCH 31 0.131 0.153 0.173 0.198 0.224 0.259 0.333 0.438
Dense 63 0.129 0.154 0.171 0.198 0.222 0.256 0.326 0.407
BCH 63 0.125 0.145 0.164 0.188 0.213 0.245 0.312 0.390

Industry Sector 52 20 10 3
SVM NB SVM NB SVM NB SVM NB

OVA 0.072 0.357 0.176 0.568 0.341 0.725 0.650 0.885
Dense 15 0.119 0.191 0.283 0.363 0.461 0.542 0.738 0.805
BCH 15 0.106 0.182 0.261 0.352 0.438 0.518 0.717 0.771
Dense 31 0.083 0.145 0.216 0.301 0.394 0.482 0.701 0.769
BCH 31 0.076 0.140 0.198 0.292 0.371 0.462 0.676 0.743
Dense 63 0.072 0.135 0.189 0.279 0.363 0.453 0.674 0.745
BCH 63 0.067 0.128 0.176 0.272 0.343 0.443 0.653 0.734

Table 1: Above are results of multiclass classification experiments on the 20
Newsgroups (top) and Industry Sector (bottom) data sets. The top row of each
table indicates the number of documents/class used for training. The second
row indicates the binary classifier. The far left column indicates the multiclass
technique. Entries in the table are classification error.
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Figure 1: Multiclass error improves as the number of training examples in-
creases, but binary error improves marginally for Industry Sector and degrades
for 20 Newsgroups. Shown is the performance of OVA with Naive Bayes as the
binary classifier. Guessing achieves a binary error of 0.05 for 20 Newsgroups and
approximately 0.01 for Industry Sector. Binary error is loosely tied to binary
classifier strength. Note the log scale on both axes.

that OVA should not be ignored as a multiclass classification technique. In
subsequent sections, we show that the success of OVA is due to strong binary
SVM classifiers and the use of confidence information. Naive Bayes performs
poorly on Industry Sector with the OVA matrix because of its lackluster binary
performance.

Error differences between the SVM and Naive Bayes are less on 20 News-
groups than Industry Sector. We believe this to be partially caused by the fact
that nearly 6% (we counted 1169) of the non-empty 20 Newsgroups documents
are exact duplicates, many cross-posts to multiple newsgroups. This limits clas-
sification accuracy and makes training more difficult. We ignored documents
with duplicate feature vectors when training the SVM since handling duplicate
vectors in SVM training is inconvenient.

5.2 Comparison with other work

Our Naive Bayes results match those of neither Ghani nor Berger [2000] [1999].
We did not try to reproduce the results of Berger because his preprocessing
code was hand-written and somewhat complex. We made an effort to match
those of Ghani, but were not successful. When we used the same pre-processing
(stripping HTML markup), we saw higher error, 0.187 for the 63-column BCH
matrix, compared to the 0.119 he reports. We worked with Ghani to try to
resolve this discrepancy, but were unsuccessful. We found that including HTML
gives lower error than skipping HTML.

5.3 ROC Breakeven

The performance of an ECOC classifier is affected by a number of factors: (1)
binary classifier performance, (2) independence of the binary classifiers, and
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Guess
+1 −1

True +1 tp fn
Label −1 fp tn

Table 2: The performance of a binary classifier can be described with a 2x2
confusion matrix, as shown. Two letters describe each entry. “t” stands for
true. “f” is false. “p” is positive. “n” is positive. The false alarm rate is
fn/(tp+fn). The miss rate is fp/(tn+fp). ROC breakeven is the average of the
false alarm and miss rates when the difference between them is minimized.

(3) the loss function. Of these, we find binary performance to be the most
influential in observed differences between SVM and Naive Bayes performance.
We use error to measure multiclass performance. However, we avoid binary
error as a measure of binary performance. Figure 1 shows why. Additional
training examples improves multiclass error for Naive Bayes, but binary error
is sporadic, showing little change for Industry Sector and rising, then falling for
20 Newsgroups. The OVA matrix partitions examples very unevenly, assign-
ing most examples to a single class. Hence, error mainly judges the classifiers
performance on examples of a single class.

A better measure of binary performance is one that evenly measures the two
classes. We propose ROC breakeven as such a measure. Table 2 shows terms
used to describe the output of a classifier. We define the ROC breakeven as
the average of the miss and false alarm rates at the point where the difference
between false alarm rate and the miss rate is minimum. This corresponds to
the convex combination of two points on the ROC curve and is hence always
achievable, unlike precision-recall breakeven [Joachims, 1997]. We achieve dif-
ferent rates by modifying the bias term of the classifier. ROC breakeven selects
the bias such that the classifier performs as well on examples of class +1 as
examples of class −1. This allows us to better judge the strength of a binary
classifier when the example distribution is uneven. When the example distribu-
tion is even (such as with BCH and Dense matrices), ROC breakeven is nearly
identical to binary error.

5.4 Multiclass error is largely a function of binary perfor-
mance

Figure 2 compares multiclass error and ROC breakeven using the 63-column
BCH matrix. In the 20 Newsgroups plot, we see the consistent gap between ROC
breakeven scores reflected in a similar gap in multiclass errors. The Industry
Sector results follow a different trend: ROC breakeven between the SVM and
Naive Bayes diverges as the number of training examples increases. We see
this directly affecting multiclass error: the difference between multiclass errors
widen as more examples are used.
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Figure 2: Shown is a comparison between ROC breakeven and multiclass error
of ECOC using a BCH-63 matrix and the SVM and Naive Bayes as the binary
classifier. We see that ROC breakeven largely dictates multiclass error. Trends
in the ROC breakeven curves are reflected in the multiclass error curves. Note
the log scale on both axes.
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Figure 3: Shown is ROC breakeven and multiclass error for ECOC with the
OVA matrix. Changes in ROC breakeven are directly reflected in multiclass
error. Multiclass error changes gradually for 20 Newsgroups, but trends in
ROC breakeven are evident in the multiclass error. Note the log scale on both
axes.
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20 Newsgroups 800 250 100 30
SVM NB SVM NB SVM NB SVM NB

OVA/Error 0.015 0.039 0.021 0.027 0.03 0.042 0.044 0.049
OVA/ROC 0.043 0.059 0.059 0.146 0.078 0.262 0.118 0.375
BCH/Error 0.079 0.101 0.105 0.121 0.135 0.151 0.194 0.224
BCH/ROC 0.081 0.101 0.108 0.127 0.138 0.163 0.193 0.237

Industry Sector 52 20 10 3
SVM NB SVM NB SVM NB SVM NB

OVA/Error 0.003 0.008 0.005 0.009 0.007 0.009 0.009 0.010
OVA/ROC 0.036 0.282 0.075 0.378 0.141 0.428 0.264 0.473
BCH/Error 0.062 0.100 0.137 0.176 0.218 0.253 0.347 0.376
BCH/ROC 0.063 0.099 0.137 0.175 0.219 0.253 0.348 0.378

Table 3: Shown are binary errors and ROC breakeven points for the binary
classifiers trained according to the matrix columns. Results for the Dense matrix
are omitted since they are nearly identical to the BCH results. Table entries are
averaged over all matrix columns and 10 train/test splits. Error is a poor judge
of classifier strength for the OVA matrix. Error increases with more examples on
20 Newsgroups. Note that error and ROC breakeven numbers are very similar
for the BCH matrix.

A similar relation between ROC breakeven and multiclass error can be seen
on the OVA results, as is depicted in figure 3. Large differences in ROC
breakeven translate into small differences in multiclass error on 20 Newsgroups,
but the connection is still visible. The SVM shows the greatest improvements
over Naive Bayes on the Industry Sector data set. Using all of the training
examples, the SVM achieves an ROC breakeven of 0.036, compared to Naive
Bayes’s lackluster 0.282. This translates into the large difference in multiclass
error. The SVM’s binary performance is a result of its ability to handle uneven
example distributions. Naive Bayes cannot make effective use of such a training
example distribution [Rennie, 2001].

The full binary error and ROC breakeven results can be found in table 3.
As we have seen, ROC breakeven helps greatly to explain differences in multi-
class error. Trends in ROC breakeven are clearly reflected in multiclass error.
Independence of the binary classifiers also clearly plays a role—identical Naive
Bayes and SVM ROC breakevens do not yield identical multiclass errors. But,
such effects are secondary when comparing the SVM and Naive Bayes. Next, we
show that the loss function plays essentially no role in ECOC text classification.

5.5 The Loss Function

Allwein et al. indicate that it is important for the loss function used for ECOC to
be the same as the one used to optimize the classifier [2000]. We find this not to
be the case. Rather, we see the most important aspect of the loss function being
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20 Newsgroups Hinge Linear
OVA/SVM 0.131 0.131
OVA/NB 0.146 0.146
BCH 63/SVM 0.125 0.126
BCH 63/NB 0.145 0.144

Industry Sector Hinge Linear
OVA/SVM 0.072 0.072
OVA/NB 0.357 0.357
BCH 63/SVM 0.067 0.067
BCH 63/NB 0.128 0.127

Table 4: Shown are multiclass errors on two data sets and a variety of ECOC
classifiers. Errors are nearly identical between the hinge and linear loss func-
tions. Although ECOC provides opportunity for non-linear decision rules
through the loss function, the use of a non-linear loss function provides no
practical benefit.

that it convey confidence information of the binary classifier. The simple linear
loss function, g(x) = −x, performs as well as the hinge loss in our experiments.
See table 4 for a full comparison. Both the linear and hinge losses perform
better than other loss functions we tried. The Hamming loss, which conveys no
confidence information, performed worst. The principle job of the loss function
is to convey binary classification confidence information. In the case of the SVM,
we find it unnecessary that the loss function match the loss used to optimize
the binary classifier.

6 Conclusion

We have shown that the Support Vector Machine can perform multiclass text
classification very effectively when used as part of an ECOC scheme. Its im-
proved ability to perform binary classification gives it much lower error scores
than Naive Bayes. In particular, one-vs-all, when used with confidence scores,
holds promise as an alternative to more complicated matrix-construction tech-
niques.

Another important area of future work is in matrix design. We have shown
that high row- and column-separation are not the only aspects of a code matrix
that lead to low overall error. A binary classifier that can learn one-vs-all splits
better than BCH splits may yield equal or lower error overall. Different data
sets will have different natural partitionings. Discovering those before training
may lead to reduced multiclass error. Crammer and Singer have proposed an
algorithm for relaxing code matrices, but we believe that more work is needed
[2001]. It may also be beneficial to weight individual examples, as is done in
multiclass boosting algorithms [Guruswami and Sahal, 1999; Schapire, 1997].
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