
MIT Open Access Articles

Proving acceptability properties of relaxed
nondeterministic approximate programs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. 2012. Proving
acceptability properties of relaxed nondeterministic approximate programs. In Proceedings of
the 33rd ACM SIGPLAN conference on Programming Language Design and Implementation
(PLDI '12). ACM, New York, NY, USA, 169-180.

As Published: http://dx.doi.org/10.1145/2254064.2254086

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/72437

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72437
http://creativecommons.org/licenses/by-nc-sa/3.0/

Proving Acceptability Properties of Relaxed
Nondeterministic Approximate Programs

Michael Carbin Deokhwan Kim Sasa Misailovic Martin C. Rinard
MIT CSAIL

{mcarbin, dkim, misailo, rinard}@csail.mit.edu

Abstract
Approximate program transformations such as skipping tasks [29,
30], loop perforation [21, 22, 35], reduction sampling [38], multiple
selectable implementations [3, 4, 16, 38], dynamic knobs [16], syn-
chronization elimination [20, 32], approximate function memoiza-
tion [11], and approximate data types [34] produce programs that
can execute at a variety of points in an underlying performance ver-
sus accuracy tradeoff space. These transformed programs have the
ability to trade accuracy of their results for increased performance
by dynamically and nondeterministically modifying variables that
control their execution.

We call such transformed programs relaxed programs because
they have been extended with additional nondeterminism to relax
their semantics and enable greater flexibility in their execution.

We present language constructs for developing and specifying
relaxed programs. We also present proof rules for reasoning about
acceptability properties [28], which the program must satisfy to be
acceptable. Our proof rules work with two kinds of acceptability
properties: relational acceptability properties, which characterize
desired relationships between the values of variables in the original
and relaxed programs, and unary acceptability properties, which
involve values only from a single (original or relaxed) program.
The proof rules support a staged reasoning approach in which the
majority of the reasoning effort works with the original program.
Exploiting the common structure that the original and relaxed pro-
grams share, relational reasoning transfers reasoning effort from
the original program to prove properties of the relaxed program.

We have formalized the dynamic semantics of our target pro-
gramming language and the proof rules in Coq and verified that the
proof rules are sound with respect to the dynamic semantics. Our
Coq implementation enables developers to obtain fully machine-
checked verifications of their relaxed programs.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Nondeterministic languages;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

General Terms Languages, Performance, Theory, Verification

Keywords Coq, Acceptability, Relaxed Programs, Relational
Hoare Logic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

1. Introduction
In recent years researchers have developed a range of mechanisms
for dynamically varying application behavior. Typical goals include
maximizing performance subject to an accuracy constraint, maxi-
mizing accuracy subject to a performance constraint, or dynami-
cally adjusting program behavior to adapt to changes in the char-
acteristics of the underlying hardware platform (such as varying
load or clock rate) [16, 17]. Specific mechanisms include skip-
ping tasks [29, 30], loop perforation (skipping iterations of time-
consuming loops) [21, 22, 35], sampling reduction inputs [38],
multiple selectable implementations of a given component or com-
ponents [3, 4, 16, 38], dynamic knobs (configuration parameters
that can be changed as the program executes) [16], synchronization
elimination (forgoing synchronization not required to produce an
acceptably accurate result) [20, 32], approximate function memo-
ization (returning a previously computed value when the arguments
of a function call are close to the arguments of a previous call) [11],
and approximate data types [32, 34].

All of these mechanisms can produce a relaxed program — a
program that may adjust its execution by changing one or more
variables subject to a specified relaxation predicate. For example,
a perforated program may dynamically choose to skip loop itera-
tions each time it enters a given loop. A relaxed program is there-
fore a nondeterministic program, with each execution a variant of
the original execution. The different executions typically share a
common global structure, with local differences at only those parts
of the computation affected by the modified variables.

1.1 Acceptability
To use these relaxation mechanisms, a developer must ensure that
the resulting relaxed program is acceptable. We formalize accept-
ability as acceptability properties that the program must satisfy to
be acceptable. Acceptability properties include integrity properties
that the program must satisfy to successfully produce a result and
accuracy properties that characterize how accurate the produced
result must be. For example, an integrity property might state that
a function must return a value greater than zero (otherwise the pro-
gram might crash), while an accuracy property might state that the
relaxed program must (potentially only with high probability) pro-
duce a result that differs by at most a specified percentage from the
result that the original program produces [21, 38].

1.2 Reasoning About Relaxed Programs
We present language constructs for developing relaxed programs
and stating acceptability properties. We also present proof rules
for verifying the stated acceptability properties. Our language and
proof rules support a staged approach in which the developer first
develops a standard program and uses standard approaches to rea-
son about this program to determine that it satisfies desired accept-
ability properties. We refer to the dynamic semantics of the pro-
gram at this stage as the original semantics of the program.

Either the developer or an automated system (such as a com-
piler that implements loop perforation) then relaxes the program
to enable additional nondeterministic executions. We refer to the
dynamic semantics of the program at this stage as the relaxed se-
mantics of the program.

Finally, the developer uses relational reasoning to verify that the
relaxation maintains the desired acceptability properties. Specifi-
cally, the developer specifies and verifies additional relational as-
sertions that characterize the relationship between the original and
relaxed semantics. These relational assertions facilitate the over-
all verification of the relaxed program. This approach is designed
to reduce the overall reasoning effort by exploiting the common
structure that the original and relaxed programs share. With this ap-
proach the majority of the reasoning effort works with the original
program and is then transferred via relational reasoning to verify
the nondeterministic relaxed program.

1.3 Relaxed Programming Constructs
Basic relaxed programming constructs include nondeterministic
variable assignments (via the relax statement), relational asser-
tions that relate the relaxed semantics to the original semantics
(via the relate statement), unary assertions (via the assert state-
ment), and unary assumptions (via the assume statement).

The Relax Statement. The relax (X) st (P) statement speci-
fies a nondeterministic assignment to the set of variables X. Specifi-
cally, the relax statement can assign the variables in X to any set of
values that satisfies the relaxation predicate P. When added to the
program, the relax statement affects only the relaxed semantics of
the program; in the original semantics it has no effect.

The Relate Statement. The relate P statement asserts that the
predicate P must hold at the program point where the statement
appears. The predicate P is a relational predicate — it may refer-
ence values from both the original and relaxed executions. So, for
example, the statement might require the value of a variable x in
relaxed executions to be greater than or equal to the value of x in
the original execution.

The Assert Statement. The assert P statement states that P
must hold at the point where the statement appears. In contrast to
the relate statement, P is a unary predicate — it only references
values from a single execution (original or relaxed) as in a stan-
dard assertion. In the original semantics, our proof rules generate
an obligation to prove that an assert statement holds for all exe-
cutions. To ensure that the assert statement remains valid in the
relaxed semantics, our proof rule in the relaxed semantics gener-
ates an obligation to prove that if the assertion is valid in the orig-
inal semantics, then the current relation between the original and
relaxed semantics establishes that the assertion is valid in the re-
laxed semantics. For example, it may be possible to prove that all
the variables referenced in an assertion have the same values in the
original and relaxed semantics — i.e., the relaxation does not inter-
fere with the assertion. In this way, relational reasoning serves as
a bridge to transfer properties of the original program over to the
relaxed program.

The Assume Statement. The assume P statement states that the
unary predicate P holds at the point where the statement appears. In
the original semantics the assume statement does not generate any
proof obligations — the proof system simply accepts that P holds.
To verify that the relaxation does not interfere with the reasoning
behind the assumption, the proof rules for the relaxed semantics
generate an obligation to prove that if the assumption P holds in
all original executions, then it holds in all relaxed executions. The
proofs work in much the same way as for the assert statement
except that the proof rules do not generate an obligation to verify
that P holds in the original semantics.

1.4 Key Properties of Acceptable Relaxed Programs
Our approach makes it possible to formalize key properties that are
critical to the development and deployment of acceptable relaxed
programs.

Integrity and Noninterference. Essentially all programs have
basic integrity properties that must hold for all executions of the
program. Examples include the absence of out of bounds array ac-
cesses or null pointer dereferences. Developers typically use either
assert or assume statements to formalize these integrity proper-
ties. Because successful relaxations do not typically interfere with
the basic integrity of the original program, the reasoning that es-
tablishes the validity of the integrity properties typically transfers
directly from the original program over to the relaxed program. Re-
lational assertions that establish the equality of values of variables
in the original and relaxed executions (i.e., noninterference) often
form the bridge that enables this direct transfer (see Section 5).

Accuracy. Relaxed programs exploit the freedom of the compu-
tation to, within limits, produce a range of different outputs. Ac-
curacy properties formalize how accurate the outputs must be to
stay within the acceptable range. For example, a perforatable loop
may produce a range of acceptable results, with (typically depend-
ing on the amount of perforation) some more accurate than others.
Because it is often convenient to express accuracy requirements by
bounding the difference between results from the original and re-
laxed executions, developers can use relate statements to express
accuracy properties (see Section 5).

Debuggability. The assume statement provides developers with
the ability to state (formally unverified) assumptions that they be-
lieve to be true in the original program. But if an assumption is not
valid, the program may fail or exhibit unintended behaviors.

Relaxation without verification can therefore complicate debug-
ging — it may cause the relaxed program to violate assumptions
that are valid in the original program (and therefore to exhibit un-
intended behaviors that are not possible in the original program).
Our proof rules, by ensuring that if the assumption is valid in the
original program, then it remains valid in the relaxed program, sim-
plify debugging by eliminating this potential source of unintended
behaviors.

Note that our proof rules can work together effectively to prove
important acceptability properties. For example, the developer may
use a relate statement to establish a relationship between values
in variables in the original and relaxed executions, then use this
relationship to prove that the property specified by an assert or
assume statement holds in all relaxed executions.

1.5 Proof Rules and Formal Properties
We structure our proof rules as a set of Hoare logics:

• Axiomatic Original Semantics: The original Hoare-style se-
mantics models the original execution of the program wherein
relax statements have no effect.

• Axiomatic Relaxed Semantics: The relational Hoare-style se-
mantics relates executions in the relaxed semantics to execu-
tions in the original semantics. The predicates of the judgment
are given in a relational logic that enables us to express prop-
erties over the values of variables in both the original and re-
laxed executions of the program. A proof with the axiomatic
relaxed semantics relates the two semantics of the program in
lockstep and, therefore, supports the transfer of reasoning about
the original semantics to the relaxed semantics by enabling, for
example, noninterference proofs.

One key aspect of the axiomatic relaxed semantics is that it
must also give an appropriate semantics for relaxed programs
in which the original and relaxed executions may branch in dif-
ferent directions at a control flow construct (at this point the
two executions are no longer in lockstep). In particular, we do
not support relational reasoning for program points at which the
executions are no longer in lockstep (relate statements do not
have a natural semantics at such program points). Our relaxed
semantics therefore incorporates a nonrelational axiomatic in-
termediate semantics that captures the desired behavior of the
relaxed execution as it executes without a corresponding orig-
inal execution. We also appropriately restrict the location of
relate statements to program points at which the original and
relaxed programs execute in lockstep.

Our proof rules are sound and establish the following semantic
properties of verified relaxed programs:

• Original Progress Modulo Assumptions: If the program ver-
ifies under the axiomatic original semantics, then no execution
of the program in the dynamic original semantics violates an
assertion. By design, a program may still terminate in error if a
specified assume statement is not valid.

• Soundness of Relational Assertions: If the program verifies
under the axiomatic relaxed semantics, then all pairs of execu-
tions in the dynamic original and relaxed semantics satisfy the
relate statements in the program.

• Relative Relaxed Progress: If the program verifies under the
axiomatic relaxed semantics and no executions in the dynamic
original semantics violate an assertion or an assumption, then
no execution in the dynamic relaxed semantics violates an as-
sertion or an assumption.

• Relaxed Progress: If the program verifies under both the orig-
inal and relaxed axiomatic semantics and no execution in the
dynamic original semantics violates an assumption, then no ex-
ecution in the dynamic relaxed semantics violates an assertion
or an assumption.

• Relaxed Progress Modulo Original Assumptions: If the pro-
gram verifies under both the original and relaxed axiomatic se-
mantics, then if an execution in the dynamic relaxed semantics
violates an assertion or an assumption, then an execution in the
dynamic original semantics violates an assumption.

These properties assure developers that verified relaxation pro-
duces a program that satisfies the stated acceptability properties.
Our design supports a development process in which developers
can use the full range of standard techniques (verification, testing,
code reviews) to validate properties that they believe to be true of
the original program. They can then use assume statements to for-
mally state these properties and incorporate them (via relational
reasoning) into the verification of the relaxed program. This verifi-
cation ensures that if the relaxed program fails because of a violated
assumption, then the developer can reproduce the violated assump-
tion in the original program.

1.6 Coq Verification Framework
We have formalized the dynamic original and relaxed semantics
with the Coq proof assistant [1]. We have also used Coq to formal-
ize our proof rules and obtain a fully machine-checked proof that
the rules are sound with respect to the dynamic semantics and pro-
vide the stated semantic properties. Our Coq formalization makes it
possible to develop fully machine-checked verifications of relaxed
programs. We have used our framework to develop and verify sev-
eral small relaxed programs.

Our Coq implementation contains approximately 8000 lines of
code and proof scripts, with 1300 lines devoted to the original se-
mantics and its soundness proofs and 1900 additional lines devoted
to the relaxed semantics and its soundness proofs. A large portion
(approximately 3500 lines) is devoted to formalizing the semantics
of our relational assertion logic and its soundness with respect to
operations such as substitution.

1.7 Contributions
This paper makes the following contributions:

• Relaxed Programming: It identifies the concept of relaxed
programming as a way to specify nondeterministic variants of
an original program. The variants often occupy a range of points
in an underlying performance versus accuracy trade-off space.
Current techniques that can produce relaxed programs include
skipping tasks [29, 30], loop perforation [21, 22, 35], reduction
sampling [38], multiple selectable implementations [3, 4, 16,
38], dynamic knobs [16], synchronization elimination [20, 32],
approximate function memoization [11], and approximate data
types [34].

• Relational Reasoning and Proof Rules: It presents a basic
reasoning approach and proof rules for verifying acceptability
properties of relaxed programs. With this approach, the major-
ity of the reasoning effort works with the original program and
is transferred to the relaxed program through relational reason-
ing.

• Coq Formalization and Soundness Results: It presents a for-
malization of the dynamic semantics and proof rules in Coq.
We have used this formalization to prove that the proof rules
are sound with respect to the dynamic original and relaxed se-
mantics. We note that our Coq formalization contains a reusable
implementation of our relational assertion logic that is, in prin-
ciple, suitable for other uses such as verifying traditional com-
piler transformations [7, 31, 36, 39].

• Verified Programs: It presents several relaxed programs for
which we have used the Coq formalization to develop fully
machine-checked verifications.

Relaxed programs can deliver substantial flexibility, perfor-
mance, and resource consumption benefits. But to successfully
deploy relaxed programs, developers need to have confidence that
the relaxation satisfies important acceptability properties. This pa-
per presents a foundational formal reasoning system that leverages
the structure and relationships that the original and relaxed execu-
tions share to enable the verification of these properties.

2. Language Syntax and Dynamic Semantics
Figure 1 presents a simple imperative language with integer vari-
ables, integer arithmetic expressions, boolean expressions, condi-
tional statements, while loops, and sequential composition. For
generality, we support nondeterminism in the original seman-
tics via the havoc (X) st (B) statement which nondetermin-
istically assigns the variables in X to values that satisfy B. The
relax (X) st (B) statement supports nondeterministic relaxation
— in the original semantics it has no effect; in the relaxed seman-
tics it nondeterministically assigns the variables in X to values that
satisfy B. The language also supports the standard assume and
assert statements.

A main point of departure from standard languages is the
addition of relational integer expressions (E∗) and relational
boolean expressions (B∗). Unlike standard expressions, which
involve values from only the current execution, relational ex-
pressions can reference values from both the original (x〈o〉) and

iop ::= + | − | ∗ | / | ...
cmp ::= < | > | = | ...
lop ::= ∧ | ∨ | ...
X ::= x | x, X
E ::= n | x | E iop E

E∗ ::= n | x〈o〉 | x〈r〉 | E∗ iop E∗

B ::= true | false | E cmp E | B lop B | ¬B
B∗ ::= true | false | E∗ cmp E∗ | B∗ lop B∗ | ¬B∗

S ::= skip | x = E | havoc (X) st (B) | relax (X) st (B)

| if (B) {S1} else {S2} | while (B) {S}
| assume B | assert B | relate l : B∗

| S ; S

Figure 1. Language Syntax

JEK ∈ Σ→ Z
JnK(σ) = n

JxK(σ) = σ(x)

J E1 iop E2K(σ) = JE1K(σ) iop JE2K(σ)

JE∗K ∈ Σ× Σ→ Z
JnK(σ1, σ2) = n

Jx〈o〉K(σ1, σ2) = σ1(x) Jx〈r〉K(σ1, σ2) = σ2(x)

JE∗1 iop E∗2 K(σ1, σ2) = JE∗1 K(σ1, σ2) iop JE∗2 K(σ1, σ2)

JBK ∈ Σ→ B
JtrueK(σ) = true JfalseK(σ) = false

JE1 cmp E2K(σ) = JE1K(σ) cmp JE2K(σ)

JB1 lop B2K(σ) = JB1K(σ) lop JB2K(σ)

J¬BK(σ) =

(
true, JBK(σ) = false
false, JBK(σ) = true

JB∗K ∈ Σ× Σ→ B
JtrueK(σ1, σ2) = true JfalseK(σ1, σ2) = false

JE∗1 cmp E∗2 K(σ1, σ2) = JE∗1 K(σ1, σ2) cmp JE∗2 K(σ1, σ2)

JB∗1 lop B∗2K(σ1, σ2) = JB∗1K(σ1, σ2) lop JB∗2K(σ1, σ2)

J¬B∗K(σ1, σ2) =

(
true, JB∗K(σ1, σ2) = false
false, JB∗K(σ1, σ2) = true

expr
JeK(σ) = n

〈e , σ〉 ⇓E n
bexp

JbK(σ) = v

〈b , σ〉 ⇓B v

Figure 2. Semantics of Expressions

relaxed (x〈r〉) executions. These relational expressions enable
relate statements to specify relationships that must hold between
the original and relaxed executions. For example, the statement
relate l : x〈o〉 = x〈r〉 asserts that at the current program point
(with label l), x must have the same value in both executions.

2.1 Semantics of Expressions
Figure 2 presents the semantics of expressions in the language. The
denotations of expressions are functions mapping a state or pair of

states to either an integer (Z) or boolean value (B). A state (σ) is
a finite map from program variables, Vars , to integers, Z, and is
an element of the domain Σ = Vars

fin→ Z, which is the set of all
finite maps from variables to integers.

The semantic function JEK defines the semantics for integer
expressions, which are composed of the standard integer opera-
tions (e.g., +,−, ∗, /, ...) on integer operands. The semantic func-
tion JBK defines the semantics of boolean expressions, which are
composed of the standard comparison operators on integers (e.g.,
<,=, >, ...) and the standard boolean operators (e.g., ∧,∨, ...).

The semantic function JE∗K defines the semantics for relational
integer expressions as a function mapping a pair of states (σ1, σ2)
to an integer number. Our convention is to have the first component
of the state pair be a state from the original semantics and the
second component a state from the relaxed semantics. Therefore, a
reference to a variable in the original semantics, x〈o〉, is equivalent
to σ1(x) whereas a reference to a variable, x〈r〉, in the relaxed
semantics is equivalent to σ2(x).

The semantic function JB∗K likewise extends the semantics
for boolean expressions with the capability to express boolean
properties over relational integer expressions.

2.2 Dynamic Original Semantics
Figure 3 presents the dynamic original semantics of the program in
a big-step operational style. The evaluation relation 〈s, σ〉 ⇓o φ
denotes that evaluating the statement s in the state σ yields the
output configuration φ. An output configuration is an element in
the domain Φ = {ba} ∪ {wr} ∪ (Σ×Ψ).

The distinguished element ba (“bad assume”) denotes that the
program has failed at an assume statement in the program. The
distinguished element wr (“wrong”) denotes that the program has
failed due to another error, such as an unsatisfied assert statement.

An element in the domain Σ×Ψ indicates that the program has
terminated successfully, yielding a final state σ and an observation
list, ψ ∈ Ψ, which is the sequence of observations emitted by
relate statements during the execution of the program.

An observation (l, σ) is an element in the domain L × Σ.
L is the finite domain consisting of all the labels specified in
relate statements in the program — the execution of each relate
statement emits an observation consisting of its label along with the
current state of the program.

The structure of an observation list is given by the standard
constructors for lists: Ψ = ∅ | (l, σ) :: Ψ. We also use the notation
ψ1.ψ2 to denote the result of appending two lists.

Evaluation Rules
The rules for skip, assignment, if, sequential composition, and
while statements follow the standard semantics for these con-
structs. The semantics for nonstandard constructs are as follows:

Havoc. The havoc (X) st (e) statement nondeterministically as-
signs values to the set of variables inX such that their values satisfy
the statement’s predicate e. All variables not specified in X retain
their previous values. If there does not exist an assignment of values
to X that satisfy e, then the statement evaluates to wr.

Assert. The assert e statement checks that the state satisfies its
predicate e. If e evaluates to true, then execution continues; other-
wise, the statement evaluates to wr.

Assume. The assume e statement checks that the state satisfies
its predicate e. If e evaluates to true, then execution continues;
otherwise, the statement evaluates to ba.

Relax. The relax (X) st (e) statement does not modify the state
of the program in the original semantics. Because we require the

〈s, σ〉 ⇓o φ skip
〈skip, σ〉 ⇓o 〈σ, ∅〉

assign
〈e , σ〉 ⇓E n

〈x = e, σ〉 ⇓o 〈σ[x 7→ n], ∅〉

havoc-t
〈e , σ′〉 ⇓B true ∀x 6∈X · σ(x) = σ′(x)

〈havoc (X) st (e), σ〉 ⇓o 〈σ′, ∅〉
havoc-f

¬∃σ′ · (〈e , σ′〉 ⇓B true ∧ ∀x 6∈X · σ(x) = σ′(x))

〈havoc (X) st (e), σ〉 ⇓o wr

assert-t
〈e , σ〉 ⇓B true

〈assert e, σ〉 ⇓o 〈σ, ∅〉
assert-f

〈e , σ〉 ⇓B false
〈assert e, σ〉 ⇓o wr

assume-t
〈e , σ〉 ⇓B true

〈assume e, σ〉 ⇓o 〈σ, ∅〉

assume-f
〈e , σ〉 ⇓B false

〈assume e, σ〉 ⇓o ba
relax

〈assert e, σ〉 ⇓o φ

〈relax (X) st (e), σ〉 ⇓o φ
relate

〈relate l : e∗, σ〉 ⇓o 〈σ, (l, σ)〉

if-t
〈b , σ〉 ⇓B true 〈s1, σ〉 ⇓o φ

〈if (b) {s1} else {s2}, σ〉 ⇓o φ
if-f
〈b , σ〉 ⇓B false 〈s2, σ〉 ⇓o φ

〈if (b) {s1} else {s2}, σ〉 ⇓o φ
seq
〈s1, σ〉 ⇓o 〈σ′, ψ1〉 〈s2, σ′〉 ⇓o 〈σ′′, ψ2〉

〈s1 ; s2, σ〉 ⇓o 〈σ′′, ψ2.ψ1〉

while-f
〈b , σ〉 ⇓B false

〈while (b) {s}, σ〉 ⇓o 〈σ, ∅〉
while-t

〈b , σ〉 ⇓B true 〈s, σ〉 ⇓o 〈σ′, ψ1〉 〈while (b) {s}, σ′〉 ⇓o 〈σ′′, ψ2〉
〈while (b) {s}, σ〉 ⇓o 〈σ′′, ψ2.ψ1〉

Figure 3. Dynamic Original Semantics

〈s, σ〉 ⇓r φ
relax
〈havoc (X) st (e), σ〉 ⇓r φ

〈relax (X) st (e), σ〉 ⇓r φ

Figure 4. Dynamic Relaxed Semantics

original execution to be one of the relaxed executions, the dynamic
original semantics requires the relaxation predicate e to hold in the
original execution.

Relate. The relate l : e∗ statement is a relational assertion over
original and relaxed executions of the program. The dynamic se-
mantics emits an observation consisting of the statement’s label l
along with the current state of the program. This semantics enables
us to define and verify a relation on the observation lists emitted by
the original and relaxed programs (see Section 4).

We omit the standard rules for propagating errors (ba and wr)
through the program. However, the reader can refer to our previous
technical report for further details [9].

2.3 Dynamic Relaxed Semantics
Figure 4 presents an abbreviated version of the dynamic relaxed
semantics. The relation 〈s, σ〉 ⇓r φ denotes that evaluating the
statement s in the state σ yields the output configuration φ.

The dynamic relaxed semantics builds upon the original seman-
tics. It differs only in that relax statements modify the state of the
program. We therefore omit the presentation of all the rules that are
either reused (skip, assignment, havoc, assert, and assume) or
adapted to refer to the relaxed dynamic semantics in their premises
(i.e., sequential composition, if, and while).

Relax. The relax (X) st (e) statement nondeterministically
modifies the state of the program in the relaxed semantics so that
it satisfies the statement’s predicate e. The rule implements the
modification by reusing the rule for havoc statements.

3. Axiomatic Semantics
We next present axiomatic semantics for relaxed programs.

• Axiomatic Original Semantics. The proof rules model the
dynamic original semantics of the program. If the program
verifies with these rules, then no execution of the program in the
dynamic original semantics violates an assertion (i.e., evaluates
to wr). However, the program may dynamically violate an
assumption (i.e., evaluate to ba).

P ::= true | false | E cmp E | P lop P | ¬P | ∃x · P

P ∗ ::= true | false | E∗ cmp E∗ | P ∗ lop P ∗ | ¬P ∗

| ∃x〈o〉 · P ∗ | ∃x〈r〉 · P ∗

Figure 5. Relational Assertion Logic Syntax

[[P]] ∈ P(Σ)

[[true]] = Σ [[false]] = ∅
[[E1 cmp E2]] = {σ | JE1K(σ) cmp JE2K(σ)}
[[P1 lop P2]] = {σ | σ ∈ [[P1]] lop σ ∈ [[P2]]}

[[¬P]] = [[true]] \ [[P]]

[[∃x · P]] = {σ | n ∈ Z, σ ∈ [[P [n/x]]]}

[[P ∗]] ∈ P(Σ× Σ)

[[true]] = Σ× Σ [[false]] = ∅
[[E∗1 cmp E∗2]] = {(σ1, σ2) | JE∗1 K(σ1, σ2) cmp JE∗2 K(σ1, σ2)}
[[P ∗1 lop P ∗2]] = {(σ1, σ2) | (σ1, σ2)∈ [[P ∗1]] lop (σ1, σ2)∈ [[P ∗2]]}

[[¬P ∗]] = [[true]] \ [[P ∗]]

[[∃x〈o〉 · P ∗]] = {(σ1, σ2) | n ∈ Z, (σ1, σ2) ∈ [[P ∗[n/x〈o〉]]]}
[[∃x〈r〉 · P ∗]] = {(σ1, σ2) | n ∈ Z, (σ1, σ2) ∈ [[P ∗[n/x〈r〉]]]}

Figure 6. Relational Assertion Logic Semantics

• Axiomatic Relaxed Semantics. The proof rules model pairs of
executions of the program in the dynamic original and dynamic
relaxed semantics. If the program verifies with these rules,
then if all executions in the original semantics execute without
error (i.e., do not evaluate to wr or ba), then all executions
in the relaxed semantics execute without error. A proof with
these rules also guarantees that pairs of original and relaxed
executions satisfy all of the relate statements in the program.

3.1 Relational Assertion Logic
Figure 5 presents the concrete syntax of our relational assertion
logic. This logic extends a nonrelational assertion logic with rela-
tional formulas, which then allows us to reason about the validity
of relational boolean expressions in relate statements. Its presen-
tation follows the style of Benton’s Relational Hoare Logic [7].

`o {P} s {Q} skip
`o {P} skip {P}

seq
`o {P} s1 {R} `o {R} s2 {Q}

`o {P} s1; s2 {Q}
assign

`o {Q[e/x]} x = e {Q}

havoc
J(∃X′ · P [X ′/X]) ∧ eK 6= ∅ fresh(X ′)

`o {P} havoc (X) st (e) {(∃X′ · P [X ′/X]) ∧ e}
assert

`o {P ∧ e} assert e {P ∧ e}

assume
`o {P} assume e {P ∧ e}

relax
`o {P} assert e {Q}

`o {P} relax (X) st (e) {Q}
if
`o {P ∧ b} s1 {Q} `o {P ∧ ¬b} s2 {Q}
`o {P} if (b) {s1} else {s2} {Q}

relate
`o {P} relate l : e∗ {P}

while
`o {P ∧ b} s {P}

`o {P} while (b) {s} {P ∧ ¬b}
conseq

|= P ⇒ P ′ `o {P ′} s {Q′} |= Q′ ⇒ Q

`o {P} s {Q}

Figure 7. Axiomatic Original Semantics

3.1.1 Syntax
The syntactic category P gives the syntax for formulas in first-
order logic with integer expressions and existential quantification.
The syntactic category P ∗ gives corresponding syntax for writing
relational formulas. P ∗ extends P by allowing formulas to refer to
relational integer expressions.

3.1.2 Semantics
Figure 6 presents the semantics of formulas in the logic. The deno-
tation of a nonrelational formula [[P]] is the set of states that satisfy
the formula. [[P]] reuses the semantic definitions for integer expres-
sions from Figure 2 to construct a definition for each formula. The
denotation of a relational formula [[P ∗]] closely follows that of non-
relational formulas: it is the set of pairs of states that satisfy the re-
lation. References to the original semantics (e.g., x〈o〉) refer to the
first component of the pair and references to the relaxed semantics
(e.g., x〈r〉) refer to the second component.

Injections. We define injection functions injo(P) and injr(P),
which construct a relational formula in P ∗ from a nonrelational
formula in P . Conceptually, injo(P) constructs a relational for-
mula where P holds for the original semantics by replacing vari-
ables (e.g., x) in P with the relational original variables (e.g., x〈o〉);
injr(P) does the same with the relational relaxed variables such
that P holds for the relaxed semantics. This means that injo(P)
(resp. injr(P)) creates a formula representing all state pairs where
the first (resp. second) component satisfies P :

[[injo(P)]] = {(σ1, σ2) | σ1 ∈ [[P]]}
[[injr(P)]] = {(σ1, σ2) | σ2 ∈ [[P]]}

We also define the notation 〈P1 · P2〉 for combining a predicate P1

over the original semantics with a predicate P2 over the relaxed:

〈P1 · P2〉 ≡ injo(P1) ∧ injr(P2)

Projections. We define two semantic functions prjo(P ∗) and
prjr(P

∗). Each function projects a relational formula in P ∗ to the
set of states corresponding to either the first (prjo) or second (prjr)
component of each state pair in the denotation of the formula:

prjo(P
∗) ≡ {σ1 | (σ1, σ2) ∈ [[P ∗]]}

prjr(P
∗) ≡ {σ2 | (σ1, σ2) ∈ [[P ∗]]}

The projection functions allow us to decompose a relational for-
mula over the original and relaxed semantics into the set of states
that satisfy the relation for either the original or relaxed semantics
individually. We use projection to define the following relations be-
tween relational and nonrelational formulas:

P ∗ |=o P ≡ prjo(P ∗) ⊆ [[P]]
P ∗ |=r P ≡ prjr(P ∗) ⊆ [[P]]

Fresh Variables and Substitution. The predicate fresh(x), de-
noting that x is a fresh variable in the context of an inference
rule, is true if x ∈ Vars and x does not appear in the rule’s
premises or consequent. Our proof rules also use the standard
capture-avoiding substitution P [e/x]. We denote multiple substi-
tution P [e1/x1] · · · [en/xn] as P [e1, · · · , en/x1, · · · , xn]. We de-
fine substitution over P ∗ similarly.

Auxiliary Notations. We also define the following judgments for
later use in both the rules of our program logics and the discussion
of their semantics:

σ |= P ≡ σ ∈ [[P]]

|= P1 ⇒ P2 ≡ [[P1]] ⊆ [[P2]]

(σ1, σ2) |= P ∗ ≡ (σ1, σ2) ∈ [[P ∗]]

|= P ∗1 ⇒ P ∗2 ≡ [[P ∗1]] ⊆ [[P2]]

3.2 Original Semantics
Figure 7 presents a manual translation of our Coq formalization
of the axiomatic original semantics of the program. The Hoare-
style judgment `o {P} s {Q} models the original execution of
the program wherein relax statements have no effect. The intended
meaning of the semantic judgment |=o {P} s {Q} is: for all states
σ, if σ |= P and 〈s, σ〉 ⇓o 〈σ′, ψ〉, then σ′ |= Q. In other words,
if σ satisfies P and an original execution of s from σ yields a new
state σ′, then σ′ satisfiesQ. We note that this definition asserts only
partial correctness and not total correctness.

We have elided a discussion of the rules for standard constructs
(i.e., skip, assign, sequential composition, if, while, and conse-
quence) because their definitions are the same as in standard pre-
sentations (e.g., Floyd [14] and Hoare [15]). We define the nonstan-
dard rules as follows:

The havoc rule requires in its premise that e must be satisfiable
by adjusting only the variables in X while retaining the values of
other variables. A havoc statement evaluates to wr only if there is
no way to transform the current state into a new state satisfying e
just by changing the variables in X .

The assert rule requires the predicate e to hold in the precondition.
The rule therefore requires a proof of e.

The assume rule differs from the assert rule in that it assumes the
validity of e and then makes e part of the postcondition. Because
there is no obligation to prove e for an assume statement, emay not
hold for all states that satisfy P and, as a result, the assume may
evaluate to ba. However, by design, we allow assume statements to
fail in the dynamic original semantics.

The relax rule specifies that a relax statement is a no-op that
does not change the program’s state in the original semantics.
Our definition of relaxation, however, requires that the original
execution must still satisfy e. To enforce this constraint, the rule
reuses the rule for the assert statement.

`r {P ∗} s {Q∗} diverge
P ∗ |=o Po P ∗ |=r Pr `o {Po} s {Qo} `i {Pr} s {Qr} no rel(s)

`r {P ∗} s {〈Qo ·Qr〉}

relax
J(∃X′〈r〉 · P ∗[X ′〈r〉/X〈r〉]) ∧ injr(e)K 6= ∅ fresh(X ′)

`r {P ∗} relax (X) st (e) {(∃X′〈r〉 · P ∗[X ′〈r〉/X〈r〉]) ∧ 〈e · e〉}
relate

`r {P ∗ ∧ e∗} relate l : e∗ {P ∗ ∧ e∗}

assert
|= P ∗ ∧ injo(e)⇒ injr(e)

`r {P ∗} assert e {P ∗ ∧ 〈e · e〉}
if
|= P ∗ ⇒ 〈b · b〉 ∨ 〈¬b · ¬b〉 `r {P ∗ ∧ 〈b · b〉} s1 {Q∗} `r {P ∗ ∧ 〈¬b · ¬b〉} s2 {Q∗}

`r {P ∗} if (b) {s1} else {s2} {Q∗}

assume
|= P ∗ ∧ injo(e)⇒ injr(e)

`r {P ∗} assume e {P ∗ ∧ 〈e · e〉}
while

|= P ∗ ⇒ 〈b · b〉 ∨ 〈¬b · ¬b〉 `r {P ∗ ∧ 〈b · b〉} s {P ∗}
`r {P ∗} while (b) {s} {P ∗ ∧ 〈¬b · ¬b〉}

Figure 8. Axiomatic Relaxed Semantics

The relate rule gives relate statements the same semantics as
skip because, unlike the axiomatic relaxed semantics (see Sec-
tion 3.3), the axiomatic original semantics references only a single
execution of the program and does not use relational reasoning.

3.3 Relaxed Semantics
Figure 8 presents a manual translation of our Coq formalization of
the axiomatic relaxed semantics of the program. The proof rules
for the relaxed semantics are relational in that they relate exe-
cutions of the program under the dynamic relaxed semantics to
executions under the dynamic original semantics. The intended
meaning of each judgment |=r {P ∗} s {Q∗} is the partial cor-
rectness assertion: if (σo, σr) |= P ∗, 〈s, σo〉 ⇓o 〈σ′o, ψ1〉, and
〈s, σr〉 ⇓r 〈σ′r, ψ2〉, then (σ′o, σ

′
r) |= Q∗.

The rules are designed to transfer the reasoning from the ax-
iomatic original semantics to prove properties about the axiomatic
relaxed semantics. Specifically, the axiomatic relaxed semantics
need not re-prove properties about the dynamic original semantics
(e.g., the validity of assert statements). It can instead simply as-
sume that these properties are established by the axiomatic original
semantics and then transfer their validity to the relaxed semantics
via relational reasoning. We have elided discussions of most of the
standard rules. The nonstandard rules operate as follows:

The relax rule distinguishes the semantics of relaxation in the
original and relaxed semantics of the program. The rule is similar
to the havoc rule in the axiomatic original semantics except that 1)
it deals with a relational formula and 2) the rule only modifies (i.e.,
substitutes) relaxed variables, such as x〈r〉, whereas variables over
the original semantics x〈o〉 are not modified. We use a shorthand
X〈r〉 ≡ {x〈r〉 | x ∈ X} to denote the syntactic extension of a set
of variables in X to relaxed variables.

The relate rule enables us to reason about relate statements in
the program. Similar to a nonrelational assertion, the rule requires
e∗ to hold in the precondition. This ensures that e∗ holds for all
pairs of original and relaxed executions that reach the statement.

The assert rule demonstrates how we can use relational reasoning
to prove assertions in the relaxed semantics. Specifically, we can
first assume that the assertion is true in the original semantics (i.e.,
injo(e)) because it has been verified with the axiomatic original
semantics. If P ∗ ∧ injo(e) implies injr(e), we can then conclude
that the assertion is true in the relaxed semantics (i.e., injr(e)).

For example, if the precondition of the statement assert e re-
quires all of the free variables in e to be the same in both semantics
(i.e., for all x ∈ free(e), x〈o〉 == x〈r〉), then because the axiomatic
original semantics proves that the assertion is true in the dynamic
original semantics, we can conclude that the assertion is also true
in the dynamic relaxed semantics.

The assume rule demonstrates how relational reasoning allows us
to use relations between the original and relaxed semantics of the

`i {P} s {Q} relax
`i {P} havoc (X) st (e) {Q}
`i {P} relax (X) st (e) {Q}

assume
`i {P ∧ e} assume e {P ∧ e}

Figure 9. Axiomatic Intermediate Semantics

program to reason about assumptions in the relaxed semantics in
the same way as we do for assertions — i.e., if the assumption is
true in the original semantics of the program, then it is also true in
the relaxed semantics.
Convergent and Divergent Control Flow. An important aspect
of relaxed programs is that the original and relaxed executions of a
program may branch in different directions at a control flow con-
struct. Specifically, if two executions branch in the same direction,
then we can continue to reason about them relationally in lockstep.
However, if the two executions diverge, then the executions execute
different statements and, as a result, we lose our relational reason-
ing power. We note that it is possible for two executions to diverge
at a control flow construct and then converge again at the end of the
construct, allowing us to regain our relational reasoning power.

The relaxed axiomatic semantics captures this property via a set
of proof rules for convergent control flow constructs (i.e., the orig-
inal and relaxed executions always branch in the same direction)
and another set for divergent control flow constructs. 1

3.3.1 Convergent Control Flow
The if rule allows us to continue to use relational reasoning inside
an if statement if it has convergent control flow. We establish this
convergence by checking that for all σ1, σ2, if (σ1, σ2) |= P ∗ then
the conditional’s boolean expression either evaluates to true in both
the original and relaxed semantics or it evaluates to false in both
semantics. If so, then in all cases, the original and relaxed semantics
take the same branch together. Otherwise control flow may diverge
and the rule cannot be applied.

The while rule is similar in form to the if rule in that it
requires that control flow be convergent to allow us to continue to
use relational reasoning within the body of a while statement.

3.3.2 Divergent Control Flow
The diverge rule enables a proof to proceed if the original and
relaxed semantics diverge at a control flow construct. The rule
establishes the postcondition of the statement by independently
establishing that `o {Po} s {Qo} for the original semantics and
that `i {Pr} s {Qr} for the relaxed semantics, where Po and Pr
are left and right projections of P ∗. The judgment `i {Pr} s {Qr}

1 We provide a detailed formalization of convergent control flow in the
supplementary material of this paper on the ACM Digital Library.

is a set of proof rules for the axiomatic intermediate semantics
of the program. Figure 9 gives an abbreviated presentation of the
program logic for the intermediate semantics of the program.

The axiomatic intermediate semantics is a nonrelational char-
acterization of the dynamic relaxed semantics and is very simi-
lar to the axiomatic original semantics. The intended meaning of
the judgment |=i {P} s {Q} is: for all states σ, if σ |= P and
〈s, σ〉 ⇓r 〈σ′, ψ〉, then σ′ |= Q. This semantics differs from the
axiomatic original semantics in two ways:

• The relax rule specifies that relax (X) st (e) may apply
any modification to the variables in X as long as the new
values satisfy e. In the axiomatic original semantics the relax
statement is a no-op.

• The assume rule requires (just as for assert statements) a
proof that e holds in relaxed executions. The goal is to ensure
that the relaxation does not invalidate the reasoning used to
establish that e holds in the original program. In the axiomatic
original semantics there is no such proof obligation — e is
simply assumed to be valid.

We conclude the presentation of the diverge rule by noting that
it is also guarded by the predicate no rel(s), which evaluates to true
if no relate statements appear within s. This predicate therefore
prevents relate statements from appearing in divergent control
flow statements where we are unable to use relational reasoning to
establish that the relate statement is satisfied.

We also note that the use of projections by |=o and |=r in this
rule means that all relationships between the two semantics are lost
and must be reestablished at the end of the statement. Relationships
that are not modified by the statement, however, can be preserved
via a relational frame rule.

4. Properties
We now present the technical definitions, lemmas, and theorems
that establish the semantic properties of programs in the language.

The key property of our language and proof rules is Relative
Relaxed Progress (Section 4.3), which states that our proof rules
guarantee that if the original program executes without error, then
the relaxed program executes without error. This property enables
a developer to combine a proof in the axiomatic original seman-
tics with formally unverified assumptions to demonstrate that the
original program is error free. The developer can then augment
this reasoning with a proof in the axiomatic relaxed semantics to
therefore show that the relaxed program is error free. An impor-
tant consequence of this formulation is that if a formally unverified
assumption is not valid and produces unintended behaviors in the
program, then these behaviors can be reproduced and debugged in
the original program.

In our formalization, we restrict ourselves to terminating re-
laxed programs. Also, while we only present brief proof sketches,
the full sources of our Coq formalization and proofs are available
online at

http://groups.csail.mit.edu/pac/acceptability

4.1 Original Semantics
Our axiomatic definition for the original semantics is sound and can
be used to establish a weak form of the traditional progress theorem
for programs. Specifically, if you can write a proof in the axiomatic
original semantics and an execution in the original semantics termi-
nates, then the resulting state is not wr. This differs from a strong
form of progress that establishes the same for all programs (includ-
ing nonterminating programs), which would require a small-step or
coinductive formalization of our dynamic semantics.

Lemma 1 (Soundness).

If `o {P} s {Q}, then |=o {P} s {Q}
This lemma establishes that our axiomatic definition is sound

with respect to the dynamic original semantics of the program.
More specifically, given a proof `o {P} s {Q}, it is the case that
for all states σ |= P , if 〈s, σ〉 ⇓o 〈σ′, ψ〉, then σ′ |= Q.

Proof Sketch. This proof proceeds by induction on the rules of
`o {P} s {Q}. A large portion of the proof effort involves proving
the semantics of substitution in the case of the assignment rule and
the havoc rule. The case of the havoc rule also requires mutual
induction on the lists of modified and fresh variables to establish
that the post-condition holds. The cases for structural rules (if and
sequential composition) follow from induction and the case for the
while statement proceeds by nested induction on derivations of the
evaluation relation.

Lemma 2 (Original Progress Modulo Assumptions).

If `o {P} s {Q}, and σ |= P , and 〈s, σ〉 ⇓o φ , then
φ 6= wr

This lemma establishes the progress property that we desire for
the original semantics. Specifically, given a proof in the original
axiomatic semantics, then for all states that satisfy P , if execution
terminates, then the execution does not yield wr. By design, the
judgment does not preclude the program from evaluating to ba
(indicating that it has violated an assumption).

Proof Sketch. This proof proceeds by induction on the rules of
`o {P} s {Q}. We only need to consider three primitive state-
ments where the program may evaluate to wr: havoc (the satis-
fiability check in the premise guards against this), assert e (the
fact that e must hold in the precondition guards against this), and
relax (follows by induction because execution of a relax state-
ment reduces to execution of an assert statement).

4.2 Intermediate Semantics
The axiomatic relaxed semantics establishes several progress prop-
erties about the relaxed execution of the program. However, to
prove progress for the axiomatic relaxed semantics, we need to first
prove the same for the axiomatic intermediate semantics.

The definition for the axiomatic intermediate semantics is sound
and, also, establishes a form of progress for the relaxed semantics
of the program. Specifically, the intermediate semantics models the
behavior of a relaxed execution after it has branched at a control
flow construct in a different direction than an original execution.
When this happens, the relaxed execution must not violate asser-
tions (evaluate to wr) or violate assumptions (evaluate to ba).

Lemma 3 (Soundness).

If `i {P} s {Q}, then |=i {P} s {Q}
This lemma establishes that our axiomatic definition is sound

with respect to the dynamic relaxed semantics: given a proof
`i {P} s {Q}, it is the case that for all states σ |= P , if
〈s, σ〉 ⇓r 〈σ′, ψ〉, then σ′ |= Q.

Proof Sketch. This proof proceeds by induction on the rules of
`i {P} s {Q}. Because the axiomatic intermediate semantics
reuses a large portion of the axiomatic original semantics, and the
definition of the dynamic relaxed semantics is very similar to that
of the dynamic original semantics, the vast majority of the proof
follows from the proofs in Lemma 1.

http://groups.csail.mit.edu/pac/acceptability

Lemma 4 (Progress).

If `i {P} s {Q}, and σ |= P , and 〈s, σ〉 ⇓r φ,
then ¬err(φ)

where err(φ) ≡ φ = wr ∨ φ = ba

This lemma establishes the progress property that we desire for
the axiomatic intermediate semantics. Specifically, given a proof
`i {P} s {Q}, it is the case that for all states that satisfy P , if
execution terminates, then the execution does not yield an error.
Note that this guarantee is stronger than that for the axiomatic
original semantics in that it does not allow a relaxed execution to
violate an assumption whereas an original execution may do so.

Proof Sketch. The proof proceeds by induction on the rules of
`i {P} s {Q}. As in the proof of soundness (Lemma 3), the
vast majority of the proof follows from our proofs about the ax-
iomatic original semantics; in this case most of the proof follows
directly from Lemma 2 (Original Progress Modulo Assumptions).
The proof differs for two statements: relax (the proof follows
by induction because execution of a relax statement reduces to
the execution of a havoc) and assume (the proof also follows by
induction as execution of an assume reduces to an assert).

4.3 Relaxed Semantics
Lemma 5 (Soundness).

If `r {P ∗} s {Q∗}, then |=r {P ∗} s {Q∗}

This lemma establishes that our axiomatic definition is sound
with respect to the original and relaxed semantics of the pro-
gram. Specifically, given a proof `r {P ∗} s {Q∗}, it is the case
that for all states (σo, σr) |= P ∗, if 〈s, σo〉 ⇓o 〈σ′o, ψ1〉 and
〈s, σr〉 ⇓r 〈σ′r, ψ2〉, then (σ′o, σ

′
r) |= Q∗.

Proof Sketch. The proof proceeds by induction on the rules of
`r {P ∗} s {Q∗}. The proof is largely similar to that for the orig-
inal axiomatic semantics in that much of the work lies in proving
the semantics of substitution for the relax statement, which has a
proof that is similar to havoc in the original axiomatic semantics.
The cases for structural rules (if and sequential composition) fol-
low from induction and the case for the while statement proceeds
by nested mutual induction on derivations of the original and re-
laxed execution of the statement. The most distinct case is the rule
for diverge: this proof uses the soundness of the original axiomatic
semantics (Lemma 1) and the soundness of the intermediate ax-
iomatic semantics (Lemma 3) to establish the soundness of the rule
for executions in which the original and relaxed executions branch
in different directions at a control flow construct.

Theorem 6 (Soundness of Relational Assertions).
If `r {P ∗} s {Q∗}, and (σo, σr) |= P ∗,

and 〈s, σo〉 ⇓o 〈σ′o, ψ1〉, and 〈s, σr〉 ⇓r 〈σ′r, ψ2〉,
then Γ ` ψ1 ∼ ψ2

This theorem establishes that given a proof in the relaxed ax-
iomatic semantics, if the original execution of the program termi-
nates successfully and the relaxed execution of the program termi-
nates successfully, then the observation lists generated by the exe-
cutions (ψ1 and ψ2, respectively) satisfy the observational compat-
ibility relation Γ ` ψ1 ∼ ψ2. Observational compatibility implies
that the original and relaxed executions of the program satisfy all
executed relate statements; we define the relation as follows:

Γ ` ∅ ∼ ∅
JΓ(l)K(σ1, σ2) = true Γ ` ψ1 ∼ ψ2

Γ ` (l, σ1) :: ψ1 ∼ (l, σ2) :: ψ2

The symbol Γ represents a finite map from relate labels to
relational boolean expressions (i.e, Γ ∈ L → B∗). We define this
map by structural induction on the syntax of the program, where
the label of each relate statement in the program maps to its
relational boolean expression. We require that relate statements
in well-formed programs be uniquely labeled.

The rules specify that if two observations lists are empty, then
they are compatible. Otherwise, any two lists are compatible if
1) the labels in the head are the same (indicating that they are
generated by the same relate statement), 2) the relational boolean
expression for the label evaluates to true for the states in the head,
and 3) the tails of the two lists are also compatible.

Proof Sketch. This proof proceeds by induction on the rules of
`r {P ∗} s {Q∗}. The two interesting cases are the diverge rule
and the rule for relate statements. For the diverge rule, we use the
fact that the rule requires no rel(s) (which requires that no relate
statements appear inside s). We can therefore conclude that the
observation list for the statement is empty and, therefore, original
and relaxed executions of the statement are trivially compatible. In
the case of the relate rule, the proof uses the rule’s precondition
to establish that the two emitted observations satisfy the relate
statement’s condition.

Theorem 7 (Relative Relaxed Progress).

If `r {P ∗} s {Q∗}, and (σo, σr) |= P ∗, and 〈s, σo〉 ⇓o φo,
and ¬err(φo), and 〈s, σr〉 ⇓r φr , then ¬err(φr)

This theorem establishes the relative progress guarantee for
the relaxed semantics of the program. Specifically, given a proof
`r {P ∗} s {Q∗} , it is the case that for all pairs of states (σo, σr)
that satisfy P ∗, if an original execution terminates and does not
produce an error, then if a relaxed execution terminates, it also does
not produce an error.

Proof Sketch. This proof proceeds by induction on the rules of
`r {P ∗} s {Q∗}. The most important cases are the assert and
assume statements and the diverge rule. The proofs for assert and
assume are similar in that the premise ensures that if the original
execution evaluates to true, then the condition also evaluates to true
in the relaxed execution. We do not have to consider the case where
the original execution evaluates to false because this would imply
that φo = wr∨φo = ba, which is inconsistent with the assumption
that ¬err(φo).

The diverge rule demonstrates the utility of our design of the ax-
iomatic intermediate semantics. For this rule, we can no longer use
facts about the original execution to prove facts about the relaxed
execution. Therefore, the relaxed execution must be inherently er-
ror free. The proof uses the progress guarantee of the axiomatic
intermediate semantics (Lemma 4) to establish exactly that.

Theorem 8 (Relaxed Progress).

If `o {P} s {Q}, and `r {P ∗} s {Q∗}, and P ∗ |=o Po,
and (σo, σr) |= P ∗, and 〈s, σo〉 ⇓o φo, and φo 6= ba,

and 〈s, σr〉 ⇓r φr , then ¬err(φr).

This theorem combines the multiple proofs and assumptions in
our programming model to establish the main progress guarantee
for relaxed programs: given 1) a proof in the original axiomatic
semantics, 2) a proof in the relaxed axiomatic semantics, and 3) that
executions in the original semantics terminate and do not violate
an assumption, then if a relaxed execution terminates, it does not
produce an error.

Proof Sketch. This proof follows directly from our assumptions,
Lemma 2 (Original Progress Modulo Assumptions), and Theo-
rem 7 (Relative Progress). Our assumptions and Lemma 2 establish
that if an original execution terminates, then it does not terminate
in error. By Theorem 7, we can conclude that if a relaxed execution
terminates, it does not produce an error.

Corollary 9 (Relaxed Progress Modulo Original Assumptions).

If `o {P} s {Q}, and `r {P ∗} s {Q∗}, and P ∗ |=o Po,
and (σo, σr) |= P ∗, and 〈s, σr〉 ⇓r φr , and err(φr), If

〈s, σo〉 ⇓o φo, then φo = ba

This corollary of Theorem 8 captures an important aspect of
how our programming model incorporates assumptions, which may
cause errors in both original and relaxed executions. Given proofs
in the original and relaxed axiomatic semantics, if an error occurs in
a relaxed execution and the original execution terminates, the orig-
inal execution must violate an assumption. Errors in the relaxed
program therefore correspond to invalid assumptions in the origi-
nal program. To debug an error in a relaxed execution, a developer
should therefore look for invalid assumptions in the original pro-
gram.

5. Example Relaxed Programs
Inspired by programs that researchers have successfully relaxed
in prior work, we developed several example programs designed
to capture the core aspects of the successful relaxations. We then
formalized key acceptability properties of the relaxations and used
our Coq formalization to prove these properties.

5.1 Dynamic Knobs
Swish++ is an open-source search engine. We work with a success-
ful relaxation that uses Dynamic Knobs to reduce the number of
search results that Swish++ presents to the user when the server is
under heavy load [16]. The rationale for this relaxation is that 1)
users are typically only interested in the top search results and 2)
users are very sensitive to how quickly the results are presented —
even a short delay can significantly reduce advertisement revenue.

Relaxation. The transformation targets a loop that formats and
presents the search query results. The loop keeps track of the
number of search results, which we denote by N. The loop also
has a control variable max_r which is a threshold on the number of
elements that should be presented to the user: if N is smaller than
max_r, then all results will be presented; otherwise, only the first
max_r results will be presented.

A relaxed program can nondeterministically change max_r to
reduce the number of iterations of this loop while still returning the
most important results:

original_max_r = max_r;
relax (max_r) st

(original_max_r <= 10 && max_r == original_max_r)
|| (10 < original_max_r && 10 <= max_r);

This code first saves the original value of the control variable
max_r in original_max_r. It then relaxes max_r. There are two
cases: if the original value of this control variable was less than
or equal to 10, then the relaxed execution should be the same as
the original execution — it presents the same number of results,
since the value of max_r does not change. If, on the other hand, the
original value was greater than 10, the only constraint is that the
value of max_r is not smaller than 10, meaning that it should return
at least the top 10 results when available. The relax statement
nondeterministically changes max_r subject to these constraints.

Acceptability. One acceptability property is that the relaxed exe-
cution must present either all of the search results from the original
execution to the user (if the number of search results in the original
execution is less than or equal to 10), or at least the first 10 results
(if the number of results in the original execution is greater than
10). The following relate statement captures these constraints:

relate (num_r<o> < 10 && num_r<o> == num_r<r>) ||
(10 <= num_r<o> && 10 <= num_r<r>);

The loop that formats and presents the search results maintains
a count num_r of the number of formatted and presented results.
This statement therefore uses the value of num_r in the original
program (denoted num_r<o>) to determine how many search re-
sults the original execution presents. The relate statement uses
num_r<o> and the (potentially different) value of num_r in the re-
laxed execution (num_r<r>) to formalize the desired relationship
between the two executions.

Verification. The proof of the relate statement involves 330
lines of Coq proof scripts. Because the relaxation changes the
number of loop iterations, the proof uses the divergent control
flow rule to reason about the loop in the original semantics and
relaxed semantics separately. The key proof steps establish that
the condition of the relax statement holds before entering the
loop and that original_max_r<o> == original_max_r<r>
and N<o> == N<r>. The loop invariant in both the original and
relaxed execution is num_r <= max_r && num_r <= N.

Once control flow converges after the loop, the relate state-
ment’s precondition can be deduced via a proof by cases or, as in
our proof environment, verified by an automated theorem prover.

5.2 Statistical Automatic Parallelization
Our next example is drawn from a parallelization of the Water com-
putation [8] with statistical accuracy bounds [20]. In this computa-
tion a control variable determines whether to execute a loop se-
quentially or in parallel. To maximize performance, the paralleliza-
tion eliminates lock operations that make updates to an array RS
execute atomically. The resulting race conditions produce a parallel
computation whose result may vary nondeterministically (because
of CPU scheduling variations) within acceptable accuracy bounds.

Relaxation. We model the relaxation nondeterminism by relax-
ing each element in RS with no constraints:2

relax (RS) st (true);

In a loop that executes after the parallel loop, the Water computa-
tion compares RS[K] to a cutoff variable gCUT2 and, if it is less than
the cutoff, uses RS[K] to update an array FF (here EXP(RS[K]) is
an expression involving RS):

while (K < N) {
if (RS[K] < gCUT2) { FF[K] = EXP(RS[K]); }
K = K + 1;

}

Acceptability. A key acceptability property is that K stays within
the bounds of the array FF.3 The array bounds are stored in the
variable len_FF. We assume that the developer establishes, via
some standard reasoning process, that the original execution does
not violate the array bounds and therefore inserts the statement
assume (K < len_FF) inside the if statement just before the
assignment to FF[K].

2 Although we do not present our treatment of arrays in this paper, our Coq
formalization supports reasoning about arrays, which is a straightforward
extension of our presented framework.
3 We note that K must also be within the bounds of RS; the proof is similar.

Verification. Recall that the verification of the relaxed program
must verify that the condition in each assume statement holds in
the relaxed execution. One approach is noninterference — verify
that relaxation does not affect the values of the variables in the
predicate. However, this is a relational property and because the
assume statement appears at a divergent control flow point (it
depends on the value of the relaxed variable RS), this approach does
not work.

The developer therefore inserts another assume statement,
assume (K < len_FF), just before the if statement. It is pos-
sible to verify this statement using noninterference, then propagate
the condition through the if statement to verify the second assume
statement.

The Coq verification of this program consists of approximately
310 lines of proof script. The key proof step verifies the relational
loop invariants K<o> == K<r> and len_FF<o> == len_FF<r>.
These invariants enable us to prove that the relaxation does not
interfere with the assumption.

5.3 Approximate Memory and Data Types
Our third example is drawn from the LU decomposition algorithm
implemented in the SciMark2 benchmark suite [2]. Researchers
have demonstrated that lower-power, approximate memories and
CPU compute units can be used to lower the energy consumption of
this computation at the expense of a small loss in accuracy [18, 34].

We focus on the part of the computation that computes the pivot
row p for each column j in a matrix A. The pivot row is the row
that contains the maximum element in the column.

i = j + 1;
while (i < N) {
a = A[i][j];
if (a > max) { max = a; p = i; }
i = i + 1;

}

Relaxation. Following the assumptions on errors in approximate
memories described in [25], if A is stored in approximate memory,
then we can model the range of errors when reading a value from A
with a relaxation that nondeterministically adds a bounded error e
to the result:

original_a = a;
relax (a) st (original_a - e <= a &&

a <= original_a + e);

Acceptability. One acceptability property for this computation
is that the value in the selected pivot row (max) in the relaxed
execution does not differ from the result in an original execution
by more than e. We can specify this with a relate statement:

relate max<o> - max<r> <= e && max<r> - max<o> <= e

We note that this relate statement asserts the Lipschitz-
continuity of the computation: small changes in the inputs lead
to proportionally small changes in the output.

Verification. The Coq verification of this program consists of
approximately 315 lines of proof script. The key proof step verifies
that max<o> - max<r> <= e && max<r> - max<o> <= e (the
relation specified by the relate statement) is loop invariant.

6. Future Work
Termination. Our proof rules are designed to support the verifica-
tion of acceptability properties that can be described with assert
statements—which must hold independently for both original and
relaxed executions—and relate statements, which relate original

and relaxed executions. While such properties establish a partial
correctness guarantee (as in standard Hoare logic), other accept-
ability properties may also prescribe total correctness: proofs of
termination as well as partial correctness.

Because relaxed programs may contain additional nondetermin-
istic and dynamically varying control flow, proving termination for
a relaxed program may be more challenging than proving nontermi-
nation for the original program. One approach is to use relational
reasoning to transfer the termination proof from the original pro-
gram to the relaxed program (in much the same way as for our cur-
rent set of acceptability properties). And while our proof machinery
is not designed to support termination proofs, the rules in our ax-
iomatic relaxed semantics do establish a relative termination guar-
antee for convergent while loops (whose termination conditions are
proved to be equivalent in the original and relaxed semantics). Rel-
ative termination for such convergent loops ensures that if the loop
terminates in the original program then it also terminates in the
relaxed program. We anticipate that such a notion of relative termi-
nation (akin to our relative progress) will be a fruitful direction for
future work.
Completeness. We have omitted a formal statement of the com-
pleteness of the logic because we believe that there are additional
acceptability properties of relaxed programs that interact with ter-
mination, divergent control flow, and the semantics of errant exe-
cutions in which the original or relaxed semantics can evaluate to
ba or wr. We intend to explore the meaning of completeness and
its interactions with these properties in future work.

7. Related Work
Executable Specifications. Executable specifications, via tech-
niques such as refinement and constraint solving, produce concrete
outputs that satisfy the specification [13, 19, 23, 27, 33, 37]. Ap-
plications include recovering from errors in existing code and pro-
viding alternate implementations for code that may be difficult to
develop using standard techniques.

The research in this paper differs in that it promotes nondeter-
ministic relaxation to obtain semantically different but still accept-
able variants of the original program. Our focus is therefore on en-
abling developers to specify and prove acceptability requirements
that involve relational properties between the original and relaxed
programs.
Unreliable Memory and Critical Data. Researchers have pro-
posed techniques for enabling programs to distinguish data that can
be stored in unreliable low-power memory from critical data whose
values must be stored reliably [10, 18, 34]. These systems focus on
data values (such as the values of pixels in an image) that can, in
principle, legally take on any value. While the techniques presented
in this paper support the verification of this class of programs, they
also support the verification of a more general class of programs
whose legal data values are constrained by relaxation predicates.
Relational Program Logics. Our program logic for the relaxed
semantics of the program builds on previous work on the Rela-
tional Hoare Logic (RHL) [7]. RHL itself was inspired by Cred-
ible Compilation [31] and Translation Validation [26] and and has
since inspired other forms of relational reasoning. Researchers have
also defined relational separation logic [5, 36], probabilistic Hoare
logic [6], and have used relational reasoning to verify the correct-
ness of semantics-preserving compiler transformations [12, 31, 39],
Lipschitz-continuity [12], access control policies [24], and differ-
ential privacy mechanisms [6].

While the majority of previous research has focused on prov-
ing that transformed programs retain the semantics of the original
program, our goal is different — specifically, to prove that relaxed
executions (which typically have different semantics) preserve im-

portant acceptability properties. We adapt RHL to prove properties
that relate the original and relaxed executions and extend RHL to
reason about assertions (which reference only the current execu-
tion) and assumptions (which are assumed to hold in original exe-
cutions but must be shown to hold in relaxed executions).

8. Conclusion
The additional nondeterminism in relaxed programs enables pro-
grams to operate at a variety of points with different combina-
tions of accuracy, performance, and resource consumption char-
acteristics. It is possible to exploit this flexibility to satisfy a va-
riety of goals, including trading off accuracy for enhanced per-
formance or reduced energy consumption [3, 4, 11, 16–18, 20–
22, 29, 30, 32, 34, 35, 38] or responding to load spikes or other
fluctuations in the characteristics of the underlying computational
platform [16, 17, 29, 34].

We present formal reasoning techniques that make it possible to
verify important acceptability properties of relaxed programs. Stan-
dard verification techniques reference only the current execution of
the current program under verification. Our techniques, in contrast,
aim to reduce the verification effort by taking a relational approach
that exploits the close relationship between the original and relaxed
executions. Our goal is to give developers the verified acceptability
properties they need to confidently deploy relaxed programs and
exploit the substantial flexibility, performance, and resource con-
sumption advantages that relaxed programs offer.

Acknowledgments
We would like to thank Fan Long and our anonymous review-
ers for their insightful comments. We also note our earlier tech-
nical report on reasoning about relaxed programs [9]. This research
was supported in part by the National Science Foundation (Grants
CCF-0811397, CCF-0905244, CCF-1036241, and IIS-0835652),
DARPA (Grants FA8650-11-C-7192 and FA8750-12-2-0110), and
the United States Department of Energy (Grant DE-SC0005288).

References
[1] The Coq Proof Assistant. http://coq.inria.fr.

[2] Scimark 2.0. http://math.nist.gov/scimark2.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. Petabricks: a language and compiler for algo-
rithmic choice. PLDI, 2009.

[4] W. Baek and T. M. Chilimbi. Green: a framework for support-
ing energy-conscious programming using controlled approximation.
PLDI, 2010.

[5] G. Barthe, J. Crespo, and C. Kunz. Relational verification using
product programs. FM, 2011.

[6] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin. Probabilistic
reasoning for differential privacy. POPL, 2012.

[7] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. POPL, 2004.

[8] W. Blume and R. Eigenmann. Performance analysis of parallelizing
compilers on the Perfect Benchmarks programs. Transactions on
Parallel and Distributed Systems, 3(6), 1992.

[9] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Reasoning about
Relaxed Programs. Technical Report MIT-CSAIL-TR-2011-050,
MIT, 2011.

[10] M. Carbin and M. Rinard. Automatically Identifying Critical Input
Regions and Code in Applications. ISSTA, 2010.

[11] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving
Programs Robust. FSE, 2011.

[12] J.M. Crespo and C. Kunz. A machine-checked framework for rela-
tional separation logic. SEFM, 2011.

[13] B. Demsky and M. Rinard. Data structure repair using goal-directed
reasoning. ICSE, 2005.

[14] R. W. Floyd. Assigning meanings to programs. Mathematical aspects
of computer science, 19(19-32), 1967.

[15] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10), October 1969.

[16] H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard. Dynamic knobs for responsive power-aware computing.
ASPLOS, 2011.

[17] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard. Using Code Perforation to Improve Performance, Reduce En-
ergy Consumption, and Respond to Failures . Technical Report MIT-
CSAIL-TR-2009-042, MIT, 2009.

[18] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker: Saving
dram refresh-power through critical data partitioning. ASPLOS, 2011.

[19] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Unifying
execution of imperative and declarative code. ICSE, 2011.

[20] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential pro-
grams with statistical accuracy tests. Technical Report MIT-CSAIL-
TR-2010-038, MIT, 2010.

[21] S. Misailovic, D. Roy, and M. Rinard. Probabilistically Accurate
Program Transformations. SAS, 2011.

[22] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. ICSE, 2010.

[23] C. Morgan. The specification statement. Transactions on Program-
ming Languages and Systems, 10(3), 1988.

[24] A. Nanevski, A. Banerjee, and D. Garg. Verification of information
flow and access control policies with dependent types. SP, 2011.

[25] J. Nelson, A. Sampson, and L. Ceze. Dense approximate storage in
phase-change memory. ASPLOS-WACI, 2011.

[26] A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
TACAS, 1998.

[27] D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and D. Jackson.
Agile specifications. OOPSLA, 2009.

[28] M. Rinard. Acceptability-oriented computing. OOPSLA Onwards ’03.
[29] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computa-

tions that discard tasks. ICS, 2006.
[30] M. Rinard. Using early phase termination to eliminate load imbalances

at barrier synchronization points. OOPSLA, 2007.
[31] M. C. Rinard and D. Marinov. Credible compilation with pointers.

RTRV, 1999.
[32] Martin Rinard. A lossy, synchronization-free, race-full, but still ac-

ceptably accurate parallel space-subdivision tree construction algo-
rithm. Technical Report MIT-CSAIL-TR-2012-005, MIT, 2012.

[33] H. Samimi, E. Aung, and T. Millstein. Falling back on executable
specifications. ECOOP, 2010.

[34] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: approximate data types for safe and general low-
power computation. PLDI, 2011.

[35] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
Performance vs. Accuracy Trade-offs With Loop Perforation. FSE ’11.

[36] H Yang. Relational separation logic. Theoretical Computer Science,
375(1-3), May 2007.

[37] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automat-
ically enforcing privacy policies. POPL, 2012.

[38] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized
accuracy-aware program transformations for efficient approximate
computations. POPL, 2012.

[39] L. Zuck, A. Pnueli, and R. Leviathan. Validation of optimizing com-
pilers. Technical report, Weizmann Institute of Science, 2001.

	Introduction
	Acceptability
	Reasoning About Relaxed Programs
	Relaxed Programming Constructs
	Key Properties of Acceptable Relaxed Programs
	Proof Rules and Formal Properties
	Coq Verification Framework
	Contributions

	Language Syntax and Dynamic Semantics
	Semantics of Expressions
	Dynamic Original Semantics
	Dynamic Relaxed Semantics

	Axiomatic Semantics
	Relational Assertion Logic
	Syntax
	Semantics

	Original Semantics
	Relaxed Semantics
	Convergent Control Flow
	Divergent Control Flow

	Properties
	Original Semantics
	Intermediate Semantics
	Relaxed Semantics

	Example Relaxed Programs
	Dynamic Knobs
	Statistical Automatic Parallelization
	Approximate Memory and Data Types

	Future Work
	Related Work
	Conclusion

