
MIT Open Access Articles

Probabilistic Accuracy Bounds for Perforated Programs: A 
New Foundation for Program Analysis and Transformation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Martin Rinard. 2011. Probabilistic accuracy bounds for perforated programs: a new 
foundation for program analysis and transformation. In Proceedings of the 20th ACM SIGPLAN 
workshop on Partial evaluation and program manipulation (PEPM '11). ACM, New York, NY, USA, 
79-80.

As Published: http://dx.doi.org/10.1145/1929501.1929517

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/72443

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72443
http://creativecommons.org/licenses/by-nc-sa/3.0/


Probabilistic Accuracy Bounds for Perforated Programs
A New Foundation for Program Analysis and Transformation

Martin Rinard
Massachusetts Institute of Technology

rinard@mit.edu

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; I.2.2 [Automatic Pro-
gramming]: Program Transformation; D.3.4 [Processors]: Opti-
mization

General Terms Performance, Reliability, Accuracy, Verification,
Program Analysis, Program Transformation

Keywords Loop Perforation, Program Analysis

1. Motivation
Traditional program transformations operate under the onerous
constraint that they must preserve the exact behavior of the trans-
formed program. But many programs are designed to produce ap-
proximate results. Lossy video encoders, for example, are designed
to give up perfect fidelity in return for faster encoding and smaller
encoded videos [10]. Machine learning algorithms usually work
with probabilistic models that capture some, but not all, aspects of
phenomena that are difficult (if not impossible) to model with com-
plete accuracy [2]. Monte-Carlo computations use random simula-
tion to deliver inherently approximate solutions to complex systems
of equations that are, in many cases, computationally infeasible to
solve exactly [5].

For programs that perform such computations, preserving the
exact semantics simply misses the point. The underlying problems
that these computations solve typically exhibit an inherent perfor-
mance versus accuracy trade-off — the more computational re-
sources (such as time or energy) one is willing to spend, the more
accurate the result one may be able to obtain. Conversely, the less
accurate a result one is willing to accept, the less resources one may
need to expend to obtain that result. Any specific program occupies
but a single point in this rich trade-off space. Preserving the ex-
act semantics of this program abandons the other points, many of
which may be, depending on the context, more desirable than the
original point that the program happens to implement.

2. Loop Perforation
Loop perforation can automatically generate variants of a given
computation, with the variants occupying a rich set of points
spread across the underlying perfomance versus accuracy trade-off
space [3, 6–8]. Systems can build on the availability of this range of

Copyright is held by the author/owner(s).
PEPM’11, January 24–25, 2011, Austin, Texas, USA.
ACM 978-1-4503-0485-6/11/01.

different computations to, for example, produce acceptably accu-
rate results more quickly or with less energy [3, 7, 8], dynamically
adapt to changes in the underlying computational platform [3],
eliminate barrier idling [7], identify promising opportunities for
manual optimization [6], or survive failures [3, 8].

2.1 Loop Perforation Transformation
Loop perforation transforms loops to perform a subset of their
original iterations. For example, given the following loop:

for (i = 0; i < n; i++) { sum += a[i]; }

loop perforation can produce the following transformed loop:

for (i = 0; i < n; i += k) { sum += a[i]; }
sum = sum * k;

The transformed loop simply executes every kth iteration of the
original loop, then extrapolates sum to obtain an approximation to
the result that the original loop produces (of course, other policies
such as skipping an initial or final block of iterations or skipping
a psuedorandomly selected set of iterations are also possible). For
many such loops, perforation produces a computation that executes
in significantly less time (for our set of benchmark programs cho-
sen from the PARSEC benchmark suite [1] typically between three
to five times faster than the original computation) with modest ac-
curacy losses (the result differs by less than 10% from the result
that the original program produces).

3. Probabilistic Reasoning
How can one justify the application of loop perforation? We model
the effect of perforation on the above loop by modeling the values
a[i] as independent random samples from the same probability
distribution with mean µ and finite variance σ2. The expected
value of sum is nµ for both the original and perforated loops. The
probability that the absolute difference between the two values of
sum is greater than d is less than or equal to (n(k− 1)σ2)/d2 for d
at least σ

√
n(k− 1). If we further assume that the a[i] are drawn

from a Gaussian distribution, the expected value of the absolute
difference between the two values of sum is σ

√
(k − 1)2n/π.

If adjacent values of a[i] are positively correlated (this can be
the case, for example, if they come from a spatially sampled domain
such as an image or geographic data whose adjacent values tend to
change slowly or if they come from computations on overlapping
sets of numbers), it is possible to improve the estimate of the
expected difference.

For example, assume the a[i] are a Gaussian random walk with
step size variance σ2 (i.e., the a[i] are a Markov chain where
a[i+1]-a[i] is Gaussian distributed with mean 0 and variance
σ2). For k=2, the expected absolute difference between the two val-
ues of sum is σ

√
n/π. If we drop the Gaussian assumption and sim-



ply assume independent increments between adjacent a[i] with
finite variance σ2, the probability that the absolute difference be-
tween the two values of sum is greater than d is less than nσ2/2d2

for d at least σ
√
n/2.

It is often possible to generalize such analyses to model arbi-
trary linear combations of the input data followed by nonlinear op-
erations such as min, max, division, and multiplication. It is possi-
ble to validate such analyses by running the program on representa-
tive inputs and either performing statistical tests on the values that
the program manipulates, observing how well the analytic model
(conservatively) predicts the observed differences in the results that
the original and perforated computations produce, or both. In the
absence of an accurate analytic model of the computation (this can
happen if the computation is too complex to model analytically),
simulation may provide an effective way to model the effect of per-
foration on the accuracy of the computation [9].

4. A New Foundation
This probabilistic approach provides a new foundation for program
analysis and transformation. Traditional analyses use discrete logic
to reason about the behavior of the program and justify transfor-
mations that are guaranteed to preserve the exact semantics. We
instead propose analyses that probabilistically bound the accuracy
loss that the transformation may introduce. Potentially in combina-
tion with desirable-accuracy specifications, such probabilistic anal-
yses provide the justification required to transform the computation
in a principled way with guarantees about the effect of the trans-
formation on the result that the computation produces. To the best
of our knowledge, this is a fundamentally new paradigm for pro-
gram analysis and transformation and the first to deliver program
transformations that change the result that the program produces in
predictable ways with analytically justified guarantees.

5. Building on the Foundation
So how can one use this new foundation? A first step is to identify
patterns that interact in guaranteed ways with accuracy-preserving
transformations such as loop perforation [9]. Systems can then rec-
ognize such patterns as they occur in the program and transform
them appropriately. It is possible to generalize this approach to
programs that compute arbitrary linear functions (potentially com-
posed with nonlinear operations at the end of the computation) Pro-
filing may help the program transformation system identify time-
consuming computations that are appropriate optimization targets.

Probabilistic reasoning can also justify new transformations
such as approximate memoization (returning previously computed
values for function invocations that are close in time, parameter
values, and/or the function itself to previous invocations) or tar-
geted linear thinning (approximating or eliminating computations
of terms in linear expressions with small coefficients).

6. Propagating Transformed Results
In many cases transformed computations are invoked by larger
client applications. A common scenario, for example, is the use
of loop perforation to obtain more efficient heuristic search met-
rics [3]. When it is possible to trace the effects through the client to
the result that the application produces, analytic models can accu-
rately predict the global consequences of applying the transforma-
tion. When the client is too complex to model analytically, we pro-
pose the use of empirical propagation analysis (systematically ex-
ploring the effect of changing the result that the transformed com-
putation returns back to the client) to predict the global effect of the
transformation and justify the transformation of selected subcom-
putations.

7. Potential Uses
As with traditional optimizations, it is possible to apply the trans-
formation policy (for example, the choice of loop performation fac-
tors k) statically before the program runs. It is also usually straight-
forward to generate code that can dynamically change the transfor-
mation policy. This capability enables the construction of systems
that measure various aspects of the interaction of the program with
the underlying computational platform, then dynamically adapt the
transformation policy to realize goals such as eliminating idling at
barriers placed at the end of parallel loops [7], reducing the fixed
cost of provisioning for peak load in clusters of servers [4], or
maximizing accuracy while meeting real-time deadlines in the face
of phenomena (for example, voltage scaling, processor failures, or
load fluctations) that cause fluctuations in the amount of computa-
tional resources that the underlying computing platform delivers to
the program [3].

8. Conclusion
Since the inception of the field, researchers developing analyses
and transformations have operated under the onerous constraint
of preserving the exact program semantics. Given the broad (and
increasing) range of programs designed to perform inherently ap-
proximate computations, this constraint is no longer appropriate.
We present a fundamentally new paradigm that is appropriate for
such computations. This paradigm uses probabilistic analysis to
justify transformations that change, within guaranteed probabilistic
accuracy bounds, the result that the transformed program produces.

Acknowledgments
Dan Roy performed the analysis presented in Section 3. Hank
Hoffman, Sasa Misailovic, Stelios Sidiroglou, and Anant Agarwal
all contributed to various aspects of the loop perforation project.

References
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark

suite: Characterization and architectural implications. In PACT-2008:
Proceedings of the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques, Oct 2008.

[2] J. Hartigan and M. Wong. A k-means clustering algorithm. JR Stat.
Soc., Ser. C, 28:100–108, 1979.

[3] H. Hoffman, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard.
Using Code Perforation to Improve Performance, Reduce Energy Con-
sumption, and Respond to Failures. Technical Report TR-2009-042,
Computer Science and Artificial Intelligence Laboratory, MIT, Sept.
2009.

[4] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard. Power-Aware Computing with Dynamic Knobs. Tech-
nical Report TR-2010-027, MIT CSAIL, May 2010.

[5] M. Kalos and P. Whitlock. Monte carlo methods. Wiley-VCH, 2008.
ISBN 352740760X.

[6] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. ACM, 2010.

[7] M. Rinard. Using early phase termination to eliminate load imbal-
ancess at barrier synchronization points. In Proceedings of the 2007
ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, Oct. 2007.

[8] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks. In Proceedings of the 20th Annual Interna-
tional Conference on Supercomputing, 2006.

[9] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou. Patterns
and statistical analysis for understanding reduced resource computing.
In Proceedings of Onward! 2010, Oct. 2010.

[10] x264. http://www.videolan.org/x264.html.


