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Abstract—Router microarchitecture plays a central role in the
performance of an on-chip network (NoC). Buffers are needed
in routers to house incoming flits which cannot be immediately
forwarded due to contention. This buffering can be done at
the inputs or the outputs of a router, corresponding to an
input-buffered router (IBR) or an output-buffered router (OBR).
OBRs are attractive because they can sustain higher throughputs
and have lower queuing delays under high loads than IBRs.
However, a direct implementation of an OBR requires a router
speedup equal to the number of ports, making such a design
prohibitive under aggressive clocking needs and limited power
budgets of most NoC applications. In this paper, we propose
a new router design that aims to emulate an OBR practically,
based on a distributed shared-buffer (DSB) router architecture.
We introduce innovations to address the unique constraints of
NoCs, including efficient pipelining and novel flow-control. We
also present practical DSB configurations that can reduce the
power overhead with negligible degradation in performance. The
proposed DSB router achieves upto 19% higher throughput on
synthetic traffic and reduces packet latency by 60% on average
for SPLASH-2 benchmarks with high contention, compared to a
state-of-art pipelined IBR. On average, the saturation throughput
of DSB routers is within 10% of the theoretically ideal saturation
throughput under the synthetic workloads evaluated.

Keywords-On-chip interconnection networks, Router microar-
chitecture.

I. INTRODUCTION

Network-on-Chip (NoC) architectures are becoming the de
facto fabric for both general-purpose chip multi-processors
(CMPs) and application-specific systems-on-chips (SoCs). In
the design of NoCs, high throughput and low latency are both
important design parameters and the router microarchitecture
plays a vital role in achieving these performance goals. High
throughput routers allow an NoC to satisfy the communication
needs of multi- and many-core applications, or the higher
achievable throughput can be traded off for power savings
with fewer resources being used to attain a target bandwidth.
Further, achieving high throughput is also critical from a delay
perspective for applications with heavy communication work-
loads because queueing delays grow rapidly as the network
approaches saturation.

A router’s role lies in efficiently multiplexing packets onto
the network links. Router buffering is used to house arriving
flits1 that cannot be immediately forwarded to the output

A short version of this paper appeared in the IEEE Computer Architecture
Letters [16].

1A flit is a fixed-size portion of a packetized message.

links due to contention. This buffering can be done either
at the inputs or the outputs of a router, corresponding to
an input-buffered router (IBR) or an output-buffered router
(OBR). OBRs are attractive for NoCs because they can sustain
higher throughputs and have lower queueing delays under
high loads than IBRs. However, a direct implementation of
an OBR requires each router to operate at P times speedup,
where P is the number of router ports. This can either be
realized with the router being clocked at P times the link clock
frequency, or the router having P times more internal buffer
and crossbar ports. Both of these approaches are prohibitive
given the aggressive design goals of most NoC applications,
such as high-performance CMPs. This is a key reason behind
the broad adoption of IBR microarchitectures as the preferred
design choice and the extensive prior effort in the computer ar-
chitecture community on aggressively pipelined IBR designs.

In this paper, we propose a new router microarchitecture
that aims to emulate an OBR without the need for any router
speedup. It is based on a distributed shared-buffer (DSB)
router architecture that has been successfully used in high-
performance Internet packet routers [4], [15]. Rather than
buffering data at the output ports, a DSB router uses two
crossbar stages with buffering sandwiched in between. These
buffers are referred to as middle memories. To emulate the
first-come, first-served (FCFS) order of an output-buffered
router, incoming packets are timestamped with the same
departure times as they would depart in an OBR. Packets
are then assigned to one of the middle memory buffers with
two constraints. First, packets that are arriving at the same
time must be assigned to different middle memories. Second,
an incoming packet cannot be assigned to a middle memory
that already holds a packet with the same departure time2.
It has been shown in [4], [15] that for a P port router,
N ≥ (2P− 1) middle memories are necessary and sufficient
to ensure that memory assignments are always possible. This
scheme emulates a FCFS output-buffered router if unlimited
buffering is available.

However, just as the design objectives and constraints for
an on-chip IBR are quite different from those for an Internet
packet router, the architecture tradeoffs and design constraints
for an on-chip DSB router are also quite different. First, lim-
ited power and area budgets restrict practical implementations
to small amounts of buffering. This makes it imperative to

2This is necessary to avoid switch contention.
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explore power and area efficient DSB configurations suitable
for being implemented on a chip. Next, a flow-control pro-
tocol which can work with few buffers is necessary since
NoC applications such as cache coherence protocols cannot
tolerate dropping of packets. A novel flow-control scheme
is also needed for ultra-low latency communication in NoCs
for supporting a wide range of delay-sensitive applications.
Unlike Internet routers that typically use store-and-forwarding
of packets, flit-level flow-control is widely used in on-chip
routers where bandwidth and storage are allocated at the level
of flits. Finally, another key difference is the need for on-chip
routers to operate at aggressive clock frequencies. This makes
it important to have an efficient router pipeline where delay
and complexity are balanced across all pipeline stages. Our
proposed router microarchitecture tackles all these challenges
with novel designs.

The remainder of this paper is organized as follows. Sec-
tion II provides background information on throughput analy-
sis and on existing router architectures. Section III describes
our proposed distributed shared-buffer router microarchitecture
for NoCs. Next, Section IV provides extensive throughput and
latency evaluations of our proposed DSB architecture using
a detailed cycle-accurate simulator on a range of synthetic
network traces and traffic traces gathered from real system
simulations, while Section V evaluates the power and area
overhead of DSB routers. Section VI reviews related work.
Finally, Section VII concludes the paper.

II. BACKGROUND

We first provide a brief background on throughput analysis.
We then present a short description of OBR and IBR microar-
chitectures, focusing on their deficiencies in practically at-
taining ideal throughput, before discussing distributed-shared-
buffer Internet routers and how they mimic output buffering.

A. Throughput Analysis
In this section, we provide a brief overview of the analysis

techniques used to evaluate ideal network throughput. In
particular, we elaborate on the concepts of network capacity,
channel load, and saturation throughput. These concepts are
intended to capture what could be ideally achieved for a
routing algorithm R on a given traffic pattern Λ. To decouple
the effects of the router microarchitecture, including buffer
sizing and the flow-control mechanism being utilized, ideal
throughput analysis is based on channel load analysis. We first
review the concept of network capacity.

Network capacity: Network capacity is defined by the max-
imum channel load γ∗ that a channel at the bisection of the
network needs to sustain under uniformly distributed traffic.
As shown in [2], for any k× k mesh,

γ∗ =

�
k
4 for even k
k2−1

4k for odd k

The network capacity, N , in flits per node per cycle is then
defined as the inverse of γ∗:

N =
1
γ∗

=
� 4

k for even k
4k

k2−1 for odd k

TABLE I
TRAFFIC PATTERNS AND THEIR CORRESPONDING IDEAL SATURATION

THROUGHPUT UNDER DIMENSION-ORDERED XY ROUTING.

Saturation
Traffic Description throughput

Uniform Destination chosen at random, uniformly 1.0
Tornado (x,y) to ((x+

� k
2
�
−1)%k, (y+

� k
2
�
−1)%k) 0.66

Complement (x,y) to (k− x−1, k− y−1) 0.5

For example, for a k × k mesh, with k = 8, N = 4/8 =
0.5 flits/node/cycle. Next, we review the concept of saturation
throughput.

Saturation throughput: For a routing algorithm R and a given
traffic pattern Λ, the expected channel load on a channel c
is denoted as γc(R,Λ). The normalized worst-case channel
load, γwc(R,Λ), is then defined as the expected number of
flits crossing the most heavily loaded channel, normalized to
γ∗.

γwc(R,Λ) =
maxc∈C γc(R,Λ)

γ∗

where C is the set of all channels in the network.
Given this definition of normalized worst-case channel load,

the saturation throughput corresponds to the average number
of flits that can be injected by all the nodes in the network
per cycle so as to saturate the most heavily loaded channel to
its unit capacity. This is given as:

Θ(R,Λ) =
1

γwc(R,Λ)

Saturation throughput is defined specifically for a given routing
algorithm R and traffic pattern Λ. Table I shows a few com-
monly used traffic patterns and their corresponding saturation
throughput under dimension-ordered XY routing (DOR-XY).
Note that 100% capacity cannot always be achieved with
DOR-XY routing even under an ideal router design, defined
as the one that can handle injection loads up to the saturation
throughput. For example, for an adversarial traffic pattern like
bit-complement traffic, it is well-known that DOR-XY routing
saturates at 50% of network capacity. To decouple the effects
of the chosen routing algorithm on network performance,
we assume DOR-XY routing throughout the remainder of
this paper. The goal of our router design is to reach the
ideal router performance and thus approach the achievable
saturation throughput.

B. Output-buffered routers
Fact 1: An OBR with unlimited buffering can achieve the

theoretical saturation throughput.
Fact 2: OBRs with unlimited buffering have predictable

and bounded packet delays when the network is below sat-
uration.

Emulating the first-come, first-served (FCFS) behavior of
OBR architectures is important for exploiting their attractive
high-throughput and low-delay properties. Throughput guaran-
tees offered by all oblivious routing algorithms [2], which are
often used in NoCs because of their simplicity, assume ideal
output-buffered routing with infinite buffers in their throughput
analysis. When the network topology and the traffic matrix are
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both known, the saturation throughput for oblivious routing
algorithms can be computed based on worst-case channel
load analysis (as described in Section II-A). Even when no
information about the spatial characteristics of the traffic
is available, which is often the case, worst-case throughput
guarantees can be provided for oblivious routing functions
by solving bipartite maximum-weight matching problems for
each channel [20]. These throughput guarantees do not hold if
the routers used do not emulate an OBR. Generally, using
IBRs, the worst-case saturation throughput of an oblivious
routing algorithm can be quite far off from the value predicted
by worst-case throughput analysis. So one key advantage of
OBR emulation is to provide and retain such guarantees with
the limited hardware resources available in on-chip routers.
OBRs also have lower and more predictable queueing delays
than IBRs because of their FCFS servicing scheme. Flits are
not delayed in OBRs unless the delay is unavoidable due
to multiple flits arriving at the same time at different inputs
destined for the same output. On the other hand, the switch
arbitration schemes used in IBRs for multiplexing packets onto
links are sub-optimal and result in unpredictable packet delays.
The predictability of packet delays is an important concern for
delay-sensitive NoC applications and OBR emulation is a step
forward in this direction.

Figure 1 depicts the OBR architecture. In this architecture,
incoming flits are directly written into the output buffers
through a concentrator. Since up to P flits may arrive to-
gether for a particular output in the same cycle, a direct
implementation of an OBR would require a router speedup
of P, where P is the number of router ports (i.e., P = 5 in
Figure 1). Router speedup can be realized in two ways. First,
by clocking the router at P times the link frequency, which is
highly impractical with today’s aggressive clock rates. Even
if realizable, this will lead to exorbitant power consumption.
Second, it can be realized with higher internal port counts
at the buffers and the crossbar: each output buffer needs P
write ports, with input ports connected to the output buffers
through a P×P2 crossbar. This scenario leads to huge CMOS
area penalties. High power and area requirements for OBR
implementation are the key reasons behind the broad adoption
of IBR microarchitectures as the principal design choice and
the extensive prior effort in the computer architecture commu-
nity on aggressively pipelined IBR designs (see Section VI),
despite the very attractive property that an OBR can theo-
retically reach the ideal saturation throughput. Subsequently,
in Section II-D we review a distributed shared-buffer (DSB)
router architecture that emulates an OBR, inheriting its elegant
theoretical properties, without the need for P times router
speedup. We first review the IBR microarchitecture that is
widely used in on-chip interconnection networks.

C. Input-buffered router microarchitecture

Figure 2-A sketches a typical input-buffered router (IBR)
microarchitecture [2] that is governed by virtual channel flow-
control [1]. We adopt this as the baseline input-buffered router
for our evaluations. The router has P ports, where P depends
on the dimension of the topology. In a 2-dimensional mesh,

North
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Ejection port

North
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East

West

Injection port

Legend: Input port Output port Output buffer

Concentrator

Fig. 1. Output-buffered router (OBR) architecture model.

Fig. 2. (A) A typical input-buffered router (IBR) microarchitecture with
virtual channel flow-control and 2 virtual channels (VCs) and (B) its 3-stage
pipeline (1) route computation (RC) + virtual channel allocation (VA) + switch
arbitration (SA), (2) switch traversal (ST) and (3) link traversal (LT).

P = 5 as it includes the 4 NSEW ports as well as the injec-
tion/ejection port from/to the processor core. At each input
port, buffers are organized as separate FIFO queues, one for
each virtual channel (VC). Flits entering the router are placed
in one of these queues depending on their virtual channel
ID. Queues of an input port typically share a single crossbar
input port, as shown in Figure 2-A, with crossbar output ports
directly connected to output links that interconnect the current
(upstream) router with its neighboring (downstream) router.

Figure 2-B shows the corresponding IBR router pipeline.
The router uses look-ahead routing and speculative switch
allocation resulting in a short three-stage router pipeline. Route
computation (RC) determines the output port based on the
packet destination and is done one hop in advance. Speculative
switch allocation (SA) is done in parallel with VC allocation
(VA) and priority is given to non-speculative switch requests
to ensure that performance is not hurt by speculation. Once SA
and VA are completed, flits traverse the crossbar (ST) before
finally traversing the output link (LT) towards the downstream
router. Head flits proceed through all the stages while the body
and tail flits skip the RC and VA stages and inherit the VC
allocated to the head flit. The tail flit releases the reserved VC
after departing the upstream router.

To attain high throughput, an IBR relies on several key
microarchitectural components to effectively multiplex flits
onto the output links. First, additional buffering allows a
greater number of flits to be housed at a router during
high contention. This increases the number of competing flit
candidates to eventually traverse a link towards a downstream
router, while also alleviating congestion at upstream routers.
Second, a higher number of VCs allows a greater number of
individual packet flows to be accommodated, increasing buffer
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Fig. 3. Distributed shared-buffer router architecture model.

utilization and ultimately link utilization. Finally, the VC and
switch allocators need to have good matching capability, i.e.
they should ensure that VCs and crossbar switch ports never
go idle when there are flits waiting for them. However, with
matching algorithms that can be practically implemented in
hardware, the throughput of IBRs can be quite far off from
the ideal saturation throughput.

D. Distributed shared-buffer routers

DSB routers have been successfully used in high-
performance Internet packet routers [4], [15] to emulate OBRs
without any internal router speedup. Rather than buffering data
directly at the output ports, a DSB router uses two crossbar
stages with buffering sandwiched in between. Figure 3 de-
picts the DSB microarchitecture used in Internet routers. The
input ports are connected via a P×N crossbar to N middle
memories. These N middle memories are then connected to the
output ports through a second N×P crossbar. Every cycle, one
packet can be read from and written to each middle memory. It
should be noted here that when contention occurs in Internet
routers, packets can be dropped. This is not allowed in our
proposed on-chip DSB architecture (see Section III).

To emulate the first-come, first-served (FCFS) packet ser-
vicing in OBRs, a DSB router has to satisfy two conditions:
(a) a packet is dropped by the DSB router if and only if it will
also be dropped by an OBR, and (b) if a packet is not dropped,
then the packet must depart the DSB router at the same cycle
as the cycle in which it would have departed an OBR. To
achieve this emulation, each packet arriving at a DSB router
is timestamped with the cycle in which it would have departed
from an OBR (i.e., in FCFS order). When a packet arrives, a
scheduler is needed to choose a middle memory to which to
write this incoming packet and to configure the corresponding
first crossbar. Also, at each cycle, packets whose timestamp is
equal to the current cycle are read from the middle memories
and transferred to the outputs through the second crossbar.

In [4], [15], it was shown that a middle memory assignment
can always be found and a DSB router can exactly emulate
an OBR if the following condition is satisfied:

Fact 3: A distributed shared-buffer router with N ≥
(2P− 1) middle memories and unlimited buffering in each
can exactly emulate a FCFS OBR with unlimited buffering.
At least (2P−1) middle memories are needed to ensure that
two types of conflicts can always be resolved: The first type of
conflict is an arrival conflict. A packet has an arrival conflict
with all packets that arrive simultaneously at other input ports
since packets arriving at the same time cannot be written to
the same middle memory. With P input ports, the maximum
number of arrival conflicts a packet can have is (P−1). The

second type of conflict is a departure conflict. A packet has
a departure conflict with all other packets that have the same
timestamp and need to depart simultaneously through different
output ports. With P output ports, a packet can have departure
conflicts with at most (P− 1) other packets. Therefore, by
the pigeonhole principle, N ≥ (2P− 1) middle memories are
necessary and sufficient to find a conflict-free middle memory
assignment for all incoming packets.

III. PROPOSED DISTRIBUTED SHARED BUFFER (DSB)
ROUTER FOR NOCS

A. Key architectural contributions

The proposed DSB NoC router architecture addresses the
bottlenecks that exist in the data path of IBRs which lead to
lower than theoretical ideal throughput. At the same time, it
tackles the inherent speedup limitations and area penalties of
OBRs while harnessing their increased throughput capabilities.
The middle memories decouple input virtual channel queueing
from output channel bandwidth, as any flit can acquire any
middle memory provided that there are no timing conflicts
with other flits already stored in the same middle memory.
Essentially, middle memories provide path diversity between
the input and output ports within a router. Although based on
the DSB architecture used in Internet routers, the proposed
NoC router architecture faces a number of challenges specific
to the on-chip domain.

First and foremost, NoC applications such as cache co-
herence protocols cannot tolerate dropping of packets unlike
Internet protocols. As a result, the DSB architecture used
in Internet routers cannot be directly applied to the on-
chip domain. To guarantee packet delivery, a flow control
mechanism needs to be in place. The proposed DSB router
uses credit-based flit-level flow control. To implement credit-
based flow control, we introduce input buffers with virtual
channels and distribute the available router buffers between the
input ports and the middle memories. Flow-control is applied
on a flit-by-flit basis, advancing each flit from an input queue
towards any time-compatible middle memory and ultimately
to the output link. Flits are timestamped and placed into a
middle memory only when the next-hop router has buffers
available at its corresponding input port. Further, since the
middle memory buffering is limited due to power and area
constraints, flits are held back in the input buffers when they
fail to find a compatible middle memory.

Next, since power is of utmost importance in the NoC
domain, the power-performance tradeoff of different DSB
configurations need to be explored. Although, theoretically,
2P− 1 middle memories are needed in a P-port router to
avoid all possible arrival and departure conflicts, having a
large number of middle memories increases power and area
overheads by increasing the crossbar size. Therefore, we
evaluate DSB configurations with fewer than 2P− 1 middle
memories and estimate its impact on performance.

Finally, on-chip routers need to operate at aggressive clock
frequencies, pointing to the need for careful design of router
pipelines with low complexity logic at each stage. Our design
assumes a delay and complexity-balanced 5-stage pipeline.
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Fig. 4. Distributed shared-buffer (A) router microarchitecture with N
middle memories and (B) its 5-stage pipeline: (1) Route computation (RC) +
timestamping (TS), (2) conflict resolution (CR) and virtual channel allocation
(VA), (3) first crossbar traversal (XB1) + middle memory write (MM WR),
(4) middle memory read (MM RD) and second crossbar traversal (XB2), and
(5) link traversal (LT).

The proposed DSB architecture can achieve much higher per-
formance than virtual-channel IBRs with comparable buffering
while adding reasonable power and area overheads in manag-
ing middle memories and assigning timestamps to flits.

B. DSB microarchitecture and pipeline

Figure 4 shows the router microarchitecture of the proposed
DSB router and its corresponding 5-stage pipeline. Incoming
flits are first buffered in the input buffers which are segmented
into several atomic virtual channels (VCs). The route computa-
tion stage (RC) employs a look-ahead routing scheme like the
baseline IBR architecture, where the output port of a packet
is computed based on the destination coordinates, one hop in
advance. This is done only for the head flit of a packet. The
remaining pipeline stages of a DSB router are substantially
different from those of IBRs. Instead of arbitrating for free
virtual channels (buffering) and passage through the crossbar
switch (link), flits in a DSB router compete for two resources:
middle memory buffers (buffering) and a unique time at which
to depart from the middle memory to the output port (link).

The timestamping stage (TS) deals with the timestamp
resource allocation. A timestamp refers to the future cycle
in which a flit will be read from a middle memory, through
the second crossbar, XB2, onto the output port. Timestamping
is carried out in conjunction with lookahead routing. A flit
(head, body or tail) enters the TS stage and issues a request to
the timestamper if it is at the head of a VC or if the flit ahead
of it in the same VC has moved to the second stage of the
pipeline. A flit can also re-enter the TS stage if it fails to find
either a conflict-free middle memory or a free VC at the input
of the next-hop router, as will be explained later. If multiple
VCs from the same input port send simultaneous requests to
the timestamper, it picks a winning VC and assigns the earliest
possible departure time for the output port requested by the
flit in the selected VC. Let us assume that the output port
requested is p. In order to find the earliest possible departure

time through port p, the timestamper first computes the time
the flit would leave the middle memory assuming there are no
flits already stored in the middle memories that need to depart
through port p. Let us denote this time as T [p],

T [p] = Current Time+3
since two pipeline stages, namely, CR+VA (Conflict resolution
+ VC allocation) and XB1+MM WR (Crossbar 1 and Middle
Memory Write) lie between the TS and MM RD + XB2
(Middle Memory Read and Crossbar 2) stages in the DSB
pipeline (see Figure 4). Next, we consider the case when there
are flits in the middle memories destined for output port p. To
handle this case, the timestamper remembers the value of the
last timestamp assigned for each output port till the previous
cycle. The last assigned timestamp for output port p is denoted
as LAT [p]. As timestamps are assigned in a strictly increasing
order, the assigned timestamp for output port p in the current
cycle must be greater than LAT [p]. In other words, a flit that
is currently being timestamped can depart the middle memory
through output port p only after all flits that are destined for
the same output port and were timestamped at an earlier cycle,
depart the middle memory. This emulates the FCFS servicing
scheme of OBRs. Hence, the earliest timestamp that can be
assigned to a flit for output port p is given as:

Timestamp = max(LAT [p]+1,T [p]) (1)
If flits at more than one input port request a timestamp
for output port p in the same cycle, the timestamper serves
the inputs in an order of decreasing priority (either fixed or
rotating). The timestamp of a flit at the highest priority input
is computed as above and the remaining flits at other inputs
are assigned sequentially increasing timestamps in the order
of decreasing priority.

Conflict resolution (CR) and virtual channel allocation (VA)
comprise the second pipeline stage of the DSB router. The
CR and VA operations are carried out in parallel. The task
of the CR stage is to find a conflict-free middle memory
assignment for flits that were assigned timestamps in the TS
stage. As mentioned earlier, there are two kinds of conflicts
in shared-buffer routers – arrival conflicts and departure
conflicts. Arrival conflicts are handled by assigning a different
middle memory to every input port with timestamped flits.
Departure conflicts are avoided by ensuring that the flits stored
in the same middle memory have unique timestamps. These
restrictions are enforced due to the fact that middle memories
are uni-ported3 and only one flit can be written into (via
XB1) and read from (via XB2) a middle memory in a given
cycle. The implementation details of the TS and CR stages
are explained in the next section.

The virtual channel allocator arbitrates for free virtual
channels at the input port of the next-hop router in parallel
with conflict resolution. VC allocation is done only for the
head flit of a packet. The VC allocator maintains two lists of
VCs – a reserved VC pool and a free VC pool. VC allocation is
done by picking the next free output VC from the free VC list
of the given output port, similar to the technique used in [7].
Additionally, when output VCs are freed, their VC number

3Single-ported memories are power and area-efficient.
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Fig. 6. Block Diagram of the CR stage

is moved from the reserved VC list to the end of the free
VC list. If a free VC exists and the flit is granted a middle
memory, it subsequently proceeds to the third pipeline stage,
where it traverses the first crossbar (XB1) and is written to its
assigned middle memory (MEM WR). If no free VC exists
(all VCs belong to the reserved VC list), or if CR fails to find
a conflict-free middle memory, the flit has to be re-assigned a
new timestamp and it therefore re-enters the TS stage.

When the timestamp of a flit matches the current router
time, the flit is read from the middle memory (MM RD)
and passes through the second crossbar (XB2) in the fourth
pipeline stage. We assume that the output port information
is added to every flit and stored along with it in the middle
memory. Finally, in the link traversal (LT) stage, flits traverse
the output links to reach the downstream router.
C. Practical implementation

In this section, we describe the implementation details of
the timestamping and conflict resolution stages, which are
unique to the proposed DSB architecture. It must be noted
here that the proposed implementation is only one among a
range of possible design implementation choices that span a
spectrum of area/delay tradeoffs. We specifically focus on the
implementation of a 5-ported 2D mesh router. However, our
design can be extended to higher or lower radix routers.

The high level block diagrams of the logic used in the TS
stage are shown in Figures 5(a)- 5(c). The five input ports are
labeled from i0 to i4. First, as shown in Figure 5(a), when
multiple VCs from the same input port send simultaneous
requests to the timestamper, a winning VC is selected using
a matrix arbiter. In addition to the timestamping requests,

the arbiter also takes as input the size of the f ree VC lists
for the output ports requested by each of the flits in the TS
stage and gives priority to body and tail flits that have already
acquired a VC over head flits, if they are likely to fail in
the VC allocation stage. This avoids wasted cycles resulting
from re-timestamping of flits. After choosing a winning VC at
each input port, the output ports requested by the flits in the
selected VCs, OPi, are used to generate timestamp offsets for
each of these flits, as shown in Figure 5(b). Timestamp offsets
are required to assign sequentially increasing timestamps to
flits based on input priority when flits from more than one
input port simultaneously request a timestamp for the same
output port, as discussed in Section III-B. Internally, the offset
generator block is comprised of separate sub-blocks, one for
each output port. The offsets are generated on a per output port
basis and its value for a flit is equal to the number of higher
priority flits requesting a timestamp for the same output port.
The final timestamp assigned to a flit at input i is the sum of
the timestamp assigned to the highest priority flit requesting
the same output port as the current flit (given by Equation 1)
and the computed offset.

T Si = max(LAT [OPi]+1,current time + 3)+offseti (2)
In the DSB architecture, flits are stored in middle memories

only after they have reserved buffering at the next-hop router.
Let the total buffering at each input port be B flits. If the
current time is denoted by curr time, we restrict the maximum
timestamp assigned for an output port to curr time + B− 1.
This is because, assigning a timestamp equal to curr time+B
means that there are B flits before the current flit (with
timestamps curr time to curr time + B− 1) that have been
timestamped for the same output port and have not yet de-
parted the router. If all timestamped flits succeed in acquiring
an output VC and a conflict-free middle memory, these B
flits would reserve all available buffering at the input of the
next-hop router and any flit with a timestamp greater than
curr time+B−1 would fail to reserve an output VC. Hence,
assigning timestamps greater than curr time + B− 1 is not
necessary. This fact is used to simplify the hardware for
detecting departure conflicts. From this discussion, at most B
unique timestamps are assigned for an output port, which can
be represented using �log2 B� bits. We ensure that each middle
memory has exactly B flits of buffering so that a flit with
timestamp T is always stored at the Tth location within the
middle memory. In this way, a flit with timestamp T can only
have departure conflicts with flits stored at the Tth location of
any one of the N middle memories.

With timestamps represented using �log2 B� bits, the times-
tamp assignment has to be carried out using modulo-B arith-
metic. Under this scheme, the current time rolls over every
B clock cycles, implemented using a mod-B counter. The
timestamps are interpreted to be relative to the current time
and also roll over beyond B. Hence, if curr time%B has
a value t, flits stored in the middle memories can have B
unique timestamps between t and (t − 1)%B, representing
times from curr time to curr time+B−1. If the last assigned
timestamp for an output port, OP, falls behind curr time%B
(i.e. LAT [OP] = curr time%B), it is advanced along with
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the current time to ensure that the last assigned timestamp
is either equal to or ahead of curr time%B. This prevents
old values of LAT [OP] from appearing as future timestamps
after rollover. Figure 5(d) presents the logic diagram for the
timestamp computation block. When assigning a timestamp
for output port OPi, (LAT [OPi] + 1)%B is simultaneously
compared to (curr time+1)%B and (curr time+2)%B, and
the results are ORed together. A 1 at the output of the OR gate
signifies that (LAT [OPi]+1)%B is behind (curr time+3)%B
and vice-versa. The greater of the two times is chosen and the
corresponding flit offset is added to obtain the final timestamp
according to Equation 2. If the timestamp computed using
Equation 2 is greater than B, it is rolled over by subtracting B
from the result, as shown. In the last block of Figure 5(c), the
timestamps are shuffled according to input priority, which is
assumed to be a rotating priority over all inputs. In this respect,
PT S0 is the timestamp of the input with priority 0, PT S1 is
the timestamp of input with priority 1, and so on. This helps
with the priority-based middle memory assignment during the
CR stage. If an input does not hold a flit that needs to be
timestamped, an invalid timestamp value is stored instead.

The task of the conflict resolution stage (CR) is to detect
arrival and departure conflicts. To keep track of the occupancy
of the middle memory buffers, we use an auxiliary data
structure called the middle memory reservation table (MMRT).
For N middle memories, with B flits of buffering per middle
memory, the MMRT is an array of B registers, each N bits
wide. The registers are indexed from 0 to B − 1. If bit
MMRT[i][j] is set, it implies that memory bank j holds a
flit with timestamp i and vice versa.

Departure conflicts are resolved using the middle memory
reservation table. For each timestamp that needs to be assigned
a middle memory (PT S0 ... PT S4), the MMRT register indexed
by the timestamp represents the middle memory compatibility
bitmap for the timestamp. In Figure 6, the bits C[i][0] to
C[i][N− 1] represent the individual bits of the N-bit register,
MMRT [PT Si]. If bit C[i][ j] is 1, it means that middle memory
j already has a flit with timestamp PT Si and hence, has a
departure conflict with any flit with this timestamp. On the
other hand, if C[i][ j] is 0, the flit with timestamp PT Si is
compatible with middle memory j. If an input does not have
a flit that needs to be timestamped, the compatibility bits for
all middle memories are set to 1 (meaning incompatible).

Next, arrival conflicts are resolved in the middle memory
assignment stage. The middle memories are assigned fixed
priorities with memory N-1 given the highest priority and
memory 0 the lowest priority. In the middle memory as-
signment stage, the inputs are granted the highest priority
compatible middle memory in the order of decreasing input
priority while ensuring that more than one input is not granted
the same middle memory. Bit G[i][j] denotes the grant bit and
it is set to 1 if the input with priority i has been granted middle
memory j. This memory assignment scheme was specifically
designed to have low middle memory miss rates when the
number of middle memories is fewer than 2P−1 (P being the
number of ports) for 5-ported mesh routers. Having less than
2P−1 middle memories is necessary to reduce the power and

area of DSB routers as shown in Section V. When the number
of middle memories is at least 2P− 1, memory assignment
schemes with less delay can be implemented as it is much
easier to find conflict-free middle memories.

The above logic distribution between the TS and CR stages
was architected to even out the Fan-Out-of-4 (FO4) delays
across the four stages (excluding LT) of the DSB pipeline.
The FO4 calculations were carried out using the method of
Logical Effort [19], and was applied to each logic block. For
a 5-ported DSB router with 5 VCs per input port, 4 flits per VC
(B=20 flits) and 5 middle memories with 20 flits per middle
memory, the critical path delays of the TS and CR pipeline
stages were estimated at 19 FO4s and 18 FO4s, respectively.
A delay of less than 20 FO4 for each stage in the proposed
architecture enables an aggressively-clocked high-performance
implementation. In particular, assuming a FO4 delay of 15 ps
for Intel’s 65 nm process technology, our proposed design can
be clocked at a frequency of more than 3GHz.

IV. THROUGHPUT AND LATENCY EVALUATION

A. Simulation setup

To evaluate the effectiveness of our proposed DSB router
against a baseline input-buffered router (IBR) architecture
with virtual channel (VC) flow-control, we implemented two
corresponding cycle-accurate flit-level simulators. The base-
line IBR simulator has a three-stage pipeline as described
in Section II-C. The DSB simulator models the five-stage
router pipeline described in Section III-B. Both simulators
support k-ary 2-mesh topologies with their corresponding 5-
ported routers. DOR-XY routing is used for all our simulations
where packets are first routed in the X-dimension followed by
the Y-dimension. We use DOR-XY because our main focus
is on highlighting the improvement in performance due to the
DSB router architecture, rather than the routing algorithm.

We present results for both synthetic and real traffic
traces. The three synthetic traffic traces used are uniform,
complement and tornado traffic, shown in Table I. These
three traces represent a mixture of benign and adversarial
traffic patterns. The ideal saturation throughputs that can be
achieved for these three traffic patterns using DOR-XY (based
on channel load analysis) are also shown in Table I. All
throughput results presented subsequently are normalized to
the ideal saturation throughput for the given traffic pattern.
An 8× 8 mesh topology is used for our simulations with
synthetic traffic. Multi-flit packets composed of four 32-bit
flits are injected into the network and the performance metric
considered is the average packet latency under different traffic
loads (packet injection rates). The latency of a packet is
measured as the difference between the time the header flit
is injected into the network and the time the tail flit is ejected
at the destination router. The simulations are carried out for
a duration of 1 million cycles and a warm-up period of ten
thousand cycles is used to stabilize average queue lengths
before performance metrics are monitored.

In addition to the synthetic traces, we also compare the
performance of the two router architectures on eight traffic
traces from the SPLASH-2 benchmark suite [17]. The traces
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TABLE II
NOMENCLATURE OF THE ROUTER MICROARCHITECTURES COMPARED

Input buffers (per port) Middle memory buffers
Config. #Middle Total

#VCs #Flits/VC Memories Flits/MM buffers
(MM)

IBR200 8 5 - - 200
DSB200 5 4 5 20 200
DSB300 5 4 10 20 300

used are for a 49-node shared memory CMP [8] arranged
as a 7× 7 mesh. The SPLASH-2 traces were gathered by
running the corresponding benchmarks with 49 threads4 on
Bochs [9], a multiprocessor simulator with an embedded
Linux 2.4 kernel. The memory trace was captured and fed
to a memory system simulator that models the classic MSI
(Modified, Shared, Invalid) directory-based cache coherence
protocol, with the home directory nodes statically assigned
based on the least significant bits of the tag, distributed across
all processors in the chip. Each processor node has a two-level
cache (2MB L2 cache per node) that interfaces with a network
router and 4GB off-chip main memory. Access latency to the
L2 cache is derived from CACTI to be six cycles, whereas
off-chip main memory access delay is assumed to be 200
cycles. Simulations with SPLASH-2 traces are run for the
entire duration of the trace, typically in the range of tens of
millions of cycles, which is different for each trace.

B. Performance of the DSB router on synthetic traces
The nomenclature of IBR and DSB configurations referred

to in this section is presented in Table II, along with details
of the buffer distribution in each configuration. For the DSB
architecture, the number of flits per middle memory is always
equal to the number of input buffers to simplify departure
conflict resolution, as discussed in Section III-C. Theoretically,
a 5-ported DSB router needs 9 middle memories to avoid all
conflicts in the worst case, i.e., when all possible arrival and
departure conflicts occur simultaneously. However, keeping the
power overhead in mind, we evaluate a DSB configuration
with only 5 middle memories (DSB200) and compare its
performance to a configuration with 10 middle memories
(DSB300).

In addition to the configurations shown in Table II, we also
implemented an OBR simulator with a very large number of
buffers (10,000 flit buffers) at each output port, emulating
infinite output buffer capacities. Redundant pipeline stages are
introduced in the OBR simulator totaling a pipeline depth of
five, to ensure the same pipeline length as our DSB router for
fair comparisons. This helped us to compare the performance
of DSB configurations with an OBR with same number of
pipeline stages, but which behaves ideally and incurs no delay
due to switch arbitration and buffer capacity limitations. We
refer to this OBR configuration as OBR-5stage.

We first compare the performance of IBR200, DSB200,
DSB300 and OBR-5stage. IBR200 and DSB200 have the
same number of buffers (200 flits). DSB300 has the same
number of input buffers but double the number of middle

4Two of the eight traces, fft and radix could not be run with 49 threads.
They were run with 64 threads instead. The memory traces of the first 49
threads were captured and the addresses were mapped onto a 49 node system.
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Fig. 7. Performance comparison of different router architectures.

TABLE III
NORMALIZED SATURATION THROUGHPUT COMPARISON FOR DIFFERENT

NOC ROUTER MICROARCHITECTURAL CONFIGURATIONS

Traffic pattern IBR200 DSB200 DSB300 OBR-5stage
Uniform 80% 89% 89% 98%
Complement 85% 93% 94% 97%
Tornado 75% 89% 89% 97%

memories compared to DSB200. The average packet latency
curves for different injected loads are shown in Figure 7 for the
three synthetic traffic patterns and the saturation throughput
values are presented in Table III. The saturation throughput
is assumed to be the injection rate at which the average
packet latency is three times the zero-load latency. Table III
shows that with an aggregate buffering of 200 flits, DSB200
outperforms IBR200 by 11.25%, 9.5% and 18.5% on uniform,
complement and tornado traffic, respectively, in terms of
saturation throughput. Although IBR200 has a slightly lower
latency than DSB200 under low loads due to the shorter router
pipeline, the higher saturation throughput of DSB200 gives it
a definite edge under moderate to high loads. It must be noted
here that during the course of an application running on a
CMP, there may be transient periods of high traffic or localized
traffic hotspots during which parts of the network are driven
close to (or past) saturation. A router with higher saturation
throughput can minimize the occurrence of these transient
hotspots and provide tremendous latency savings during these
periods, which can far outweigh the slightly higher latency
under low loads. This is more clearly depicted in the SPLASH-
2 results presented in Section IV-C.

The performance of DSB200 is nearly identical to DSB300,
with negligible difference in saturation throughputs for all
three traffic patterns. This is because the probability of more
than five arrival and departure conflicts occurring simultane-
ously is very low. We observe in our experiments that even
under very high injection loads, less than 0.3% of the flits
failed to find a conflict-free middle memory in the worst
case over all traffic patterns. Hence, it can be concluded that
although theoretically nine middle memories are needed to
resolve all conflicts, in practice, five middle memories result in
very little degradation in throughput. The reason fewer middle
memories are attractive is because of the significant power and
area savings that can be achieved by using smaller crossbars
and fewer buffers.

The saturation throughput of DSB200 is also quite close
to that of OBR-5stage. For uniform, tornado and complement
traffic, the saturation throughput of the DSB200 architecture
is within 9%, 4% and 8%, respectively, of the throughput of
OBR-5stage. The slightly lower saturation throughput of DSB
routers is a result of having far fewer buffers compared to
OBR-5stage’s infinite buffering.
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Fig. 8. Network latency for SPLASH-2 benchmarks.

C. Performance of DSB on real traffic traces

In this section, we present simulation results using the eight
benchmark traces from the SPLASH-2 suite [17]. For uniform,
tornado, and complement traffic, the traffic matrix Λ is as-
sumed to be fixed and stationary. As discussed in Section II-A,
using idealized load analysis, the ideal saturation throughput
can be computed based on just Λ in these cases. However, in
the case of real traffic traces, like the SPLASH-2 traces, the
traffic pattern is space- and time-varying. Therefore, the notion
of ideal saturation throughput can neither be clearly defined
nor easily determined. Instead, we compare the average packet
latencies over the entire trace duration using our cycle-accurate
flit-level simulators.

Figure 8 shows the latency results for IBR200, DSB200,
DSB300 and OBR-5stage configurations normalized to the
average packet latency of IBR200. The first observation
to be made here is that the average packet latency of
the DSB configurations is comparable to OBR-5stage for
seven of the eight SPLASH-2 benchmarks evaluated. For the
water-nsquared trace, OBR-5stage has a lower latency
than DSB200 (and DSB300) because this trace has traffic hot
spots where packets are injected at a rate where both OBR and
DSB routers get saturated. In such a situation, the large number
of output buffers available in OBR-5stage help in attaining a
lower average latency. In most traces, the ability of a DSB
router to closely match an OBR in terms of latency illustrates
its capability to emulate OBRs, even with limited buffering.

Next, we observe that DSB200 outperforms IBR200 on
fft, water-nsquared, water-spatial and radix
traces by 72%, 64.5%, 97.5% and 8%, respectively. For
the three traces where the performance improvement is over
50%, i.e., fft, water-nsquared and water-spatial,
IBR200 gets saturated during portions of all three traces while
DSB200 saturates only in the case of the water-nsquared
trace. So, it can be inferred from these results that a rela-
tively small increase in saturation throughput translates into
tremendous reductions in packet latency for applications that
demand high bandwidth. However, IBR200 has 32%, 18%
and 24% lower latency for raytrace, barnes and ocean
benchmarks. This is because these traces have negligible
output port contention and the higher delay of DSB routers
is due to their longer pipeline depth of 5 as compared to 3
for IBR200. This is proved by the fact that even OBR-5stage,

which has no extra delay introduced as a result of switch con-
tention, has higher average packet latency than IBR200. For
the SPLASH-2 benchmarks with high output port contention
(fft, water-nsquared, water-spatial and radix),
on an average, DSB200 has 60% lower latency than IBR200.
Hence, for applications that demand high throughput and drive
the network towards saturation or close to saturation, DSB
routers are clearly superior to IBRs.

Lastly, there is negligible difference in performance between
DSB200 with 5 middle memories and DSB300 with 10 middle
memories. This further proves that even with real application
traces, more than five simultaneous arrival and departure
conflicts occur very rarely. Hence, 5 middle memories are
sufficient to achieve comparable performance to a 10 middle
memory configuration, but at a significantly lower power and
area overhead, as will be discussed in the next section.

V. POWER AND AREA EVALUATION

Table IV compares the power and area of IBR and DSB
router microarchitectures with the same aggregate buffering.
We use the power and area models in Orion 2.0 [5], [21] for
our analysis. The models use parameters from TSMC 65nm
process libraries and include both dynamic and leakage power
components. The operational frequency used is 3GHz at 1.2V.
A typical flit arrival probability of 0.3 is assumed at each input
port. SRAMs are used as input and middle memory buffers
and low threshold voltage transistors are used to ensure low
delays for 3GHz operation. The VC allocator is configured
to simply select a free VC from a free VC list as described
in Section III-B in both DSB and IBR architectures while
a matrix arbiter is used for switch arbitration in IBRs. The
power and area of the arbitration logic of the DSB router
were extrapolated from the power and area numbers of the
arbitration logic of an IBR using the number of 2-input gates
required to implement the logic in the two architectures.

As shown in Table IV, DSB200 consumes 35% more power
and occupies 58% more area than the corresponding IBR200
router. The higher power and area of the DSB router is due to
the presence of an extra crossbar and a more complex arbitra-
tion scheme (involving timestamping and conflict resolution)
compared to the switch arbiter in an IBR.

Although the increased power cost per router for a DSB
router is substantial when compared to an IBR, the overall
power increase for a NoC application is often less. In Table IV,
the power penalty per tile (processor + router) of using a DSB
router is presented for three different scenarios where the NoC
consumes 10%, 15% and 20% of the total tile power. Even
for applications where the router consumes as high as 20%
of the tile power, the power per tile with a DSB200 router is
only 7% higher than the tile power with IBR200. On the other
hand, if the router consumes only 10% of the tile power, the
power per tile with a DSB200 router is just 3.5% higher than
tile power with IBR200. We believe that the increased power
cost is justified for applications that demand high bandwidth
and exhibit high contention since latency reductions of more
than 60% can be achieved using DSB routers. As with power,
even in the case of area, the increase in area of the entire tile
as a result of using a DSB router in place of an IBR is again
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TABLE IV
ROUTER POWER AND AREA COMPARISON

Router Power Area Router Power Area Power penalty
Config. (mW) (mm2) Config. (mW) (mm2) Per Per tile

router NOC power = 10% NOC power = 15% NOC power = 20%
IBR200 240 0.19 DSB200 324 0.3 1.35 1.035 1.052 1.07

TABLE V
COMPARISON OF DSB ROUTERS WITH 5 AND 10 MIDDLE MEMORIES

Router Configuration Power (mW) Area (mm2)
DSB200 324 0.3
DSB300 496 0.5

very low since the router area is only a small portion of the
total tile area.

As discussed earlier, the DSB200 configuration with 5 mid-
dle memories and DSB300 configuration with 10 middle mem-
ories have similar performance. However, DSB200 consumes
35% less power and occupies 40% less area compared to
DSB300 (Table V). The power and area savings are achieved
by using fewer buffers and two 5×5 crossbars in DSB200
instead of 5×10 and 10×5 crossbars used in DSB300.

VI. RELATED WORK

Sophisticated extensions to input-buffered router microar-
chitectures have been proposed for improving throughput,
latency and power. For throughput, techniques like flit-
reservation flow-control [13], variable allocation of virtual
channels [12] and express virtual channels [8] have been
proposed. As these designs are input-buffered, they are only
able to multiplex arriving packets from their input ports across
the crossbar switch, unlike our proposed DSB architecture
which can shuffle incoming packet flows from all input ports
onto the middle memories and then onto the crossbar switch.
The proposed DSB architecture offers better opportunities
for packet multiplexing and improved packet flow, which
helps in mimicking the high throughput and predictable delay
characteristics of output-buffered routers. There have been
several input-buffered router proposals that target network
latency, making single-cycle routers feasible, such as spec-
ulative allocation [10], [11], [14] and route lookaheads [3],
[7]. For power savings, techniques such as row-column sep-
aration [6] and segmentation [22] of crossbars and straight-
through buffers [22] have been proposed. These latency and
power optimization techniques are orthogonal to our proposal
as they do not target throughput. Some of these techniques
can be applied to the DSB router as well to reduce latency
and energy consumption.

As already mentioned, DSB routers [4], [15], which can
emulate an output-buffered router without router speedup, have
been successfully used in Internet routing. Stunkel et. al [18]
proposed the IBM colony router which is a customized ar-
chitecture for off-chip interconnection networks with large
central buffers and three crossbars. Although this architecture
is similar to that of DSB routers, it does not use timestamping
of flits for OBR emulation. Instead, packets potentially incur
large de-serialization and serialization latencies to support
wide SRAM accesses.

VII. CONCLUSIONS

In this paper, we proposed a distributed-shared-buffer (DSB)
router for on-chip networks. DSB routers have been success-
fully used in Internet routers to emulate the ideal throughput of
output-buffered routers, but porting them to on-chip networks
with more stringent constraints presents tough challenges. The
proposed DSB router achieves up to 19% higher saturation
throughput than input-buffered routers (IBRs) and up to 94%
of the ideal saturation throughput for synthetic traffic patterns.
The higher saturation throughput translates to large reduc-
tions in network latency with SPLASH-2 benchmarks. For
SPLASH-2 applications which exhibit high contention and
demand high communication bandwidth, DSB routers on an
average have 60% lower network latencies than IBRs.
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