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Uncontrolled growth in a confined space generates mechanical
compressive stress within tumors, but little is known about how
such stress affects tumor cell behavior. Here we show that
compressive stress stimulates migration of mammary carcinoma
cells. The enhanced migration is accomplished by a subset of
“leader cells” that extend filopodia at the leading edge of the cell
sheet. Formation of these leader cells is dependent on cell micro-
organization and is enhanced by compressive stress. Accompanied
by fibronectin deposition and stronger cell–matrix adhesion, the
transition to leader-cell phenotype results in stabilization of per-
sistent actomyosin-independent cell extensions and coordinated
migration. Our results suggest that compressive stress accumu-
lated during tumor growth can enable coordinated migration of
cancer cells by stimulating formation of leader cells and enhancing
cell–substrate adhesion. This novel mechanism represents a poten-
tial target for the prevention of cancer cell migration and invasion.

mechanobiology | solid stress | collective migration | metastasis

The microenvironment plays a crucial role in tumor initiation
and progression (1–3). It is known that cells respond to

biochemical cues such as secreted growth factors and cytokines
(4), as well as metabolic stress resulting from reduced glucose
and oxygen availability (5, 6). However, biology is not entirely
governed by soluble signals: Cells also respond to mechanical
cues in the microenvironment, actively changing shape and cy-
toskeletal organization (7) and adjusting adhesion affinity (8)
when matrix tension or stiffness change. Despite extensive
studies on the role of mechanical signals in many aspects of
physiology, including endothelial function (9, 10), tissue main-
tenance (11, 12), and morphogenesis (13, 14), the role of
mechano-stimulation in tumor biology is largely unexplored.
Emerging data show that cells respond to various mechanical
signals including (i) ECM stiffening due to deposition or
remodeling of collagen fibers by activated stromal myofibroblasts
(15), (ii) elevated interstitial fluid pressure (16), (iii) increased
interstitial fluid flow (17, 18), and (iv) compressive stress (solid
stress) generated by confined growth (19, 20). Such mechanical
stresses may have a profound impact on tumor growth and de-
velopment (19–23).
Growth-induced mechanical stress accumulates in structural

elements of the interstitium and cells and is sufficient to collapse
blood and lymphatic vessels (24). Not only can compressive stress
affect intraspheroid proliferation and apoptosis (19, 20), but also
studies have suggested that compression can induce genotypic
and phenotypic changes that are related tomalignancy (13, 25, 26).
Thus, we hypothesize that compressive stress can select for met-
astatic cell populations or trigger cancer cell invasion.

Results
Compression Induces Migration of Breast Cancer Cells and
Cytoskeletal Remodeling. To test this hypothesis, we subjected
normal and cancer epithelial cells to defined compression by
pressing them against a membrane surface with a weighted

piston (Fig. S1A). This geometry is similar to that experienced by
cells at the periphery of a mammary acinus; in these 3D struc-
tures, uncontrolled growth of cancer cells within the acinus lu-
men effectively presses cells at the periphery of the acinus
against the surrounding basement membrane (Fig. S1B). We
subjected five established mammary epithelial cell lines
(MCF10A, MCF7, 67NR, 4T1, and MDA-MB-231; listed in
order of increasing invasion potential) to constant compressive
stress and measured migration rates via a scratch-wound assay
(throughout this paper, “wound” refers to the denuded area in
our 2D cultures where cells were removed or excluded) (Fig.
S1A). Stress levels were similar to those estimated in the native
breast tumor microenvironment: 5.8 mmHg (21). At this level,
compression did not significantly increase cell proliferation (Fig.
S2A). However, compressive stress did enhance the motility of
highly aggressive 4T1 and MDA-MB-231 cells, as well as 67NR
cells, which have undergone partial epithelial–mesenchymal
transition (characterized by loss of E-cadherin and vimentin
expression) (27). In contrast, compressive stress suppressed the
migration of normal mammary epithelial MCF10A and non-
invasive, well-differentiated MCF7 cells, which retain certain
features of normal mammary epithelium (28) (Fig. 1A). For the
MCF10A cells, the slowed migration was associated with a de-
crease in cell number (Fig. S2A). It should be noted that during
the first 16 h of compression, there was slight compaction of the
agarose and a corresponding flow of fluid out of the gel. How-
ever, the resulting shear forces experienced by the cells were
negligible (29, 30) (maximum 3.2 × 10−5 dyn/cm2; see SI Mate-
rials and Methods, Analysis of Fluid Dynamics at the Surface
During Compression). These results demonstrate that applied
compressive stress (ACS) enhances the migration potential
of mammary carcinoma cells independent of any changes in
cell proliferation.
Fig. 1B shows the dramatic difference in cell morphology at

the wound edge between MCF10A and 67NR cells—the two
cell lines that exhibited the most prominent inhibition or en-
hancement of migration, respectively. Compression stimulated
changes in cell shape and cytoskeletal organization at the wound
edge in 67NR, but not MCF10A cells. Specifically, compressed
67NR cells showed actin stress fiber alignment and microtu-
bule rearrangement (Fig. 1C). This cytoskeletal adaptation to
mechanical stimulation suggests that (i) compression-induced
67NR cell motility could be mediated by increased tension in
the actin cytoskeleton, thereby inducing formation of stress
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fibers, and (ii) the elevated intracellular tension, in turn, induces
formation of a microtubule network to ensure mechanical sta-
bility (7, 31).
We next investigated whether higher stresses would further

enhance the migration of cancer cells. By titrating the piston
weight, we determined that stresses >5.8 mmHg significantly
triggered apoptosis, with only 40% of cells viable at 58 mmHg
(Fig. S2B); there was a corresponding decrease in migration of
viable cells at these higher stress levels (Fig. S2C). Furthermore,
continuous compression was necessary for enhanced migration:
67NR cells preconditioned with a compressive stress of 5.8
mmHg migrated more slowly after stress removal than continu-
ously compressed cells (Fig. S2D). These results show that
moderate levels of continuously applied compressive stress en-
hance cell motility, whereas excessive stresses trigger cell death
and impede cell migration. For the subsequent studies, the
compressive stress was maintained at 5.8 mmHg.

ACS Stimulates Formation of “Leader Cells” with Filopodial
Protrusions. During wound closure, 67NR cells at the leading
edge appeared to guide the directional movement of the cell
sheet. This subset of cells acted as leader cells, maintaining
connections with their trailing neighbors while extending pro-
trusions into the denuded area (Fig. 1C). In the absence of
compression (control; Movie S1), these cells extended in random
directions and clustered at the wound periphery. In contrast,
compressed 67NR cells demonstrated a clear persistence and
directionality in their movement at the leading edge of the cell

sheet (Movie S2). Quantitative analysis of cell orientation
showed that the compressed 67NR cells preferentially aligned
perpendicular to the wound periphery with the leading edges
extending into the open area (Fig. 2A). Interestingly, there was
a striking difference in the formation of leader cells between the
control and compressed cultures. The number of leader cells
increased by approximately twofold when the 67NR cells were
compressed (Fig. 2B). To further characterize these leader cells,
we assessed their size, shape, and polarization in compressed and
control cultures. Although leader cells were polarized in both
control and compressed conditions (Fig. S2E), those under
compression had larger cell–substrate contact areas (Fig. 2C)
and longer filopodial protrusions (Fig. 2D).

Compressive Stress Induces Leader-Cell Phenotype in Border Cells,
Regardless of Cell Microorganization. Because (i) only cells at the
wound edge adopt leader cell phenotype and (ii) leader cell
morphology was not observed in sparsely seeded cultures, even
when compressed (control, Movie S3; compressed, Movie S4),
we hypothesized that the microorganization of cells within the
sheet influences leader-cell formation. Specifically, it appeared
that the extent of free-cell perimeter (the fraction of cell pe-
rimeter not in contact with other cells) was important.
To investigate this possibility, we controlled free-cell perime-

ter using microcontact printing. Groups of 67NR cells were
forced into various defined geometries and their morphological
changes were tracked over time. In circle patterns, all cells
around the denuded periphery have roughly the same extent of
free perimeter. On the other hand, cells at vertices (such as the
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Fig. 1. Compression induces migration of mammary carcinoma cells and
alters cytoskeletal organization. (A) Cell migration in the scratch-wound
assay for five different mammary epithelial cells of increasing invasion po-
tential, either stress-free (control) or subjected to a compressive stress of 5.8
mmHg for 16 h (n = 9; *P < 0.05 compared with corresponding control). (B)
MCF10A (Upper) and 67NR cells (Lower) closing the “wound” after 16 h. The
compressed 67NR cells at the leading edge exhibited directional alignment
and faster migration, whereas compressed MCF10A cells displayed sup-
pressed migration. (Scale bar, 200 μm.) (C) Cytoskeletal staining (phalloidin
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points of the rosette) have, on average, more free perimeter (Fig.
3 and Fig. S3). We first confirmed that compression-induced
leader-cell formation and enhanced wound closure occurred in
the circle pattern formed by microcontact printing, similar to
that seen in the scratch-wound assays. As expected, leader cells
rarely formed in the uncompressed circle patterns, indicated by
a relatively smooth periphery of cell-denuded areas, but were
frequent in compressed cultures (Fig. 3A); furthermore, wound
closure rates were increased with compression (Fig. 3B), con-
sistent with the scratch-wound cultures. This result also verified
that leader-cell formation is not influenced by cell damage in the
in vitro scratch assay.
Next, we patterned 67NR cells in a rosette geometry with

leader cells predesignated at the tips (Fig. 3C). Interestingly, in
the absence of compression, the preformed leader cells (point
cells) extended more frequently from the rosette vertices and
migrated faster than the other boundary cells (Fig. 3D). In
contrast, with compression, there was no preferential location for
leader-cell formation—cells extended and migrated from ran-
dom locations around the rosette, not just from the pattern
vertices (Fig. 3C). As a result, there was faster overall migration
in these compressed cultures (Fig. 3E).

To quantify the effect of free-cell perimeter on leader-cell
formation, we confined colonies of 67NR cells to a square ge-
ometry using micro contact printing (Fig. 3F). In these patterns,
cells at the corners have more free perimeter than those on the
edges, and quantitative comparison is accomplished via the
change in shape of the square. Consistent with the rosette data,
with no compression, cells at the four corners were more likely to
become leader cells; with compression, almost all boundary cells
adopted the leader-cell phenotype (Fig. 3F). Quantitative anal-
ysis of the patterns confirmed that there was preferential ex-
tension from the corners in the control, but not the compressed,
cultures (Fig. 3G). Thus, leader-cell formation in uncompressed
cultures is sensitive to local cell–cell spatial organization, which
determines free-cell perimeter and can influence the dynamics of
spreading. The positional advantage disappears with compres-
sion, which distends all border cells, likely inducing changes in
shape or cytoskeletal tension that mimic those in uncompressed
corner cells.

Actomyosin Contractility Is Required for Migration of Leader Cells,
but Not Their Formation. Previous studies have shown that cell
microorganization within a monolayer defines patterns of in-
tracellular tension generated by the actomyosin cytoskeleton
(32). Such intracellular tension is important for determining sites
of cell proliferation (32) and mammary branching morphogen-
esis (33) in vitro. To investigate whether similar myosin-de-
pendent intracellular tension is involved in ACS-induced
coordinated migration, we altered cellular mechanics using mo-
lecular and pharmacological approaches.
Intracellular tension generated by the actomyosin cytoskeleton

is regulated in part by signaling through the small GTPase
RhoA, its downstream effector Rho kinase (ROCK), and myosin
light chain kinase (MLCK). To decrease the actomyosin-medi-
ated contractile tension, we therefore used dominant-negative
RhoA (RhoA-T19N) retrovirus, ROCK inhibitor Y-27632, or
MLCK inhibitor ML-7. Compression still enhanced wound clo-
sure rates of RhoT19N cells compared with uncompressed
controls, but the effect was slightly reduced compared with the
induction seen in wild-type cells. In addition, inhibition of RhoA
activity did not suppress leader-cell formation in the compressed
cultures (Fig. 4A). Similar results were seen with Y-27632 and
ML-7 treatment (Fig. 4 B and C). Our finding that RhoA is not
involved in compression-induced leader-cell formation was sur-
prising, considering previous work demonstrating its role in the
formation of leader cells during in vitro wound healing (34). It is
possible that external mechanical stimulation enables other
RhoA-independent signaling mechanisms. Interestingly, when
actomyosin contractility was completely blocked by the myosin II
ATPase inhibitor Blebbistatin (35), compressive stress was still
able to induce leader-cell formation despite compromised cell
motility (Fig. 4C). These results indicate that compression can
initiate directional protrusions for leader-cell formation in-
dependent of actomyosin contractility; however, the contractile
machinery is still necessary for sheet migration.

Cell Adhesion Is Modulated During Compression-Induced Migration.
Cell migration is a coordinated interaction between cells and
their surroundings. In our 67NR cells, homotypic E-cadherin
adhesion was not necessary for—and did not interfere with—
compression-induced migration (Fig. S4). Therefore, we next
tested whether compression affects cell–substrate adhesion. We
quantified the ability of cells to resist detachment caused by fluid
shear forces. Compressed 67NR cells exhibited 2.5-fold higher
cell-substrate adhesion than uncompressed cells (Fig. 5A). Ana-
lyzing the distribution of fibronectin in the culture, we found that
more fibronectin was localized at the cell–substrate interface in
the compressed samples than in controls (Fig. 5 B and D), which
was consistent with the immunostaining pattern of vinculin,
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a protein marker of focal adhesions (Fig. 5E). There was also
fibronectin between cells, which likely allowed for cohesion of
the cell sheet independent of E-cadherin expression. However,
the change in fibronectin distribution was not related to altered
fibronectin transcription (quantitative PCR analysis; Fig. 5C).
The distinct fibronectin patterns could have been formed by

rearrangement of existing extracellular fibronectin or by directed
secretion of newly synthesized fibronectin by the cells. To in-
vestigate this further, we inhibited all protein translation by
treating the 67NR cells with cycloheximide before compression
and then monitored migration and fibronectin patterns. We
confirmed that cycloheximide-treated 67NR cells still adhered to
and migrated on fibronectin substrates, but, in general, speeds
were slower compared with the untreated cells (Fig. S5). How-
ever, inhibition of protein synthesis abolished the oriented, fibril-
like pattern of fibronectin seen in the untreated, compressed
cultures (Fig. 5F). These results suggest that mechanical com-
pression induces localized secretion of fibronectin by the mi-
grating 67NR cells, and this localized secretion enhances leader-
cell formation.

Discussion
Uncontrolled proliferation of cancer cells generates mechanical,
compressive stresses (19, 20). We hypothesized that such stresses
can facilitate tumor progression and found that cells at the pe-
riphery of a discontinuous sheet can undergo a phenotypic
transformation when compressed. These cells at the sheet
boundary became leader cells and participated in coordinated

cell migration (collective migration) (36, 37), extending pro-
trusions in the direction of migration and guiding “followers” at
their rear. Leader cells have been observed in collective migra-
tion during cancer cell invasion, vascular sprouting, wound clo-
sure, and embryogenesis (36, 37). Furthermore, there is some
evidence that mechanical forces can modulate coordinated mi-
gration in vascular morphogenesis: It has been shown that forces
exerted by flowing fluids can induce changes in endothelial
junction structure (38), differentiation of vascular wall cells (39),
and tip cell formation (40). Interestingly, our leader cells are
morphologically and functionally similar to endothelial tip cells.
Therefore, it is possible that similar mechanisms are involved in
the coordinated migration of epithelium and endothelium.
The formation of leader cells in coordinated migration is likely

related to the balance of intracellular stresses generated in the
cytoskeleton (7, 41). A shift in stress balance due to interactions
with other cells (32, 36, 42) or cell distortion as a cell actively
adapts to its local matrix environment (7, 43) can initiate cyto-
skeletal rearrangement, proliferation, and morphogenesis (32,
33). Our experiments without compression demonstrate the
ability of the cell microorganization to control the coordinated
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or treated with Y-27632 (B; n = 6–13), ML-7 (C; n = 6), or Blebbistatin (C; n =
6) under stress-free or compressed (5.8 mmHg) conditions for 16 h and
corresponding representative images of 67NR leader cells at the wound
edge (*P < 0.005 compared with the respective control; NS, not significant
compared with the respective control). (Scale bar, 50 μm.) The inhibitors of
actomyosin contractility did not abolish leader-cell formation despite re-
duced wound closure rate. (A) Western blot showing RhoA activation pull-
down to analyze the transduction efficiency. Error bars represent SEM.
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Fig. 5. Compression up-regulates 67NR cell–matrix adhesion via localized
fibronectin secretion. (A) Compression enhances cell-substrate adhesion.
Uncompressed and compressed samples were exposed to detractive fluid
shear and the remaining adherent cells were quantified using a colorimetric
assay in which crystal violet stain was quantified via optical density (OD) at
540 nm (n = 8; *P < 0.005). (B) Quantification of fibronectin accumulation at
the cell–substrate interface. Results are expressed as surface fibronectin-
positive pixel area relative to the total number of DAPI-stained nuclei (n =
11–12; *P < 0.005 compared with the control). (C) Quantitative PCR of
control and compressed 67NR cells showed no significant difference in fi-
bronectin messenger level between the two groups (NS, not significant). (D)
Fibronectin staining of 67NR cells at the periphery of the cell-denuded area.
Fibronectin at the cell–substrate interface in the compressed, but not con-
trol, samples was fibrillar and oriented in the direction of migration (n = 17).
(Scale bar, 10 μm.) (E) Vinculin-stained cells at the periphery of the cell-de-
nuded area. 67NR cells were either uncompressed (control) or exposed to
a compressive stress of 5.8 mmHg for 16 h. Vinculin-positive (red) focal
adhesions were detected underneath compression-induced filopodia of
elongated cells (n = 16). (Scale bar, 10 μm.) (F) Fibronectin staining of 67NR
cells treated with 1 μM cycloheximide at the periphery of the cell-denuded
area. The formation of oriented and fibril-like patterns of fibronectin ob-
served earlier in the nontreated compressed cultures (D) was abolished after
inhibition of protein synthesis, suggesting that the cells secrete fibronectin
during their movement for enhanced cell–matrix adhesion (n = 8). (Scale bar,
10 μm.)
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migration: In the absence of exogenous compression, the stress
balance—determined by the cell’s position within the monolayer
and mediated through actomyosin (32)—affected leader-cell
formation. Cells at rosette tips or at the corners of a square
pattern have more free-cell perimeter available for extension and
formation of new adhesions, resulting in a change in the cell
stress balance. We propose that this shift in intracellular forces
initiates changes in cytoskeleton and focal adhesions that quickly
translate into leader-cell formation.
In contrast, when cells were subjected to applied compressive

stress, there was no preferential location for leader-cell forma-
tion around the sheet boundary. Even cells that were not in
“preferred” positions for self-induced leader-cell formation (i.e.,
cells in the “edge” positions) became leaders. As the leader cells
spread, they secreted fibronectin, facilitating cell-substrate inter-
actions (Fig. 5 B and D). This result is consistent with reports
that the persistent movement of leader cells requires cell adhe-
sion to fibronectin (44). Our results are also consistent with the
study by Chen et al., who confined individual cells to patterned
surfaces and found that cell spreading controls the number of
focal adhesions (43). Evidently, the increased free-cell perimeter
and surface adhesion caused by compression-induced cell dis-
tension (Fig. 2 C and D) affect cytoskeletal tension and trigger
leader-cell formation (Fig. 1C), independent of any preexisting
force balance established by the cells themselves. Our observa-
tions that (i) ACS-induced coordinated migration is abolished
upon removal of the applied stress (Fig. S2D) and (ii) inhibition
of actomyosin contractility has no effect on ACS-induced leader-
cell formation (Fig. 4) support the concept that the applied stress
substitutes for intracellular tension generated by actomyosin
contractility to enable and sustain the transformation (Fig. 6).
Indeed, it has been reported that external force application can

induce intracellular tension during maturation of focal contacts,
independent of Rho/ROCK-dependent actomyosin-driven cell
contractility (45). Upon removal of the applied stress, the ten-
sion balance could return to normal and the cells revert to
nonleader phenotype.
The fact that aggressive carcinoma cells, but not MCF10A

cells, respond to compression raises the interesting possibility
that cancer cells are somehow “primed” to respond to changes in
the mechanical environment. Previous reports have shown that
MCF10A cells have a higher apparent elastic modulus than
cancer cells (31, 46). This result is consistent with our finding
that uncompressed (control) MCF10A cells have a denser net-
work of cytoskeletal structures (particularly microtubules) com-
pared with uncompressed (control) 67NR cells (Fig. 1C). The
relatively higher level of cell stiffness may make nontumorigenic
MCF10A cells less mechano-sensitive. Our results are consistent
with results from 3D cultures, where increased matrix density or
stiffness has been shown to trigger malignant transformation (23,
47, 48). It is possible that in these systems, cell growth produces
compressive stress that initiates the invasion in a way analogous
to our applied compression.
Our results establish a direct link between mechanical stress

and enhancement of coordinated cancer cell motility via for-
mation of leader cells. The concept of mechanical induction of
tumor invasiveness could open the door to a unique class of
targets for blocking mechanical stress pathways and guide the
development of approaches for drug screening that take into
account mechanical as well as genetic and biological factors. In
addition, this work provides unique insight into how physical
determinants can influence coordinated migration, a process
relevant to other physiological events such as vascular sprouting
and wound healing (36, 37).
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islands have different extents of free perimeter, which affects actomyosin-driven intracellular stress. (B) In uncompressed cultures, free perimeter affects
leader-cell formation. On average, the corner cells in the square islands have more free-cell perimeter than the edge cells and are therefore able to extend
more protrusions than the edge cells, resulting in higher intracellular stress. (C) The resulting change in force balance within the cell likely causes their
phenotypic change into “leader” cells. In our system, cell–cell adhesion is maintained, so cells adjacent to the leader cells (either behind or on the sides)
appear to be pulled in the coordinated migration. As a result, the sheet preferentially extends from the corners of the square pattern. (D) In contrast, when
the culture is compressed, all cells around the periphery of the island are deformed, or extruded, against the substrate, into the empty space. Similar to the
case of the active extension of the uncompressed corner cells, cell extrusion has the effect of increasing cell-substrate contact (and also intracellular stress). (E)
Hence, all cells around the periphery of the square pattern can become leader cells. The leader cells then continue to secrete and deposit fibronectin during
cell spreading and movement, thereby forming new adhesion contacts with the substrate and resulting in enhanced coordinated migration.
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Materials and Methods
A detaileddescriptionofthematerialsandmethods is included inSIMaterialsand
Methods. Briefly, mammary carcinoma (MCF7, 67NR, 4T1, and MDA-MB-231)
and normal (MCF10A) cell lines were subjected to 16-h compressive stress at
a level of 5.8 mmHg using the in vitro compression device (Figs. S1A and Fig. S6)
and theirmotility wasmeasuredwith the scratch-wound assay. Images of cells at
the periphery of the wound were captured with an inverted microscope
(Olympus) for analyses of cell orientation and migration. To control free-cell
perimeter, 67NR cells were patterned by seeding them on surfaces “stamped”
with fibronectin to form circles, squares, and rosettes using microcontact print-
ing, as previously described (49, 50) with minor modifications. For circles and
rosettes, the fibronectin (and cells) was excluded from the shapes; for squares,
the fibronectin (and cells) was confined to the shape. The 67NR cells were also
stained with Alexa Fluor-546 phalloidin (Molecular Probes-Invitrogen), anti-vin-
culin antibody (Sigma), and antiserum against fibronectin (Sigma) for F-actin,
focal adhesions, andfibronectin, respectively. Immunofluorescence imageswere

collected with a confocal microscope (Olympus) and analyzed with ImageJ or
Matlab for leader cell frequency andfilopodial protrusions aswell as fibronectin
deposition. The transcriptional expression level of fibronectin was measured by
quantitative real-time PCR, using total RNA extracted from the 67NR cells. The
effect of compression on the cell-surface adhesion strength was determined by
the number of compressed or control cells remaining on the surface after ex-
posure to shear forces. Finally, to determine the role of actomyosin contractility
in compression-induced coordinated migration, various chemical inhibitors or
molecular modification were used to down-regulate RhoA/ROCK or myosin-as-
sociated pathways. Data are presented as mean ± SEM, and P ≤ 0.05 was con-
sidered significant in unpaired Wilcoxon–Mann–Whitney tests.
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