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Models of cortical neuronal circuits commonly depend on inhibitory
feedback to control gain, provide signal normalization, and selectively
amplify signals using winner-take-all (WTA) dynamics. Such models
generally assume that excitatory and inhibitory neurons are able to inter-
act easily because their axons and dendrites are colocalized in the same
small volume. However, quantitative neuroanatomical studies of the di-
mensions of axonal and dendritic trees of neurons in the neocortex show
that this colocalization assumption is not valid. In this letter, we describe
a simple modification to the WTA circuit design that permits the effects of
distributed inhibitory neurons to be coupled through synchronization,
and so allows a single WTA to be distributed widely in cortical space,
well beyond the arborization of any single inhibitory neuron and even
across different cortical areas. We prove by nonlinear contraction anal-
ysis and demonstrate by simulation that distributed WTA subsystems
combined by such inhibitory synchrony are inherently stable. We show
analytically that synchronization is substantially faster than winner se-
lection. This circuit mechanism allows networks of independent WTAs
to fully or partially compete with other.

1 Introduction

Many models of neuronal computation involve the interaction of a popula-
tion of excitatory neurons whose outputs drive inhibitory neuron(s), which
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in turn provide global negative feedback to the excitatory pool (Amari &
Arbib, 1977; Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Hahn-
loser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000; Yuille & Geiger,
2003; Maass, 2000; Hertz, Krogh, & Palmer, 1991; Rabinovich et al., 2000;
Rutishauser, Douglas, & Slotine, 2011; Coultrip, Granger, & Lynch, 1992).
Practical implementation of such circuits in biological neural circuits de-
pends on colocalization of the excitatory and inhibitory neurons, an as-
sumption that studies of the extent of axonal and dendritic trees of neurons
in the neocortex show is not valid (Katzel, Zemelman, Buetfering, Wolfel,
& Miesenbock, 2011; Binzegger, Douglas, & Martin, 2004; Shepherd, Stepa-
nyants, Bureau, Chklovskii, & Svoboda, 2005; Douglas & Martin, 2004).
First, a substantial fraction of the axonal arborization of a typical excitatory
“spiny” pyramidal neuron extends well beyond the range of the arboriza-
tion of a typical “smooth” inhibitory neuron, particularly in the populous
superficial layers of the neocortex (Yabuta & Callaway, 1998; Binzegger
et al., 2004). This spatial arrangement means that excitatory effects can
propagate well outside the range of the negative feedback provided by a
single inhibitory neuron. Second, the horizontally disposed basket type of
inhibitory neuron, a prime candidate for performing normalization, makes
multiple synaptic contacts with its excitatory targets, so that even within
the range of its axonal arborization, not all members of an excitatory pop-
ulation can be covered by its effect. This connection pattern means that
excitatory neurons within some local population must either be partitioned
functionally or multiple smooth cells must cooperate to cover the entire
population of excitatory cells.

In previous publications, we have shown how winner-take-all (WTA)
circuits composed of a small population of excitatory neurons and a single
inhibitory neuron can be combined to construct supercircuits that exhibit
finite state machine (FSM)–like behavior (Rutishauser & Douglas, 2009;
Neftci, Chicca, Indiveri, Cook, & Douglas, 2010). The supercircuits made
use of sparse excitatory cross-connections between WTA modules to express
the required states of the FSM. These excitatory connections can extend well
outside the range of the local WTA connections, and so are consistent with
the observed long-range lateral excitatory connections referred to above. On
the other hand, we have not previously confronted the question of whether
the WTA is necessarily localized to the extent of the smooth-cell arboriza-
tion, or whether the WTA itself can be well distributed in space within or
between cortical lamina, or even between cortical areas. In this letter, we
describe a simple modification to the WTA circuit design that couples the
effects of distributed inhibitory neurons through synchronization, and so
permits a WTA to be widely distributed in cortical space, well beyond the
range of the axonal arborization of any single inhibitory neuron, and even
across cortical areas. We also demonstrate that such a distributed WTA is
inherently stable in its operation.
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Figure 1: Circuits for distributing WTAs. (A) Illustration of the principal idea:
mutual excitation of the inhibitory neurons. (B–E) Biologically plausible ver-
sions. (B) Implementation using intermediate excitatory neurons z1,2. This cir-
cuit will be considered in detail in Figure 2B with more realistic connectivity.
(C) Implementation using disinhibition of persistently active units z1,2 as illus-
trated by the step functions. (D) Implementation with disinhibition and long-
range excitatory units. (E) Implementation using multiplication of inhibitory
neurons. Here, x3 = y3 at all times. The maximal excitatory projection length is
double that of the inhibitory.

2 Results

We have considered a number of circuits that could be used to distribute
spatially the WTA behavior (see Figure 1). However, we will describe and
analyze only the circuit shown in Figure 2, which we consider to be the most
elegant of the distributive mechanisms (notice the similarity to Figure 1B).
The key insight is the following: under normal operating conditions, all
the participating distributed inhibitory neurons should receive the same
summed excitatory input. We achieve this by interposing an excitatory
neuron in the negative feedback loop from the excitatory population to its
local inhibitory neuron. Instead of the local inhibitory neuron summing over
its excitatory population, the interposed neuron performs the summing and
passes its result to the inhibitory neuron. This result is also copied to the
more distant inhibitory neurons in the spatially distributed WTA. In this
way, the inhibitory neuron of each sub-WTA sums over the projections from
the interposed excitatory neurons of all other sub-WTAs, including its own
one. Thus, each inhibitory neuron is able to provide feedback inhibition to
its local sub-WTA that is proportional to the total excitation provided by
all excitatory neurons participating in the entire distributed WTA. We will
show that functionally, this amounts to a form of synchrony among all the
inhibitory units.
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Figure 2: Schematic of connectivity. Gray units and dashed lines are inhibitory,
and white units and straight lines are excitatory. (A) Single WTA with two
possible winners x1,2, inhibitory unit x3, and intermediate excitatory unit x4
that carries the average activity of x1,2. (B) Coupling of two WTAs to form a
single WTA with four possible winners. β4 are excitatory long-range connections
that serve to synchronize the two inhibitory units. (C–D) Reduced versions for
theoretical analysis. (C) Merged WTA with one winner each and thus two
possible winners x1 and y1 in the merged network. (D) Reduced single WTA.

2.1 Connectivity and Dynamics: Single WTA. All of the circuits of
Figure 1 can achieve a distributed WTA by merging several independent
WTAs, but we consider the circuit shown in Figure 2B to be most feasible,
and so our analysis focuses on this one. However, similar reasoning could
be applied to all the variants shown. Note that our chosen circuit is similar
to that of Figure 1B, but it has a more realistic connectivity pattern in that
the summed excitatory activity is projected onto only a single unit, which
requires less wiring specificity than Figure 1B.

The dynamics of a single WTA (see Figure 2A), consisting of 1..N − 2
excitatory units, one inhibitory unit xN−1, and one intermediary interconnect
excitatory unit xN, are

τ ẋi + Gxi = f (Ii + αxi − β1xN−1 − Ti),

τ ẋN−1 + GxN−1 = f (β3xN − TN−1),

τ ẋN + GxN = f

⎛
⎝β2

N−2∑
j=1

x j − TN

⎞
⎠ . (2.1)

Each excitatory unit receives recurrent input from itself (α1) and its neigh-
bors (α2,3,...; see Figure 2A). For simplicity, only self-recurrence is consid-
ered here (α = α1 and α2,3,... = 0), but very similar arguments obtain when
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recurrence from neighboring units is included. When the weight matrix W
is used, the dynamics of this system is described as

τ ẋ + Gx = f (Wx − T + I(t)), (2.2)

with

W =

⎡
⎢⎢⎢⎢⎣

α 0 −β1 0

0 α −β1 0

0 0 0 β3

β2 β2 0 0

⎤
⎥⎥⎥⎥⎦ , (2.3)

where the order of units is x1,2,3,4 (i.e., the first column and row is x1, and
the last column and row is x4). The firing rate activation function f (x) is
a nonsaturating rectification nonlinearity max(0, x). We assume τ = 1 and
G = 1 throughout unless mentioned otherwise. T = [T1, . . . , TN−1, TN] is a
vector of the constant activation thresholds Ti ≥ 0.

2.2 Connectivity and Dynamics: Coupled WTA. Two identical single
WTAs, each described by weight matrices W1 = W2 = W, can be combined
into one distributed WTA that acts functionally as a single WTA by adding a
recurrent excitatory feedback loop β4 between the two WTAs (see Figure 2B).
The weight matrix WC of the merged system is

WC =
[

W1 C2

C1 W2

]
(2.4)

with interconnections

C1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 β4

0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (2.5)

The dynamics of this system are as shown in equation 2.2 using W = WC.

2.3 Stability Analysis. The stability analysis, using nonlinear contrac-
tion analysis (see the appendix; Lohmiller & Slotine, 1998, 2000; Slotine,
2003; Wang & Slotine, 2005), consists of three steps: (1) demonstrate the
contraction of a single WTA, (2) merge two WTAs by demonstrating that
inhibitory units synchronize, and (3) demonstrate the contraction of the
combined WTAs. We have previously shown how contraction analysis can
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be applied to reasoning over the stability and functionality of WTA circuits
(Rutishauser et al., 2011). Here, we apply and extend the same methods to
this new circuit.

Contraction analysis is based on the Jacobians of the system. For pur-
poses of analysis but without loss of generality, we base this section on a
reduced system with only one possible winner for each WTA, as shown in
Figure 2C.

The Jacobian of a single system is

τ J =

⎡
⎢⎣

l1α − 1 l1 − β1 0

0 −1 l2β3

l3β2 0 −1

⎤
⎥⎦ . (2.6)

In a stable network, a constant external input to the first unit x1 will lead
to a constant amplitude of x1 that is either an amplified or a suppressed
version of its input.

The activation function f (x) = max(x, 0) is not continuously differen-
tiable, but it is continuous in both space and time, so that contraction results
can still be applied directly (Lohmiller & Slotine, 2000). Furthermore, the
activation function is piecewise linear with a derivative of either 0 or 1. We
exploit this property by inserting dummy terms lj, which can be either 0 or
1 according to the derivative of f (x): l j = d

dx f (x j(t)). In this case, all units
are active, and thus l1 = l2 = l3 = 1.

A system with Jacobian J is contracting if

� J �−1 < 0, (2.7)

where � is a constant transformation into an appropriate metric and F =
� J �−1 is the generalized Jacobian. If F is negative definite, the system is
said to be contracting. We have shown previously (Rutishauser et al., 2011)
how to choose the constant transformation � and conditions that guarantee
contraction for a WTA circuit where all excitatory units provide direct input
to the inhibitory unit (see Figure 1A). In summary, � = Q−1, where Q is
defined based on the eigendecomposition J = Q�Q−1. In this case,

0 < α < 2
√

β1β2,

0 < β1β2 < 1, (2.8)

guarantee contraction for any such WTA of any size (Rutishauser et al.,
2011).

Structurally the two versions of the WTA are equivalent in that a unit was
added in the pathway of recurrent inhibition, but no inhibition is added or
removed (compare Figure 1A to Figure 2A). Thus, we can apply the same
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constraints by replacing the product β1β2 with β1β2β3 in equations 2.8. This
product is equivalent to the inhibitory loop gain. This reduction is verified
as follows. Using the notation shown in Figure 2C, assume that T = 0 for
x3, where T > 0 for the other units. Then,

ẋ3 + x3 = f (β2x1),

ẋ2 + x2 = f (β3x3 − T2). (2.9)

At steady state, x2 = f (β2β3x1), showing that x3 and x2 can be merged into
a single unit x2 by providing input of weight β2β3 directly to unit x2 (see
Figure 2D). The first key results of this letter are the following limits for
contraction of a single such WTA (see Figure 2A):

0 < α < 2
√

β1β2β3,

0 < β1β2β3 < 1. (2.10)

2.3.1 Synchronizing Two WTAs. Next, we show that connecting two
WTAs in the manner illustrated in Figure 2C results in synchronization
of the two inhibitory units, which in turn leads to the two WTAs merg-
ing into a single WTA. Note that by synchronization, we mean that the two
variables have the same trajectory, or more generally that their difference is
constant (in contrast to other meanings of synchronization, such as in popu-
lation coding). The approach is to show that adding excitatory connections
β4 of sufficient strength will lead to the activity of the two inhibitory units
x2 and y2 approaching a constant difference.

The Jacobian of the coupled system as shown in Figure 2C is

JC =
[

J1 D2

D1 J2

]
, (2.11)

with J1 = J2 = J (see equation 2.6) and

τD1,2 =

⎡
⎢⎣

0 0 0

0 0 l2,5β4

0 0 0

⎤
⎥⎦ . (2.12)

Following Pham and Slotine (2007) and Rutishauser et al. (2011), synchro-
nization occurs exponentially if the following holds:

VJCVT < 0, (2.13)
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where V defines an invariant subset of the system such that Vx is constant,
with x = (x1, x2, x3, y1, y2, y3). Here we define synchrony as a regime where
the differences between the inhibitory units x2 − y2 and between the in-
terconnect units x3 − y3 are constant (although not necessarily zero). This
results in

V =
[

0 1 0 0 −1 0

0 0 1 0 0 −1

]
, (2.14)

which embeds the two conditions.
Condition 2.13 is satisfied if

1 <α

0 <β4 < β3 + 2, (2.15)

β3 < 2. (2.16)

The conditions on the interconnect-weight β4 guarantee that the dynamics
are stable and that the inhibitory units synchronize. As long as β4 > 0 is
sufficiently small but nonzero, the inhibitory parts of the system will syn-
chronize. Realistically, β4 needs to be sufficiently large to drive the other
inhibitory neuron above threshold and will thus be a function of the thresh-
old T (see Rutishauser et al., 2011, equation 2.51). Here, synchrony is defined
as their difference being constant. This in turn shows that the two WTAs
have merged into a single WTA since the definition of a WTA is that each
excitatory unit receives an equivalent amount of inhibition (during conver-
gence but not necessarily afterward; see the simulations in section 2.6). This
is our second key result.

2.3.2 Stability of Pairwise Combinations of WTAs. The final step of the
stability analysis is a condition for the coupling strength β4 > 0 such that
the coupled system as shown in Figure 2C is contracting. The reasoning
in this section assumes that the individual subsystems are contracting (as
shown above).

The Jacobian of the combined system remains equation 2.11, where J1,2
are the Jacobians of the individual systems and C1,2 are the coupling terms.
Rewriting the Jacobian of the second subsystem J2 by variable permutation
y′

2 = y3 and y′
3 = y2 allows expression of the system in the form of

JC =
[

J1 D2

D1 J2

]
=

[
J1 E

ET J2

]
, (2.17)

where E = D1 (see equation 2.12). This transformation of J2 is functionally
equivalent to the original system (thus, its contraction limits remain), but it
allows expression of the connection between the systems in the symmetric
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form of equation 2.17.1 This functionally equivalent system can now be
analyzed using the approach that follows.

A matrix of the form

[
J1 D

DT J2

]

is negative definite if the individual systems J1,2 are negative definite and if
J2 < DTJ−1

1 D (Horn, 1985). Following Slotine (2003) and Rutishauser et al.
(2011), this implies that a sufficient condition for contraction is σ 2(D) <

λ(J1)λ(J2), where σ (D) is the largest singular value of D and equivalent to
β4 in our case (all other elements of D are zero) and λ is the contraction rate
of the individual subsystems. Since the two subsystems are equivalent, the
contraction rates are also the same: λ1 = λ2 = λ(J1,2). It thus follows that
the coupled systems are stable if β4 < λ1.

The contraction rate (Slotine, 2003; Rutishauser et al., 2011) of an in-
dividual subsystem is the absolute value of the largest eigenvalue of the
Hermitian part of F (also see equation 2.7). It is λ1,2 = |( 1

2 (−2 + α)| for our
system. Thus the condition for the two coupled systems to be contracting
reduces to

β4 < 1 − α

2
. (2.18)

2.3.3 Summary of Boundary Conditions. In summary, the following con-
ditions guarantee the stability of both the single and combined system, as
well as hard competition between the two coupled systems (i.e., only one
of the WTAs can have a winner). These conditions can be relaxed if α < 1,
which will permit a soft WTA:

1 <α < 2
√

β1β2β3,

0 <β1β2β3 < 1,

0 <β4 < 1 − α

2
. (2.19)

The lower bound on β4 is from the synchronization analysis, whereas the
upper bound is from the stability analysis. These results illustrate the critical

1The variable permutation is equivalent to a transformation of J1 by the permutation

matrix �: J2 = �J1�
−1 with � =

⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦.
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trade-off between having enough strength to ensure functionality, while
being weak enough to exclude instability.

2.4 Speed of Winner Selection. How quickly will a system select a
winner? For a single WTA, this question is answered by how quickly a single
system contracts toward a winner and for a coupled system how quickly the
two systems synchronize. One of the key advantages of contraction analysis
is that the rate of contraction, and in this case the rate of synchronization, can
be calculated explicitly. We will express the contraction and synchronization
rate in terms of the time constants τ and its inverse, the decay constant. τ

refers to the mean lifetime of exponential decay x(t) = N0e−t 1
τ = N0e−λt .

λ = 1
τ

is the decay constant. Both the contraction and the synchronization
rate are expressed in the form of a decay constant λ. For example, the
contraction rate of a system of the form Ṅ = −λN is equivalent to λ.

Physiologically, the time constants τ in our system are experimentally
determined membrane time constants that are typically in the range of 10 to
50 ms (Koch, 1998; McCormick, Connors, Lighthall, & Prince, 1985; Koch,
Rapp, & Segev, 1996; Brown, Fricke, & Perkel, 1981). For simplicity, we
assume that all excitatory and inhibitory units have the same, but different,
time constants τE and τI, respectively. While the exact values depend on the
cell type and state of the neurons, it is generally the case that τI < τE due to
the smaller cell bodies of inhibitory neurons (McCormick et al., 1985; Koch,
1998).

The bounds, equation 2.19, were calculated assuming equal time con-
stants for all units. However, the same calculations yield to very similar
bounds when assuming different time constants for inhibitory and exci-
tatory units (Rutishauser et al., 2011). In this case, the ratio of the time
constants

τI
τE

becomes an additional parameter for the parameter bounds.

2.4.1 Speed of Synchronization. The synchronization rate is equivalent
to the contraction rate of the system defined in equation 2.13 (Pham &
Slotine, 2007), which is the absolute value of the maximal eigenvalue of
the Hermitian part of V′(RJC)V′T . Here, the original τ−1 is replaced by the
diagonal matrix R, with the appropriate τE, τI terms on the diagonal.2 The
matrix V′ is an orthonormal version of V as defined in equation 2.14, which
here is simply V′ =

√
2−1V.

The resulting synchronization rate (sync rate) is a function of the weights
β3 (local inhibitory loop) and β4 (remote inhibitory loop). We assume
β4 ≤ β3, which means that remote connectivity is weaker than local con-
nectivity. However, qualitatively similar results can be found using the

2For the example of JC (see equation 2.11), the diagonal terms are τ−1
E , τ−1

E , τ−1
I ,

τ−1
E , τ−1

E , τ−1
I .
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opposite assumption. For τE = τI, the sync rate is

λs = 1
2τ

(2 − β3 + β4). (2.20)

Note the trade-off between local and remote connectivity: stronger remote
connectivity increases and stronger local connectivity decreases the speed
of synchronization (the larger λ, the quicker the system synchronizes). For
approximately equal connectivity strength β3 � β4 or in general for β3, β4 �
1, the sync rate is approximately τ−1.

In general for τE 	= τI, the sync rate is λs = τE+τI−
√

τ 2
E−2τEτI+(1+(β3−β4 )2)τ 2

I
2τEτI

.

For example, for τI = τE
2 , this reduces to λ = 1

2τI
(3 − √

1 + 4(β3 − β4)
2).

Again, for β3 � β4, the sync rate is approximately τ−1
I . In conclusion, the

sync rate is thus approximately equal to the contraction rate of the in-
hibitory units. Thus, synchronization occurs very quickly (20–50 ms for
typical membrane time constants).

2.4.2 Speed of Contraction. The speed of selecting a winner (the contrac-
tion rate) for a single WTA can similarly be calculated based on the absolute
value of the maximal eigenvalue of the Hermitian part of �(RJ)�−1 (see
equation 2.7).

Assuming τ = τE = τI, the contraction rate is

λc = 1
2τ

(2 − α). (2.21)

Note that the larger α, the longer it takes until the system converges. Qual-
itatively similar findings result for other ratios of τE and τI. For a typical
value of α = 1.2 (see simulations below) and τ = 20 ms, the contraction rate
would be 20 s−1. This equals a halfway time (time constant) of λ−1 = 50 ms.
For α = 1.5, this would increase to 80 ms. The time it takes to find a winner
is thus a multiple of the membrane time constant (in this example, 20 ms)
and substantially slower than the time it takes to synchronize the network.
In conclusion, synchronization is achieved first, which is then followed by
winner selection.

2.5 Coupling More Than Two WTAs. So far we have shown how two
different WTAs compete with each other after their inhibitory neurons are
coupled. Similarly, more than two WTAs can compete with each other by
all-to-all coupling of the inhibitory units, that is, every WTA is connected
with two β4 connections from and to every other WTA. Thus, the wiring
complexity of this system scales as O(M2), where M is the number of WTAs
in the system (note that M is not the number of units but the number
of WTAs). Notice also that the all-to-all coupling concerns only the sparse
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long-range excitatory connections, not the internal connectivity of the WTAs
themselves.

The same principle can be used to embed hierarchies or sequences of
competition. Thus, in a network of such WTAs, some WTAs could be in
direct competition with each other, while others are not. Thus, for example,
in a network of three WTAs A, B, and C relationships such as A competes
with B and B competes with C are possible. In this case, A does not directly
compete with C. So if A has a winner, C can also have a winner. If B has a
winner, however, neither B nor C can have a winner (see Figures 4D–4F for
a demonstration).

Regardless of how many WTAs are combined and whether all compete
with all or more selectively, the stability of the aggregated system is guar-
anteed if the individual subsystems are stable and the coupling strengths
β4 observe the derived bounds. While in themselves combinations of sta-
ble modules have no reason to be stable, certain combinations (such as the
one we use) of contracting systems are guaranteed to be stable (Slotine &
Lohmiller, 2001). This is a key benefit of contraction analysis for the analysis
of neural circuits.

2.6 Numerical Simulations. We simulated several cases of the network
to illustrate its qualitative behavior. We used Euler integration with δ =
0.01 s. The analytically derived bounds offer a wide range of parameters
for which stability as well as function is guaranteed. For the simulations,
we chose parameters that verify all bounds discussed.

First, we explored a simple system consisting of two WTAs with two
possible winners each (see Figure 3). Parameters were α = 1.2, β1 = 2, β2 =
3, β3 = β4 = 0.1, and T = 0. We found that any of the four possible winners
can compete with each other regardless of whether they reside on the first
or second WTA (Figures 3B–3D show an example). The inhibitory units
quickly synchronized (see Figure 3C) their activity and reached the same
steady-state amplitude (because β3 = β4).3

Second, we simulated a system with three WTAs using the same param-
eters (see Figure 4). For all-to-all coupling, all three WTAs directly compete
with each other (see Figures 4A and 4B), that is, there can be only one winner
across the entire system. Again, the inhibitory units all synchronize quickly
during and after convergence (see Figure 4C). We also simulated the same
system with more selective connectivity, eliminating competition between
WTAs 1 and 3 (see Figure 4D). This arrangement allows either one winner
if it is on WTA 2, or two winners if they are on WTAs 1 and 3. If the maximal
activity is not on WTA 2, then the network permits two winning states.
Otherwise, if the maximal input is on WTA 2, only one winner is

3If β3 = β4, it can be verified that x3(t) = y4(t) for all t > 0 if the initial values at t = 0
are equal. Thus, the two inhibitory neurons become exactly equivalent in this special case.
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A)

B)

C)

D)

Figure 3: Simulation of merged WTA consisting of two WTAs with two exci-
tatory units each (four possible winners). (A) Illustration of connectivity and
notation (color code). (B) Activity as a function of time, for two excitatory units
on two different WTAs, together with the external input provided to the same
units. Notice how the network selects the winner appropriately. (C) Activity of
the inhibitory units in each WTA. Note that y3 is slightly delayed for plotting
purposes. (D) Activity of the two interconnected units. Notice how the output
of the losing WTA y4 descends to zero after the competition has been resolved
and the network has contracted. Units of time are multiples of the time constant
τ . Notice that the same color indicates the same unit throughout this figure
(notation is shown in A).

permitted (see Figure 4E for an illustration). This configuration allows par-
tial competition.

3 Discussion

Neural circuits commonly depend on negative feedback loops. Such recur-
rent inhibition is a crucial element of microcircuits from a wide range of
species and brain structures (Shepherd & Grillner, 2010) and enables pop-
ulations of neurons to compute nonlinear operations such as competition,
decision making, gain control, filtering, and normalization. However, when
biologically realistic versions of such circuits are considered, additional
factors such as wiring length, specificity, and complexity become pertinent.
Here, we are principally concerned with the superficial layers of neocor-
tex where the average distance of intracortical inhibitory connections is
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A)

B)

C)

D)

E)

F)

Figure 4: Simulation of merged WTA consisting of three WTAs with three possi-
ble winners each. (A–C) Case 1: Pairwise coupling allows all-to-all competition.
(A) Illustration of connectivity. Filled circles are excitatory neurons, and filled
rectangles inhibitory. The activity of units with colored fills is shown as a func-
tion of time. (B) Activity of one excitatory unit for each WTA (bold lines) and the
external input to each (dashed lines). Notice that there can be only one winner
among the three WTAs. (C) Activity of the inhibitory units, shifted in time to
each other slightly for plotting only. (D–F) Case 2: selective coupling, allowing
partial competition only between 1 and 2 and 2 and 3 but not 1 and 3. (E) Ac-
tivity of the excitatory units for different cases. Notice that WTA 1 and 3, but
not 2, can have winners simultaneously. Numbers indicate the WTA that the
winner belongs to. (F) Activity of the inhibitory units, illustrating synchrony in
the presence of different absolute amplitudes. Units of time are multiples of the
time constant τ . Notice that the same color indicates the same unit throughout
this figure (notation is shown in A).

typically much shorter than the excitatory connections (Bock et al., 2011;
Binzegger et al., 2004; Perin, Berger, & Markram, 2011; Katzel et al., 2011;
Adesnik & Scanziani, 2010). In contrast, in invertebrates, an inhibitory neu-
ron has been identified that receives input from and projects back to all
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Kenyon cells (which are excitatory) (Papadopoulou, Cassenaer, Nowotny,
& Laurent, 2011). This neuron has been demonstrated to perform response
normalization, making this system a direct experimental demonstration of
competition through shared inhibition. No such system has yet been iden-
tified in the cortex.

The number of excitatory neurons that can be contacted by an inhibitory
neuron thus poses a limit on how many excitatory neurons can compete
directly with one another (in terms of numbers and distance). Other models,
such as those based on Mexican hat–type inhibitory surrounds (Hertz et al.,
1991; Willshaw & von der Malsburg, 1976; Soltani & Koch, 2010), even
require that inhibitory connectivity be longer range than the excitatory.
These anatomical constraints have been used to argue that models such as
the WTA are biologically unrealistic and therefore of limited use.

We have demonstrated here, by theoretical analysis and simulation, that
it is possible to extend such circuits by merging several independent circuits
functionally through synchronization of their inhibitory interneurons. This
extension allows the construction of large, spatially distributed circuits that
are composed of small pools of excitatory units that share an inhibitory
neuron. We have applied and proved by nonlinear contraction analysis that
systems combined in this manner are inherently stable and that arbitrary
aggregation by inhibitory synchrony of such subsystems results in a sta-
ble system. This composition of subcircuits removes the limits on maximal
circuit size imposed by anatomical wiring constraints on inhibitory connec-
tivity because the synchrony between local inhibitory neurons is achieved
entirely by excitatory connectivity, which can possibly be long range, per-
mitting competition between excitatory units that are separated by long
distances, for example, in different cortical areas. We show that the time
necessary to achieve sychronization is much shorter than the time required
to select a winner. Thus, synchronization is faster than winner selection,
which can thus proceed robustly across long-range connections that enforce
synchronization. Further, selective synchronization among some WTAs but
not others allows partial competition between some but not other WTAs
(see Figure 4). The strength of these long-range connections could be mod-
ulated dynamically to enable or disable various competitions between two
populations conditional on some other brain state. This modulation could
be implemented by a state-dependent routing mechanism (Rutishauser &
Douglas, 2009).

There are several possibilities for mapping the abstract units in our model
to real physiological neurons. Our units are mean-rate approximations of a
small group of neurons. In terms of intracortical inhibition, these would lie
anatomically close to each other within superficial layers of neocortex. Since
such inhibitory connectivity would have only limited reach, each inhibitory
subunit can enforce competition only across a limited number of close-by
excitatory units. Competition between different areas is made possible by
synchronizing remote populations by long-range excitatory mechanisms
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in the way we propose. Direct long-range inhibition, on the other hand, is
unlikely both intracortically and subcortically, since all known connections
from the thalamus and basal ganglia to cortex are excitatory. Networks such
as the LEGION network (Wang & Terman, 1995) assume global inhibitory
input to all excitatory units in the network, which, for the reasons we
discuss, is unlikely in the case of cortex. It would, however, be possible to
implement a feasible version of the global inhibitory input by synchronizing
many local inhibitory neurons using the mechanism we describe, resulting
in an anatomically realistic version of the LEGION network.

Functionally, the model presented here makes several testable predic-
tions. Consider a sensory area with clearly defined features as possible
winners, such as orientations. The model predicts that the inhibitory units
would not be tuned to these features, particularly if the number of pos-
sible winners is large. This is because the connectivity to the inhibitory
units is not feature specific. Experimental studies indicate that this is in-
deed the case: units that functionally represent different tuning project to
the same inhibitory unit, resulting in untuned inhibitory activity (Bock
et al., 2011; Fino & Yuste, 2011; Kerlin, Andermann, Berezovskii, & Reid,
2010; Kuhlman, Tring, & Trachtenberg, 2011; Hofer et al., 2011). Second, this
model predicts that inhibitory activity between two different areas or parts
of the same area can either be highly synchronous or completely decoupled
depending on whether the two are competing or functioning independently.
This thus predicts that synchrony of inhibitory units should be affected by
manipulations that manipulate competition, such as top-down attention.

Our model suggests that synchronized populations of inhibitory neu-
rons are crucial for enforcing competition across several subpopulations
of excitatory neurons. It further suggests that the larger the number and
spatial distribution of such synchronized inhibitory units, the larger the
number of units that compete with each other. Experimentally, synchro-
nized modulation of inhibitory neurons is a common phenomenon that
is believed to generate the prominent gamma rhythm triggered by sen-
sory stimulation in many areas (Fries, Nikoli, & Singer, 2007; Whittington,
Traub, & Jefferys, 1995; Traub, Whittington, Stanford, & Jefferys, 1996). Re-
cent experiments have used stimulation of inhibitory neurons (Cardin et al.,
2009; Sohal, Zhang, Yizhar, & Deisseroth, 2009; Szucs, Huerta, Rabinovich,
& Selverston, 2009) to increase or decrease their synchronization with di-
rect observable effects on nearby excitatory neurons such as, for example,
increased or decreased amplitude and precision of evoked responses rela-
tive to how strongly the inhibitory neurons were synchronizing. Note that
our proposal for this function of inhibitory synchrony is distinct and inde-
pendent from the proposal that gamma-band synchrony serves to increase
readout efficacy by making spikes arrive coincidentally from a large num-
ber of distributed sources (Tiesinga, Fellous, & Sejnowski, 2008; Singer &
Gray, 1995). Here, we propose that an additional function of such synchrony
is to allow select populations of excitatory neurons to compete with each
other because each receives inhibition at the same time.
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Appendix: Contraction Analysis

This appendix provides a short summary of contraction analysis. We have
previously published the detailed methods of applying contraction theory
to WTA circuits (Rutishauser et al., 2011). Essentially, a nonlinear time-
varying dynamic system will be called contracting if arbitrary initial con-
ditions or temporary disturbances are forgotten exponentially fast, that is,
if trajectories of the perturbed system return to their unperturbed behavior
with an exponential convergence rate. A relatively simple algebraic con-
dition can be given for this stability-like property to be verified, and this
property is preserved through basic system combinations and aggregations.

A nonlinear contracting system has the following properties (Lohmiller
& Slotine, 1998, 2000; Slotine, 2003; Wang & Slotine, 2005):

� Global exponential convergence and stability are guaranteed.
� Convergence rates can be explicitly computed as eigenvalues of

well-defined Hermitian matrices.
� Combinations and aggregations of contracting systems are also

contracting.
� Robustness to variations in dynamics can be easily quantified.

Before stating the main contraction theorem, recall first the following
properties: The symmetric part of a matrix A is AH = 1

2 (A + A∗T ). A com-
plex square matrix A is Hermitian if AT = A∗, where T denotes matrix
transposition and ∗ complex conjugation. The Hermitian part AH of any
complex square matrix A is the Hermitian matrix 1

2 (A + A∗T ) . All eigen-
values of a Hermitian matrix are real numbers. A Hermitian matrix A is
said to be positive definite if all its eigenvalues are strictly positive. This
condition implies in turn that for any nonzero real or complex vector, x,
x∗TAx > 0. A Hermitian matrix A is called negative definite if −A is positive
definite.

A Hermitian matrix A(x, t) dependent on state or time will be called
uniformly positive definite if there exists a strictly positive constant such
that for all states x and all t ≥ 0, the eigenvalues of A(x, t) remain
larger than that constant. A similar definition holds for uniform negative
definiteness.

Consider now a general dynamical system in R
n,

ẋ = f(x, t), (A.1)

with f a smooth nonlinear function. The central result of contraction analy-
sis, derived in Lohmiller and Slotine (1998) in both real and complex forms,
can be stated as a theorem.

Theorem. Denote by ∂ f
∂x the Jacobian matrix of f with respect to x. Assume

that there exists a complex square matrix Θ(x, t) such that the Hermitian matrix
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Θ(x, t)∗TΘ(x, t) is uniformly positive definite, and the Hermitian part F H of the
matrix,

F =
(

Θ
.

+ Θ
∂ f
∂x

)
Θ−1,

is uniformly negative definite. Then all system trajectories converge exponentially
to a single trajectory, with convergence rate |supx,tλmax(FH)| > 0. The system is
said to be contracting, F is called its generalized Jacobian, and Θ(x, t)∗TΘ(x, t)
its contraction metric. The contraction rate is the absolute value of the largest
eigenvalue (closest to zero, although still negative) λ = |λmaxFH |.

In the linear time-invariant case, a system is globally contracting if and
only if it is strictly stable, and F can be chosen as a normal Jordan form
of the system, with � a real matrix defining the coordinate transformation
to that form (Lohmiller & Slotine, 1998). Alternatively, if the system is
diagonalizable, F can be chosen as the diagonal form of the system, with �

a complex matrix diagonalizing the system. In that case, FH is a diagonal
matrix composed of the real parts of the eigenvalues of the original system
matrix.
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