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Lower Bounds on the Performance of Analog to Digital

Converters

Mitra Osqui† Alexandre Megretski‡ Mardavij Roozbehani]

Abstract

This paper deals with the task of finding certified lower bounds for the performance of Analog to Digital

Converters (ADCs). A general ADC is modeled as a causal, discrete-time dynamical system with outputs taking

values in a finite set. We define the performance of an ADC as the worst-case average intensity of the filtered

input matching error, defined as the difference between the input and output of the ADC. The passband of the

shaping filter used to filter the error signal determines the frequency region of interest for minimizing the error.

The problem of finding a lower bound for the performance of an ADC is formulated as a dynamic game problem

in which the input signal to the ADC plays against the output of the ADC. Furthermore, the performance measure

must be optimized in the presence of quantized disturbances (output of the ADC) that can exceed the control

variable (input of the ADC) in magnitude. We characterize the optimal solution in terms of a Bellman-type

inequality. A numerical approach is presented to compute the value function in parallel with the feedback law

for generating the worst case input signal. The specific structure of the problem is used to prove certain properties

of the value function that simplifies the iterative computation of a certified solution to the Bellman inequality.

The solution provides a certified lower bound on the performance of any ADC with respect to the selected

performance criteria.

I. INTRODUCTION AND MOTIVATION

Analog to Digital Converters (ADCs) act as the interface between the analog world and digital

processors. They are present in almost all digital control and communication systems and modern high-

speed data conversion and storage systems. Naturally, the design and analysis of ADCs have, for many

years, attracted the attention and interest of researchers from various disciplines across academia and
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industry. Despite the progress that has been made in this field, the design of optimal ADCs remains an

open challenging problem, and the fundamental limitations of their performance are not well understood.

This paper is concerned with the latter problem.

A particular class of ADCs primarily used in high resolution applications is the Delta-Sigma Modu-

lator (DSM). Fig. 1, illustrates the classical first-order DSM [1], where Q is a quantizer with uniform

step size.
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Fig. 1: Classical First-Order Sigma-Delta Modulator

An extensive body of research on DSMs has appeared in the signal processing literature. One well

known approach is based on linearized additive noise models and filter design for noise shaping [1]-

[5]. The underlying assumption for validity of the linearized additive noise model is availability of a

relatively high number of bits. Alternative approaches based on a formalism of the signal transformation

performed by the quantizer have been exploited for deterministic analysis in [6]-[8]. Some other works

that do not use linearized additive noise models are reported in [9]-[11].

In the control field, [12]-[14] find performance bounds and suboptimal policies for linear stochastic

control problems using Bellman inequalities with quadratic value functions. The problem is relaxed

and solved using linear matrix inequalities and semidefinite programming. For references on quantized

control, please see [15]-[17].

In [18] we provided a characterization of the solution to the optimal ADC design problem and

presented a generic methodology for numerical computation of sub-optimal solutions along with com-

putation of a certified upper bound on the performance. The performance of an ADC is evaluated with

respect to a cost function which is a measure of the intensity of the error signal (the difference between

the input signal and its quantized version) for the worst case input. The error signal is passed through a

shaping filter which dictates the frequency region in which the error is to be minimized. Furthermore,

we showed that the dynamical system within the optimal ADC is a copy of the shaping filter used to

define the performance criteria. In [18] we also presented an exact analytical solution to the optimal

ADC for first-order shaping filters, and showed that the classical first-order DSM (Figure 1) is identical

to our optimal ADC. This result proved the optimality of the classical first-order DSM with respect to



the adopted performance measure, and was a step towards understanding the limitations of performance.

In this paper, we present a framework for finding certified lower bounds for the performance of ADCs

with shaping filters of arbitrary order. We use the same ADC model and performance measure adopted

in [18]. The objective is to find a lower bound on the infimum of the cost function. The approach

is to find a feedback law for generating the input of the ADC such that regardless of its output, the

performance is bounded from below by a certain value. Thus, the input of the ADC is viewed as the

control, and the problem is posed within a non-linear optimal feedback control/game framework. We

show that the optimal control law can be characterized in terms of a value function satisfying an analog

of the Bellman inequality. The value function in the Bellman inequality and the corresponding control

law can be jointly computed via value iteration.

Since searching for the value function involves solving a sequence of infinite dimensional optimization

problems, some approximations are needed for numerical computation. First, a finite-dimensional param-

eterization of the value function is selected. Second, the state space and the input space are discretized.

Third, the computations are restricted to a finite subset of the space. The latter step deserves further

elaboration. If the dynamical system inside the ADC is strictly stable, then a bounded control invariant

set exists, thus it is possible to do the computations over a bounded region. The challenge arises when

the filter has poles on the unit circle. In this case, there does not exist a bounded control invariant set,

since the disturbances can exceed the control variable in magnitude. Under the condition that there is

at most one pole on the unit circle, we present a theorem that states that the value function is zero

outside a certain bounded space. Thus, we have an a priori knowledge of an analytic expression for

the value function beyond a bounded region. As a result, the computations need to be carried out only

over this bounded region. This is in dramatic contrast with the case of upper bound computations [18],

something to be discussed in section III.

The organization is as follows. Section II provides a rigorous problem formulation. The main contri-

butions are presented in Section III and IV. Section III describes our methodology for finding certified

lower bounds for ADCs. Section IV provides our theoretical results. We provide an example in section

V, and section VI concludes the paper.

Notation and Terminology:

• Function f : Rm 7→ R is called BIBO, if the image of every bounded subset Ω ⊂ Rm under f ,

f(Ω), is bounded.



• Given a set P , `+(P ) is the set of all one-sided sequences x with values in P , i.e. functions

x : Z+ 7→ P .

• The ∞−norm is defined as:

‖v‖∞ = max |vi|, for v =


v1

...

vm

 ∈ Rm

and

‖M‖∞
def
= sup

v 6=0

‖Mv‖∞
‖v‖∞

= max
i∈{1,··· ,l}

m∑
j=1

|Mij|

for a matrix M = (Mij) ∈ Rl×m.

• Let X be a set and f : X 7→ R be a function. For every ε > 0,

argε sup
x∈X

f(x)
def
=

{
x ∈ X : f(x) > −ε+ sup

x∈X
f(x)

}
. (1)

II. PROBLEM FORMULATION

The problem setup in this section is taken from [18].

A. Analog to Digital Converters

In this paper, a general ADC is viewed as a causal, discrete-time, non-linear system Ψ, accepting

arbitrary inputs in the [−1, 1] range, and producing outputs in a fixed finite subset U ⊂ R, as shown

in Fig. 2. We assume that the smallest element in the set U is less than −1 and the largest element is

greater than 1.

- -Ψ
r[n] ∈ [−1, 1]

n ∈ Z+

u[n] ∈ U

n ∈ Z+

Fig. 2: Analog to Digital Converter as a Dynamical System

Equivalently, an ADC is defined by a sequence of functions Υn : [−1, 1]n+1 7→ U according to

Ψ : u[n] = Υn (r[n], r[n− 1], · · · , r[0]) , n ∈ Z+. (2)

The class of ADCs defined above is denoted by YU .



B. Asymptotic Weighted Average Intensity (AWAI) of a Signal

The Asymptotic Weighted Average Intensity ηG,φ (w) of a signal w with respect to the transfer function

G (z) of a strictly causal LTI dynamical system LG and a non-negative function φ : R 7→ R+ is given

by:

ηG,φ (w) = lim sup
N 7→∞

1

N + 1

N∑
n=0

φ (q[n]) , (3)

where the sequence q is the response to input w of the dynamical system:

LG :
x[n+ 1] = Ax[n] +Bw[n], x[0] = 0,

q[n] = Cx[n]
(4)

and A, B, C are given matrices of appropriate dimensions. Examples of functions φ to consider are:

φ(q) = |q| and φ(q) = |q|2.

C. ADC Performance Measure

The setup that we use to measure the performance of an ADC is illustrated in Fig. 3. The performance

measure of Ψ ∈ YU , denoted by JG,φ (Ψ) , is the worst-case AWAI of the error signal for all input

sequences r ∈ `+([−1, 1]), that is:

JG,φ (Ψ) = sup
r∈`+([−1,1])

ηG,φ (r −Ψ (r)) . (5)
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Fig. 3: Setup Used for Measuring the Performance of the ADC

D. ADC Optimization

Given LG and φ, we consider Ψo ∈ YU an optimal ADC if JG,φ (Ψo) ≤ JG,φ (Ψ) for all Ψ ∈ YU .

The corresponding optimal performance measure γG,φ (U) is defined as

γG,φ (U) = inf
Ψ∈YU

JG,φ (Ψ) . (6)

The objective is to find certified lower bounds for (6).



III. OUR APPROACH

We find the lower bound on the performance of any given ADC belonging to the class YU by

associating the problem with a full-information feedback control problem. The objective is to find a

feedback law for generating the input of the ADC, r, such that regardless of the output u, the performance

is bounded from below by a certain value. Thus, in this setup, r is viewed as the control and u is viewed

as the input of a strictly causal system with output r. The setup is depicted in Fig. 4, where the function

Kr : Rm 7→ [−1, 1] is said to be an admissible controller if there exists γ ∈ [0,∞) such that every

triplet of sequences (x, u, r) satisfying

x[n+ 1] = Ax[n] +Br[n]−Bu[n], x[0] = 0, (7)

r[n] = Kr (x[n]) , (8)

q[n] = Cx[n], (9)

also satisfies the dissipation inequality

inf
N

N∑
n=0

(φ (q[n])− γ) > −∞. (10)

Note that if (10) holds subject to (7)-(9), then γG,φ (U) ≥ γ. Let γo be the minimal upper bound

of γ, for which an admissible controller exists. Then Kr is said to be an optimal controller if (10) is

satisfied with γ = γo.

?
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LG
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Fig. 4: Full State-Feedback Control Setup

A. The Bellman Inequality

The solution to a well-posed state-feedback optimal control problem can be characterized as the

solution to the associated Bellman equation [19]-[22]. Herein, standard techniques are used to show



that a controller Kr satisfying (10) exists if and only if a solution to an analog of the Bellman equation

exists. The formulation will be made more precise as follows. Define function σγ : Rm 7→ R by

σγ (x) = γ − φ (Cx) . (11)

It can be shown that a controller Kr in (8) guaranteeing (10) exists if and only if there exists a

function V : Rm 7→ R+, such that inequality

V (x) ≥ σγ (x) + inf
r∈[−1,1]

max
u∈U

V (Ax+Br −Bu) (12)

holds for all x ∈ Rm (see Theorem 1). We refer to inequality (12) as the Bellman inequality, and to a

function V satisfying (12) as the value function.

B. Numerical Solutions to the Bellman Inequality

In this section, we outline our approach for numerical computation of the value function V and the

control function Kr. We can simplify the problem of searching for a solution to inequality (12) by

instead finding a solution V ≥ 0 to the inequality

V (x) ≥ σγ (x) + min
r∈Γr

max
u∈U

V (Ax+Br −Bu) , ∀x ∈ Rm (13)

where Γr is a finite subset of [−1, 1]. Since for every function g : [−1, 1] 7→ R, we have

inf
r∈[−1,1]

g (r) ≤ min
r∈Γr

g (r) , (14)

a solution V of (13) is also a solution of (12). In the remainder of this section we focus on finding a

solution to (13).

A control invariant set of system (7), with respect to Γr, is formally defined as a subset I ⊂ Rm

such that:

∀x ∈ I, ∃r ∈ Γr : Ax+Br −Bu ∈ I, ∀u ∈ U. (15)

Furthermore, a strong invariant set of system (7), with respect to Γr, is defined as a subset I ⊂ Rm

such that:

Ax+Br −Bu ∈ I, ∀x ∈ I, r ∈ Γr, u ∈ U. (16)

Ideally we would like to have a bounded invariant set, so that the search for V satisfying the Bellman

inequality is restricted to a bounded region of the state space. If max | eig(A)| < 1, then a bounded

set I satisfying (16) is guaranteed to exist. However, if max | eig(A)| = 1, then there is no bounded

set I satisfying (15), due to the assumption that the smallest element in the set U is less than −1 and



the largest element is greater than 1. Hence, the case when max | eig(A)| = 1 presents the challenge of

searching for a numerical solution to (13) over an unbounded state space. However, for the case that

there is only one pole on the unit circle, we will establish in Theorem 2 that the value function is zero

for all x outside a certain bounded region. Hence, the numerical search for V satisfying (13) needs to

be carried out only over a bounded subset of the state space. Next, uniform grids are created for the

state space. In this paper, these are uniformly-spaced, discrete subsets of the Euclidean space, and are

defined as follows. The set

G = {i∆ | i ∈ Z}

is a grid on R, where D = 1/∆ is a positive integer. The corresponding grid on I is

Γ = Gm ∩ I.

Furthermore, we define Γr = {r1, r2, · · · , rL} as

Γr = G ∩ [−1, 1] .

The next step is to create a finite-dimensional parameterization of V. In this paper, the search is

performed over the class of piecewise constant (PWC) functions assuming a constant value over a tile.

A tile in Gn, n ∈ N is defined as the smallest hypercube formed by 2n points on the grid, and thus, has

2n faces (the faces are hypercubes of dimension n−1). By convention, we assume that the n faces that

contain the lexicographically smallest vertex are closed, and the rest are open. The union of all such

tiles covers Rn and their intersection is empty. Let Ti denote the ith tile over the grid Gm, and T the

set of all tiles that lie within I, and NT the number of all such tiles:

T = {Ti | i ∈ {1, 2, · · · , NT}} .

The PWC parameterization of V is as follows

V (x) = Vi, ∀x ∈ Ti, i ∈ {1, 2, · · · , NT} (17)

where Vi ∈ R+. We then search for a solution V : I 7→ R+ of (13) for all x ∈ I within the class of

PWC functions defined in (17). The corresponding PWC control function Kr : I 7→ Γr is given by

Kr (x) = arg min
r∈Γr

max
u∈U,x̄∈T (x)

V (Ax̄+Br −Bu) , ∀x ∈ I. (18)

where T (x) = Ti for x ∈ Ti. In the next subsection we show how to search and certify functions V

and Kr satisfying (13) and (18).



C. Searching for Numerical Solutions

The Bellman inequality (13) is solved via value iteration. The algorithm is initialized at Λ0 (x) = 0,

for all x ∈ T , and at stage k + 1 it computes a PWC function Λk+1 : T 7→ R+ satisfying

Λk+1 (x) = max

{
0, σγ (x) + min

r∈Γr
max

u∈U,x̄∈T (x)
Λk (Ax̄+Br −Bu)

}
. (19)

At each stage of the iteration, Λk+1 is computed and certified to satisfy (19) for all x ∈ T as follows:

1) For every i ∈ {1, 2, · · · , NT} and j ∈ {1, 2, · · · , L}, define

σi = sup
x∈Ti

σγ (x) ,

Yij = {Ax+Brj −Bu | x ∈ Ti, rj ∈ Γr, u ∈ U} ,

and find all the tiles that intersect with Yij

Θij = {p | Tp ∩ Yij 6= {∅} , p ∈ {1, 2, · · · , NT}} .

2) Let

vs = Λk (x) , x ∈ Ts, s ∈ {1, 2, · · · , NT} .

Compute

vij = max
s∈Θij

vs.

3) For every tile x ∈ Ti compute PWC functions:

Λk+1 (x) = max

{
0, σi + min

j
vij

}
.

When the iteration converges, it converges pointwise to a limit Λ : T 7→ R+, where the limit satisfies,

for all x ∈ T , the equality

Λ (x) = max

{
0, σγ (x) + min

r∈Γr
max

u∈U,x̄∈T (x)
Λ (Ax̄+Br −Bu)

}
. (20)

The largest γ for which (19) converges is found through line search. We take V (x) = Λ (x) , for all

x ∈ T . The associated suboptimal control law is a PWC function defined over all tiles Ti in the control

invariant set I that satisfies (18).



IV. THEORETICAL STATEMENTS

In this section, we show that under some technical assumptions, the value function in (12) is zero

beyond a bounded region. However, we first present a theorem that establishes the link between the full

information feedback control problem and the Bellman inequality (12). Note that in this section we use

subscript notation for values of sequences at specific time instances instead of the bracket notion used

elsewhere in the paper, that is xn is used in place of x[n].

Theorem 1: Let X be a metric space, Ω ⊂ R be a compact metric space, U ⊂ R be a finite set,

and f : X × Ω× U 7→ X and σ : X 7→ R be continuous functions. Then the following statements are

equivalent:

(i)

V∞(x̄)
def
= sup

τ∈Z+

Vτ (x̄) <∞, ∀x̄ ∈ X, (21)

where Vτ : X 7→ R+ is defined by

Vτ (x̄) = max
θ0

min
r0

max
u0,θ1
· · ·min

rτ−2

max
uτ−2,θτ−1

τ−1∑
n=0

hn+1σ(xn), (22)

with rn, un, θn restricted by rn ∈ Ω, un ∈ U, θn ∈ {0, 1} and xn, hn defined by

xn+1 = f(xn, rn, un), x0 = x̄, ∀n ∈ Z+ (23)

hn+1 = θnhn, h0 = 1, ∀n ∈ Z+. (24)

(ii) The sequence of functions Λk : X 7→ R+ defined by

Λ0 (x) ≡ 0

Λk+1 (x) = max

{
0, σ (x) + min

r∈Ω
max
u∈U

Λk (f(x, r, u))

}
(25)

converges pointwise to a limit Λ∞ : X 7→ R+.

(iii) There exists a function V : X 7→ R+ such that

V (x) = max

{
0, σ(x) + min

r∈Ω
max
u∈U

V (f(x, r, u))

}
(26)

for every x ∈ X .

(iv) There exists a function V : X 7→ R+ such that

V (x) ≥ σ(x) + min
r∈Ω

max
u∈U

V (f(x, r, u)), ∀x ∈ X. (27)



Moreover, if conditions (i)−(iv) hold, then V∞ is a solution of (26) and

V∞ = Λ∞ ≥ Vk = Λk, ∀k ∈ Z+ (28)

V ≥ V∞. (29)

for V satisfying (iii). Furthermore, for every xn satisfying (23),

sup
τ

τ−1∑
n=0

σ(xn) <∞. (30)

Proof: Please see the Appendix.

Definition 1: For v ∈ Rm\{0}, a cylinder with axis v is a set of the form:

CQ,β(v) =

{
p ∈ Rm : inf

t∈R
(p− tv)TQ(p− tv) ≤ β

}
(31)

where Q ∈ Rm×m, Q = Q′ > 0, and β > 0.

Remark 1: A cylinder that is an invariant set for system (7) is called an invariant cylinder.

The following theorem establishes that the value function is zero for all x outside a certain bounded

region.

Theorem 2: Let U ⊂ R be a fixed finite set. Consider the system defined by equation (7), where

x ∈ `+(Rm), r ∈ `+([−1, 1]), u ∈ `+(U), and the pair (A,B) is controllable. Suppose that A has

exactly one eigenvalue on the unit circle. Let e1 denote the eigenvector corresponding to the eigenvalue

of A that is on the unit circle. Let β > 0 and Q ∈ Rm×m, Q = Q′ > 0 be such that CQ,β(e1) is an

invariant cylinder for system (7). Let V be defined by (21) and σ be BIBO. If the set

S0 = {x ∈ CQ,β(e1) : σ(x) > −ε0} (32)

is bounded for some ε0 > 0, then the set

M = {x ∈ CQ,β(e1) : V (x) 6= 0} (33)

is also bounded.

Proof: Please see the Appendix.



V. NUMERICAL EXAMPLE

Consider the example in [18], were the dynamical system LG (4) has transfer function

H(z) =
z + 1

z(z − 1)
.

Let U = {−1.5, 0, 1.5}, φ(x) = |Cx|, and x =
[
x1 x2

]T
. From [18], the strong invariant set I is

given by
I = {x ∈ R2 : |x1 − x2| ≤ 2.5}. (34)

Due to the pole at z = 1, the strong invariant set I given by (34) is unbounded and defines an infinite

strip in R2. However, according to Theorem 2 we need to search for V (x) only inside a bounded region

within this infinite strip, since V (x) = 0 for all x outside a certain bounded region. The bounded region

is found via trial and error. We select a grid spacing of ∆ = 1/64. Following the procedures outlined

in subsections III-B and III-C, the largest γ for which the iteration in (19) converges to the limit Λ in

(20), is γ = 0.925, which is a certified lower bound on the performance of any arbitrary ADC with

respect to the specific performance measure selected. Figures 5, 6a, and 6b show the value function V ,

the cross section of V , and the zero level set of V , respectively. Figures 7a and 7b show the control

function and its cross section, respectively. The certified upper bound for the performance of the ADC

designed in [18] with respect to the same performance criteria is 1.1875.
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VI. CONCLUSION

In this paper, we studied performance limitations of Analog to Digital Converters (ADCs). The

performance of an ADC was defined in terms of a measure that represents the worst case average

intensity of the filtered input matching error. The passband of the shaping filter defines the frequency

region in which the error is to be minimized. The problem of finding a lower bound for the performance

of an ADC was associated with a full information feedback optimal control problem and formulated

as a dynamic game in which the input of the ADC (control variable) played against the output of the

ADC (quantized disturbance). Since the disturbances can exceed the control variable in magnitude, if



the shaping filter has a pole on the unit circle, then there does not exist a bounded control invariant

set, which presents a challenge for numerical computations. This challenge is overcome with theoretical

results that show that the value function is zero beyond a bounded region, thus computations need to

be done only over this bounded region. A numerical algorithm was presented that provided certified

solutions to the underlying Bellman inequality in parallel with the control law; hence, certified lower

bounds on the performance of arbitrary ADCs with respect to the adopted performance criteria.

VII. APPENDIX

Observation 1: The sequence of functions Λk : X 7→ R+ defined by (25) is monotonically increasing.

Proof: The proof is done by induction. Since Λ0(x) = 0 for all x ∈ X , it follows that

Λ1(x) = max {0, σ(x)} ≥ Λ0(x), ∀x ∈ X. (35)

Assume, Λk(x) ≥ Λk−1(x) for all x ∈ X . This assumption in conjunction with equation (25), results in

the following inequality

Λk+1 (x) ≥ max

{
0, σ (x) + min

r∈Ω
max
u∈U

Λk−1 (f(x, r, u))

}
= Λk(x).

Therefore,

Λ0(x) ≤ Λ1(x) ≤ · · · ≤ Λk(x), ∀x ∈ X, k ∈ Z+

Proof of Theorem 1: (i) =⇒ (ii) For τ = 0, equation (22) simplifies to:

V0(x0) = 0, ∀x0 ∈ X. (36)

For τ = 1, we have:

V1(x0) = max{0, σ(x0)}.

The rest of the proof is done by induction over τ . For τ = 2, we have:

V2(x0) = max{0, σ(x0) + min
r0

max
u0,θ1

θ1σ(x1)}

= max{0, σ(x0) + min
r0

max
u0

V1(f(x0, r0, u0))}.

Assume that,

Vk(x0) = max{0, σ(x0) + min
r0

max
u0

Vk−1(f(x0, r0, u0))}.



Define h̃n+1 = θnh̃n, h̃1 = 1, for n = 1, 2, 3 · · · . Equation (22) can be equivalently written for

τ = k + 1 as follows:

Vk+1(x0) = max
θ0

[
θ0

(
σ(x0) + min

r0
max
u0

max
θ1
· · ·min

rk−1

max
uk−1,θk

k∑
n=1

h̃n+1σ(xn)︸ ︷︷ ︸
Vk(x1)

)]
.

Therefore,

Vk+1(x0) = max{0, σ(x0) + min
r0

max
u0

Vk(f(x0, r0, u0))}. (37)

From Observation 1, we know that the sequence of functions Vk is monotonically increasing. Since

a monotonic sequence of functions converge if and only if it is bounded, we have convergence of the

sequence.

(ii) =⇒ (i) Again from Observation 1, the sequence of functions Vk is monotonically increasing; thus,

in conjunction with convergence of the sequence, we have Λ∞ <∞. Furthermore, since Λk(x) ≥ 0 for

all k ∈ Z+, we also have Λ∞(x) ≥ 0. It only remains to show that equation (25) is equivalent to (22).

Equation (25) for k = 1 is trivially equivalent to:

Λ1(x0) = max
θ0∈{0,1}

θ0σ(x0), ∀x0 ∈ X

For k = 2, equation (25) is equivalent to:

Λ2(x0) = max

{
0, σ0(x0) + min

r0
max
u0

Λ1(x1)

}
= max

θ0

[
θ0

(
σ0(x0) + min

r0
max
u0,θ1
{θ1σ(x1)}

)]
= max

θ0
min
r0

max
u0,θ1

1∑
n=0

hn+1σ(xn).

Assume,

Λk(x0) = max
θ0

min
r0

max
u0,θ1
· · ·min

rk−2

max
uk−2,θk−1

k−1∑
n=0

hn+1σ(xn).

Substituting the above equation into (25) we have:

Λk+1(x0) = max
θ0

[
θ0

(
σ(x0) + min

r0
max
u0

max
θ1
· · ·min

rk−1

max
uk−1,θk

k∑
n=1

h̃n+1σ(xn)︸ ︷︷ ︸
Λk(x1)

)]
,

which is equivalent to (22). Finally, since the sequence of functions Λk is monotonically increasing, the

limit as k →∞ of Λk is equivalent to its supremum over k.



(i) =⇒ (iii) Substituting (37) into (21) and interchanging the order of the supremum over τ with the

maximum, we get

V∞(x̄) = max{0, σ(x0) + sup
τ∈Z+

min
r0

max
u0

Vτ−1(f(x0, r0, u0))}.

As discussed in the proof of (ii) =⇒ (i), the supremum over τ , in the expression above, is equal to

the limit as τ →∞. Moreover, a well-known theorem from Analysis states that: given a metric space

X , a compact metric space Ω, and a continuous function g : X × Ω 7→ R, the function ĝ : X 7→ R

defined by

ĝ(x) = max
r∈Ω

g(x, r), or ĝ(x) = min
r∈Ω

g(x, r)

is continuous. Furthermore, given a compact metric space Ω, and a monotonically increasing sequence

of continuous functions gk : Ω 7→ R such that limk→∞ gk(r) is finite for every r ∈ Ω, the following

equality holds:

lim
k→∞

min
r∈Ω

gk(r) = min
r∈Ω

lim
k→∞

gk(r)

Therefore, we have (26).

(iii) =⇒ (iv) Trivially true.

(iv) =⇒ (i) Since V (x) ≥ 0 for all x, we can rewrite (27) as

V (x) ≥ max
{

0, σ(x) + min
r

max
u

V (f(x, r, u))
}
. (38)

Inequality (38) holds for all x ∈ X , thus it holds for the sequence {x0, x1, · · · , xk−1}, where xk−1

satisfies (23). Now take inequality (38) with x replaced by x0 and substitute for V (f(x0, r0, u0)) the

corresponding inequality for V (x1):

V (x0) ≥ max

{
0, σ(x0) + min

r0
max
u0

max

[
0, σ(x1) + min

r1
max
u1

V (f(x1, r1, u1))

]}
.

Equivalently,

V (x0) ≥ max
θ0

θ0

(
σ(x0) + min

r0
max
u0,θ1

θ1

[
σ(x1) + min

r1
max
u1

V (f(x1, r1, u1))

])
.

Repeating this process, we have:

V (x0) ≥

S(x0)︷ ︸︸ ︷
max
θ0

min
r0

max
u0,θ1
· · ·min

rk−2

max
uk−2,θk−1

[
k−1∑
n=0

hn+1σ(xn) + min
rk−1

max
uk−1

hnV (f(xk−1, rk−1, uk−1))

]
.

After rearranging terms we have:

S(x0) ≤ V (x0)−max
θ0

min
r0

max
u0,θ1
· · ·min

rk−1

max
uk−1

hnV (xk).



Non-negativity and existence of V guarantees:

S(x0) ≤ V (x0) <∞. (39)

Since (39) holds for all k, we have (21).

The proof for (28)-(30) is as follows: Substituting (21) into the right hand side of (26) and using the

reasoning in (i) =⇒ (iii) it is easy to see that (21) is a solution of (26). Furthermore, (28) was proved

within the proof of (i) =⇒ (ii). Inequality (29) states that (21) is the minimal solution of (26), this is

proven by induction. Let F be a function that maps function V on X into function FV on X , defined

according to:

(FV )(x) = max

{
0, σ(x) + min

r∈Ω
max
u∈U

V (f(x, r, u))

}
,

then V = FV . Since V ≥ 0, we have V ≥ V0. Assume V ≥ Vk, and apply mapping F to both sides

to get

FV ≥ FVk = Vk+1.

Therefore, V ≥ Vk for all k, and thus (21) is the minimal solution of (26). Finally, (30) is obtained

by substituting into (21) the argument of minimums and maximums for the sequences r, u, and θ

respectively.

�

The proof of Theorem 2 relies on Lemmas 1 and 2 below.

Lemma 1: Let (A,B) be a controllable pair. Then, for every bounded set Ξ ⊂ Rm, there exists a

finite set X̃ ⊂ Rm and a function ρ : Ξ 7→ [−1, 1]m, such that xm ∈ X̃ whenever x0 ∈ Ξ for every

solution (x, r) of

xn+1 = Axn +Brn −Bun, n ≤ m (40)

rn = ρ(x0)n, n ≤ m (41)

for every u ∈ `+(U), where ρ(x0)n denotes the n-th element of ρ(x0).

Proof: The solution to (40) is given by

xm = Amx0 +
m−1∑
i=0

AiBrm−i−1 −
m−1∑
i=0

AiBum−i−1. (42)



Since Ξ is bounded, AmΞ is also bounded, thus the first term on the right hand side of (42) is

bounded. Let Lc denote the controllability matrix:

Lc = [Am−1B · · ·AB B].

Construct a finite set Ξ̃F ⊂ Ξ̃ as follows: let Ξ̃F be the intersection of Ξ̃ and the set consisting of

uniformly spaced Cartesian grid points with spacing ∆, where

∆ ≤ 2/||L−1
c ||∞.

Then for every y0 ∈ Ξ̃, there exists ξ̃ ∈ Ξ̃F such that:

||y0 − ξ̃||∞ ≤ ∆/2

Thus,

||L−1
c (y0 − ξ̃)||∞ ≤ 1,

which implies

L−1
c (Amx0 − ξ̃) ∈ [−1, 1]m, ∀x0 ∈ Ξ (43)

Then for

ρ(x0) = −L−1
c (Amx0 − ξ̃), (44)

we have

xm = ξ̃ −
m−1∑
i=0

AiBum−i−1.

Since Ξ̃F and U are finite sets, xm takes only a finite number of values.

Lemma 2: Assume (A,B) is controllable and the function σ : Rm 7→ R is BIBO. If V∞ in (21)-(22)

satisfies

V∞(x) <∞, ∀x ∈ Rm (45)

then V∞ is BIBO.

Proof: Let α : Rm × `+([−1, 1]) × `+(U) × Z+ 7→ Rm be a function that maps the initial state

x0 and sequences r and u to the state x at time k, where the evolution of the state is given by

x[n+ 1] = Ax[n] +Br[n]−Bu[n]:

α(x0, r, u, k) = xk. (46)

Equation (22) can be equivalently written as:



Vτ (x0) = max
θ0

min
r0

max
u0,θ1
· · ·min

rm−1

max
um−1

{
m−1∑
n=0

hn+1σ(xn) + max
θm

min
rm

max
um,θm+1

· · ·min
rτ−2

max
uτ−2,θτ−1

τ−1∑
n=m

hn+1σ(xn)

}
(47)

Denote,

r̂ = {ri}m−1
i=0 , û = {ui}m−1

i=0 , θ̂ = {θi}m−1
i=0 .

We can rewrite (47) as:

Vτ (x0) = max
θ0

min
r0

max
u0,θ1
· · ·min

rm−1

max
um−1

{
m−1∑
n=0

hn+1σ(xn) + Vτ (α(x0, r̂, û,m))

}
(48)

Let Ξ be a bounded subset of Rm and x0 ∈ Ξ. Furthermore, let ρ : Ξ 7→ [−1, 1]m be the function

defined in (44) and X̃ ⊂ Rm denote the set of all states that can be reached in exactly m steps for some

input sequence u ∈ `+(U). According to Lemma 1, the set X̃ is finite. Let r̂ = ρ(x0), consequently

α(x0, ρ(x0), û,m) = xm ∈ X̃ for every sequence û. Denote r̄ = {ri}m−2
i=0 , ū = {ui}m−2

i=0 , and

ν̄
(
x0, r̄, ū, θ̂

)
def
=

m−1∑
n=0

hn+1σ(xn).

Let r̄ = {ρ(x0)i}m−2
i=0 and denote,

ν
(
x0, ū, θ̂

)
def
= ν̄

(
x0, r̄, ū, θ̂

) ∣∣∣∣
r̄={ρ(x0)i}m−2

i=0

.

Thus,

Vτ (x0) ≤ max
û,θ̂

{
ν
(
x0, ū, θ̂

)
+ Vτ (xm)

}
,

where xm ∈ X̃ for every sequence û. Taking supremum over τ from both sides of the above inequality,

we have:

V∞(x0) ≤ sup
τ

max
û,θ̂

{
ν
(
x0, ū, θ̂

)
+ Vτ (xm)

}
,

= max
û,θ̂

{
ν
(
x0, ū, θ̂

)
+ V∞(xm)

}
.

Hence,

sup
x0∈Ξ

V∞(x0) ≤ sup
x0∈Ξ

max
ū,θ̂

ν
(
x0, ū, θ̂

)
+ sup

x0∈Ξ
max
û,θ̂

V∞(xm). (49)

Since Ξ and U are bounded, the set{
Anx+

n−2∑
k=−1

Ak+1B(rn−k − un−k) : x ∈ Ξ, rk ∈ [−1, 1], uk ∈ U

}



is also bounded for every finite n. Furthermore, σ is BIBO, which immediately implies that the first

supremum on the right side of inequality (49) is bounded. Moreover, xm can take only a finite number

of values for every x0 ∈ Ξ and every sequence û. Since V∞ is finite and the supremum over a finite set

is finite, the second term on the right side of inequality (49) is also bounded. Hence V∞ is BIBO.

Proof of Theorem 2: For system (7) with exactly one pole z1 on the unit circle and all other poles

strictly inside the unit circle, with e1 ∈ Rm\{0} such that Ae1 = z1e1, and Q ∈ Rm×m, Q = Q′ > 0

such that Q ≥ A′QA, there exists an invariant cylinder with axis e1 for some β > 0. Furthermore, the

intersection of CQ,β(e1) with the set {|e1x| < ζ : x ∈ Rm, ζ > 0} is bounded whenever Ce1 6= 0. Define

M0 = sup
x∈S0

V∞(x).

Lemma 2 guarantees finiteness of the supremum. Let α : Rm× `+([−1, 1])× `+(U)×Z+ 7→ Rm be a

function defined in the proof of Lemma 2. Let L denote the smallest integer strictly larger than M0/ε0.

Define

SL = {x ∈ CQ,β(e1) : α(x, r, u, k) /∈ S0, ∀k ≤ L, ∀r ∈ `+([−1, 1]), ∀u ∈ `+(U)}

That is, SL is the set of all states within the invariant cylinder from which S0 cannot be reached in L

steps or less. The complement of the set SL is the region of the cylinder for which there exist sequences

r and u such that the state gets to S0 in L steps or less. Since, both r and u are uniformly bounded,

the set ScL is bounded.

For j = {0, 1, 2, · · · , τ − 2}, define functions gj : Rm × `+({0, 1})× `+([−1, 1])× `+(U) 7→ R,

gj(x̄, {θi}ji=0, {ri}
j−1
i=0 , {ui}

j−1
i=0 ) = min

rj
max
uj ,θj+1

· · ·min
rτ−2

max
uτ−2,θτ−1

τ−1∑
n=0

hn+1σ(xn) (50)

gτ−1(x̄, {θi}τ−1
i=0 , {ri}τ−2

i=0 , {ui}τ−2
i=0 ) =

τ−1∑
n=0

hn+1σ(xn) (51)

For ε > 0 and x̄ ∈ Rm, let τ̃(x̄) ∈ Z+, Θ̃0(x̄) ∈ {0, 1}, R̃0(x̄) ∈ [−1, 1], Ũ0(x̄) ∈ U , Θ̃1(x̄) ∈ {0, 1}

be functions such that:

τ̃(x̄) ∈ argε sup
τ∈Z+

Vτ (x̄), (52)

Θ̃0(x̄) = θ0 ∈ arg max
θ0

g0(x̄, θ0), (53)

R̃0(x̄) = r0 ∈ arg min
r0

max
u0,θ1

g1

(
x̄,
(

Θ̃0(x̄), θ1

)
, r0, u0

)
, (54)(

Ũ0(x̄), Θ̃1(x̄)
)

= (u0, θ1) ∈ arg max
u0,θ1

g1

(
x̄,
(

Θ̃0(x̄), θ1

)
, R̃0(x̄), u0

)
. (55)



For x̄ ∈ Rm and j = {0, 1, 2, · · · , τ̃(x̄) − 2}, let Θ̃ ∈ {0, 1}j+2, R̃ ∈ [−1, 1]j+1, Ũ ∈ U j+1,

R̃j(x̄) ∈ [−1, 1], Ũj(x̄) ∈ U , and Θ̃j+1(x̄) ∈ {0, 1} be functions such that:

Θ̃ =
(
{Θ̃i(x̄)}ji=0, θj+1

)
, R̃ =

(
{R̃i(x̄)}j−1

i=0 , rj

)
, Ũ =

(
{Ũi(x̄)}j−1

i=0 , uj

)
. (56)

R̃j(x̄) = rj ∈ arg min
rj

max
uj ,θj+1

gj+1

(
x̄, Θ̃, R̃, Ũ

)
, (57)(

Ũj(x̄), Θ̃j+1(x̄)
)

= (uj, θj+1) ∈ arg max
uj ,θj+1

gj+1

(
x̄, Θ̃, {R̃i(x̄)}ji=0, Ũ

)
. (58)

Assuming that x̄ ∈ SL, there are two cases to consider, either:

1) α(x̄, {R̃i(x̄)}J−1
i=0 , {Ũi(x̄)}J−1

i=0 , J) /∈ S0, for all J ∈ {0, 1, 2, · · · τ̃ − 1}.

2) There exists an integer J > L such that α(x̄, {R̃i(x̄)}J−1
i=0 , {Ũi(x̄)}J−1

i=0 , J) ∈ S0.

From equations (50)−(58), we have:

g0(x̄, 0) = 0, (59)

g0(x̄, 1) = min
{ri}

τ̃(x̄)−2
i=0

τ̃(x̄)−1∑
n=0

hn+1σ(xn) (60)

≤
τ̃(x̄)−1∑
n=0

hn+1σ(xn)
∣∣∣{ri}τ̃(x̄)−2

i=0 ={R̃i(x̄)}τ̃(x̄)−2
i=0

(61)

where {ui}τ̃(x̄)−2
i=0 = {Ũi(x̄)}τ̃(x̄)−2

i=0 and {θi}τ̃(x̄)−1
i=1 = {Θ̃i(x̄)}τ̃(x̄)−1

i=1 . Furthermore, by (21) and (52), we

have:

V∞(x̄) < ε+ Vτ̃(x̄)(x̄) = ε+ max
θ0

g0(x̄, θ0) (62)

= ε+ max {g0(x̄, 0), g0(x̄, 1)} . (63)

Consider case (1): since σ(x) ≤ −ε0 for all x /∈ S0, the sum over hn+1σ(xn) will be negative for all

τ̃(x̄). Thus,

V∞(x̄) < ε, ∀x̄ ∈ SL. (64)

For case (2), we can write g0(x̄, 1) equivalently as:

g0(x̄, 1) = min
r0

max
u0,θ1
· · ·min

rJ−2

max
uJ−2,θJ−1


J−1∑
n=0

hn+1σ(xn) + min
rJ−1

max
uJ−1,θJ

· · · min
rτ̃(x̄)−2

max
uτ̃(x̄)−2,θτ̃(x̄)−1

τ̃(x̄)−1∑
n=J

hn+1σ(xn)


(65)



Since the first summation term in (65) is bounded above by −Jε0 for {Θ̃i(x̄)}J−1
i=0 and all sequences

{ri}J−2
i=0 and {ui}J−2

i=0 , and the second summation term is equal to g0(α(x̄, {ri}J−1
i=0 , {ui}J−1

i=0 , J), θJ), we

have:

g0(x̄, 1) ≤ min
r0

max
u0,θ1
· · ·min

rJ−2

max
uJ−2,θJ−1

{
−Jε0 + g0(α(x̄, {ri}J−1

i=0 , {ui}J−1
i=0 , J), θJ)

}
. (66)

Since

g0(α(x̄, {R̃i(x̄)}J−1
i=0 , {Ũi(x̄)}J−1

i=0 , J), Θ̃J(x̄)) ≤M0, (67)

we have:

g0(x̄, 1) ≤M0 − Jε0. (68)

Furthermore, J > M0/ε0, thus,

V∞(x̄) < ε+ max {0, M0 − Jε0} = ε. (69)

Since, V∞(x̄) < ε for every ε > 0,

V∞(x̄) = 0, ∀x̄ ∈ SL. (70)

Finally, the complement of the set SL is bounded; therefore, (33) is bounded.
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