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Codes on Graphs: Duality and MacWilliams Identities

G. David Forney, Jr.∗

Abstract

A conceptual framework involving partition functions of normal factor graphs is introduced,
paralleling a similar recent development by Al-Bashabsheh and Mao. The partition functions of
dual normal factor graphs are shown to be a Fourier transform pair, whether or not the graphs
have cycles. The original normal graph duality theorem follows as a corollary.

Within this framework, MacWilliams identities are found for various local and global weight
generating functions of general group or linear codes on graphs; this generalizes and provides
a concise proof of the MacWilliams identity for linear time-invariant convolutional codes that
was recently found by Gluesing-Luerssen and Schneider. Further MacWilliams identities are
developed for terminated convolutional codes, particularly for tail-biting codes, similar to those
studied recently by Bocharova, Hug, Johannesson and Kudryashov.

Keywords: codes on graphs, MacWilliams identities, normal factor graphs, partition functions.

1 Introduction

Linear codes defined by graphical models have become the central subject of modern coding theory.
Moreover, the topic of “codes on graphs” has proved to have rich connections to such cognate fields
as system theory and statistical physics.

Duality has long been a prominent theme in the study of linear codes. Duality theory often
yields simple, powerful, and surprisingly general results. Some problems become much simpler in
the dual domain.

A fundamental duality result in the field of “codes on graphs” is the normal graph duality
theorem of [5]. By imposing certain natural “normal” degree restrictions on graphical models,
which are in fact not at all restrictive, the normal graph duality theorem shows how a graphical
model for a dual linear code C⊥ may be obtained by local dualization of a graphical model for a
linear code C, whether or not the graph has cycles.

At the same time as [5] (in an adjacent paper in the same special issue), the conceptual frame-
work of “factor graphs” was introduced by Kschischang, Frey, and Loeliger [11] to unify various
styles of graphical models such as Tanner graphs, Bayesian networks, Markov random fields, Kalman
filtering, and so forth, and the various computational algorithms that have been developed inde-
pendently in these various fields. Subsequently, the “normal” restriction has been adopted to some
extent in the factor graph literature, particularly by Loeliger and his co-authors (see, e.g., [12, 13]).

Mao and Kschischang [15] have developed a general duality theory for factor graphs, particularly
by introducing “convolutional” factor graphs as duals to conventional multiplicative factor graphs.
By specializing to normal graphs, they proved the normal graph duality theorem as a corollary.

∗The author is with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA 02139 (email: forneyd@comcast.net).
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Very recently, Al-Bashabsheh and Mao [1] have shown that the normal graph duality theorem
and Valiant’s “holographic” algorithms can both be united within a common framework, which they
call “normal factor graphs and holographic transformations.” We have collaborated intensively with
the authors of that paper and with the Associate Editor of both (P. Vontobel) while writing this
paper, and have tried to achieve as much commonality as possible in our presentations.

As in [1], we regard normal factor graphs as representations of realizations that involve external
variables, internal variables and factors. All variables are vector spaces over a given finite field
F, and all factors are complex-valued. Each factor involves some subset of the variables, with the
following “normal” degree restrictions: each external variable is involved in precisely one factor, and
each internal variable is involved in precisely two factors. As shown in [5], any realization may be
straightforwardly “normalized” by a simple replication procedure that does not affect the topology
of the associated graphical model. In the corresponding normal factor graph (NFG), factors are
then represented by vertices, internal variables by ordinary edges of degree 2, and external variables
by edges of degree 1 (“half-edges,” “dangling edges,” “dongles”).

We define the partition function of such a normal factor graph as the sum over all internal
variables of the product of all factors. (In [1], this is called the “exterior function” of the NFG.)
In particular, if all factors are indicator functions of local linear constraint codes over F, then the
partition function is (up to scale) the indicator function of a global linear code C.

With [1], we believe that the conceptual framework of representing sums of products as partition
functions of normal factor graphs is an important paradigm that, surprisingly, does not seem to
have been discussed very explicitly in the previous factor graph literature. We therefore present
this framework in some generality in Sections 2 and 3.

In Section 3, we prove a general normal factor graph duality theorem (also proved in [1]), which
shows that the partition functions of a normal factor graph and its dual are a Fourier transform
pair, up to scale. Specializing to indicator functions of linear codes, we obtain as a corollary a
result that is equivalent to the normal graph duality theorem of [5].

In Sections 4 and 5, we present further applications that were stimulated by several recent
results on MacWilliams identities for linear convolutional codes [9, 10, 2].

For linear block codes, MacWilliams identities are classical duality results that relate weight
generating functions of linear codes and their duals [14]. It was shown more than thirty years ago
by Shearer and McEliece [16] that there is no MacWilliams identity for the usual weight generating
function (the free distance spectrum) of a convolutional code.

However, Gluesing-Luerssen and Schneider (GLS) have recently formulated [9] and proved [10]
a MacWilliams identity that involves the Hamming weight adjacency matrix (HWAM) of a linear
time-invariant convolutional code over a finite field and the HWAM of its dual code.

In Section 2, we show how weight generating functions of various types may be naturally
represented as partition functions of normal factor graphs. Furthermore, for a convolutional code,
it is natural to replace a weight generating function (WGF) by a weight adjacency matrix (WAM).

In Section 4, we then apply our normal factor graph duality results to prove an appropriate
MacWilliams identity between a WGF (or WAM) of a local linear code and a WGF (or WAM)
of its dual. We consider exact, complete, and Hamming weight generating functions. This gives a
concise proof of the GLS result, and generalizes it to arbitrary group codes defined on graphs; e.g.,
linear block codes defined on trellises, linear tail-biting codes, or trellis codes over abelian groups.
A preliminary version of these results was presented in [6].
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Bocharova, Hug, Johannesson, and Kudryashov [2] have recently proved a MacWilliams identity
that holds for truncations of a convolutional code C and its orthogonal code C⊥. As the truncation
length becomes large, they obtain approximations to the free distance spectra of C and C⊥.

In Section 5, we develop MacWilliams identities for distance distributions of various kinds of
terminated convolutional codes, particularly tail-biting terminated codes. A preliminary version of
these results was presented in [7]. These results effectively answer the original question posed by
Shearer and McEliece [16].

2 Codes, Realizations and Graphical Models

In this section we review linear codes, realizations of codes, and their graphical models. We start
with the development and notation of [5], but then transition to normal factor graphs rather than
normal graphs. We develop the general framework of partition functions of normal factor graphs.
Finally, we show how weight generating functions are naturally represented in this framework.

2.1 Linear codes, realizations and normal graphs

In this paper we will be concerned with linear codes over a finite field F. Everything generalizes to
group codes over finite abelian groups, but for simplicity we will restrict attention to linear codes.

A linear code C over F is defined over a discrete index set IA and a set {Ak : k ∈ IA} of symbol
alphabets Ak, each a finite-dimensional vector space over F, and thus finite. The code C is then a
subspace of the Cartesian-product vector space A = Πk∈IAk, called the symbol sequence space.

In general, the index set IA may be infinite; however, in this paper we will assume for simplicity
that IA is finite, so that the symbol sequence space A is finite. For convolutional codes, this
assumption may be justified by considering an infinitely long convolutional code as a limit of a
sequence of finitely long terminated codes; see Section 5.

A realization of a code C is a concrete implementation or characterization of it. For instance, a
parity-check realization of a linear (n, k) code C characterizes it as the set of all a ∈ F

n that satisfy
a set of n− k parity-check equations. A Tanner graph is a graphical model of such a realization.

More generally, a behavioral realization of C involves not only the set {Ak : k ∈ IA} of symbol
alphabets, but also a set {Sj : j ∈ IS} of auxiliary alphabets, often called state spaces, indexed by
a state index set IS , and a set {Ci : i ∈ IC} of local constraint codes Ci indexed by a constraint
index set IC , where each constraint code Ci involves some subsets ai and si of the symbol and state
variables, respectively. In a linear behavioral realization, each state space Sj and each constraint
code Ci is a vector space over F. We define the state sequence space as S = Πj∈ISSj.

The full behavior of the realization is the setB of all pairs (a, s) ∈ A×S such that all constraints
are satisfied; i.e., (ai, si) ∈ Ci,∀i ∈ IC . The code C generated by the realization is then the set of
all symbol sequences a ∈ A that appear in some (a, s) ∈ B.

For example, in a conventional state realization of a linear code C, the symbol index set IA is a
conventional discrete time axis, namely the set of integers Z, or a subinterval of Z. The state index
set IS may be thought of as the set of times that occur between consecutive pairs of times in IA,
and the state time preceding symbol time k ∈ IA is conventionally also denoted by k ∈ IS . The
constraint codes {Ck : k ∈ IA} are linear codes indexed by the symbol index set IA, and specify the
set of all valid (sk, ak, sk+1) transitions; i.e., for each k ∈ IA, Ck is a subspace of the vector space
Sk × Ak × Sk+1. The full behavior B of the realization is the set of all symbol/state trajectories
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(a, s) such that (sk, ak, sk+1) is a valid transition in Ck for all k ∈ IA. The code C generated by the
realization is the set of all symbol trajectories a that appear in some (a, s) ∈ B.

A normal behavioral realization is defined as a behavioral realization in which every symbol al-
phabet is involved in precisely one constraint code, and every state space is involved in precisely two
constraint codes. Thus a conventional state realization is normal. As shown in [5], any behavioral
realization may be straightforwardly converted to a normal realization by the “normalization” pro-
cedure that will be described in the next subsection, without essentially increasing the complexity
of the realization.

A normal behavioral realization has a natural graphical model, called a normal graph, in which
each constraint code Ci corresponds to a vertex, each state space Sj (which by definition is involved
in two constraints) corresponds to an edge connecting the two corresponding constraint vertices,
and each symbol alphabet Ak (which by definition is involved in one constraint) corresponds to
a leaf or “half-edge” connected to the corresponding constraint vertex. For example, Figure 1
shows the normal graph corresponding to a conventional state realization, which is a simple chain
graph. Here vertices are represented by square boxes, and the “half-edges” corresponding to symbol
alphabets are represented by special “dongle” symbols.

. . . Sk Sk+1 Sk+2 Sk+3 . . .

Ak Ak+1 Ak+2

Ck Ck+1 Ck+2

Figure 1: Normal graph of a conventional state realization.

2.2 Normal realizations and normal factor graphs

In this paper, we will mostly represent codes (and weight generating functions of codes) by normal
factor graphs and their partition functions. A partition function will be defined by

• a set A = {Ak, k ∈ IA} of external variables Ak with alphabets Ak;

• a set S = {Sj , j ∈ IS} of internal variables Sj with alphabets Sj;

• a set f = {fi, i ∈ IF} of complex-valued factors fi, each factor fi involving subsets Ai ⊆ A
and Si ⊆ S of the sets of internal and external variables.

All sets are assumed to be finite, and all variable alphabets are assumed to be finite-dimensional
vector spaces over some finite field F. We call the Cartesian-product alphabet A =

∏

k Ak the
external variable configuration space, and S =

∏

j Sj the internal variable configuration space.

The partition function1 (or “external function” [1]) defined by these elements is the function
Z : A → C of the external variables that is given by the following sum of products:

Z(a) =
∑

s∈S

∏

i∈IF

fi(ai, si), a ∈ A;

i.e., the sum over all internal variable configurations of the product of all factors.

1In physics, a partition function is usually defined as a sum over internal configurations, and there are no external
variables, so this usage of “partition function” extends the usual terminology of physics.
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A partition function Z(a) may in general be given by many different sum-of-products forms,
which we will call realizations. We will say that two realizations of the same partition function are
equivalent.

A realization will be called normal if each external variable is involved in precisely one factor,
and each internal variable is involved in precisely two factors. As noted in [5], any realization may be
converted to an equivalent normal realization by the following simple normalization procedure:

• For every external variable Ai, if Ai is involved in p factors, then define p replica variables
Aiℓ, 1 ≤ ℓ ≤ p, replace Ai by Aiℓ in the ℓth factor in which Ai is involved, and introduce one
new factor, namely an equality indicator function Φ=(ai, {aiℓ, 1 ≤ ℓ ≤ p}); i.e., the (0, 1)-
valued function that equals 1 when ai = ai1 = · · · = aip, and that equals 0 otherwise. Thus
each replica variable Aiℓ becomes an internal variable that is involved in precisely two factors,
while Ai remains an external variable that is involved in only one factor, namely the equality
indicator function. (If p = 1, then this conversion need not be performed.)

• For every internal variable Sj, if Sj is involved in q ≥ 2 factors, then define q replica variables
Sjℓ, 1 ≤ ℓ ≤ q, replace Sj by Sjℓ in the ℓth factor in which Sj is involved, and introduce one
new factor, namely an equality indicator function Φ=({sjℓ, 1 ≤ ℓ ≤ q}). Thus each replica
variable Sjℓ becomes an internal variable that is involved in precisely two factors. (If q = 2,
then this conversion need not be performed. If q = 1, then multiply the partition function by
a dummy factor 1(sk) which is equal to 1 regardless of the value of Sk.)

Evidently this normalization procedure does not change the partition function Z(a). Also, as
can be seen from [5], the normal factor graph that represents the normal realization is essentially
unchanged from the bipartite factor graph that represents the original realization.

A normal realization is represented by a normal factor graph (NFG).2 As in a normal graph,
ordinary edges represent internal variables and half-edges represent external variables, but now
vertices represent factors rather than constraints. The partition function of the NFG is the partition
function Z(a) of the associated realization.

In this paper we will mostly adopt the convention of ignoring multiplicative scale factors α > 0
in partition functions. We will say that the partition function is equal to Z(a), up to scale; that is,
the relative weights Z(a) for the various configurations a ∈ A are correct, but the absolute value
may not be. In many applications the absolute scale factor is not important; but if it is, then it
can be reconstructed from the constituent factors fi.

A normal graph representing a code C may be converted to a normal factor graph representing
the indicator function ΦC of C as follows. Let each local constraint code Ci be replaced by the
(0, 1)-valued indicator function ΦCi of Ci. Then, for a given external variable assignment a ∈ A,
the partition function of the graph— i.e., the sum over all s ∈ S of the product of all local
constraint code indicator functions— is the number of internal variable assignments s ∈ S such
that (a, s) satisfies all local constraints. For a linear code C, it is often true that a unique s ∈ S is
determined by each a ∈ C; e.g., when the graph is cycle-free and the realization is minimal. But
in any case, by linearity, the same number of state sequences correspond to every a ∈ C, namely

2Loeliger et al. [12, 13] define “Forney-style factor graphs” just as we have defined normal factor graphs. However,
in the usual factor graph framework, such a graph represents simply the product of the factors, rather than a sum
of products. Loeliger et al. do also consider sums of products within “boxes,” namely graph fragments enclosed by
dashed lines.
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|{s ∈ S : (0, s) ∈ B}|. Therefore, up to scale, the partition function of the NFG is equal to the
(0, 1)-valued indicator function ΦC ; i.e.,

ΦC(a) ∝
∑

s∈S

∏

i∈IC

ΦCi(ai, si), a ∈ A.

For example, Figure 2 shows the normal factor graph corresponding to the normal graph of
Figure 1.

. . . Sk Sk+1 Sk+2 Sk+3 . . .

Ak Ak+1 Ak+2

ΦCk ΦCk+1
ΦCk+2

Figure 2: Normal factor graph of a conventional state realization.

2.3 Weight generating functions

Weight generating functions are standard tools of combinatorics. We will later consider various
kinds of weight generating functions, but for linear codes over finite fields, the simplest and com-
monest kind of weight generating functions are Hamming weight generating functions.

The Hamming weight generating function (HWGF) of a linear code C defined over a finite index
set IA with symbol sequence space A =

∏

k∈IA
Ak is the polynomial

gHC (x) =
∑

a∈C

∏

k∈IA

xwH(ak),

where wH(ak) is the Hamming weight of the symbol ak ∈ Ak. Thus the coefficient of xw in gHC (x)
is the number of codewords a ∈ C that have Hamming weight w.

This sum-of-products expression for gHC (x) suggests that a HWGF might be represented as the
partition function of a normal factor graph. (This idea was briefly mentioned in [11, Example 13].)
Indeed, since

gHC (x) =
∑

a∈A

ΦC(a)x
wH (a),

it follows that gHC (x) is the partition function of the simple normal factor graph of Figure 3(a), in
which the two functions ΦC(a) and xwH(a) are connected by the internal variable A.

A
ΦC(a) xwH (a)

(a)

ΦC(a)

A1
xwH(a1)

A|IA|
··
·

xwH(a|IA|)
(b)

Figure 3: Normal factor graphs of the HWGF gHC (x) of a code C ⊆ A.

Or, since wH(a) =
∑

k∈IA
wH(ak) is an additive function, gHC (x) may alternatively be repre-

sented as the partition function of the normal factor graph of Figure 3(b), in which the function
ΦC(a) is connected by an internal variable Ak to the function xwH(ak) for each k ∈ IA.

6



Now, more generally, if the indicator function ΦC of a linear code C is the partition function of
any normal factor graph, then a normal factor graph for gHC (x) may be obtained by replacing the
symbol half-edge associated with Ak in that graph by an ordinary edge connected to the function
xwH(ak) of Ak for each k ∈ IA. (Or, if wH(ak) =

∑

ℓwH(akℓ) for some components akℓ of ak, then
Ak and xwH(ak) may be broken down into their components Akℓ and xwH(akℓ) as in Figure 3(b).)

For example, for a normal factor graph of a conventional state realization as in Figure 2, the
HWGF gHC (x) is the partition function of the normal factor graph shown in Figure 4.

. . . Sk Sk+1 Sk+2 Sk+3 . . .

xwH(ak) xwH(ak+1) xwH(ak+2)

Ak Ak+1 Ak+2

ΦCk ΦCk+1
ΦCk+2

Figure 4: Normal factor graph of the HWGF gHC (x) of the code C of Figure 2.

Such a representation of gHC (x) may be further simplified by summing over the variables Ak

for each k ∈ IA, which have now become internal variables. For a code represented by a conven-
tional state realization as in Figure 4, this results in a normal factor graph as in Figure 5. Here
ΛH
Ck
(sk, sk+1) is what is called [9, 10] the Hamming weight adjacency matrix 3 (HWAM) of Ck:

ΛH
Ck
(sk, sk+1)(x) =

∑

ak∈Ak

ΦCk(sk, ak, sk+1)x
wH (ak)

. . . Sk Sk+1 Sk+2 Sk+3 . . .ΛH
Ck
(x) ΛH

Ck+1
(x) ΛH

Ck+2
(x)

Figure 5: Normal factor graph resulting from summing over each Ak in Figure 4.

In equations, the equivalence of the partition functions of Figures 4 and 5 follows from

gHC (x) ∝
∑

s∈S

∑

a∈A

∏

k∈IA

ΦCk(sk, ak, sk+1)x
wH (ak)

=
∑

s∈S

∏

k∈IA

∑

ak∈Ak

ΦCk(sk, ak, sk+1)x
wH (ak)

=
∑

s∈S

∏

k∈IA

ΛH
Ck
(sk, sk+1)(x).

The last expression may be recognized as simply the product · · ·ΛCk(x)ΛCk+1
(x)ΛCk+2

(x) · · · of the
HWAMs, using the usual rules of matrix arithmetic.

Example 1 (binary linear block code). Consider the (8, 4) binary linear first-order Reed-Muller
code C, which has the conventional four-section state realization (trellis) shown in Figure 6 [5].

3Perhaps this should have been called a “Hamming weight generating function adjacency matrix,” but we prefer
to follow the established terminology.
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Figure 6: Four-section state realization of (8, 4) binary first-order Reed-Muller code.

The Hamming weight generating function gHC (x) is given by the product of the HWAMs of each of
the four sections, as follows:

[

1 x2 x x
]









1 x2 0 0
x2 1 0 0
0 0 x x
0 0 x x

















1 x2 0 0
x2 1 0 0
0 0 x x
0 0 x x

















1
x2

x
x









= 1 + 14x2 + x8.

Let us now consider the Hamming weight generating function of a fragment of a normal factor
graph realizing a code C, consisting of a subset of the constraint codes Ci. An external (symbol)
variable Ak may or may not be involved in one of these constraint codes; if it is, we attach an
enumerator function xwH(ak) as above. An internal (state) variable Sj may appear in two, one, or
none of these constraint codes: if it appears twice, then we consider it to be an internal variable of
the fragment and sum over it;4 if it appears once, then we consider it to be an external variable of
the fragment. In other words, the HWGF of the fragment is the partition function

gHf (x)(sext) ∝
∑

sint

∏

i∈IA,f

∑

ai

ΦCi(ai, si)x
wH (ai),

where sext and sint are the external and internal state variables with respect to the fragment, and
IA,f ⊆ IA is the subset of indices of constraint codes Ci that appear in the fragment.

Example 2 (N sections of a linear convolutional code). Consider a linear time-invariant convolu-
tional code C, in which all symbol alphabets Ak, state spaces Sk, and constraint codes Ck do not
actually depend on the time index k ∈ Z. Then the HWAM ΛH

Ck
(x) does not depend upon k, so we

write it simply as Λ(x). Consider a fragment of a graph for C consisting of N consecutive trellis
sections, over a time interval [k, k +N). Then, relative to this fragment, the external variables are
Sk and Sk+N , and the HWAM of the fragment is simply the Nth power ΛN (x) of the HWAM Λ(x)
of a single section.

3 Duality

The central duality result of [5] is the normal graph duality theorem: given a normal realization of
a code C, the dual normal realization generates the dual (orthogonal) code C⊥. We will now give a
concise proof of this result, as a corollary of a general duality theorem for normal factor graphs.

4Sometimes physicists use the Einstein summation convention: in a tensor product, variables that occur twice
are implicitly to be summed over. This convention would evidently be useful for partition functions of normal factor
graphs.
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3.1 Fourier transforms

We first recall the theory of Fourier transforms over finite fields, generally following [4].
Let the prime p be the characteristic of the finite field F; i.e., p is the least positive integer such

that pα = 0 for all α ∈ F.
If A is a vector space over F, then its dual space Â may be defined as the set of all homomor-

phisms â : A → Zp. It follows from Pontryagin duality theory [4] that Â is a vector space over
F of the same dimension as A, and that the dual space to Â is A, with a(â) defined as â(a). We
may then define the inner product 〈â, a〉 as a(â) = â(a) for all a ∈ A, â ∈ Â. The inner product so
defined has the usual properties; e.g., 〈â, 0〉 = 〈0, a〉 = 0, 〈â, a+ a′〉 = 〈â, a〉 + 〈â, a′〉, and so forth.

For example, if A is the field F, then the additive group of F is isomorphic to (Zp)
m for some

integer m. The dual space Â may also be taken as F ≃ (Zp)
m, with the inner product defined

componentwise as the dot product â · a =
∑m

i=1 âiai, with all operations in the prime field Zp.

Similarly, if A is the set Fn of all n-tuples over F, then its dual space Â may also be taken as
F
n, and the inner product may again be defined componentwise as

〈â, a〉 =
n
∑

j=1

âj · aj =
n
∑

j=1

m
∑

i=1

âjiaji

Given a complex-valued function f : A → C defined on A, its Fourier transform is defined as
the complex-valued function F : Â → C that maps â ∈ Â to

F (â) =
∑

a∈A

f(a)ω〈â,a〉, â ∈ Â,

where ω = e2πi/p is a primitive complex pth root of unity.
If we view f = {f(a) : a ∈ A} as a column vector indexed by A, and similarly F = {F (â) : â ∈ Â}

as a column vector indexed by Â, then the transform can be expressed in matrix form as

F = FAf ,

where the Fourier transform matrix FA is defined as {ω〈â,a〉 : â ∈ Â, a ∈ A}. Note that FA is
symmetric; i.e., FT

A = FA, where FT
A denotes the transpose of FA.

In a normal factor graph, a Fourier transform may be simply represented as in Figure 7. The
transform F (â) is obtained by summing over A, which in this case amounts to a matrix multipli-
cation. Note that as a factor in a factor graph, we do not have to distinguish between FA and its
transpose; FA is simply a function of the two variables corresponding to the two incident edges,
and as a matrix can act on either variable.

A Â
f FA

= F
Â

Figure 7: Normal factor graph of a Fourier transform.

From the orthogonality relation

∑

â∈Â

ω〈â,a〉 =

{

|A|, a = 0;
0, a 6= 0,
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we obtain the matrix equation
F∗
AFA = |A|IA,

where F∗
A = {ω−〈â,a〉 : a ∈ A, â ∈ Â} is the conjugate transpose of FA, and IA is the identity matrix

over A. In other words, the inverse of FA is F−1
A = |A|−1F∗

A. Thus we obtain the inverse Fourier
transform

f = F−1
A F =

F∗
AF

|A| .

We say that f and F are a Fourier transform pair, written f ↔ F.
More generally, we have the following orthogonality relation (which even more generally applies

to orthogonal subgroups of finite abelian groups):

Orthogonality relation for subspaces. Let B be any subspace of a finite subspace A, and let
B⊥ be the orthogonal subspace of its dual space Â; i.e., B⊥ is the subset of elements â ∈ Â such
that 〈â, a〉 = 0 for all a ∈ B. Then

∑

a∈B

ω〈â,a〉 =

{

|B|, â ∈ B⊥;
0, â /∈ B⊥.

Proof : Obvious for â ∈ B⊥. For â /∈ B⊥, let z(â) =
∑

a∈B ω〈â,a〉, and let a′ be some element of B

such that 〈â, a′〉 6= 0. Since a′+B = B, we have z(â) =
∑

a∈B ω〈â,a′+a〉 = ω〈â,a′〉z(â); but 〈â, a′〉 6= 0

implies ω〈â,a′〉 6= 1, so z(â) = ω〈â,a′〉z(â) implies z(â) = 0.

Let ΦB : A → {0, 1} be the indicator function of the subspace B; i.e., ΦB(a) = 1 if a ∈ B, else
ΦB(a) = 0. From this orthogonality relation, it follows that the Fourier transform of ΦB is |B|ΦB⊥ .
Conversely, by a similar argument, the inverse Fourier transform of ΦB⊥ is |B⊥|ΦB/|A|. Thus if B
and B⊥ are orthogonal subspaces of a finite vector space A and its dual space Â, respectively, then

• the indicator functions ΦB and ΦB⊥ are a Fourier transform pair, up to scale;

• |B||B⊥| = |A| = |Â|.

As [15] notes, the top result is a version of the “picket-fence miracle” [4] (see also [13, Theorem 9]).
We observe that the Poisson summation formula, namely

∑

a∈B

f(a) = |B⊥|
∑

â∈B⊥

F (â),

follows directly from the Fourier transform relationship for orthogonal code indicator functions,
where the functions f ↔ F are any Fourier transform pair; see Figure 8. (Note that since both ΦB

and ΦB⊥ are real-valued, the Fourier transform relation holds with the kernel F∗
A as well as with

FA.) We conclude that the Fourier transform pair relationship ΦB ↔ ΦB⊥ is more fundamental
than the Poisson summation formula, which is the usual starting point in the development of
MacWilliams identities.

ΦB
A f = ΦB

A F∗
A

Â
F = ΦB⊥

Â
F

Figure 8: Proof of the Poisson summation formula.

10



Finally, we extend these definitions to a set of indeterminates x = {x(a) : a ∈ A} indexed by A,
rather than a complex-valued function. The transform of this set is then a dual set of indeterminates
X = {X(â) : â ∈ Â} indexed by Â, defined by

X = FAx.

Again, we have the inverse transform relationship

x = F−1
A X =

F∗
AX

|A| ,

and we say that x and X are a transform pair, written x ↔ X. Figure 9 shows the corresponding
normal factor graph, similar to Figure 7.

A Â
x FA

= X
Â

Figure 9: Normal factor graph of a set x of indeterminates indexed by A, and the dual set X.

For example, if A = Z2, then X(0) = x(0) + x(1) and X(1) = x(0) − x(1); similarly, x(0) =
1
2(X(0) +X(1)), and x(1) = 1

2(X(0) −X(1)). For another example, if A = (Z2)
2, then

X(00) = x(00) + x(10) + x(01) + x(11)

X(10) = x(00)− x(10) + x(01) − x(11)

X(01) = x(00) + x(10) − x(01) − x(11)

X(11) = x(00)− x(10) − x(01) + x(11)

and vice versa (up to a scale factor of 1
4).

3.2 Dual linear codes

Again, a linear code C over a finite field F is a subspace C ⊆ A of a symbol sequence space
A =

∏

k∈IA
Ak, where each symbol alphabet Ak is a finite-dimensional vector space over F.

As we have seen, each vector space Ak has a dual space Âk of the same dimension such that for
all ak ∈ Ak, âk ∈ Âk there is a well-defined inner product 〈âk, ak〉. The dual space to the symbol
sequence space A =

∏

k∈IA
Ak is then the dual symbol sequence space Â =

∏

k∈IA
Âk, with the

inner product defined componentwise by 〈â,a〉 =
∑

k∈IA
〈âk, ak〉 (where we continue to assume

that IA is finite). The dual (orthogonal) code C⊥ ⊆ Â to C ⊆ A is then the set of all dual symbol
sequences â ∈ Â such that 〈â,a〉 = 0 for all a ∈ C.

From our general orthogonality theorem, we have that the indicator functions ΦC and ΦC⊥ are
a Fourier transform pair, up to scale, and that |C||C⊥| = |A|.

Since the inner product is defined componentwise, i.e., 〈â,a〉 = ∑

k∈IA
〈âk, ak〉, it follows that

the Fourier transform may be taken separately with respect to each variable Ak involved in C.
For example, consider the indicator function ΦCk of a constraint code Ck in a conventional state
realization, as in Figure 2. The indicator function for the orthogonal code C⊥

k ⊆ Ŝk × Âk × Ŝk+1

may be obtained (up to scale) by transforming with respect to each of the three incident variables
separately, as shown in the normal factor graph of Figure 10.

11



Ŝk Ŝk+1

Âk

ΦC⊥
k

= Ŝk Sk Sk+1 Ŝk+1

Âk

Ak

FSk
ΦCk FSk+1

FAk

Figure 10: Transform of constraint code indicator function ΦCk in a conventional state realization.

3.3 Fourier transform identities

In this subsection we develop a few quick and easy facts about the algebra of Fourier transforms.
We have already noted that FAF∗

A = IA, up to a scale factor of |A|. We will write such a
relationship as FAF∗

A ∝ IA. (Alternatively, we could normalize each Fourier transform matrix by
an appropriate scale factor, namely 1/

√

|A| for FA.)
We next observe that

∑

â∈Â

ω〈â,a〉ω〈â,a′〉 =

{

|A|, a+ a′ = 0;
0, a+ a′ 6= 0,

by the basic orthogonality relation. In other words, FT
AFA = |A|Φ∼A, where Φ∼A is the sign

inverter indicator function on A; i.e., the indicator function of the sign inversion relation, a′ = −a.
More simply, as a factor in a normal factor graph, the concatenation of FA with itself is equiv-

alent up to scale to Φ∼A, provided that the alphabet at each end of the chain is A; see the top line
of Figure 11. In this sense, we may write (FA)

2 ∝ Φ∼A, where the product indicates concatenation.
(Note that if the alphabet at each end of the chain were Â, then (FA)

2 would be equivalent up to
scale to Φ∼Â, the sign inverter indicator function on Â.)

In the same sense, it is easy to see that (FA)
3 ∝ F∗

A, and (FA)
4 ∝ IA. In other words, FA is a

fourth root of unity under concatenation, up to scale, and indeed behaves very much like i =
√
−1.

Similarly, F∗
A ∝ (FA)

3 is a fourth root of unity that is conjugate to FA, while Φ∼A ∝ (FA)
2 is a

square root of unity and is real (equal to its conjugate).
Figure 11 illustrates these relationships. In this figure, edges are labelled simply by the alphabet

of the associated variable rather than by the variable itself.

A FA
Â FA

A = A Φ∼A
A

A FA
Â FA

A FA
Â = A FA

Â Φ∼Â
Â = A Φ∼A

A FA
Â

A FA
Â FA

A FA
Â FA

A = A FA
Â Φ∼Â

Â FA
A = A

Figure 11: Fourier transform identities.

We remark that the relation IA ∝ (FA)
4 ∝ FAΦ∼ÂFA is an instance of the Fourier transform

relationship for orthogonal code indicator functions, since for any vector space A and its dual Â,
the orthogonal code to the sign inverter code C∼Â = {(â,−â) : â ∈ Â}, whose indicator function is
Φ∼Â, is the repetition code C=A = {(a, a) : a ∈ A}, whose indicator function is IA.

Finally, note that in the special case where the characteristic of F is p = 2, we have that
F∗
A = FA and Φ∼A = IA; i.e., FA becomes a square root of unity, and the sign inverter relation

becomes the equality relation, a′ = a.
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3.4 Normal factor graph duality theorem for linear codes

We will now prove the normal graph duality theorem for linear codes by dualizing a normal factor
graph. We continue to ignore scale factors.

Again, we start with a normal factor graph whose partition function is the indicator function
ΦC of a linear code C ⊆ A, with half-edges representing external variables {Ak}, edges representing
internal variables {Sj}, and vertices representing indicator functions {ΦCi}.

To obtain a normal factor graph whose partition function is the indicator function ΦC⊥ of
the orthogonal linear code C⊥ ⊆ Â, we apply appropriate Fourier transforms F to each of the
external variables Ak, as in Figure 9. For example, Figure 12 illustrates this transformation for two
consecutive sections of a conventional state realization as in Figure 2.

F F

. . . Sk Sk+1 Sk+2 . . .

Ak

Âk

Ak+1

Âk+1

ΦCk ΦCk+1

Figure 12: Normal factor graph representing the orthogonal code to that of Figure 2.

Next, using the concatenation relation I ∝ FΦ∼F illustrated in Figure 11, we replace each
edge by the concatenation of an appropriate transform matrix F , sign inverter indicator function
Φ∼, and transform matrix F . For example, Figure 13 illustrates this replacement for the normal
factor graph of Figure 12. Here Sk and S′

k are two equal state variables, and dual state variables
on opposite sides of sign inverters have been given opposite signs.

Sk F
−Ŝk

Φ∼
Ŝk F

S′
k ΦCk

Sk+1 F
−Ŝk+1

Φ∼
Ŝk+1 F

S′
k+1 ΦCk+1

Sk+2 F
−Ŝk+2

Φ∼
Ŝk+2 F

S′
k+2

Ak

F
Âk

Ak+1

F
Âk+1

Figure 13: Second step in dualizing Figure 2.

We then observe that every constraint code indicator function is now surrounded by Fourier
transforms, as in Figure 10, and therefore we may replace it by the indicator function of the dual
constraint code, as shown in Figure 14. Note that the sign inverter indicator functions remain.

. . . −Ŝk
Φ∼

Ŝk ΦC⊥
k

−Ŝk+1
Φ∼

Ŝk+1 ΦC⊥
k+1

−Ŝk+2
Φ∼

Ŝk+2 . . .

Âk Âk+1

Figure 14: Final step in dualizing Figure 2.

In summary, we have proved:
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Normal factor graph duality theorem for linear codes. Given a normal factor graph whose
partition function is the indicator function ΦC of a linear code C, comprising symbol alphabets
{Ak} associated with half-edges, state spaces {Sj} associated with ordinary edges, and constraint
code indicator functions {ΦCi} associated with vertices, the dual normal factor graph is defined
by replacing each symbol alphabet Ak by its dual symbol alphabet Âk, each state space Sk by its
dual state space Ŝk, each indicator function ΦCi by the dual indicator function ΦC⊥

i
, and finally

by placing a sign inverter indicator function Φ∼ in the middle of every ordinary edge. Then the
partition function of the dual normal factor graph is equal to ΦC⊥ , up to scale.

This theorem is equivalent to our original normal graph duality theorem [5]: given a normal
graph representing a linear code C, comprising symbol alphabets {Ak} associated with half-edges,
state spaces {Sj} associated with ordinary edges, and constraint codes {Ci} associated with vertices,
the dual normal graph is defined by replacing each symbol alphabet Ak by its dual symbol alphabet
Âk, each state space Sk by its dual state space Ŝk, each constraint code Ci by its orthogonal code
C⊥
i , and finally by placing a sign inverter in the middle of every ordinary edge. Then the dual

normal graph represents the orthogonal code C⊥.
For example, Figure 15 shows the dual to the normal graph of a conventional state realization

that was shown in Figure 1.

. . . −Ŝk ∼ Ŝk C⊥
k

−Ŝk+1 ∼ Ŝk+1 C⊥
k+1

−Ŝk+2 ∼ Ŝk+2 . . .

Âk Âk+1

Figure 15: Dual normal graph for a conventional state realization.

The following two examples illustrate how to dualize binary and nonbinary convolutional codes
by dualizing the local constraint codes Ck. Example 3 involves a rate-1/2, four-state binary convo-
lutional code that is often used in examples. Example 4 involves the rate-2/3 ternary convolutional
code that was the principal example of Gluesing-Luerssen and Schneider [9, 10].

Example 3 (binary linear convolutional code). Consider the rate-1/2 binary linear time-invariant
convolutional code C generated by the degree-2 generators (1 + D2, 1 + D + D2), in standard
D-transform notation. In other words, C is the set of all output sequences of the single-input,
two-output linear time-invariant system over F2 whose impulse response is (11, 01, 11, 00, . . .). This
system has a conventional state realization as in Figure 1 in which each symbol alphabet Ak may
be taken as (F2)

2, each state space Sk may also be taken as (F2)
2, and each constraint code Ck is

the (6, 3) binary linear block code generated by the three transitions

00 11 10
10 01 01
01 11 00

which represent the three nontrivial (state, symbol, next state) transitions in the impulse response
of the system. (Note that only the output symbols appear in C; the input symbols that would
appear in an input-state-output realization are here regarded as internal variables, and do not
appear explicitly.) The eight codewords of Ck are the eight possible transitions of the system,
which are shown as a “trellis section” in Figure 16(a), with the three generating transitions dashed.
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(b)
Figure 16: Trellis sections of (a) rate-1/2 binary convolutional code; (b) orthogonal code.

The orthogonal code C⊥
k may easily be seen to be the (6, 3) binary linear block code generated

by the three transitions
00 11 01
01 10 10
10 11 00

which represent the three nontrivial (state, symbol, next state) transitions in the impulse response of
a system with impulse response (11, 10, 11, 00, . . .), or (1+D+D2, 1+D2) in D-transform notation.
This is indeed the generator of the orthogonal convolutional code C⊥ under the symbolwise definition
of the inner product that we are using here. (For the more usual sequencewise definition of the
inner product, we need to take the time reversal of C⊥,5 which in this case happens to be the
code generated by (1 +D +D2, 1 +D2) again.) The eight codewords of C⊥

k are the eight possible
transitions of the orthogonal system, which are again shown as a “trellis section” in Figure 16(b),
with the three generating transitions dashed.

Example 4 (ternary linear convolutional code; cf. [9, 10]). Consider the rate-2/3 linear time-
invariant convolutional code C over F3 with g1(D) = (1 +D2, 2 + D, 0) and g2(D) = (1, 0, 2). In
other words, C is the set of all output sequences of the two-input, three-output linear time-invariant
system over F3 whose impulse responses are (120, 010, 100, 000, . . .) and (102, 000, . . .). This system
has a conventional nine-state realization as in Figure 1 in which each symbol alphabet Ak may be
taken as (F3)

3, each state space Sk may be taken as (F3)
2, and each constraint code Ck is the (7, 4)

ternary linear block code generated by the four generators

00 120 10
10 010 01
01 100 00
00 102 00

which represent the four nontrivial (sk, ak, sk+1) transitions in the two impulse responses of the
system. The orthogonal code C⊥

k is the (7, 3) ternary linear block code generated by the three
generators

00 010 12
21 202 11
22 111 00

5The symbolwise inner product of two sequences a,b ∈ A is
∑

k
akbk, and that of a and a shift of b by j time

units is
∑

k
akbk−j . The product of the corresponding D-transforms a(D) =

∑
k
akD

k and b(D−1) =
∑

k
bkD

−k is∑
j
(
∑

k
akbk−j)D

j , so a is orthogonal to all shifts of b if and only if a(D)b(D−1) = 0, or equivalently if and only

if the sequencewise inner product a(D)b̃(D) is zero, where b̃(D) is the D-transform of the time-reversed sequence
b̃ = {b−k : k ∈ IA}. Thus D is the orthogonal code to a linear time-invariant code C under the symbolwise inner
product if and only if the time-reversed code D̃ is the orthogonal code to C under the sequencewise inner product.
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which represent the three nontrivial (ŝk, âk,−ŝk+1) transitions in the impulse response of a con-
ventional state realization of a single-input, three-output linear system over F3, with sign inverters,
whose impulse response is (010, 202, 111, 000, . . .), or (2D +D2, 1 +D2, 2D +D2) in D-transform
notation. (Note the unconventional basis of the dual state space, and the effects of the sign
inversions.) This is indeed the generator of the orthogonal convolutional code C⊥ under our sym-
bolwise definition of the inner product. (For the more usual sequencewise definition of the inner
product, we need to take the time reversal of C⊥, which in this case is the code generated by
(1 + 2D, 1 +D2, 1 + 2D).)

3.5 General normal factor graph duality theorem

Finally, we note that although we have been focussing on normal factor graphs whose factors and
partition functions are indicator functions of linear codes, the proof of the normal factor graph
duality theorem in the previous subsection does not depend upon this restriction. Thus we have
actually proved a much more general theorem:

General normal factor graph duality theorem. Given an arbitrary normal factor graph with
partition function Z(a), up to scale, comprising external variables {Ak} associated with half-edges,
internal variables {Sj} associated with ordinary edges, and factors {fi} associated with vertices,
the dual normal factor graph is defined by replacing each external variable Ak by its dual variable
Âk, each internal variable Sj by its dual variable Ŝj , each factor fi by its Fourier transform f̂i, and
finally by placing a sign inverter indicator function Φ∼ in the middle of every ordinary edge. Then
the partition function of the dual normal factor graph is the Fourier transform Ẑ(â) of Z(a), up to
scale. (Note: [1] shows that the scale factor is

∏

j |Sj |.)
Mao and Kschischang [15] have proved a closely related duality theorem. In their development,

a (multiplicative) factor graph represents a product of factors, rather than a sum of products.
They show that the dual to a multiplicative factor graph is a convolutional factor graph, which
represents the convolution of its factors. If the elements of a factor graph are dualized as above
(but without the sign inverters), then a factor graph and its dual represent a Fourier transform
pair, up to scale. Using this duality result and the fact that the indicator functions of a linear code
and its dual are a Fourier transform pair, they derive a factor graph duality theorem for linear
codes. They then specialize to normal factor graphs, and show how to recover our original normal
graph duality theorem for linear codes. A similar derivation would yield the general normal factor
graph duality theorem above. The advantage of our approach is that by focussing on normal factor
graphs and their partition functions from the beginning, we do not need to introduce convolutional
factor graphs (which may however prove to have their uses).

Al-Bashabsheh and Mao [1] have also proved this theorem by their methods, independently and
at about the same time. Loeliger et al. [13, Appendix III] have proved an analogous theorem for
continuous alphabets.
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4 MacWilliams identities

Given these duality results, we can obtain various MacWilliams identities, using similar derivations.

4.1 MacWilliams identities for exact weight generating functions

We will first consider what MacWilliams and Sloane [14] call exact weight generating functions,
where every symbol alphabet Ak is given its own set of indeterminates xk = {xk(ak) : ak ∈ Ak}. The
dual set of indeterminates Xk = {Xk(âk) : âk ∈ Âk} is then given by the transform Xk = FAk

xk.
The exact weight generating function (EWGF) of C is the multivariate polynomial

gEC (x) =
∑

a∈C

x(a) =
∑

a∈A

ΦC(a)x(a),

where x(a) =
∏

k∈IA
xk(ak).

Similarly, the EWGF of C⊥ is the multivariate polynomial

gEC⊥(X) =
∑

â∈Â

ΦC⊥(â)X(â).

By the Poisson summation formula, these dual EWGFs are equal, up to scale; see Figure 17. (Again
we note that since both ΦC and ΦC⊥ are real-valued, the Fourier transform relation holds with the
kernel F∗

A as well as with FA.) Explicitly, we have the following MacWilliams identity showing
how the EWGF of C⊥ may be computed from that of C:

gEC⊥(X) ∝ gEC (F∗
AX)

ΦC
A x = ΦC

A F∗
A

Â
X = ΦC⊥

Â
X

Figure 17: Duality of exact weight generating functions.

Now again suppose that we have a normal factor graph whose partition function is ΦC (up
to scale), defined by a set A = {Ak} of symbol alphabets, a set S = {Sj} of state spaces, and
a set {ΦCi} of constraint code indicator functions, each constraint code Ci constraining subsets
Ai ⊆ A,Si ⊆ S of the symbol and state alphabets, respectively. Then we may obtain a normal
factor graph whose partition function is the global EWGF gEC (x) by connecting each half-edge
representing Ak to a corresponding indeterminate function xk : ak 7→ xk(ak), as in Figure 3. The
local exact weight generating function gECi(xi, si) is then obtained by summing over Ai for each Ci
to obtain

gECi(xi, si) =
∑

ai∈Ai

ΦCi(ai, si)xi(ai).

The global EWGF is then the resulting global partition function, up to scale:

gEC (x) =
∑

s∈S

∏

i∈IC

gECi(xi, si).
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In the case of a conventional state realization, the local EWGF is a matrix indexed by Sk×Sk+1,

ΛE
k (xk) = {gECk(xk, sk, sk+1) : sk ∈ Sk, sk+1 ∈ Sk+1},

which we will call the exact weight adjacency matrix (EWAM), and the global EWGF is the matrix
product of these EWAMs, as was shown for HWGFs and HWAMs in Figures 4 and 5.

In general, if the graph of a code is a tree (i.e., cycle-free), then since a global generating function
of the code is a sum of products of local factors, it may be computed by a straightforward application
of the generic sum-product algorithm [5], in which the “messages” are generating functions of
subtrees. Even if the graph is not a tree, the global generating function is still the sum of the
products of the local generating functions over all s ∈ S. Consequently one method of computing
it is to cut just enough state edges so that the graph becomes a tree (a minimal spanning tree),
compute the global generating function for this tree using the sum-product algorithm, and then
sum over the remaining state variables.

Example 5 (tail-biting trellis). A tail-biting trellis consists of a chain of N trellis sections, with
the further constraint that the final state sN is equal to the initial state s0. To compute a global
generating function of a tail-biting trellis, we may thus first form the matrix product of the N
constituent local WAMs to obtain a global WAM, indexed by (s0, sN ); we then sum over all elements
of this WAM for which s0 = sN ; i.e., we take the trace of the global WAM.

To obtain a MacWilliams identity for local EWGFs, we proceed as follows. Each local EWGF
gECi(xi, si) is the partition function of the local graph fragment shown in Figure 18(a), comprising
a local constraint code indicator function ΦCi attached via an edge labelled by the local symbol
alphabets Ai to an exact weight generator function xi. Here we partition the local state spaces Si

into two subsets S+
i and S−

i , such that globally every state space Sj appears once in a plus subset
and once in a minus subset (corresponding to the sign inversion in the dual normal factor graph).
Thus the local EWGF will now be written as gECi(xi, s

+
i , s

−
i ).

Proceeding again along the lines of the derivation of the Poisson summation formula (see Figure
8), we now replace the function xi by the concatenation of Xi and an appropriate inverse Fourier
transform F∗; we adjoin appropriate inverse Fourier transforms F∗ to each Sj ∈ S+

i ; and we adjoin
appropriate inverse Fourier transforms F∗ and sign inverter indicator functions Φ∼ to each Sj ∈ S−

i ,
as shown in Figure 18(b). Because the concatenation of F∗, Φ∼ and F∗ is the identity (see Figure
11), and because globally every state space Sj appears once in a plus subset and once in a minus
subset, this will leave the global EWGF unchanged.

Finally, noticing that each code constraint indicator function ΦCi is now surrounded by (inverse)
Fourier transforms, we may replace the whole ensemble by the orthogonal code indicator function
ΦC⊥

i
, as shown in Figure 18(c). Globally, it is evident that we now have a factor graph whose

partition function is gE
C⊥(X), comprising the dual normal factor graph for ΦC⊥ , with each half-edge

representing Âi connected to a corresponding indeterminate function Xi.
Now we have the following MacWilliams identity, showing how the local EWGF of C⊥

i may be
computed from that of Ci:

gE
C⊥
i

(Xi, Ŝ
+
i , Ŝ

−
i ) ∝ gECi(F

∗
Ai

Xi,F∗
S
+

i

S+
i ,FS

−
i
(−S−

i )),

where F∗
S
−
i

S−
i ∝ F

S
−
i
(−S−

i ) since the variables in S+
i are the same as those in some other −S−

i .
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ΦCi

Ai xi

S+
i

S−
i

(a)

⇒ ΦCi

Ai F∗
Âi

Xi

S+
i F∗

Ŝ+
i

S−
i F∗

Ŝ−
i Φ∼

−Ŝ−
i

(b)

= ΦC⊥
i

Âi
Xi

Ŝ+
i

Ŝ−
i Φ∼

−Ŝ−
i

(c)
Figure 18: Dualizing local exact weight generating functions.

In particular, with a conventional state realization with constraint codes Ck, with the convention
that Ŝk is involved in C⊥

k with a positive sign and Ŝk+1 is involved in C⊥
k with a negative sign, we

have the following MacWilliams identity, which shows how the EWAM Λ̂k(Xk) of C⊥
k may be

obtained from the EWAM Λk(xk) of Ck:

Λ̂E
k (Xk) ∝ (F∗

Sk
)TΛE

k (F∗
Ak

Xk)(FSk+1
)T .

(Here the transposes are needed to conform to standard matrix conventions, even though F = FT .)

Example 3 (cont.). Continuing with the rate-12 binary convolutional code of Example 3, each
constraint code Ck has the exact weight adjacency matrix below, where we write x00, x01, x10, x11
for xk(00), xk(01), xk(10), xk(11), respectively.

ΛE
k (xk) =

sk/sk+1 00 10 01 11

00 x00 x11 0 0

10 0 0 x01 x10
01 x11 x00 0 0

11 0 0 x10 x01

Given this EWAM for Ck, the EWAM Λ̂E
k (Xk) of the orthogonal constraint code C⊥

k is given by the
matrix equation below, where we have substituted the dual indeterminates X00,X10,X01 and X11

for x00 + x10 + x01 + x11, x00 − x10 + x01 − x11, x00 + x10 − x01 − x11 and x00 − x10 − x01 + x11,
respectively. (We have also inserted the correct scale factor.)

1

2









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

















x00 x11 0 0
0 0 x01 x10
x11 x00 0 0
0 0 x10 x01

















1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









=









X00 0 X11 0
X11 0 X00 0
0 X10 0 X01

0 X01 0 X10









From Figure 16(b), we see that this matrix is indeed the EWAM of the constraint code C⊥
k .

Of course it is no surprise that a dual constraint code C⊥
i is determined by Ci, or vice versa; what

the MacWilliams identities give us is a way of calculating one from the other, by taking transforms.

4.2 MacWilliams identities for other weight generating functions

Commonly each symbol alphabet Ak is equal to F
nk , the set of nk-tuples over the ground field

F; i.e., ak = {akℓ ∈ F : 1 ≤ ℓ ≤ nk}. In this case a transform over Ak may be expressed by nk

transforms over F applied to the nk components akℓ of Ak.
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We may then be interested in the complete weight generating function (CWGF) of C, defined
as

gCC (x) =
∑

a∈A

ΦC(a)





∏

k∈IA

nk
∏

ℓ=1

x(akℓ)



 ,

where x = {x(a) : a ∈ F} is a set of indeterminates defined on F. In other words, the CWGF is
obtained by substituting the product

∏nk

ℓ=1 x(akℓ) for xk(ak) in the EWGF.
Similarly, the local complete weight generating function gCCi(xi, si) is

gCCi(x, si) =
∑

ai∈Ai

ΦCi(ai, si)





∏

k∈IAi

nk
∏

ℓ=1

x(akℓ)



 ,

where IAi
⊆ IA denotes the subset of indices of symbol alphabets Ak that are involved in Ci.

By a development parallel to that above, we have the following MacWilliams identity, which
shows how the local CWGF of C⊥

i may be computed from that of Ci:

gC
C⊥
i

(X, Ŝ+
i , Ŝ

−
i ) ∝ gCCi(F

∗
FX,F∗

S
+

i

S+
i ,FS

−
i
(−S−

i )),

where X = FFx is the dual set of indeterminates to the set x, with FF the transform matrix on F.
In particular, for conventional state realizations, the following MacWilliams identity shows how

the complete weight adjacency matrix (CWAM) Λ̂C
k (X) of C⊥

k may be obtained from the CWAM
ΛC
k (x) of Ck:

Λ̂C
k (Xk) ∝ (F∗

Sk
)TΛC

k (F∗
FX)(FSk+1

)T .

Example 3 (cont.). For the rate-12 binary convolutional code of Example 3, each constraint code
Ck has the CWAM

ΛC
k (x) =

sk/sk+1 00 10 01 11

00 x20 x21 0 0

10 0 0 x0x1 x0x1
01 x21 x20 0 0

11 0 0 x0x1 x0x1

where we have written x0 and x1 instead of x(0) and x(1), respectively. The CWAM Λ̂C
k (X) of the

orthogonal constraint code C⊥
k is given by the matrix equation below, where we have substituted

the dual indeterminates X0 and X1 for x0 + x1 and x0 − x1, respectively.

1

2









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

















x20 x21 0 0
0 0 x0x1 x0x1
x21 x20 0 0
0 0 x0x1 x0x1

















1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









=









X2
0 0 X2

1 0
X2

1 0 X2
0 0

0 X0X1 0 X0X1

0 X0X1 0 X0X1









We see from Figure 16(b) that this matrix is indeed the CWAM of C⊥
k .

Here the point is that even though the CWGF of Ci does not fully determine Ci, it does determine
the CWGF of C⊥

i , and vice versa.
The Hamming weight generating function (HWGF) gHC (x) of a linear code C may be obtained

by substituting 1 for x(0) and x for each x(a), a 6= 0, in gCC (x), and similarly for the Hamming
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weight adjacency matrix (HWAM) ΛH
k (x) of a constraint code Ck in a conventional state realization.

Thus each element of ΛH
k (x) becomes a polynomial of degree nk or less in the single indeterminate

x. The dual indeterminates become X(0) = 1 + (|F| − 1)x and X(â) = 1 − x for â 6= 0, which
scale to 1 and X = (1 − x)/(1 + (|F| − 1)x), respectively. Substituting in the above MacWilliams
identities for CWGFs or CWAMs, we obtain MacWilliams identities for HWGFs or HWAMs. This
yields the main result of [9, 10].6

Example 3 (cont.). For the rate-1/2 binary convolutional code C of Example 3, each constraint
code Ck has the HWAM

ΛH(x) =

s/s′ 00 10 01 11

00 1 x2 0 0

10 0 0 x x

01 x2 1 0 0

11 0 0 x x

For the orthogonal code C⊥, each constraint code C⊥
k has the HWAM

Λ̂H(X) =

s/s′ 00 10 01 11

00 1 0 X2 0

10 X2 0 1 0

01 0 X 0 X

11 0 X 0 X

The reader may verify that ΛH(x) and Λ̂H(X) satisfy a MacWilliams identity with X = 1−x
1+x .

[Hint: it may be easier to start with CWAMs.] Note that here Λ̂H(x) happens to be the transpose
of ΛH(x).

Example 4 (cont.). For a worked-out example of the HWAM Λ̂H
k (X) of the orthogonal code C⊥

k

to the constraint code Ck of Example 4, see [10].

Again, the point is that even though the HWGF of Ci does not fully determine Ci, it does
determine the HWGF of C⊥

i , and vice versa.
Ericson and Zinoviev [3] have generalized this method of obtaining further weight generating

functions from complete weight generating functions, as follows. A partition of a finite abelian
group G into disjoint subsets {Gj} and of its character group Ĝ into disjoint subsets {Ĝi} is called
a Fourier-invariant pair if for all i, j the transform of the indicator function Φ(Gj) of Gj , namely

Φ̂(ĝ) =
∑

g∈G

Φ(Gj)〈ĝ, g〉 =
∑

g∈Gj

〈ĝ, g〉,

depends only on the subset Ĝi that contains ĝ, and similarly for the inverse transform, where
〈ĝ, g〉 = ĝ(g). For example, the Hamming partition pair defined by G0 = {0}, G1 = G \ {0} and
Ĝ0 = {0}, Ĝ1 = Ĝ\{0} is Fourier-invariant. For any Fourier-invariant partition pair, a MacWilliams
identity may be obtained for the corresponding generalized weight generating function; see [3] or
[4]. Zinoviev and Ericson [17] show that this concept is equivalent to that of an association scheme.

6The MacWilliams identity of [9, 10] is stated in terms of the HWAM for a minimal realization of a linear
time-invariant convolutional code C in controller canonical form, and the HWAM of some minimal encoder for the
orthogonal code C⊥. Our results apply to the CWAM or HWAM of any state realization, and the CWAM or HWAM
of its dual realization, because in our development, by constraint code duality, the basis of the dual state space
representation is fixed as soon as the basis of the primal state space is fixed.
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5 MacWilliams identities for terminated convolutional codes

A principal use of MacWilliams identities is to compute the distance distribution of a linear code
C from that of its dual code C⊥, where typically C is high-rate and C⊥ is low-rate (i.e., |C⊥| < |C|).

For a convolutional code C, the most commonly studied distance distribution is its free (Ham-
ming) distance spectrum, namely, the distribution of (Hamming) weights of codewords in C that
start and end in the zero state without passing through an intermediate zero state.7 Shearer and
McEliece [16] showed by example that the free distance spectrum of C does not in general determine
that of C⊥, and therefore that there could be no MacWilliams identity for such distributions.

Recently, Bocharova, Hug, Johannesson and Kudryashov [2] have proved a MacWilliams identity
for truncations of a convolutional code C and its orthogonal code C⊥. By letting the truncation
length become large, they obtain an approximation to the free distance spectrum of C.

In this section, we derive similar results for weight distributions of codes obtained by various
kinds of termination procedures, of which we regard tail-biting as the most elegant. We argue that
these alternative distributions are as useful for estimating code performance as the free distance
spectrum. These results effectively answer the original question posed by Shearer and McEliece
[16], which we would state as follows: is there a duality relationship that allows us to estimate the
performance parameters of C⊥ from those of C?

5.1 Terminated convolutional codes

A general method for approximating the free distance spectrum of a linear convolutional code C
is to derive a series of block codes CN of length N from C by some sort of termination procedure,
and then to study the distance distributions of CN as N → ∞. As we will see, for any of the
termination methods below, the distance distribution of CN , normalized by N , approaches the
free distance spectrum of C for dfree ≤ d < 2dfree, where dfree denotes the free distance of C (the
least weight of any nonzero code sequence). However, we will argue that tail-biting is the nicest,
particularly if we are also interested in the distance distribution of the orthogonal convolutional
code C⊥.

The left side of Figure 19 shows normal graphs of five block codes CN obtained from a convo-
lutional code C by five kinds of termination procedures:

(a) the subcode C[0,N);

(b) the projection C|[0,N);

(c) the truncated code C⊳[0,N);

(d) the reverse-truncated code C⊲[0,N); and

(e) the tail-biting code C||[0,N).

In each case the central part of the graph consists of N consecutive trellis sections of C, and the
block code symbols are the corresponding convolutional code symbols (a0, . . . , an−1).

To obtain the subcode C[0,N), the starting and ending state variables are constrained to be zero:
s0 = sN = 0. For the projection C|[0,N), the starting and ending states may be any arbitrary pair

7We will assume in this section that the unique state sequence associated with the all-zero code sequence is the
all-zero state sequence; this assumption can always be satisfied by choosing a minimal encoder for C.
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s0 ∈ S0, sN ∈ SN . For the truncated code C⊳[0,N), we constrain s0 = 0, but let sN be arbitrary;
for the reverse-truncated code, the reverse constraints are imposed. Finally, for the tail-biting code
C||[0,N), we impose the constraint sN = s0.

S0 C0

A0

S1 . . . SN−1 CN−1

AN−1

SN (e) Ŝ0 C⊥
0

Â0

Ŝ1 . . . ŜN−1 C⊥
N−1

ÂN−1

ŜN

{0}S0 C0

A0

S1 . . . SN−1 CN−1

AN−1

SN {0} (d)S0
Ŝ0 C⊥

0

Â0

Ŝ1 . . . ŜN−1 C⊥
N−1

ÂN−1

ŜN
ŜN

{0} S0 C0

A0

S1 . . . SN−1 CN−1

AN−1

SN {0}(c) Ŝ0

Ŝ0 C⊥
0

Â0

Ŝ1 . . . ŜN−1 C⊥
N−1

ÂN−1

ŜN
SN

{0}S0 C0

A0

S1 . . . SN−1 CN−1

AN−1

SN {0}(b)S0
Ŝ0 C⊥

0

Â0

Ŝ1 . . . ŜN−1 C⊥
N−1

ÂN−1

ŜN
SN

{0} S0 C0

A0

S1 . . . SN−1 CN−1

AN−1

SN {0} (a) Ŝ0

Ŝ0 C⊥
0

Â0

Ŝ1 . . . ŜN−1 C⊥
N−1

ÂN−1

ŜN
ŜN

Figure 19: Terminated convolutional codes and their duals (over a field of characteristic 2).

The right side of Figure 19 shows the orthogonal codes to all of these codes, obtained simply
by use of the normal graph duality theorem, along with the observation that the orthogonal code
to a trivial code {0} is a universe code, e.g., Ŝ0, and vice versa. (For simplicity, we have assumed
that the characteristic of F is 2, so that we do not need to show sign inverters.)

We observe that the orthogonal code to a subcode C[0,N) of C is the corresponding projection

(C⊥)|[0,N) of C⊥, and vice versa, as is well known; the orthogonal code to a truncated code C⊳[0,N)

of C is the corresponding reverse-truncated code (C⊥)⊲[0,N) of C⊥, and vice versa [2]; and the

orthogonal code to a tail-biting code C||[0,N) of C is the corresponding tail-biting code (C⊥)||[0,N) of

C⊥ [5].
Since C[0,N) and (C⊥)|[0,N), or C⊳[0,N) and (C⊥)⊲[0,N), or C||[0,N) and (C⊥)||[0,N) are orthogonal

block codes, there is a MacWilliams identity between their respective weight generating functions.
We now give examples that will illustrate these various kinds of terminated codes, and the

following general properties:

• The rate of a subcode C[0,N) is less than that of C, the rate of a projection is higher than that
of C, and the rate of a truncated or a tail-biting code is the same as that of C.

• The minimum distance of a subcode C[0,N) is (at least) the same as the minimum free distance
dfree of C. As is well known, a tail-biting code has the same property, provided that N is large
enough. However, the other kinds of terminated codes in general have low-weight codewords.
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Example 3 (cont.). We now consider various methods of terminating the rate-12 binary convolu-
tional code C of Example 3 with a block length of N = 4.

The subcode C[0,4) is the (8, 2) binary linear block code generated by the two generators

11 01 11 00
00 11 01 11

The minimum distance of this block code is the same as the minimum free distance dfree = 5 of C,
although its rate is lower.

The orthogonal code to the subcode C[0,4) is the projection (C⊥)|[0,4) of the orthogonal convolu-

tional code C⊥, which is the (8, 6) binary linear block code generated by the six generators

11 00 00 00
10 11 00 00
11 10 11 00
00 11 10 11
00 00 11 10
00 00 00 11

The minimum distance of this block code is 2, less than the minimum free distance of C⊥, although
its rate is higher.

The truncated code C⊳[0,4) is the (8, 4) binary linear block code generated by

11 01 11 00
00 11 01 11
00 00 11 01
00 00 00 11

The minimum distance of this block code is 2, but its rate is the same as that of C. Its orthogonal
code (C⊥)⊲[0,4) is the (8, 4) binary linear block code generated by

11 00 00 00
10 11 00 00
11 10 11 00
00 11 10 11

which has the same parameters.
The tail-biting terminated code C||[0,4) is the (8, 4) binary linear block code generated by

11 01 11 00
00 11 01 11
11 00 11 01
01 11 00 11

whereas the orthogonal tail-biting terminated code (C⊥)||[0,N) is the (8, 4) binary linear block code
generated by the four generators

11 10 11 00
00 11 10 11
11 00 11 10
10 11 00 11
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Both of these codes have a minimum distance of only 2 (e.g., for paths such as 01 00 01 00 from
state 10 to state 10 in C||[0,4)). However, for N ≥ 10, it turns out that the minimum distance of

both tail-biting terminated codes is 5, the same as the minimum free distance of C or C⊥.

5.2 Distance distributions of convolutional codes and terminated codes

In this subsection, we consider how the free distance spectrum of a linear time-invariant convolu-
tional code C may be derived from the weight distribution of any of these terminated codes of length
N as N → ∞. Then, in the next subsection, we show how the weight generating functions of any of
these terminated codes may be determined from the weight adjacency matrix of the convolutional
code. Again, the most elegant relationships are obtained for tail-biting terminated codes.

We continue to assume that the unique state sequence associated with the infinite all-zero code
sequence is the all-zero state sequence. Consequently, the lowest-weight words of a terminated code
as N → ∞ must be those that pass through the zero state almost all of the time. These code
sequences are as follows, for the various termination methods we have considered:

• If we terminate to the subcode C[0,N), then code sequences start and end in the zero state, and
the lowest-weight sequences correspond to the lowest-weight sequences in the free distance
spectrum. If the minimum free distance is dfree, then for dfree ≤ d < 2dfree there will be
approximately N ×Nd sequences in the terminated code of weight d, where Nd is the number
of code sequences of weight d in the free distance spectrum of C. Thus, for dfree ≤ d < 2dfree,
the weight distribution per unit time of C is the limit of the weight distribution of C[0,N)

normalized by (divided by) N as N → ∞. For d ≥ 2dfree, there will be overcounting— e.g.,
two sequences of weight dfree may be counted as one of weight 2dfree— but we will argue below
that such overcounting should not affect estimates of code performance.

• If we terminate to the projection C|[0,N), then code sequences can start and end in any state,
and there will be low-weight sequences starting with a low-weight state transition s → 0,
remaining in state 0 for nearly N time units, and then ending with a low-weight transition
0 → s′, where s and s′ are not both 0. Thus the minimum distance of C|[0,N) will be less than
dfree for all N . However, the number of such low-weight sequences remains constant, so after
normalization we will eventually see the same normalized weight distribution as for C[0,N).

• If we terminate to the truncated code C⊳[0,N), then by the same argument we will eventually
see the correct normalized weight distribution. In this case, for a code sequence that starts
in the zero state, remains there for nearly N time units, and then ends with a low-weight
transition 0 → s, the total weight is only that of the low-weight transition 0 → s. However,
again the number of such low-weight sequences remains constant, so after normalization we
will eventually see the correct normalized weight distribution.

• If we terminate to the tail-biting code C||[0,N), then by the same argument we will eventually
see the correct normalized weight distribution. Note however that in this case the total weight
of a code sequence starting with a low-weight transition s → 0, remaining in the zero state
for nearly N time units, and then ending with a low-weight transition 0 → s, must be at least
dfree, since the ending sequence (corresponding to the state transition 0 → s) followed by the
starting sequence (corresponding to s → 0) must be a cyclic shift of a code sequence of C.
Thus the minimum distance of C||[0,N) must equal dfree for large enough N .
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We conclude that as N → ∞ the normalized weight distribution of any of these terminated
codes approaches the free distance spectrum of C for dfree ≤ d < 2dfree. However, only the tail-biting
code has the same rate as C and the same minimum distance dfree (for large enough N).

We now argue that the normalized weight distribution of any of these terminated codes CN
must yield the same estimate of code performance over N time units as the free distance spectrum
of C, if these estimates are accurate. The probability of error event P (E) of C per unit time may be
estimated using the free distance spectrum. The probability of any error in N time units is then
estimated as NP (E). If this is a good estimate (implying N < 1/P (E)), then the probability of
two or more error events in N time units must be negligible. But the probability of any error in
decoding C over N time units is essentially the same as the probability of block decoding error in
decoding CN , which may be estimated by the weight distribution of N , which counts codewords
that include two or more error events. If the probability of two or more error events in N time
units is negligible, then an estimate based on the weight distribution of CN must approximately
agree with an estimate based on the free distance spectrum of C.

5.3 Free distance spectra for convolutional codes from terminated codes

We now show how weight generating functions for terminations of a linear time-invariant convo-
lutional code C may be derived from the weight adjacency matrix of the constraint code Ck that
specifies C. This will allow us to state MacWilliams identities for terminated convolutional codes,
and to estimate code performance.

We compute the Hamming weight distributions of these terminated codes as follows. Let
Λ[0,N)(x) be the Hamming weight adjacency matrix of C over the interval [0, N), whose elements
are indexed by S0 × SN . As we have seen in Example 2, if C is time-invariant and Λ(x) is the
HWAM of each constraint code Ck, then Λ[0,N)(x) is simply equal to ΛN (x).

From their definitions, we see that the HWGFs of various terminated codes of C can be read as
follows from the HWAM ΛN (x):

(a) The HWGF of the subcode C[0,N) is the (0, 0) element of ΛN (x).

(b) The HWGF of the projection C|[0,N) is the sum of all elements of ΛN (x).

(c) The HWGF of the truncated code C⊳[0,N) is the sum of all elements in the first row of ΛN (x).

(d) The HWGF of the reverse-truncated code C⊲[0,N) is the sum of all elements in the first column

of ΛN (x).

(e) The HWGF of the tail-biting code C||[0,N) is the sum of all diagonal elements of ΛN (x); i.e.,

its trace Tr (ΛN (x)) (see Example 5).

Example 3 (cont.). For the rate-1/2 binary convolutional code C of Example 3, the HWAM of a
section consisting of N = 2 time units of our example code C is thus

Λ2(x) =









1 x2 x3 x3

x3 x x2 x2

x2 x4 x x
x3 x x2 x2









.
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This shows that there is exactly one path from each state in Sk to each state in Sk+2, and that the
minimum Hamming weight of any of these paths (other than the zero path) is 1.

For a section consisting of N = 4 time units of this code, the HWAM is

Λ4(x) =









1 + 2x5 + x6 x2 + x3 + x4 + x7 x3 + 2x4 + x5 x3 + 2x4 + x5

x3 + 2x4 + x5 x2 + x3 + x5 + x6 2x3 + x4 + x6 2x3 + x4 + x6

x2 + x3 + x4 + x7 x2 + x4 + 2x5 x2 + x3 + x5 + x6 x2 + x3 + x5 + x6

x3 + 2x4 + x5 x2 + x3 + x5 + x6 2x3 + x4 + x6 2x3 + x4 + x6









.

This shows that there are four paths from each state in Sk to each state in Sk+4, and that the
minimum nonzero Hamming weight of any of these paths is 2.

The Hamming weight generating function of the tail-biting termination C||[0,4) of length 4 is

the trace of Λ4(x), namely 1 + 2x2 + 4x3 + x4 + 4x5 + 4x6. Since Λ̂4(x) happens to be the
transpose of Λ4(x), the orthogonal tail-biting terminated code (C⊥)||[0,4) has the same Hamming
weight generating function. It is easy to check that the Hamming weight generating function of
this code is indeed invariant under the MacWilliams transform.

Using tail-biting terminated codes, and normalizing the weight distribution by dividing by N ,
we have that the generating function of the normalized Hamming weight distribution of C is

gC(x) = lim
N→∞

1

N
Tr (ΛN (x)).

Moreover, there is a MacWilliams identity between gC(x) and gC⊥(x). The performance of C may
be estimated from gC(x), and that of C⊥ from gC⊥(x). (Similar observations are made in [2], using
truncated codes.)

It appears that the behavior of gC(x) might be analyzed by using an extension of Perron-
Frobenius theory to generating function matrices, as in [8]; however, we have not attempted such
an analysis.

Example 1 (cont.). For a section consisting of N = 16 time units of the rate-1/2 binary convolu-
tional code C of Example 1, the HWAM Λ16(x) (modulo x8) is

1 + 14x5 + 25x6 + 44x7 x2 + x3 + 2x4 + 4x5 + 8x6 + 29x7 x3 + 2x4 + 4x5 + 8x6 + 16x7 x3 + 2x4 + 4x5 + 8x6 + 16x7

x3 + 2x4 + 4x5 + 8x6 + 16x7 x5 + 3x6 + 8x7 x6 + 4x7 x6 + 4x7

x2 + x3 + 2x4 + 4x5 + 8x6 + 29x7 x4 + 2x5 + 5x6 + 12x7 x5 + 3x6 + 8x7 x5 + 3x6 + 8x7

x3 + 2x4 + 4x5 + 8x6 + 16x7 x5 + 3x6 + 8x7 x6 + 4x7 x6 + 4x7

Notice that
Tr (Λ16(x)) = 1 + 16x5 + 32x6 + 64x7 + · · · ,

so that normalizing the distribution by dividing the higher-order coefficients by N = 16 already
gives the precise free distance spectrum of C for d < 8, namely x5 + 2x6 + 4x7 + · · ·. Thus the
convergence to the limiting generating function gC(x) is rapid and exact. This property of tail-biting
codes is not shared by other kinds of terminations.
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Example 6 (cf. [16, 2]). The two codes proposed by Shearer and McEliece [16] for their counterex-
ample provide an excellent final example. The first code is a rate-1/3 binary linear time-invariant
convolutional code C1 generated by the degree-1 generators (1, 1 +D,D), i.e., C1 is generated by
a minimal encoder with impulse response is (110, 011, 000, . . .), whose trellis section is shown in
Figure 20(a). The HWAM of this encoder is

Λ1(x) =

[

1 x2

x2 x2

]

.
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0

1

0

������HHHHHH101

110
000

011

(a)
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0

1

0
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Figure 20: Trellis sections of (a) rate-1/3 2-state binary convolutional code C1; (b) similar code C2.

The second code is a rate-1/3 binary linear time-invariant convolutional code C2 generated by
the degree-1 generators (D,D, 1 + D), i.e., C2 is generated by a minimal encoder whose impulse
response is (001, 111, 000, . . .), whose trellis section is shown in Figure 20(b). The HWAM of this
encoder is

Λ2(x) =

[

1 x
x3 x2

]

.

Since the weights of the 0 → 0 and 1 → 1 transitions are the same for C1 and C2, and since
the sums of the weights of the 0 → 1 and 1 → 0 transitions are the same, it is evident that the
weight distributions of the subcodes (C1)[0,N) and (C2)[0,N) are the same for all N , and that the
free distance spectra of C1 and C2 are also the same. For the same reason, the weight distributions
of the tail-biting codes (C1)||[0,N) and (C2)||[0,N) are the same for all N .

However, the weight distributions of the projections (C1)|[0,N) and (C2)|[0,N) are not the same

even for N = 1. It follows that the weight distributions of the subcodes (C⊥
1 )[0,N) and (C⊥

2 )[0,N) of

their orthogonal rate-2/3 codes C⊥
1 and C⊥

2 are not the same, and therefore that their free distance
spectra are not the same; this was the point of Shearer and McEliece [16].

On the other hand, since the weight distributions of the tail-biting codes (C1)||[0,N) and (C2)||[0,N)

are the same for all N , it follows that the weight distributions of the tail-biting codes (C⊥
1 )||[0,N) and

(C⊥
2 )||[0,N) are the same for all N .

Since the performance of C⊥
1 and C⊥

2 may be estimated from these weight distributions as
N → ∞, it follows that the performance of C⊥

1 and C⊥
2 is effectively the same, despite the difference

in their free distance spectra.8

In summary, similarly to [2], we have shown that there is a MacWilliams identity between
the generating functions of the weight distributions per unit time of a linear convolutional code
C and its orthogonal code C⊥ (as calculated from their tail-biting terminations), and that these
distributions are as useful as their free distance spectra for estimating code performance. These
results effectively answer the question posed by Shearer and McEliece [16].

8Another way of reaching the same (or a stronger) conclusion is to observe that C1 and C2 are equivalent under a
simple finite-memory permutation. Therefore C⊥

1 and C⊥
2 must be equivalent under the same permutation, and thus

must have precisely the same performance on a memoryless channel with maximum likelihood decoding.
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