
MIT Open Access Articles

Fast Averaging

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bodas, Shreeshankar, and Devavrat Shah. “Fast Averaging.” IEEE International
Symposium on Information Theory Proceedings 2011 (ISIT). 2153–2157.

As Published: http://dx.doi.org/10.1109/ISIT.2011.6033939

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/72577

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72577
http://creativecommons.org/licenses/by-nc-sa/3.0/

Fast Averaging

Shreeshankar Bodas, Devavrat Shah

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

{bodas, devavrat}@mit.edu

Abstract—We are interested in the following question: given
n numbers x1, . . . , xn, what sorts of approximation of average
xave = 1

n
(x1 + · · · + xn) can be achieved by knowing only r of

these n numbers. Indeed the answer depends on the variation

in these n numbers. As the main result, we show that if the
vector of these n numbers satisfies certain regularity properties
captured in the form of finiteness of their empirical moments
(third or higher), then it is possible to compute approximation
of xave that is within 1± ε multiplicative factor with probability
at least 1 − δ by choosing, on an average, r = r(ε, δ, σ) of the
n numbers at random with r is dependent only on ε, δ and the
amount of variation σ in the vector and is independent of n.

The task of computing average has a variety of applications
such as distributed estimation and optimization, a model for
reaching consensus and computing symmetric functions. We dis-
cuss implications of the result in the context of two applications:
load-balancing in a computational facility running MapReduce,
and fast distributed averaging.

Index Terms—Averaging, Probabilistic approximation.

I. INTRODUCTION

We are interested in computing the average or the arithmetic

mean of a long vector of nonnegative real numbers. Mathe-

matically, the task could not be simpler: all we need is n− 1
additions and one division. This provides us with the exact

answer, requires n operations and the knowledge of all the n
numbers. The task of averaging has become of great interest

across a variety of applications in the context of distributed

optimization [1], [2], estimation [3], control and robotics [4],

[5], database operations [6], peer-to-peer networks [7] and so

on. On one hand, this seemingly simple problem is precisely

what is required in various applications. On the other hand,

it has served as the simplest non-trivial example to gather

insights for complex scenarios such as social learning [8]

and flocking of birds [9]. In most of the above mentioned

scenarios, the interest is in understanding how to obtain a

good approximate estimate of the average of the n numbers

with minimal effort, usually in a distributed manner.

A. Main result

Motivated to design a fast algorithm for computing the

average in a distributed manner, we study the properties of

a simple randomized estimator for average of n numbers

based on sampling fewer than n numbers: choose r samples at

random (with replacement1) and use their average as surrogate

for the average of the n numbers. Specifically, the goal is to

1If the samples are chosen by different, distributed agents or if the algorithm
operates with little memory, then sampling without replacement is not feasible.

understand the dependence of the approximation error (and

confidence) on the (average) number of samples r.
First suppose all the n numbers are equal in value, say 5.

Then for any r ≥ 1, the above stated algorithm produces the

exact estimate! At the other extreme, consider the sequence

of numbers with x1 = C (for some C > 0) and xi = 0
for i ≥ 2. Then we require r = Ω(n) in order to sample x1

even once and hence to estimate the mean within (constant)

multiplicative error with probability close to 1.
These two extreme examples suggest that in general the

number of samples needed to obtain a good estimate of the

average ought to depend upon the regularity of the sequence

of n numbers. As the main result of this paper, we obtain

bound on the number of samples needed to learn the average

within multiplicative error 1±ε with probability at least 1− δ
for given ε, δ ∈ (0, 1). To establish these results, we use the

following notion of regularity: the sequence of n numbers

must have uniformly bounded empirical third moment. If the

sequence is such that it has the exponential moment (defined

in Section II-A) uniformly bounded then it leads to tighter

bounds on approximation error and the number of samples

required. This result along with problem statement is described

in Section II. Note the difference between our result and the

classic results on the large deviations analysis of sampling

with/without replacement [10], where the rate-function results

are derived in terms of the entries of the given vector (as

opposed to its statistics).

B. Related work

There has been a very long line of research, especially in

recent years, to design fast distributed algorithms for comput-

ing the average of numbers in a given network represented by

a graph. This line of inquiry was initiated by Tsitsiklis [1]

and co-authors [11] where a linear iterative algorithm was

proposed with updates constrained by the network graph. It

was utilized as an important sub-routine for designing parallel,

distributed algorithms for a class of optimization problems [2].

More recently, inspired by applications in sensor and peer-

to-peer networks, robust and randomized variants of such

algorithms have been studied [7], [12]. In these and other

works such as [13], the algorithm’s running time was tied with

topological property of the communication network graph.

Various topology-specific improvements have been proposed

to improve the running time, e.g. use of geometry for graphs

like Geometric random graphs [14], or use of non-reversible

random walks for general graph [15]. The work by Mosk-

Aoyama and Shah [16] provides a simple algorithm with

seemingly optimal dependence on the graph topology (in the

form of inverse conductance). Information theoretic approach

has been developed in [17] to capture such a qualitative aspect

in the lower bound. A more direct lower bound for linear

(or Lipschitz) iterative algorithms has been developed for

ring(like) graphs [18].

In all of the above work, the primary goal has been to

understand the effect of network structure on computing the

average of an arbitrary sequences of n numbers. Here the focus

is to capture the effect of regularity of the sequence of n
numbers on the amount of information needed (the number of

samples required) to learn a good estimate of the average.

C. Application

While the viewpoint of this work differs from the literature

as explained, it does help in designing better distributed

averaging algorithms. In particular, we describe the natural

adaptation for computing average of numbers in a distributed

manner in the network. We relate the computation time with

the graph structure using the main result mentioned earlier.

This is discussed in Section III-B.

The task of averaging is computationally equivalent to

computing a symmetric function. The recently emerging com-

putational framework for large data centers, the MapReduce

introduced by researchers at Google, Inc. [19] is precisely

attempting to compute symmetric functions. In this sense,

averaging provides a convenient abstract model to study var-

ious aspects of system design for the data centers utilizing

MapReduce. Specifically, we study the question of load-

balancing on the commodity servers in the context of task

assignment in MapReduce. In Section III-A, we provide a

simple randomized algorithm for this, based on the main result.

II. MAIN RESULT

In this section, we establish Theorem 1 as the main result of

the paper. This result provides an upper-bound on the number

of samples required to get an (ε, δ)-approximation for the

arithmetic mean of a given vector.

A. Problem statement

For the purpose of the empirical mean calculation, we

assume that {xj}nj=1 are the first n numbers of a fixed

sequence {xj}∞j=1. Given the n non-negative real numbers

x1, . . . , xn, we wish to compute their average or arithmetic

mean xave = (1/n)
∑n

j=1 xj . We assume that the sequence

satisfies the following regularity conditions:

[C1.] Bounded mean, variance: There exist real numbers

0 < ν < µ and σ > 0 so that for all n, ν ≤ xave ≤
µ, and 1

n

∑n
j=1(xj − xave)

2 ≤ σ2.
The mean and variance of the given n numbers depend

upon the parameter n. We interchangeably use the nota-

tion µn := xave and σn :=
(

1
n

∑n
j=1(xj − xave)

2
)1/2

.

[C2a.] Bounded kth moment: There exist an integer k ≥
3 and α > 0 such that for all n,

(

1
n

n
∑

j=1

xk
j

)1/k

≤ α.

[C2b.] Bounded exponential moment: There exist ρ >

0, β > 0 so that for all n,
1

n

n
∑

j=1

x3
je

ρxj ≤ β.

Note: the condition [C2b] implies [C2a] for all k < ∞.

B. Proposed Algorithm and its properties

Algorithm: A given entry xi in the vector is sampled Yi times,

where Yi ∼ B(r, 1/n) is a binomial random variable. All the

Yis are mutually independent. Declare Ŷ =
∑

j xjYj
∑

j Yj
as the

estimate of xave. ⋄
Note that the average number of samples under the algo-

rithm is r, as the vector has n entries. We now analyze the

approximation error in the estimator Ŷ .

Theorem 1 (Probability of Error): Given a sequence of n
numbers x1, . . . , xn satisfying regularity conditions [C1]-

[C2a] or [C1]-[C2b], let Ŷ be the estimation of xave =
1
n

(

∑n
i=1 xi

)

under the sampling algorithm as described

above. Then for any given ε > 0 small enough and δ > 0,

P

(∣

∣

∣

xave − Ŷ

xave

∣

∣

∣
≥ ε
)

≤ δ, (1)

as long as

1. r ≥
(

1
ε2 log

2
δ

)

· 20(µ2+σ2)2

ν4 under [C1]-[C2a].

2. r ≥
(

1
ε2 log

2
δ

)

· 20(µ2+σ2)
ν2 under [C1]-[C2b].

Proof: Due to space limitations, we only prove the

result assuming the conditions [C1]-[C2a] (the first part).

The proof of the second part is similar, the only difference

is the constant terms. The proof is based on the Chernoff

bound and the union bound. The main idea is to show that

(1/n)
∑

j xjYj → rµn/n and (1/n)
∑

j Yj → r/n, so that

their ratio converges to µn. In the process, we obtain the

respective rates of convergence. The proof proceeds according

to the following steps:

Step 1: Let Wn := 1
n

∑n
j=1 Yj . Then given ǫ ∈ (0, 1) there

exists δ > 0 such that for all n,

P (|Wn − r/n| ≥ ǫr/n) ≤ e−nδ.

Further, the choice

δ = (r/n)min ((1− ǫ) log(1− ǫ) + ǫ, (1 + ǫ) log(1 + ǫ)− ǫ)

satisfies the stated bound.

Proof: (of Step 1) Fix any ǫ ∈ (0, 1). By the Cher-

noff bound, P (|Wn − c| ≥ ǫc) ≤ exp

(

− inf
|t−c|≥ǫc

Λ∗
Wn

(t)

)

,

where

Λ∗
Wn

(y) = sup
θ∈ℜ

(yθ − ΛWn
(θ))

and (with p = 1/n)

ΛWn
(θ) = logE(eθWn) = log

(

1 + p(eθ/n − 1)
)rn

(a)

≤ log
(

ep(e
θ/n−1)

)rn

= r(eθ/n − 1),

where (a) holds because ex ≥ 1 + x for all x ∈ ℜ. Thus,

Λ∗
Wn

(y) ≥ sup
θ∈ℜ

(

yθ − r(eθ/n − 1)
)

= n
(

y log
yn

r
− y +

r

n

)

,

after some calculus. The function f(y) = y log(yn/r) −
y + r/n is nonnegative and convex for y > 0, and has the

minimum at y = r/n with f(r/n) = 0. It follows that for all

ǫ ∈ (0, 1), f((r/n)(1± ǫ)) > 0. Therefore,

P (|Wn − r/n| ≥ ǫr/n) ≤ e[−rmin(f((r/n)(1−ǫ)),f((r/n)(1+ǫ)))],

completing the proof of Step 1.
Step 2: Let Vn := 1

n

∑n
j=1 xjYj . Then there exists ǫ0 > 0

such that for all ǫ ∈ (0, ǫ0) there exists δ > 0 such that

P (|Vn − rµn/n| ≥ ǫ) ≤ e−nδ.

Proof: (of Step 2) Fix any ǫ ∈ (0, rν/n). By the Chernoff

bound,

P (|Vn − rµn/n| ≥ ǫ) ≤ exp

(

− inf
|t−rµn/n|≥ǫ

Λ∗
Vn

(t)

)

,

where Λ∗
Vn

(y) = sup
θ∈ℜ

(yθ − ΛVn
(θ))

and ΛVn
(θ) = logE

(

eθVn
)

≤ r

n

n
∑

j=1

(eθxj/n − 1),

after some calculations and using (as before) ex ≥ 1 + x for

all x ∈ ℜ. Define f(θ) := yθ − r
n

∑n
j=1 e

θxj/n + r. Then

Λ∗
Vn

(y) ≥ sup
θ∈ℜ

f(θ) ≥ f(θ0), for any θ0 ∈ ℜ.

Choosing θ0 = n2(y − rµn/n)/(r(µ
2
n + σ2

n)), we get

f(θ0) = h(y) :=
n2y(y − rµn/n)

r(µ2
n + σ2

n)
− r

n

n
∑

j=1

e
xj(y−rµn/n)

r(µ2
n+σ2

n)/n + r.

We have h(rµn/n) = 0, h′(rµn/n) = 0, and

h′′(rµn/n) =
n

r(µ2
n + σ2

n)/n
≥ n

r(µ2 + σ2)/n
> 0.

Therefore (using Taylor’s Theorem), there exists ǫ0 > 0
such that for all ǫ ∈ (0, ǫ0) there exists δ > 0 such that

Λ∗
Vn

(rµn/n± ǫ) > nδ, completing the proof of Step 2.
Step 3: Define τ := (µ2+σ2)/(αν), γ := rν2/(2nα2). Then

for all a, δ > 0 there exists an integer n0 such that for all

n ≥ n0,

P

(
∣

∣

∣

1

n

n
∑

j=1

xjYj −
rµn

n

∣

∣

∣
≥ rµnaτ

n k
√
n

)

≤ e−(a2γ−δ)n1−2/k

.

Proof: (of Step 3:) We only prove the claim for the case
a = 1, because the more general case is an immediate conse-

quence. We have τ ≥ µ2
n + σ2

n

αµn
, thus

rµnτ

n k
√
n

≥ r(µ2
n + σ2

n)

n k
√
nα

,

implying

P

(
∣

∣

∣

∣

∣

1

n

n
∑

j=1

xjYj −
rµn

n

∣

∣

∣

∣

∣

≥ rµnτ

n k
√
n

)

≤ P

(
∣

∣

∣

∣

∣

1

n

n
∑

j=1

xjYj −
rµn

n

∣

∣

∣

∣

∣

≥ r(µ2
n + σ2

n)

n k
√
nα

)

. (2)

Define ǫn = r(µ2
n + σ2

n)/(n
k
√
nα) ≤ r(µ2 + σ2)/(n k

√
nα)

and consider y = rµn/n+ ǫn and fix an integer w ≤ k. From

the proof of Step 2, we have Λ∗
Vn

(y) ≥ h(y) for all y and our
objective now is to lower-bound the value of h(y). For any
ζ ∈ [0, 1], we get

|h(w)(rµn/n+ ζǫn)| = n

r

n2

n
∑

j=1

xw
j e

xjζǫn

r(µ2
n+σ2

n)/n

rw(µ2
n + σ2

n)w/nw

(a)

≤ n

[

r

n2

n
∑

j=1

xw
j e

ζ

rw(µ2
n + σ2

n)w/nw

]

(b)

≤ rαwe

rw(µ2
n + σ2

n)w/nw
, (3)

where the inequality (a) holds because xj ≤ α k
√
n for all

1 ≤ j ≤ n for all n, and the inequality (b) holds because

for all 1 ≤ w ≤ k, w

√

1
n

n
∑

j=1

xw
j ≤ k

√

1
n

n
∑

j=1

xk
j ≤ α. Using

Taylor’s theorem and with γn := rµn/n, we get

h (γn + ǫn) = h (γn) + ǫnh
′ (γn) +

ǫ2nh
′′ (γn)

2!
+

ǫ3nh
(3) (ξ)

3!

for some ξ ∈ [rµn/n, rµn/n + ǫn]. Using the bound (3) on

the absolute value of h(w)(rµn/n+ ζǫn), we see that

h(rµn/n+ ǫn) = γn1−2/k + o(n1−2/k)

for some constant γ with 0 < γ =
rν2

2nα2
≤ r(µ2

n + σ2
n)

2nα2
.

Since Λ∗
Vn

(y) ≥ h(y) for all y (from the proof of Step 2),

Λ∗
Vn

(rµn/n+ ǫn) & γn1−2/k.

More formally, for all δ > 0 there exists n1 large enough such

that for all n ≥ n1,

Λ∗
Vn

(rµn/n+ ǫn) ≥ (γ − δ)n1−2/k.

Using essentially the same argument, we can show that

h(rµn/n− ǫn) = γn1−2/k + o(n1−2/k),

and for all δ > 0 there exists n2 large enough such that for

all n ≥ n2, Λ
∗
Vn

(rµn/n− ǫn) ≥ (γ − δ)n1−2/k.
Thus, the choice τ = (µ2+σ2)/(αν) and γ = rν2/(2nα2),

along with an application of the Chernoff bound, gives us (for
n ≥ max(n1, n2))

P

(
∣

∣

∣

∣

∣

1

n

n
∑

j=1

xjYj − rµn/n

∣

∣

∣

∣

∣

≥ rµnaτ

n k
√
n

)

≤ e−(a2γ−δ)n1−2/k

,

completing the proof of Step 3.
Step 4: For γ = rν2/(2nα2), τ = (µ2 + σ2)/(αν) and any

a, δ > 0, for n large enough,

P

(

∑n
j=1 xjYj
∑n

j=1 Yj
/∈
(

µn

1− aτ
k
√
n

1 + aτ
k
√
n

, µn

1 + aτ
k
√
n

1− aτ
k
√
n

))

≤ 2 exp
[

−(a2γ − δ)n1−2/k
]

.

Proof: Fix ǫ = ǫn = aτ/ k
√
n for some constant a > 0.

Step 1 implies that for some δ > 0 and for all n,

P

(
∣

∣

∣

∣

∣

1

n

n
∑

j=1

Yj −
r

n

∣

∣

∣

∣

∣

≥ ǫr/n

)

≤ e−nδ,

with

δ(ǫ) =
r

n
min ((1− ǫ) log(1− ǫ) + ǫ, (1 + ǫ) log(1 + ǫ)− ǫ) .

For n large (i.e., ǫ = ǫn small), δ ≈ rǫ2/(2n) using the

approximation log(1 + x) ≈ x. More formally, for any θ > 0
there exists n0 such that for all n ≥ n0,

δ(ǫ) ≥ (1− θ)ra2τ2

2n2/k
.

From Step 3, for all δ > 0 and all n large enough,

P

(
∣

∣

∣

∣

∣

1

n

n
∑

j=1

xjYj − rµn/n

∣

∣

∣

∣

∣

≥ rµnaτ

n k
√
n

)

≤ e−(a2γ−δ)n1−2/k

.

If 1
n

∑n
j=1 xjYj ∈ ((rµn/n)(1− ǫ), (rµn/n)(1 + ǫ)) and

1
n

∑n
j=1 Yj ∈ ((r/n)(1− ǫ), (r/n)(1 + ǫ)), then (determinis-

tically)
∑n

j=1 xjYj
∑n

j=1 Yj
∈
(

µn
1− ǫ

1 + ǫ
, µn

1 + ǫ

1− ǫ

)

.

Therefore, by the union bound,

P

(

∑n
j=1 xjYj
∑n

j=1 Yj
/∈
(

µn
1− ǫ

1 + ǫ
, µn

1 + ǫ

1− ǫ

)

)

≤ P

(

1

n

n
∑

j=1

xjYj /∈ ((rµn/n)(1− ǫ), (rµn/n)(1 + ǫ))

)

+ P

(

1

n

n
∑

j=1

Yj /∈ ((rµn/n)(1− ǫ), (rµn/n)(1 + ǫ))

)

≤ e−(1−θ)((r/n)a2τ2/2)n1−2/k

+ e−(a2γ−δ)n1−2/k

≤ 2e−(a2γ−δ)n1−2/k

for n large enough, since rτ2 ≥ 2nγ. This completes the

proof of Step 4.

Step 5:
(

1−ε
1+ε ,

1+ε
1−ε

)

⊆ (1− 3ε, 1 + 3ε) for ε ≤ 1/3, imply-

ing (after simple manipulations), for all δ > 0 and all n large

enough, that

P

(∣

∣

∣
(xave − Ŷ)/xave

∣

∣

∣
> ε
)

≤ 2e
− rε2ν4

20(µ2+σ2)2 .

Thus for given δ > 0, ε > 0, it is enough to take r =
⌈(

1

ε2
log

2

δ

)

· 20(µ
2 + σ2)2

ν4

⌉

samples of the given vector

{xj}nj=1 (as specified by the algorithm) to estimate the arith-

metic mean xave within the stated error bounds. This completes

the proof of Theorem 1.

III. APPLICATIONS

A. MapReduce

As a first application, we look at the problem of allocating

servers to jobs in a large data center. The data centers, con-

sisting of hundreds of interconnected servers and disks, have

emerged as canonical solutions for processing large volumes of

data in real time, and are used by internet content and services

providers such as Google, Microsoft, Amazon, Facebook, etc.

Many of the computational tasks that are performed in a data

center (e.g., searching for a string of text in a collection of files,

counting URL access frequency, etc.) are simple mathematical

operations, but the sheer volume of data makes the problem

nontrivial. MapReduce [20], [19], patented by Google, Inc. is

a computational framework (and its implementation) that is de

facto architecture for these data center applications.

In MapReduce, there are two phases of computation: the

Map phase and the Reduce phase, where the Map and the Re-

duce function are user-defined. The Map phase consists of the

individual servers processing large volumes of data in parallel,

producing intermediate outputs. This is the computationally

intensive phase. The Reduce phase combines the intermediate

outputs to produce the final output. The Reduce function

processes a list of the intermediate outputs and is insensitive to

the order in which the inputs are presented, and also to which

server processed which part of the data. Thus, the Reduce

function depends only on the histogram of the input (i.e., the

number of times each of the input values is present in the

list). If the application allows for an approximate answer and

a small probability of error (which includes many applications

of interest, like a web search query), then Theorem 1 can

be used to design an algorithm for allocating the different

computational jobs to the individual servers in the Map phase.

The problem: Suppose there are m servers and n files in the

system. When a server processes a file Fj for a given job, it

produces a number xj that is specific to the job. The desired

output is (1/n)
∑

i xi.
Server allocation algorithm: Each of the servers Si selects,

at random, with a pre-determined probability, a file Fj and

processes it. It reports to the central server the following two

numbers: (1) The sum of the xjs of the processed files, ai,
and (2) the number of files processed, bi. The central server

(implementing the Reduce function) outputs (
∑

i ai)/(
∑

i bi)
as the estimate of the mean of xis. ⋄

Some salient features of the algorithm are: (a) robust

against node failure due to the randomized nature, (b) totally

distributed server allocation, (c) scales well with the system

size as it does not require any global knowledge related to

system state, and (d) minimal communication between the

central server and the other servers.

Performance: The probability of error v/s number of samples

trade-off (Theorem 1) applies here, if the vector of xis obeys

the regularity properties. We have analyzed the per-query delay

under the algorithm: what is the probability that a typical

query takes more than T units of processing time, in terms

of the server speeds and the system loading. This probability

is O(Tn2 exp(−(n/m)Tf(c, c0)), where f(c, c0) is a simple

function of the server loading and the server speed. Due to

space limitations, a precise statement of the result and its proof

is omitted. Please see [21] for more details.

B. Consensus over Graphs

The problem: We are given a connected, undirected network

graph G = (V,E) with n vertices represented as V =
{1, . . . , n} and edges E ⊂ V ×V . Each node i ∈ V has value

xi and the goal is to compute the average of these numbers

xave at all nodes.

In the prior works, various algorithms have been proposed

that try to utilize a graph G-conformant, irreducible non-

negative valued doubly stochastic matrix P ∈ [0, 1]n×n.

The linear iterative algorithm and its variants that has been

studied since [1] takes roughly Tmix(ε) iterations to compute an

estimate of xave that is within 1±ε multiplicative error. Here by

Tmix(ε), we mean the ε-mixing time of the probability matrix

P which is characterized by the spectral gap of P (see [22]

for example, for details). The total number of operations

performed by such algorithms scale proportional to the number

of edges in the G. Even the randomized or Gossip variant

of such algorithm [3] requires Ω(n) operations per iteration.

Therefore, total amount of computation performed is at least

Ω
(

nTmix(ε)
)

.

The non-reversible Markov chains based on lifting of the

graph proposed by Jung et al [15] leads to ε-mixing time that

scales as Θ
(

D log 1/ε
)

where D is the diameter of the graph.

Combined with the above calculation, this leads to a lower

bound of Ω
(

nD log 1/ε
)

on total computation performed by

best of such an algorithm.

Theorem 1 suggests that if we can sample r = r(ε, δ) of

the values uniformly at random then if xis satisfy the regular

conditions [C1]-[C2b], then we can obtain desired estimation

of average xave.

Consensus algorithm: Generate a binomial random variable

R ∼ B(rn, 1/n), where r is specified by Theorem 1. Imagine

a token taking a random walk over the graph G as specified by

the transition probability matrix P with a uniform stationary

distribution (i.e., a doubly stochastic matrix). Take R samples

of the xis, one at the end of each Tmix(ε) time interval (total

time required = RTmix(ε)). Compute the arithmetic mean of

the collected samples and broadcast in the network. ⋄
Analysis: Since the random walk takes O(1) operations per

time step (we are assuming selection of random choice as

per P at each step is O(1) operation), the total computation

performed is (on an average) O(rTmix(ε)). To spread the esti-

mate among all nodes, it could perform broadcast which would

require addition at most 2|E| information exchanges. Thus, in

summary such an algorithm would achieve 1±O(ε) estimation

with total of amount of computation/communication scaling

as O
(

|E| + rTmix(ε)
)

. For constant-degree expanders graph,

this is O(n + r log n/ε); for ring graph (with non-reversible

random walk) it is O
(

n + rn log 1/ε
)

. For example, if the

xis have a uniformly bounded exponential moment, then

the computation/communication scaling for the ring graph is

O(n(1/ε2) log(2/δ) log(1/ε)), which is better than the earlier-

known bounds in terms of their dependence on n or D.

IV. CONCLUSION

We investigated the problem of computing the arithmetic

mean of a given (long) vector of real numbers with as few

samples as possible. We showed that the regularity properties

of the sequence (namely, the existence of uniformly bounded

moments) plays a crucial role in determining the number of

required samples. We presented a simple randomized algo-

rithm for mean computation that is essentially order-optimal

as long as we only allow for a “reasonable” amount of

randomness. We showed how the result is useful in designing

server allocation algorithms in a large server farm, and also

for consensus over graphs.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of

DARPA ITMANET project.

REFERENCES

[1] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” Ph.D. dissertation, Massachusetts Institute of Technology,
November 1984.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-

tion: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[3] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip

algorithms,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp. 2508–2530,
2006.

[4] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,” in
Joint 44th IEEE Conference on Decision and Control and European

Control Conference (CDC-ECC’05), December 2005.
[5] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile

autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.

Control, vol. 48, no. 6, pp. 988–1001, 2003.
[6] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: a tiny

aggregation service for ad-hoc sensor networks,” SIGOPS Oper. Syst.

Rev., vol. 36, no. SI, pp. 131–146, 2002.
[7] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of

aggregate information,” in Proc. Ann. IEEE Symposium on Foundations

of Computer Science, Oct. 2003.
[8] B. Golub and M. Jackson, “Naive learning in social networks: Con-

vergence, influence and the wisdom of crowds,” American Economic

Journal: Microecnomics, vol. 2, no. 1, pp. 112 – 149, Feb. 2010.
[9] M. Nagy, Z. Akos, D. Biro, and T. Vicsek, “Hierarchical group dynamics

in pigeon flocks,” Nature, vol. 464, pp. 890 – 893, Apr. 2010.
[10] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-

tions, 2nd ed. Springer-Verlag New York, Inc., 1998.
[11] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asyn-

chronous deterministic and stochastic gradient optimization algorithms,”
IEEE Transactions on Automatic Control, vol. 31, no. 9, pp. 803 – 812,
Sep. 1986.

[12] S. Samar, S. Boyd, and D. Gorinevsky, “Distributed estimation via dual
decomposition,” in European Control Conference, Jul. 2007.

[13] A. Tahbaz-Salehi and A. Jadbabaie, “Consensus over ergodic stationary
graph processes,” IEEE Transactions on Automatic Control, vol. 55,
no. 1, pp. 225 – 230, Jan. 2010.

[14] F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli, “Order-optimal
consensus through randomized path averaging,” IEEE Trans. Inform.

Theory, vol. 56, no. 10, pp. 5150 – 5167, Oct. 2010.
[15] K. Jung, D. Shah, and J. Shin, “Distributed averaging via lifted markov

chains,” IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 634–647, Jan.
2010.

[16] D. Mosk-Aoyama and D. Shah, “Fast distributed algorithms for com-
puting separable functions,” IEEE Trans. Inform. Theory, vol. 54, no. 7,
pp. 2997 – 3007, Jul. 2008.

[17] O. Ayaso, D. Shah, and M. Dahleh, “Information theoretic bounds for
distributed computation over networks of point-to-point channels,” IEEE

Trans. Inform. Theory, vol. 56, no. 12, pp. 6020 – 6039, Dec. 2010.
[18] A. Olshevsky, “Efficient information aggregation strategies for dis-

tributed control and signal processing,” Ph.D. dissertation, Massachusetts
Institute of Technology, Sep. 2010.

[19] J. Dean and S. Ghemawat, “System and method for efficient large-scale
data processing,” Jan. 2010.

[20] ——, “Mapreduce: Simplified Data Processing on Large Clusters,” in
Proc. Operating Systems Design and Implementation, Dec. 2004.

[21] S. Bodas and D. Shah, “Fast averaging: Tech report,” http://www.mit.
edu/∼bodas/fast avg tech report.pdf, 2011.

[22] R. Montenegro and P. Tetali, “Mathematical aspects of mixing times in
markov chains,” Found. Trends Theor. Comput. Sci., vol. 1, no. 3, pp.
237–354, 2006.

