
MIT Open Access Articles

Memory coherence in the age of multicores

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lis, Mieszko et al. “Memory Coherence in the Age of Multicores.” IEEE 29th
International Conference on Computer Design 2011 (ICCD). 1–8.

As Published: http://dx.doi.org/10.1109/ICCD.2011.6081367

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/72582

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72582
http://creativecommons.org/licenses/by-nc-sa/3.0/

Memory coherence in the age of multicores
Mieszko Lis Keun Sup Shim Myong Hyon Cho Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract—As we enter an era of exascale multicores, the question of
efficiently supporting a shared memory model has become of paramount
importance. On the one hand, programmers demand the convenience of
coherent shared memory; on the other, growing core counts place higher
demands on the memory subsystem and increasing on-chip distances
mean that interconnect delays are becoming a significant part of memory
access latencies.

In this article, we first review the traditional techniques for providing
a shared memory abstraction at the hardware level in multicore systems.
We describe two new schemes that guarantee coherent shared memory
without the complexity and overheads of a cache coherence protocol,
namely execution migration and library cache coherence. We compare
these approaches using an analytical model based on average memory
latency, and give intuition for the strengths and weaknesses of each.
Finally, we describe hybrid schemes that combine the strengths of
different schemes.

I. INTRODUCTION

Although in the past decade heat dissipation limits have halted
the drive to higher and higher core frequencies, transistor density
has continued to grow [1], and CPUs with four or more cores
have become common in the commodity and server-class general-
purpose processor markets [2]. To further improve performance and
use the available transistors more efficiently, architects are resorting
to medium and large-scale multicores both in academia (e.g., Raw [3],
TRIPS [4]) and industry (e.g., Tilera [5,6], Intel TeraFLOPS [7]), and
industry pundits are predicting 1000 or more cores in a few years [8].

How will these massively-multicore chips be programmed? A
shared memory abstraction stands out as a sine qua non for general-
purpose programming: while architectures with restricted memory
models (most notably GPUs) have enjoyed immense success in
specific applications (such as rendering graphics), most programmers
prefer a shared memory model [9], and small-scale commercial
general-purpose multicores have supported this abstraction in hard-
ware. The main question, then, is how to efficiently provide coherent
shared memory on the scale of hundreds or thousands of cores.

The main barrier to scaling current memory architectures is the off-
chip memory bandwidth wall [8,10]: off-chip bandwidth grows with
package pin density, which scales much more slowly than on-die
transistor density [1]. Since rising core counts mean higher memory
access rates, these bandwidth limitations require that more of the data
be stored on-chip to reduce the number of off-chip memory accesses:
today’s multicores integrate large shared (monolithic) last-level on-
chip caches [2]. Such shared caches, however, do not scale beyond
relatively few cores, and their power requirements of large caches
(which grow quadratically with size) exclude their use in chips on the
scale of 100s of cores (the Tilera Tile-Gx 100, for example, does not
have a shared cache). Large multicores, then, are left with relatively
small per-core caches; for programmability, these must present the
abstraction of a unified addressing space, and, for efficiency, this
abstraction must be managed automatically at the hardware level.

Architects implementing shared memory in large-scale multicores
face a dilemma. On the one hand, the large scale implies that data
should be cached close to the core that is operating on it, since
even relatively efficient interconnects can take a long time to transfer

data among per-core caches (in a 1024-core processor connected
with a 32× 32 2D mesh, 62 hops—likely of two or three clock
cycles each not counting congestion—are required to cross the die).
On the other hand, off-chip memory bandwidth limits mean that
the implementation should keep as much data as possible in on-
chip caches: since on-chip cache capacity is necessarily limited, this
implies minimizing replication of the same data in multiple caches.

In the remainder of this article, we describe two traditional shared
memory implementations—one which permits shared data to be
replicated and one which does not—and two novel approaches:
execution migration and library cache coherence. We then compare
them using analytical models based on per-access average memory
latency, and illustrate the conditions under which they perform well.
Finally, we outline hybrid approaches which balance the strengths
and weaknesses of each scheme.

II. SHARED MEMORY IMPLEMENTATIONS

When multiprocessors consisted of a few separate processors on a
common memory bus, keeping caches coherent was relatively simple:
since all per-processor caches observed the memory-bus activity of
other processors at the same time, caches in a write-through system
could “snoop” on the bus and automatically invalidate or update
entries when other processors modified them (e.g., [11]). But, with
higher core counts and many clock cycles required to cross the chip,
such atomic broadcasts have become impractical, and as the number
of cores has become large, snoopy caches are no longer viable [12].

A. Directory Cache Coherence
On scales where bus-based mechanisms fail, the traditional solution

to this dilemma has been directory-based cache coherence (DirCC):
a logically central directory coordinates sharing among the per-core
caches, and each core cache must negotiate shared or exclusive access
to each cache line via a coherence protocol [13].

The simplest classical instance of directory coherence is the MSI
protocol, in which each line in the cache can live in one of three
states: Modified (meaning that the cache has the most up-to-date
data and everyone else’s copies are invalid), Shared (meaning that
the cache has the most up-to-date data but can only access it for
reads as there may be other copies in the system), or Invalid (the
data may not be accessed). The (logically central) directory keeps
track of every line cached anywhere in the system, together with a
list of sharers (caches that contain a copy of the data) who must be
contacted if the cache line is to be written. From the standpoint of
a single memory operation, accessing memory address A in the core
cache C looks like this:

1) if the state of the cache line in C containing A allows the type
of access requested (i.e., if the request is a LOAD and the cache
line is in the S state, or the request is a STORE and the cache
line is in the M state), complete the request;

2) otherwise:
a) send a request from C to the directory D for the cache

line containing A in S (for LOADs) or M (for STOREs)
state; then,

b) if there are sharers incompatible with the request (any
sharers for an M-state request or an M-state sharer for an
S-state request),
i) send a request from D to each sharer requesting that

the cache line containing A be invalidated,
ii) wait for an invalidate acknowledgement or writeback

from each sharer, and
iii) if a writeback was received, write the new value to

the backing DRAM or the next-level cache;
c) retrieve the data from DRAM or the next-level cache

(optionally bypass writeback data if a writeback was
received);

d) send a reply message from D to C granting the requested
access level;

3) complete the memory access and continue execution.

The main advantages of a directory-based coherence protocol are
that (a) when data is only used by one core and fits in its cache, both
reads and writes are fast as they can be accomplished locally, and (b)
when data is written very infrequently but read often and concurrently
by many cores, the fast local reads amortize the relatively high cost
of the infrequent writes.

Outside of those scenarios, however, directory coherence protocols
incur significant overheads. Consulting the directory requires an
indirection (especially when multiple sharers must be invalidated),
which significantly contributes to the latency incurred on a cache
miss. Write requests especially can not only require invalidations in
all other sharers but also cause cache misses (and the associated
latency) should the sharers access the relevant cache line again. In
addition, replication of data in per-core caches effectively reduces
the total capacity of the on-chip caches in the system and increases
the off-chip memory access rate, since significant parts of the caches
store data that are also cached elsewhere on the chip.

Directories themselves also have significant costs in hardware.
Since they must know about every line cached in any private core
cache in the system, directory sizes must equal a significant portion of
the combined size of the per-core caches: a directory that is too small
will experience frequent evictions (which cause invalidations in all of
the caches that contain the relevant data) that limit performance [13].
The protocol amounts to a complex set of cooperating state machines
with many actors (directories, caches) and, because a wide range of
combinations of final and in-progress states must be considered, the
protocol can be tricky to implement and costly to verify [14].

An alphabet soup of protocols has followed MSI to optimize
specific inefficiencies. Owned or Forward states allow data for new
S-state requests to be satisfied not by the main memory but by
cache-to-cache transfers from a designated on-chip cache responsible
for serving requests for the given cache line. Exclusive and Recent
states allow a cache line that has been read by only one core to
be modified without interacting with the directory if no other cache
has accessed it since the read, reducing write costs especially for
systems where cached data tends to be private to one thread. While
these extra states offer performance improvements in specific cases,
they combinatorially expand the state space of the whole system, and
their benefits must be carefully weighed against the additional costs
in implementation and verification efforts.

B. Remote Cache Access

Remote Access (RA) memory architectures eschew capacity-
eroding replication entirely by combining the per-core caches into
one large virtual non-uniform cache access (NUCA) cache [15]. The

address space is divided among the cores in such a way that each
address is assigned to a unique home core where it can be cached;
when a thread wishes to access an address not assigned to the core
it is running on, it contacts the home core with a request to perform
the memory operation on its behalf [16].

Since accesses to addresses cached at remote cores involve a round-
trip on the interconnect, good address-to-core assignment is critical
for performance. For maximum data placement flexibility, each core
might include a Core Assignment Table (CAT), which stores the home
core for each page in the memory space. Akin to a TLB, the per-core
CAT serves as a cache for a larger structure stored in main memory.
In such a system, the page-to-core assignment might be made when
the OS is handling the page fault caused by the first access to the
page; the CAT cache at each core is then filled as needed.

For each memory operation under RA, the system must:
1) compute the home core H for A (e.g., by consulting the CAT

or masking the appropriate bits);
2) if H = C (a core hit),

a) forward the request for A to the cache hierarchy (possibly
resulting in a DRAM or next-level cache access);

3) if H 6= C (a core miss),
a) send a remote access request for address A to core H;
b) when the request arrives at H, forward it to H’s cache

hierarchy (possibly resulting in a DRAM access);
c) when the cache access completes, send a response back

to C;
d) once the response arrives at C, continue execution.

Compared to DirCC, RA is easy to implement and simple to verify,
since the protocol consists of simple peer-to-peer messages between
two core caches rather than a complex dance involving the directory
and other core caches. Because only the home core can read or
write any address, write atomicity and sequential consistency are
trivially ensured. Furthermore, since pure RA restricts any address
to be cached in only one location, it can potentially greatly increase
the effective capacity of the total on-chip cache and steeply reduce
off-chip memory access rates compared to directory-based coherence,
ameliorating the off-chip memory bandwidth wall problem.

This comes at a price, however, as accessing data cached on a
remote core requires a potentially expensive two-message round-trip:
where a directory-based protocol would take advantage of spatial
and temporal locality by making a copy of the block containing the
data in the local cache, remote-access NUCA must repeat the round-
trip for every remote access to ensure sequential memory semantics.
This makes effective thread assignment and data placement critical
for RA architectures. Optimally, to reduce remote cache access
costs, data private to a thread should be assigned to the core the
thread is executing on or to a nearby core; threads that share data
should be allocated to nearby cores and the shared data assigned to
geographically central cores that minimize the average remote access
delays. In some cases, efficiency considerations might dictate that
critical portions of shared read-only data be replicated in several per-
core caches to reduce overall access costs.

Data assignment, migration, and replication techniques have been
previously explored in the NUMA context (e.g., [17]), and variants
of NUCA and RA are able to move private data to its owner core
and replicate read-only shared data among the sharers at the OS level
(e.g., [10, 18, 19]) or aided by hardware (e.g., [2022]). While these
schemes improve performance on some kinds of data, they still rely
on an underlying mechanism (like directory coherence) to provide a
shared memory abstraction, and therefore need to be modified to be

applicable to the pure RA case.

C. Execution Migration

Like RA architectures, the Execution Migration Machine (EM2)
architecture [23, 24] maximizes the effective on-chip cache capacity
by dividing the address space among per-core caches and allowing
each address to be cached only at its unique home core. EM2,
however, exploits spatiotemporal locality by bringing computation
to the locus of the data instead of the other way around: when
a thread needs access to an address cached on another core, the
hardware efficiently migrates the thread’s execution context to the
core where the memory is (or is allowed to be) cached and continues
execution there. Unlike schemes designed to improve performance of
cache-coherence-based designs (e.g., [25,26]) or schemes that require
user-level intervention (e.g., [27]), the thread must migrate to access
memory not assigned to the core it is running on; in EM2, migration is
the only mechanism that provides sequential semantics and memory
coherence.

If a thread is already executing at the destination core, it must
be evicted and migrated to a core where it can continue running.
To reduce the necessity for evictions and amortize the latency of
migrations, EM2 cores duplicate the architectural context (register
file, etc.) and allow a core to multiplex execution among two (or
more) concurrent threads. To prevent deadlock, one context is marked
as the native context and the other is the guest context: a core’s native
context may only hold the thread that started execution on that core
(called the thread’s native core), and evicted threads must migrate to
their native cores to guarantee deadlock freedom [28].

Briefly, when a core C running thread T executes a memory access
for address A, it must

1) compute the home core H for A (e.g., by masking the appro-
priate bits);

2) if H = C (a core hit),

a) forward the request for A to the cache hierarchy (possibly
resulting in a DRAM access);

3) if H 6= C (a core miss),

a) interrupt the execution of the thread on C (as for a precise
exception),

b) migrate the microarchitectural state to H via the on-chip
interconnect:

i) if H is the native core for T , place it in the native
context slot;

ii) otherwise:

A) if the guest slot on H contains another thread T ′,
evict T ′ and migrate it to its native core N′

B) move T into the guest slot for H;

c) resume execution of T on H, requesting A from its cache
hierarchy (and potentially accessing backing DRAM or
the next-level cache).

Although EM2 requires more invasive hardware changes than RA
(since the core itself must be designed to support efficient migration),
it shares with it the simplicity of protocol and is easy to reason about:
since memory operations for a given address can only be executed on
its home core, write atomicity and sequential behavior are trivial, and,
since only at most three actors are involved in a migration (source
and destination cores, plus potentially an evicted thread’s native core),
arguments about properties such as end-to-end deadlock freedom can
be succinctly and rigorously made [28].

By migrating the executing thread, EM2 takes advantage of spa-
tiotemporal locality: where RA would have to make repeated round-
trips to the same remote core to access its memory, EM2 makes
a one-way trip to the core where the memory resides and continues
execution, and, unless every other word accessed resides at a different
core, EM2 will make far fewer network trips. Indeed, since DirCC
requires multiple round-trips for highly contested data (between the
requesting cache and the directory and between the directory and
sharers that must be invalidated), migrations can outperform cache
coherence protocol messages on data that is often written and highly
shared.

Although migrations are one-way, given a 1-2Kb thread context
size, they require a high-bandwidth interconnect to be efficient.
Further, core misses pause execution until the thread completes its
migration to where the data is. Therefore, just like RA relies on
efficient data placement to keep memory references local and reduce
the average distance of remote accesses, good data placement is
required to reduce migration rates and improve performance in EM2

architectures.

D. Library Cache Coherence

The Achilles heel of RA and EM2 lies in their lack of support
for replicating temporarily read/write data or permanently read-only
data; indeed, data replication with conscious programmer or compiler
intervention results in significant performance improvements [29]. At
the same time, directory cache coherence incurs multiple round-trip
delays when shared data is also written, and relies on protocols that
are tricky to implement and expensive to verify.

Library Cache Coherence (LCC) allows automatic replication of
shared data without the need for complex invalidation protocols.
Instead of a directory, caches wishing to request access to shared data
contact a logically central library, which allows the relevant cache
line to be “checked out” by multiple core caches for reading (i.e.,
a read-only copy to be stored in a core’s private cache) for a fixed
period of time; when this time expires, the core caches automatically
invalidate the cache line without any invalidate messages from and
to the library. Writes are performed in a way similar to remote cache
accesses under RA: they are sent to the appropriate library, where
they are queued until all the checked out copies have expired, and
only then committed to memory. As with distributed directories under
DirCC, libraries can be physically distributed among the cores, with
each core responsible for a fraction of the address space. In contrast to
schemes built on top of traditional coherence protocols (e.g., [30,31])
or implemented at the software level (e.g, [32, 33]), LCC requires
neither underlying coherence protocols nor software cooperation to
ensure a sequentially-consistent shared memory abstraction.

To efficiently implement timeouts, LCC architectures keep a global
clock (or, equivalently, a counter in each core that increments with
each global clock cycle); when a copy of a cache line is checked
out, the line travels to its client cache with its expiration timestamp,
and this timestamp is stored with the cache line to determine whether
the line is still valid at any point in time.1 Although this somewhat
increases the number of bits that must be stored in each cache line
in the system (an overhead of between 32 and 64 bits for each, say,
64-byte cache line, depending on implementation), the library system
scales with the number of cores: unlike DirCC’s directories, which
must know which cores have a valid copy of a given cache line and

1For brevity of exposition, we will assume that the timestamps are large
enough that they never “roll over,” while noting that smaller timestamps
can easily be accommodated by, for example, the libraries never giving out
timestamps that cross the “roll over” boundary.

in what state, the library stores only a fixed-size timestamp regardless
of the number of sharers.

To access address A from core C at global time T the system must,
then, perform the following steps:

1) if the request is a LOAD and the timestamp t of the cache line
in C containing A has not expired (i.e., t ≤ T), or if the current
core is the home library for A (C = L), complete the request;

2) otherwise, if the request is a LOAD:
a) send a request from C to the library L for the cache line

containing A; then
b) determine the new lending timestamp t as follows:

i) if A is already checked out, the maximum timestamp
of checked out copies tmax is stored in the library. If
there are write requests for the cache line containing
A waiting in the queue, set t = tmax;

ii) else if A is not checked out, determine t using a
suitable heuristic and set tmax = t;

iii) else if A has been checked out, determine t using a
suitable heuristic and set tmax = MAX(t, tmax).

c) send a response from L to C containing the cache line
with A and the expiration timestamp t;

d) if the timestamp has not already expired when the re-
sponse arrives at C (i.e., if t ≤ T), store the line containing
A in C’s cache;

e) complete the LOAD request and resume execution;
3) otherwise, if the request is a STORE (or an atomic read-modify-

write):
a) send a request from C to the library L with the data to be

written to A;
b) if there are copies currently checked out of the library (i.e.,

the library timestamp tmax ≥ T), queue the write request
until all the copies expire (i.e., until tmax < T);

c) complete the write request at L, possibly writing to the
backing DRAM or next-level cache;

d) send a write acknowledgement message from L to C;
e) after receiving the acknowledgement, continue execution

at C.
By relying on shared knowledge (the logically global time value),

LCC obviates the need for multicast or broadcast invalidations and
the resulting multiple network roundtrips that can make DirCC
inefficient, and, by using simple timestamps in place of complex
cache and directory states, simplifies the implementation and reduces
verification costs.

On the other hand, LCC efficiency depends heavily on how the
“lending period” for each read request is chosen (in steps 2(b)ii
and 2(b)iii): too short of a lending period will result in premature
expirations and repeated requests from core caches to the library,
while too long of a lending period will delay write requests and
unnecessarily suspend execution at the writing cores.

III. ANALYTICAL MODELS

To develop intuition about the relative strengths and weaknesses
of each scheme, this section formulates analytical models based on
average memory latency (AML). This model abstracts away multi-
actor system interactions to focus on the average cost of a single
memory access in terms of experimentally measurable quantities like
off-chip memory and on-chip cache access delays, fractions of the
various memory requests in programs, or cache miss rates for each
request type. By clearly identifying the various sources of latency
contributing to each memory scheme, the AML model allows us

Parameter Value

costL1$access 2 cycles
costL1$ insert/inv/flush 3 cycles
costL2$access 7 cycles
costL2$ insert 9 cycles
costdir$ lookup 2 cycles
sizeack/address/value 32 bits
sizecacheline 512 bits
sizecontext 1088 bits
costDRAM 250 cycles (200 latency + 50 serializ.)
flit size 256 bits
costavgnet dist 36 cycles (12 hops × 2 cycles/hop + 50%

congestion overhead)

rateread,ratewrite 70%, 30%
raterdI,wrI,rdS 40% + 40% + 5%
ratewrS 5%
raterdM 10%
ratewrM negligible
rateL1$miss 6%
rateL2$miss 1%
ratecoremiss 2%
costexpirationwait,LCC 3 cycles

TABLE I
DEFAULT PARAMETERS FOR THE ANALYTICAL AML MODELS.

to explore not only the avenues of optimization available in each
protocol, but also to bound the maximum potential of each technique.
In the remainder of this section, we describe the AML models for
the four memory implementations we have discussed.

A. Interconnect latency

We adopted a uniform network model in which, on average, each
type of core-to-core message travels the same number of hops (12
for an 8×8 mesh) and experiences similar congestion (50%). Packets
are divided into equal-size (256-bit) flits, and comprise a header flit
with several data flits; wormhole routing is assumed, so each packet
experiences a one-cycle serialization delay in addition to the latency
of delivering the first flit:

cost→,datasize = costavgnet dist +
⌈

datasize
flit size

⌉
,

where datasize depends on the packet size, and grows for cache lines
(64 bytes) and the EM2 context migrations (1088 bits = 32×32-
bit registers, a 32-bit instruction pointer register, and a 32-bit status
register):

cost→,ack = cost→,address = cost→,value

= (12×2+50%)+
⌈

32
256

⌉
= 36+1 = 37 cycles,

cost→,addr&value = (12×2+50%)+
⌈

32+32
256

⌉
= 36+1 = 37 cycles,

cost→,cacheline = (12×2+50%)+
⌈

512
256

⌉
= 36+2 = 38 cycles, and

cost→,context = (12×2+50%)+
⌈

1088
256

⌉
= 36+5 = 41 cycles.

Only for cost→,context we add an additional 3 cycles corresponding to
restarting a 5-stage pipeline with a new instruction at the migration
destination core, resulting in cost→,context = 44.

B. Last-level cache and DRAM latencies

The L2 cache was modeled as a shared non-uniform access
(NUCA) L2 data cache distributed in slices divided equally among

all the cores, with each slice handling a subset of the memory
space. Directories (for DirCC) and libraries (for LCC) are similarly
distributed, with each per-core slice handling the same predefined
address range as the L2 cache slice on the same core; therefore
requests to L2 did not incur additional network costs above those
of contacting the directory or library, but only the L2 access itself
and the amortized cost of accessing off-chip memory:

costL2$request = costL2$access

+ rateL2$miss× (costDRAM + costL2$ insert)

= 7+1%× (250+9) = 9.6 cycles.

C. First-level cache miss effects

Under EM2 and RA, L1 misses at the home core of the address
being accessed result directly in L2 requests, and have identical costs.
Under LCC, writes are also executed at the home core, and writes
that miss L1 incur additionally only the L2 request latency and the
L1 insert penalty (using the data from L2 or DRAM):
costL1$miss,RA = costL1$miss,EM2 = costL1$writemiss,LCC

= costL2$request + costL1$ insert = 9.6+3 = 12.6 cycles.

LCC reads that miss L1, however, require that a copy of the cache
line be brought in from the home core, possibly causing network
traffic if the home core is not the current core, and written back to
L1:

costL1$read miss,LCC = costL2$request

+ ratecoremiss×
(
cost→,addr + cost→,cacheline

)
+ costL1$ insert

= 9.6+2%× (37+38)+3 = 14.1 cycles.

We assumed that address ranges are assigned to per-core L2 cache
slices (as well as directories and libraries) at 4KB-page level using
a heuristic that keeps data close to its accessors (such as first-touch),
leading to a fairly low core miss rate of 2%.

In all L1 miss cases under DirCC, the directory must first be
contacted, which may involve network traffic if the relevant directory
slice is not attached to the current core. The relevant cache line must
be brought to the L1 cache for all types of access, but the protocol
actions that must be taken and the associated latency depend on
the kind of request (read or write), as well on whether any other
L1 caches contain the data. Reads and writes for lines that are not
cached in any L1 (i.e., the directory entry is invalid) simply query the
directory and concurrently access the next level in the cache hierarchy
to retrieve the cache line; the same is true for reads of lines cached
in shared state in some per-core L1, because the directory does not
store the actual cache line:

costrdI,wrI,rdS = ratecoremiss× cost→,addr

+max(costdir lookup,costL2$request)

+ ratecoremiss× cost→,cacheline + costL1$ insert

= 2%×37+9.6+2%×38+3 = 14.1 cycles.

Exclusive access (write) requests to lines that are in shared state
elsewhere additionally contact the sharer(s) to invalidate their copies
and wait for their invalidate acknowledgements; assuming that the
messages to all sharers are all sent in parallel, we have:
costwrS = ratecoremiss× cost→,addr

+max(costdir lookup,costL2$request)

+ cost→,addr + costL1$ inv + cost→,ack

+ ratecoremiss× cost→,cacheline + costL1$ insert

= 2%×37+9.6+37+3+37+2%×38+3 = 91.1 cycles.

Read requests for data that is cached in modified state by another L1
cache must flush the modified line from the cache that holds it, write
it back to L2 (to satisfy future read requests from other caches), and
only then send the cache line back to the client (note that, in this
case, the directory access cannot be amortized with the L2 request
because the data to be written must first arrive from the L1 cache):

costrdM = ratecoremiss× cost→,addr + costdir lookup

+ cost→,addr + costL1$flush + cost→,cacheline + costL2$write

+ ratecoremiss× cost→,cacheline + costL1$ insert

= 2%×37+2+37+3+38+9+2%×38+3

= 93.5 cycles.

Writes to data in modified state are similar but can skip the L2 write
(because the data is about to be written and the L2 copy would be
stale anyway) and directly send the flushed cache line to the client
cache:
costwrM = ratecoremiss× cost→,addr + costdir lookup

+ cost→,addr + costL1$flush + cost→,cacheline

+ ratecoremiss× cost→,cacheline + costL1$ insert

= 2%×37+2+37+3+38+2%×38+3 = 84.5 cycles.

To estimate the occurrence rates of these state transitions, we
simulated several SPLASH-2 benchmarks [34] in the cycle-accurate
multicore simulator HORNET [35], and obtained the rates shown in
Table I. Given those, the overall L1 miss penalty for DirCC becomes:

costL1$miss,CC = raterdI,wrI,rdS× costrdI,wrI,rdS

+ ratewrS× costwrS + raterdM,wrM× costrdM,wrM

= 85%×14.1+5%×91.1+10%×93.5+0%×84.5

= 25.9 cycles.

D. Overall average memory latency

Under DirCC, the overall average memory latency (AML) com-
prises the L1 cache access and the pro-rated cost of the L1 miss:

AMLCC = costL1$access + rateL1$miss,CC× costL1$miss,CC

= 2+6%×25.9 = 3.56 cycles.

For EM2, the AML incorporates the cost of the L1 request (be it a
hit or a miss) and the context migration delay in the event of a core
miss:

AMLEM2 = costL1$access + rateL1$miss× costL1$miss,EM2

+ ratecoremiss× cost→,context

= 2+6%×12.6+2%×44 = 3.63 cycles.

Under RA, the core miss overhead involves a round-trip message
that depends on the type of access (read or write):

costcoremiss,RA = rateread×
(
cost→,addr + cost→,value

)
+ ratewrite×

(
cost→,addr&value + cost→,ack

)
= 70%× (37+37)+30%× (37+37) = 74 cycles,

giving a total average latency of:
AMLRA = costL1$access + rateL1$miss× costL1$miss,RA

+ ratecoremiss× costcoremiss,RA

= 2+6%×12.6+2%×74 = 4.23 cycles.

Finally, LCC reads can be cached locally, and their latency
comprises the L1 access costs and the amortized L1 miss:

costread,LCC = costL1$access + rateL1$miss× costL1$read miss,LCC

= 2+6%×14.1 = 2.84 cycles.

Writes, on the other hand, must be performed at the home core, and
may incur network transit latencies if the home core is remote. In
addition, writes can complete only when all outstanding checked out
copies of the relevant cache line have expired, and the L1 cache must
be accessed again (since the first access indicated that not all copies
have expired); based on our SPLASH-2 simulations we estimated that
this expiration penalty will not exceed 3 cycles. The write delay, then,
becomes:

costwrite,LCC = costL1$access

+ rateL1$miss× costL1$writemiss,LCC

+ ratecoremiss× (cost→,addr&value + cost→,ack)

+ costexpirationwait,LCC

= 2+6%×12.6+2%× (37+37)+3 = 7.23 cycles.

Our SPLASH-2 simulations indicated, on the average, a 70%/30%
split between reads and writes, giving:

AMLLCC = rateread× costread,LCC + ratewrite× costwrite,LCC

= 70%×2.84+30%×7.23 = 4.16 cycles.

In the next section, we vary some of the model parameters from
their defaults in Table I, and examine how this affects the AML for
each implementation.

IV. RESULTS

We first examined the effect of different L1 cache miss rates
on the performance of each scheme. Varying rateL1$miss has the
most striking effect under the DirCC model, which incurs relatively
expensive coherence protocol costs (of two or more interconnect
round-trips plus directory and often invalidation overheads) for every
L1 miss (Figure 1a); while the other three protocols also degrade
with increasing miss rates, the differences are not as dramatic.

Of course, L1 cache miss rates under these protocols are not
directly comparable: on the one hand, DirCC and LCC can make
multiple copies of data and are more often able to hit the local cache;
on the other hand, EM2 and RA do not pollute their L1 caches with
multiple copies of the same data, and feature higher total L1 cache
capacities. Nevertheless, comparisons within each protocol are valid,
and we can safely use Figure 1a to examine how the protocols tend
to degrade when cache miss rates grow.

In all protocols, keeping core miss rates low via efficient data
placement is critical to accessing the shared NUCA L2 cache effi-
ciently. In EM2 and RA, however, a core miss may occur even if the
data resides on-chip in some L1 cache (because each address may
only be cached at a specific home core); the same is true for stores
under LCC. Figure 1b varies ratecoremiss and illustrates that EM2

and RA perform well as long as the core miss rate is low (below
about 2%); when core miss rates are high, however, the high rate of
migrations (for EM2) and remote accesses (for RA) means that the
replication-based protocols (DirCC and LCC) dominate.

Again, comparing core miss rates directly can be somewhat mis-
leading, especially for RA and EM2. This is because under RA
threads do not move from their original cores, and each access to
a remote core’s cache constitutes a core miss; under EM2, however,
the thread migrates to the relevant home core on the first access and
subsequent accesses to the same core are no longer core misses but an
access to the thread’s original core would now become a core miss.
The effect, then, depends on the amount of spatiotemporal locality
in the access pattern: with high locality, EM2 core miss rates will be
substantially lower than the RA equivalent. To examine the potential,
we varied ratecoremiss for EM2 only, keeping it at the default of
2% for the other protocols: as Figure 1c illustrates, lower core miss

rates favor EM2, while with higher core miss rates EM2 migration
overheads cause its performance to deteriorate.

The execution contexts migrated in EM2 are substantially larger
than both coherence messages and cache-line sizes; this scheme
is therefore particularly sensitive to both architectural context size
and network bandwidth. To examine the context size variations, we
directly varied sizecontext in Figure 1d; to simulate different network
bandwidths, we varied the size of a flit that can be transferred in
one cycle (flit size) in Figure 1e. Both illustrate that EM2 is sensitive
to network bandwidth: for both very large contexts and very low
on-chip network bandwidths, EM2 migration latencies become too
large to offer much benefit over the round-trips required by the other
protocols.

Finally, since LCC allows “checked out” cache lines to be read
without contacting the library until their timestamps expire but must
both incur a round-trip to the library and wait until all the checked-
out copies of the given cache line expire, we reasoned that it should
work very well for workloads highly skewed to load instructions.
To evaluate this, we varied the ratio of loads to stores in our model
(rateread and ratewrite): as shown in Figure 1f, LCC performance
steadily improves relative to the other protocols as the read-to-write
ratio grows.

V. HYBRID APPROACHES

Providing efficient shared memory abstraction in large-scale mul-
ticores remains a difficult problem, and there is no clear winner
among the approaches we have discussed. RA and LCC have the
simplest implementation, but their performance is subpar except for
niche applications. DirCC and EM2 tend to perform better, but EM2

is sensitive to context sizes and energy limitations, while DirCC
protocols are complex cooperating state machines that require careful
design and expensive verification.

One option is to combine several of those protocols to create a
scheme suitable for a wide variety of circumstances. In a sense,
the various directory-based cache coherence protocols already behave
like this: they comprise a variety of current-state-dependent decisions
and the AML description of even the simplest MSI variant is
appreciably larger than the other schemes. In this section, we briefly
contemplate variations on the simpler protocols and their potential.

A. EM2 + RA

While EM2 performs well on the per-memory-access level captured
by our AML model, it depends on high core hit rates resulting
from spatiotemporal locality for good performance: when a thread
is migrated to another core, it needs to make several local memory
accesses to make the migration “worth it.” While some of this can
be addressed via intelligent data layout [29] and memory access
reordering at the compiler level, occasional “one-of” accesses and
the resulting back-and-forth context transfers seem inevitable.

If such an access can be predicted (by, say, the hardware, the
compiler, the OS, or even by the programmer), however, optimization
is straightforward: adopt a hybrid approach where “one-of” accesses
are executed under the RA protocol, and migrations handle sequences
of accesses to the same core. Similarly, when accesses are relatively
few and the distance to the home core is very short, executing the
operations via RA offers latency and energy benefits.

The crux of an efficient hybrid approach, however, is a close
cooperation among three actors: the programmer, the compiler, and
the operating system. Today’s compilers are implicitly optimized
for DirCC architectures, and do not pay attention to careful data
layout and memory operation order that would reduce EM2 and RA

0 5 10 15 20 25
L1 cache miss rate [%]

2

3

4

5

6

7

8

9
A

ve
ra

ge
 M

em
or

y
La

te
nc

y
[#

 c
yc

le
s]

DirCC RA EM LCC

(a) AML versus L1 cache miss rates.

0 2 4 6 8 10
Core miss rate [%]

2

3

4

5

6

7

8

9

10

11

A
ve

ra
ge

 M
em

or
y

La
te

nc
y

[#
 c

yc
le

s]

DirCC RA EM LCC

(b) AML versus core miss rates.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Core miss rate (vs 2 for DirCC/RA/LCC) [%]

3.0

3.5

4.0

A
ve

ra
ge

 M
em

or
y

La
te

nc
y

[#
 c

yc
le

s]

DirCC RA EM LCC

(c) Effect of spatiotemporal locality on AML: EM2

core miss rates vs. DirCC/RA/LCC.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Context size [# bits]

3.4

3.6

3.8

4.0

4.2

A
ve

ra
ge

 M
em

or
y

La
te

nc
y

[#
 c

yc
le

s]

DirCC RA EM LCC

(d) AML versus EM2 context size: for very large
contexts, the network overhead limits EM2 perfor-
mance.

0 100 200 300 400 500
Flit size [# bits]

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

A
ve

ra
ge

 M
em

or
y

La
te

nc
y

[#
 c

yc
le

s]

DirCC RA EM LCC

(e) AML versus network bandwidth (flit size).

50 60 70 80 90 100
Read rate [%]

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
ve

ra
ge

 M
em

or
y

La
te

nc
y

[#
 c

yc
le

s]

DirCC RA EM LCC

(f) AML versus the fraction of reads among memory
accesses.

core miss rates to a minimum, much less exploiting memory access
locality at a level of an EM2 vs. RA decision. Operating systems
and runtime-support libraries like libc tend to allocate memory
contiguously without regard to where the requesting thread is running
and where its local memory is located. Finally, benchmark suites
have long been optimized by hand to run fast on existing DirCC
architectures, painstakingly allocating data in suitably-sized chunks
and avoiding such pitfalls as false write sharing. Applying the same
focused research effort to a problem like EM2/RA could result in
an approach which significantly outperforms any known coherence
methods.

B. EM2 + LCC

One of the advantages of EM2 is that it eschews replication: in
many cases, this allows L1-level caches to be used more efficiently
and neatly avoids the problem of invalidating copies resident in
remote caches when data must be written. But in some cases, such
as for frequently accessed read-only data, limited-duration copying
actually benefits performance [29].

Since the complexity of DirCC makes it a poor candidate for a
hybrid, we consider providing automatic copying using the much
simpler LCC mechanism. Like the EM2/RA hybrid above, this
approach depends on a per-access decision on whether a given
memory operation should perform a migration or check out a read-
only limited-time copy. A successful hybrid would reduce core miss
rates and network traffic by obviating migrations needed to read
shared data, resulting in significant performance improvements. A
specific hybrid scheme may always migrate for writes.

C. LCC with read/write checkouts

As we have seen, LCC works very well for workloads with high
load-to-store ratios, and is limited in performance by its centralized
writes. To address this, we might contemplate bringing LCC closer

to DirCC: that is, allowing cache lines to be “checked out” not only
for reads but also for writes. Although the read/write copies would
have to be checked out to one client cache at a time, contiguous
read-write accesses to the same location by the same thread would
entirely avoid the round-trip to the library and waiting for read-only
timestamps to expire.

Like the other hybrids, this approach relies on finer-granularity
per-access decisions: while a read-only copy can be checked out
by multiple caches before any of the timestamps expire, read-write
copies can only be checked out to one client and would need more
carefully tuned (and probably shorter) timestamps.

VI. CONCLUSION

In the preceding sections, we have outlined four methods of
providing shared memory abstraction in massive-scale multicores:
two traditional approaches (directory-based cache coherence and a
remote-access architecture) and two novel designs (shared memory
via execution migration and library cache coherence). To compare the
relative strengths of the protocols, we have developed an analytical
model for each based on per-access average memory latency, and
examined the design and application parameter ranges that favor each
protocol; Table II summarizes the pros and cons of each approach.

Both novel schemes we described introduce opportunities for
further optimization. Operating systems can ensure efficient data
placement among core caches to minimize core miss rates; compilers
can help by laying out data structures according to anticipated sharing
patterns and reordering memory accesses to maximize spatiotemporal
locality. This is especially true of the hybrid approaches we sketched
in Section V: these rely on a per-memory-access decision as to which
protocol to use (e.g., in EM2/RA, whether to migrate or perform a
memory access), and provide ample topics for further research.

Protocol Pros Cons

DirCC

little additional OS or
compiler support (e.g.,
data placement) required;
many programs already
optimized for DirCC

complex to implement
and verify; requires large
private caches to
overcome negative effects
of high cache miss rates

RA

simple to implement and
verify; efficient when
data placements keep
most accesses on the
local core

requires multiple
round-trip access to
non-local cores even if
data exhibits high
spatiotemporal locality;
does not even replicate
read-only data

EM2

simple to analyze and
verify; efficient when
good data placement and
high spatiotemporal data
access locality can
amortize the cost of
thread migrations

thread migrations must
transfer large execution
contexts across the
network, requiring
high-bandwidth
interconnects when poor
data placement results in
high core miss rates;
does not even replicate
read-only data

LCC

leverages temporary data
replication to complete
most loads locally
without the performance
and complexity overheads
of a cache coherence
protocol

writes performed
similarly to RA without
benefit of private-cache
locality; efficiency
depends on effective
heuristics to determine
optimal timestamp values

TABLE II
THE PROS AND CONS OF EACH OF THE DESCRIBED SHARED MEMORY

IMPLEMENTATIONS.

VII. ACKNOWLEDGEMENTS

The authors would like to express gratitude to Dr. Omer Khan for
helpful discussions as well as valuable suggestions and feedback on
early versions of this manuscript. We also thank Rachael Harding for
valuable feedback.

REFERENCES

[1] I. T. R. for Semiconductors, “Assembly and Packaging,” 2007.
[2] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M. Ratta,

and S. Vora, “A 45nm 8-core enterprise Xeon R© processor,” in A-SSCC,
2009.

[3] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,
J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and
A. Agarwal, “Baring it all to Software: Raw Machines,” in IEEE
Computer, September 1997, pp. 86–93.

[4] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C. K. Kim, D. B. an d
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP using
polymorphism in the TRIPS architecture,” in ISCA, 2003, pp. 422–433.

[5] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” IEEE Micro, vol. 27,
pp. 15–31, September 2007.

[6] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C. Miao, C. Ramey,
D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Mon-
tenegro, J. Stickney, and J. Zook, “TILE64 - Processor: A 64-Core SoC
with Mesh Interconnect,” in ISSCC, 2008.

[7] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote,
N. Borkar, and S. Borkar, “An 80-Tile Sub-100-W TeraFLOPS Processor
in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, pp. 29–41, 2008.

[8] S. Borkar, “Thousand core chips: a technology perspective,” in DAC,
2007.

[9] A. C. Sodan, “Message-Passing and Shared-Data Programming
Models—Wish vs. Reality,” in HPCS, 2005.

[10] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in ISCA, 2009.

[11] J. R. Goodman, “Using cache memory to reduce processor-memory
traffic,” in ISCA, 1983.

[12] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An Evaluation
of Directory Schemes for Cache Coherence,” in ISCA, 1988.

[13] A. Gupta, W. Weber, and T. Mowry, “Reducing Memory and Traffic
Requirements for Scalable Directory-Based Cache Coherence Schemes,”
in ICPP, 1990.

[14] D. Abts, S. Scott, and D. J. Lilja, “So Many States, So Little Time:
Verifying Memory Coherence in the Cray X1,” in IPDPS, 2003.

[15] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in ASP-
LOS, 2002.

[16] C. Fensch and M. Cintra, “An OS-based alternative to full hardware
coherence on tiled CMPs,” in HPCA, 2008.

[17] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
system support for improving data locality on CC-NUMA compute
servers,” SIGPLAN Not., vol. 31, pp. 279–289, 1996.

[18] S. Cho and L. Jin, “Managing Distributed, Shared L2 Caches through
OS-Level Page Allocation,” in MICRO, 2006.

[19] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic
hardware-assisted software-controlled page placement to manage capac-
ity allocation and sharing within large caches,” in HPCA, 2009.

[20] M. Zhang and K. Asanović, “Victim replication: maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in ISCA, 2005.

[21] M. Chaudhuri, “PageNUCA: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” in HPCA,
2009.

[22] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis, “Micro-pages: increasing DRAM efficiency with locality-
aware data placement,” SIGARCH Comput. Archit. News, vol. 38, pp.
219–230, 2010.

[23] O. Khan, M. Lis, and S. Devadas, “EM2: A Scalable Shared-Memory
Multicore Architecture,” MIT-CSAIL-TR-2010-030, 2010.

[24] M. Lis, K. S. Shim, M. H. Cho, C. W. Fletcher, M. Kinsy, I. Lebedev,
O. Khan, and S. Devadas, “Brief Announcement: Distributed Shared
Memory based on Computation Migration,” in SPAA, 2011.

[25] P. Michaud, “Exploiting the cache capacity of a single-chip multi-core
processor with execution migration,” in HPCA, 2004.

[26] M. Kandemir, F. Li, M. Irwin, and S. W. Son, “A novel migration-based
NUCA design for Chip Multiprocessors,” in SC, 2008.

[27] M. D. Noakes, D. A. Wallach, and W. J. Dally, “The J-Machine
Multicomputer: An Architectural Evaluation,” in ISCA, 1993.

[28] M. H. Cho, K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Deadlock-
Free Fine-Grained Thread Migration,” in NOCS, 2011.

[29] K. S. Shim, M. Lis, M. H. Cho, O. Khan, and S. Devadas, “System-level
Optimizations for Memory Access in the Execution Migration Machine
(EM2),” in CAOS, 2011.

[30] A. R. Lebeck and D. A. Wood, “Dynamic Self-Invalidation: Reducing
Coherence Overhead in Shared-Memory Multiprocessors,” in ISCA,
1995.

[31] A.-C. Lai and B. Falsafi, “Selective, accurate, and timely self-
invalidation using last-touch prediction,” in ISCA, 2000.

[32] S. L. Min and J. L. Baer, “Design and Analysis of a Scalable Cache
Coherence Scheme Based on Clocks and Timestamps,” IEEE Trans.
Parallel Distrib. Syst., vol. 3, pp. 25–44, 1992.

[33] X. Yuan, R. Melhelm, and R. Gupta, “A Timestamp-based Selective
Invalidation Scheme for Multiprocessor Cache Coherence,” in ICPP,
1996.

[34] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
programs: characterization and methodological considerations,” in ISCA,
1995.

[35] M. Lis, P. Ren, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan, and
S. Devadas, “Scalable, accurate multicore simulation in the 1000-core
era,” in ISPASS, 2011.

