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ABSTRACT 
 
The objective of this work is to obtain an in depth understanding of how embryonic stem cell-
secreted signals contribute to their identity. We analyze the contribution of broad and specific 
signals present in the cell-secreted microenvironment using techniques that can easily be applied 
to studies of other cell types and signaling systems. Determining the effects of external signals 
produced endogenously by stem cells is important for understanding fundamental biological 
processes regarding cell communication and for implementing more sophisticated manipulation 
protocols for future clinical applications. Harnessing the ability of stem cells to generate specific 
cell types is necessary for many regenerative medicine and tissue engineering applications and 
would be enhanced by a more thorough understanding of the signaling pathways required to 
maintain stem cell self-renewal and to initiate an exit from the self-renewing state.  
 
In this thesis, we describe work showing that mouse embryonic stem cell (mESC)-secreted 
signals are required to maintain self-renewal, as cells enter a primed, epiblast-like state of early 
differentiation when microfluidic perfusion is used to deplete soluble cell-secreted signals. We 
show that this phenotypic change can be used to our advantage for directed differentiation, and 
further demonstrate that remodeling the endogenous extracellular matrix halts the exit from the 
self-renewing state that occurs in mESCs growing under perfusion. Matrix remodeling is then 
shown to be both necessary and sufficient for maintaining mouse embryonic stem cell self-
renewal in the absence of other external cues, and we demonstrate a method for assessing the 
relative contributions of soluble versus matrix-based cues. 
 
Together, our data indicate the importance of mESC-secreted factors in contributing to cell 
survival, self-renewal, and differentiation in normal cultures. Beyond furthering our 
understanding of intrinsic signaling mechanisms, this information can be used to devise better 
culture systems for directed differentiation of pluripotent cells. In addition, the techniques 
developed and implemented here for assessing the contributions of endogenous signals can all be 
applied generally to any adherent cell type for studies of how the cell-secreted microenvironment 
contributes to signaling processes and ultimately to cell phenotype.  
 
 
Thesis Supervisor: Joel Voldman 
Title: Associate Professor of Electrical Engineering and Computer Science 
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Chapter 1 Introduction                                          

1.1 Significance 

Cell phenotype is defined in part by the extracellular signals encountered by the cell, whether it 

is a cell growing in culture, a cell growing in the body performing normal functions, or an 

abnormal cell that exploits extracellular signals to disrupt cellular functions. The in vivo 

extracellular microenvironment, or niche, consists of basement membranes and extracellular 

matrix, cell-cell contacts, and soluble signals that travel from other cells throughout the body. 

The niche is particularly important for stem cell microenvironments, as subtle signal changes can 

lead to significant downstream fate adjustments. Understanding the composition and contributors 

to the in vivo niche is required for successful recapitulation of stem cell microenvironments in 

vitro.  

In recent years, the ability to grow and maintain many diverse types of cells in culture has 

significantly advanced due to technical developments allowing for more sophisticated cell 

culture systems. Tools that can successfully manipulate the in vitro microenvironment can be 

used to learn more about how extracellular signals act to regulate fate choice and thus provide 

platforms to further our understanding of the biological and functional impacts of particular 

signals. This information can be useful for generating in vitro models of in vivo events and for 

establishing conditions for maintenance of stem cells as multipotent entities in vitro.  

In this thesis, we use embryonic stem cells (ESCs) as an unbiased model stem cell system and 

apply various methods to disrupt the endogenous extracellular microenvironment in an effort to 

learn more about how embryonic stem cell-secreted signals contribute to the remarkable ability 

of these cells to self-renew indefinitely while retaining the ability to differentiate into any cell 

type found in an adult organism. Our results highlight the importance of the cell-secreted 

microenvironment on stem cell growth, self-renewal, and differentiation, and show that cell fate 

can be strongly influenced by altering microenvironmental cues. The utility of this work lies in 

its broad applicability to other stem cell systems, its use as a potential tool to direct 

differentiation or maintain self-renewal, and its uncovering of novel endogenous mechanisms 

used by stem cells in culture to balance differentiation and self-renewal cues. 
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1.2 Embryonic stem cells 

ESCs are pluripotent cells—they are able to differentiate into all lineages—derived from the 

inner cell mass (ICM) of a blastocyst. In addition to being pluripotent, they are also able to self-

renew by dividing while maintaining their pluripotent state, or to differentiate by dividing and 

exiting their pluripotent state to adopt other phenotypes. ESCs have been derived from several 

mammals (Evans and Kaufman, 1981; Martin, 1981; Thomson et al., 1998, 1995; Iannaccone et 

al., 1994; Hayes et al., 2008; Schneider et al., 2007), but mouse (Evans and Kaufman, 1981; 

Martin, 1981) and human (Thomson et al., 1998) ESCs (mESCs and hESCs, respectively) are 

most commonly studied. ESCs are readily available from cell banks and can be derived de novo, 

are relatively straightforward to culture, and can divide indefinitely in culture without losing 

their pluripotency. Pluripotent stem cells can also be derived from somatic cells by 

reprogramming, which has been shown for both mouse (Takahashi and Yamanaka, 2006; Wernig 

et al., 2007; Okita et al., 2007) and human (Yu et al., 2007; Takahashi et al., 2007). These cells, 

called induced pluripotent stem (iPS) cells, share most features with ESCs and can be derived 

from patient-specific backgrounds. Because they can be generated from cells with specific 

disease backgrounds, iPS cells provide an opportunity to study disease progression from 

development onward. The ability of pluripotent cells to differentiate into all tissues in the adult 

explains their clinical significance, in that they have the potential to form cells or tissues for 

regenerative medicine.   

Self-renewal is the most fundamental process that ESCs undergo, and is interesting both from a 

basic cell biological view (i.e., how do ESCs decide to stay as ESCs) and biotechnological (i.e., 

how do we design bioprocesses that allow expansion of ESCs to therapeutic scales while 

maintaining pluripotency). Thus, significant effort has been expended over the last 30 yrs to 

understand ESC self-renewal, resulting in the identification of exogenous signals important for 

this process. ESCs are derived from mouse at embryonic day 3.5 (E3.5), at which point the inner 

cell mass is formed but not organized and implantation has not yet occurred. By E4.5, the 

embryo has segregated to form the trophectoderm, epiblast, and primitive endoderm, and begins 

the process of attachment and implantation. By E6.5, the embryo is implanted and gastrulation 

begins, whereby the epiblast forms the primitive streak and generates cells of the mesoderm and 

endoderm lineages. The epiblast itself goes on to generate cells of the ectoderm lineage, which 
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differentiate into epidermal and neuronal cells, while the mesoderm forms cells of the circulatory 

system and muscle, and endoderm forms the gut, liver, pancreas and lungs.  

It was recently demonstrated that pluripotent cells could be isolated from the mouse later than 

E3.5 when epiblast stem cells (EpiSCs) were isolated from the post-implantation epiblast (E5.5-

5.75) (Tesar et al., 2007; Brons et al., 2007). While EpiSCs can differentiate into tissues from all 

three germ layers, they cannot contribute to all tissues in the developing organism after injection 

into a blastocyst, indicating that they are not fully pluripotent. mEpiSCs and mESCs also have 

different exogenous requirements for maintaining their self-renewal due to their different origins, 

and mEpiSCs more closely resemble hESCs in terms of morphology and self-renewal 

requirements, indicating that hESCs may be derived from a human developmental stage 

equivalent to the E5.5 stage in mice. 

The work done in this thesis is centered around mESCs, which are conventionally maintained on 

a mouse embryonic fibroblast feeder layer with addition of leukemia inhibitory factor (LIF) and 

serum (Nichols et al., 1990). Many ESC lines have been adapted to not require a feeder layer, but 

are grown in media with LIF and serum. Various types of serum-free media have also been 

developed, and the variant I refer to in this thesis is N2B27 media supplemented with LIF and 

bone morphogenetic protein 4 (BMP4) (Ying et al., 2003b). The common component among all 

these methods for maintaining mESCs in a self-renewing state is LIF, a cytokine originally 

isolated based on its ability to inhibit growth and induce differentiation into macrophages in the 

mouse leukemic cell line M1 (Hilton et al., 1988). LIF was found to share this ability with a 

previously identified cytokine, IL-6, and it was thus found that the two signals shared a common 

receptor component in gp130 (Gearing et al., 1992; Ip et al., 1992). Along with gp130, the LIF 

receptor forms a heterodimer that allows the LIF signal to be transmitted internally. This family 

of cytokine receptors was found to activate tyrosine kinase activity when stimulated, and the 

specific tyrosine kinases that bind to dimerized gp130 are in the Janus kinase (JAK) family 

(Silvennoinen et al., 1993). JAK family tyrosine kinases then go on to phosphorylate signal 

transducer and activator of transcription (Stat) family proteins, the first identified being Stat3, 

which is phosphorylated and translocates into the nucleus within minutes after gp130 activation 

(Wegenka et al., 1993). For mESC maintenance, Stat3 is the most relevant Stat family member 

downstream of LIF, as it acts as a transcription factor to regulate genes necessary for the 



maintenance of mESC self-renewal, including Klf4 and Nanog (Darnell, 1997; Jiang et al., 2008) 

(Figure 1-1).  

In contrast to the signaling elements that act to maintain mESC self-renewal, the primary 

extracellular signaling requirements for both mEpiSCs and hESCs are fibroblast growth factor 2 

(FGF2) and Activin/Nodal/TGFβ family ligands. FGF2 is typically added to mEpiSC cultures to 

maintain their self-renewal, and EpiSCs have been shown to also require autocrine 

Activin/Nodal signaling, which signals through Smad2/3 to activate self-renewal signals, 

including Nanog (Greber et al., 2010) (Figure 1-1). FGF2 is also added to hESC cultures, where 

it may act to reinforce autocrine production of FGF2 (Eiselleova et al., 2009). TGFβ/Activin 

signaling has also been proposed as an autocrine loop for maintenance of hESC self-renewal (Xu 

et al., 2008), and Activin addition may induce autocrine FGF2 production in hESCs (Xiao et al., 

2006). GDF3, also in the TGFβ superfamily, is secreted from hESCs and acts to block BMP and 

thus inhibit differentiation (Levine et al., 2009), while autocrine levels decrease during 

differentiation (Levine and Brivanlou, 2006). Though the extracellular regulatory processes are 

different in mouse and human ESCs, likely due to differences in the developmental stage at 

which they are isolated, both types of cells share some elements of the core self-renewal 

regulatory circuitry, including autoregulatory control by the transcription factors Oct4, Sox2, and 

Nanog (Boyer et al., 2005). 

 
Nanog

gp130

JAK

LIFR

Stat3

Klf4
Klf4

Embryonic stem cell Epiblast stem cell

LIF

Nanog

Smad2/3

Activin

ALK5/7ActRII

Figure 1-1 Model figure depicting major pathways by which transcription of the crucial self-renewal transcription 
factor Nanog is upregulated in mouse embryonic (left) and epiblast (right) stem cells. 
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Neither mouse nor human ESCs are homogenous under normal culture conditions. Part of the 

mechanism by which exogenous FGF2 acts to maintain hESC cultures is thought to be due to a 

paracrine loop that forms after some fraction of the population differentiates to a more fibroblast-

like state that then secretes IGF-II in response to exogenous FGF2, which in turn serves to keep 

the remaining hESCs in a self-renewing state (Bendall et al., 2007). mESC cultures are also 

heterogeneous, with cells maintaining a balance between naïve and primed states, the latter of 

which allows the cells to be ready for differentiation. Cells in the naïve state express specific 

ESC markers such as Klf4 and Rex1, while primed cells have markers more similar to that of the 

epiblast stem cell state, including FGF5 and Dnmt3b (Lanner et al., 2010; Kunath et al., 2007). 

This heterogeneity has been shown to be functional, as in the case of Rex1 high- and low-

expressing mESC populations with different differentiation potentials after FACS separation 

(Toyooka et al., 2008), which was also seen for the self-renewal marker Nanog (Kalmar et al., 

2009) and the visceral endoderm marker Hex (Canham et al., 2010). Maintaining a balance 

between the naïve and primed states in mESC culture is thought to be important for maintenance 

of pluripotency, as cells trapped in a naïve state are unable to properly differentiate to all three 

germ layers (Kunath et al., 2007; Lanner et al., 2010).  

Besides addition of LIF, other culture systems have also been shown to maintain mESC self-

renewal, the best characterized being addition of inhibitors of the FGF4-ERK signaling pathway 

and glycogen synthase kinase 3 (GSK3) (Ying et al., 2008), but the maintenance of self-renewal 

under these conditions is still enhanced by addition of LIF, a media formulation known as 

2i/LIF. We will not fully understand the process of self-renewal until we determine the signals 

that are both necessary and sufficient to maintain self-renewal. Embryonic stem cells are a useful 

model cell type in which to study microenvironmental cues, as these cells have a dynamic and 

robust capacity for intercellular signaling, and functional assays can be performed to 

convincingly test both necessity and sufficiency of a particular signaling environment to 

maintain self-renewal and pluripotency. 

1.3 Cell-secreted microenvironment 

To test sufficiency of signals for any cellular process, it is imperative to either know the identity 

of or develop the ability to control the relevant signals secreted from the cells themselves. One 
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important type of cell-secreted signals are soluble signals that travel through the culture media to 

signal to other cells in the environment, but cells can also signal through direct contact with other 

cells or by extracellular matrix-based signals.  

Soluble signals consist of autocrine or paracrine signals, which canonically refer to signals 

produced by cells to which they respond (autocrine) or to which neighboring cells respond 

(paracrine) (Sporn and Todaro, 1980). Here, I will use the term autocrine signaling to refer to 

signals secreted by a cell that may bind to that cell or to a neighboring cell of similar phenotype, 

while paracrine signaling refers to signals produced by a cell to which that cell type cannot 

respond, but other cell types can. These soluble signals can include growth factors, which are 

defined as having a positive effect on proliferation and/or differentiation, cytokines, which 

constitute other signaling molecules with diverse functions in intercellular communications, and 

hormones, which are generated at specific sites in vivo and typically act in a limited range with 

tightly controlled secretion levels. Different types of soluble signals also have different rates of 

uptake, as the number of cytokine receptors on the cell surface is usually on the order of 102 to 

103, a hundred times less than that of hormone or growth factor receptors (Kishimoto, 2005). 

Contact-mediated signals, also known as juxtacrine signals, require two adjacent cells to be in 

contact, as these types of signals are not secreted extracellularly from the producing cell. Such 

signals can be transmitted through transmembrane receptors or through membrane channels. 

Notch signaling is an example of a juxtacrine mechanism in which the ligand and receptor are 

both transmembrane proteins such that cells must be in direct contact for signaling to occur. 

Notch is activated by Delta, Jagged, or Serrate proteins in an adjacent cell and is then cleaved, at 

which point it translocates to the nucleus and binds and activates transcription factors (Schroeter 

et al., 1998). Small soluble signals (less than 15 kD) can also be directly transmitted between 

cells through gap junctions made up of connexin proteins that create a pore between cells 

through which ions can freely pass (Peracchia and Dulhunty, 1976).  

Once adherent cells are attached to a substrate, they begin to produce an extracellular matrix 

(ECM) consisting of many types of signals that become an important part of the extracellular 

microenvironment. The ECM includes structural proteins, connective proteins, glycoproteins, 

signaling proteins, etc., all contained in a dense and dynamic structure. Fibronectin is a large 
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glycoprotein that serves as a general adhesive molecule, linking cells to their substrate and to 

each other (Yamada and Olden, 1978). The extracellular matrix present in vivo surrounding 

epithelial tissue generally includes a dense region called the basal lamina, which consists of 

laminin and collagen along with glycoproteins such as heparan sulfate proteoglycans (Sanes et 

al., 1990; Jenniskens et al., 2000). Heparan sulfate proteoglycans (HSPGs) are important ECM 

components that are thought to act as a reservoir of signaling proteins such as growth factors 

(Hynes, 2009), and also affect the signaling of molecules such as Wnt, vascular endothelial 

growth factor (VEGF) and fibroblast growth factor (FGF) (Rosen and Lemjabbar-Alaoui, 2010). 

The developmental signal sonic hedgehog binds vitronectin in the ECM (Pons and Martí, 2000), 

and core ECM components such as integrins and laminins have been shown to act as signaling 

molecules themselves. Integrins are essentially transmembrane fibronectin receptors that bind to 

cytoskeletal proteins on the inside of a cell, thus integrating the extracellular and intracellular 

scaffolds (Tamkun et al., 1986). 

In addition to acting as a substrate on which cells can grow and directly or indirectly providing 

signals from its structural molecules or by binding growth factors, the ECM has physical 

properties that can also influence cells. For uncommitted progenitor cells, the stiffness of the 

matrix has been shown to influence differentiation trajectory in a variety of systems, including 

for mesenchymal stem cells (Engler et al., 2006), neural stem cells (Keung et al., 2011), and 

embryonic stem cells (Chowdhury et al., 2010), and increased matrix stiffness has also been 

implicated in cancer cell migration and proliferation (Ulrich et al., 2009). Manipulating the 

rigidity of the ECM can alter availability of autocrine signals, as seen with myofibroblasts and 

autocrine TGFβ accessibility (Wells and Discher, 2008). ECM composition is also affected 

endogenously by cell-secreted proteinases, including matrix metalloproteinases (MMPs), a 

disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family proteins, and 

serine proteases, which have the potential to affect any of the ECM-based signaling mechanisms 

described above. Of these, the MMP family includes the major secreted proteins that 

dynamically regulate the ECM both in vitro and in vivo during development (Vu and Werb, 

2000), the significance of which will be described in the next section. 

1.4 Embryonic stem cell and in vivo microenvironment: soluble and ECM-based signals 
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Proper embryonic development requires specific regulation of a series of signaling events 

emanating from within the embryo or maternally. At early stages of development, many of these 

signals are identical to the ones used for maintenance or early differentiation of embryonic stem 

cells cultured in vitro. Here, we detail what is known about the functionality of ESC in vitro 

endogenous extracellular signals and then describe several relevant examples of signaling events 

required for proper development in the early embryo.   

Embryonic stem cells divide rapidly and secrete high levels of proteins, both in terms of soluble 

ligand secretion and extracellular matrix formation. Several mESC autocrine factors have been 

identified that influence proliferation (Figure 1-2), including Activin, Nodal and Cyclophilin A 

(Ogawa et al., 2007; Mittal and Voldman, 2011). LIF has also been shown to act in an autocrine 

fashion (Davey et al., 2007; Davey and Zandstra, 2006; Zandstra et al., 2000), though not at 

levels sufficient to maintain self-renewal, while autocrine Wnt signaling has been shown to be 

required but not sufficient for mESC self-renewal (ten Berge et al., 2011). Autocrine 

differentiation-inducing signals have also been identified, the most studied example being FGF4, 

which signals through extracellular signal-regulated kinase 1 and 2 (ERK1/2). FGF4-null mES 

cells were found to be more likely to express pluripotency markers and less likely to express 

differentiation markers, and a similar phenotype was observed in ERK2-/- cells (Kunath et al., 

2007), while disruption of both FGF4 and ERK signaling in the absence of LIF caused cells to 

stagnate in a reversible primitive ectoderm state in which no further differentiation is possible 

(Stavridis et al., 2007). At the transcriptional level, the ERK pathway has been implicated in the 

repression of the pluripotency-related transcription factor Nanog (Hamazaki et al., 2006). Many 

of the functional identified autocrine signals acting in hESCs differ from those in mESCs, which 

have been described in chapter 1.2 and are also summarized in Figure 1-2.  
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Figure 1-2 Functional autocrine-acting signals that have been identified in mESCs (a) and hESCs (b) and their roles. 

While a variety of natural and synthetic matrices have been used to influence ESC self-renewal 

or differentiation, and ESCs also deposit a rich matrix of their own, the mechanisms behind how 

extracellular matrix affects cell fate are largely unexplored. Autocrine FGF4 has been shown to 

require ECM-based HSPGs for signaling to ESCs, and disruption of FGF4 binding leads to 

increased self-renewal of mESCs (Lanner et al., 2010). Other autocrine signals such as Wnts 

have also been shown to bind in the ECM and to HSPGs (Schryver et al., 1996; Fuerer et al., 

2010), but no functional role for the ECM in mESC autocrine Wnt signaling has been 

conclusively shown. Mechanically, it has been shown that softer matrices, at similar stiffnesses 

to mESCs themselves, are able to maintain mESCs in the absence of LIF for multiple passages 

(Chowdhury et al., 2010), indicating the possibility for a direct mechanical role of ECM in ESC 

self-renewal, but the mechanism behind this phenomenon is unknown. A direct role for ECM in 

maintaining self-renewal has been further characterized in hESCs, where their survival and self-

renewal in defined media requires growth on an exogenous ECM, mediated by the binding of 

endogenous integrins with exogenously supplied vitronectin (Braam et al., 2008). ESCs will 

differentiate into heterogenous cultures if not passaged regularly, signifying that regular 

breakdown and rebuilding of the ECM is important in maintaining a more homogenous 

undifferentiated state.  
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Although ESCs do not directly correspond to cells found in a developing embryo, uncovering 

autocrine signals present in vitro is important for understanding early embryonic development, as 

the pluripotent state in vivo is transient and proper development requires an exit from this state 

as a result of maternal and embryonic autocrine and paracrine signaling (Figure 1-3). Much is 

known about the signals generated in vivo that contribute to embryonic development, 

implantation, and gastrulation, but many of these studies have been performed in non-

mammalian systems, so this section will highlight the relevant soluble and ECM-based signals 

that contribute to early mammalian embryonic development.  

Inner cell mass

Trophoblast

Endometrium

Paracrine signals

Paracrine
signals

 

Figure 1-3 Origin of paracrine signals involved in developmental specification in the early embryo. 

In terms of soluble signaling, paracrine communication between cells that make up the inner cell 

mass and the trophectoderm or between extraembryonic cells and adjacent epiblast cells has been 

shown to be an important part of early mouse embryonic growth (Murohashi et al., 2010; 

Mesnard et al., 2011), and blastocyst implantation requires paracrine LIF expression in the uterus 

(Stewart et al., 1992). Signals within the embryo itself are also important, for example, it has 

been shown that the anterior visceral endoderm inhibits Nodal signaling to ensure proper 

formation of the primitive streak during gastrulation (Bertocchini and Stern, 2002; Perea-Gomez 

et al., 2002). FGF signaling is also important within the embryo, as it is in ESC differentiation. 

Embryos lacking FGFR1 die at gastrulation (Deng et al., 1994; Yamaguchi et al., 1994), and 

both FGF4 and FGF8 are required for early embryonic development, as their disruption results in 

abortive postimplantation development and disrupted gastrulation, respectively (Feldman et al., 

1995; Sun et al., 1999). Endogenous FGF signaling has recently been more specifically identified 

as the signal required for segregation of the primitive endoderm and epiblast cells during ICM 

maturation (Yamanaka et al., 2010). 
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Direct cell contacts such as gap junctions are also important in development, for example, before 

the blastocyst even forms, the first eight blastomere cells are connected by gap junctions, 

forming physiological compartments within the developing embryo (Kalimi and Lo, 1988). The 

gap junctions regulate the compaction of the blastomeres to form the blastocyst, as inhibiting 

connexins inhibits further embryonic development (Lo and Gilula, 1979). Defects in cell-cell 

adhesion in the early mammalian embryo due to knockout of a specific myosin chain affected 

production of epiblast-derived cells in the post-implantation embryo and resulted in embryonic 

death by E7.5 (Conti et al., 2004). 

Cell adhesion and migration are essential mechanisms involved in embryonic implantation and 

gastrulation, and these mechanisms depend on the ability of cells to attach to extracellular 

matrices. Cell-cell and cell-ECM adhesion molecules that have been shown to act during 

gastrulation in mouse include E-cadherins and integrins (Hammerschmidt and Wedlich, 2008), 

and both their extra- and intracellular domains are required for proper gastrulation movements 

(Lee and Gumbiner, 1995; Kühl et al., 1996). Integrin interaction with fibronectin plays a large 

role in cell migration that occurs during gastrulation, while other known integrin ligands such as 

collagens and laminins are expressed at the end of or after this process (Bökel and Brown, 2002). 

Preceding this, the development of the epiblast prior to implantation requires proper basement 

membrane assembly between epiblast cells and their underlying epithelial layer  (Murray and 

Edgar, 2000), and integrin- and laminin-deficient cells are unable to form basement membranes 

and thus do not undergo epiblast differentiation (Li et al., 2002). While ECM may not directly 

contribute to intracellular signaling during development, it is an important regulator of signals 

such as those from the TGFβ, Wnt, and Hedgehog protein families, all important secreted 

mediators of cell patterning and fate determination in early embryos (Brown, 2011). Matrix 

remodeling is important in vivo as it is in vitro, as MMPs and MMP inhibitors were found to be 

expressed at high levels in mouse blastocysts and play a role in embryonic implantation 

(Alexander et al., 1996), with a significant increase in MMP production during the peri-

implantation period (Chen et al., 2007). 

1.5 Manipulating extracellular signaling 

 



Cell-secreted autocrine and paracrine factors comprise a significant fraction of available soluble 

signals, particularly in serum-free cultures, but their identity and significance are challenging to 

study. When specific factors or receptors that are part of an autocrine/paracrine signaling 

pathway are known, the best way to investigate the contributions of the pathway is via inhibition 

with knockout cell lines or specific inhibitors. Many small molecule inhibitors have been 

identified that are specific to receptors or downstream signaling molecules, and blocking 

antibodies can be developed to target known proteins or receptors. Cell lines can also be derived 

with specific secreted proteins or receptors knocked out. With these reagents, one can perform 

the definitive experiments to identify and characterize an autocrine loop (Figure 1-4a). By 

measuring ligand in the media and characterizing phenotype with and without receptor-blocking 

antibody, one can determine that (1) the cells are secreting ligand, (2) the ligand binds to the 

receptor, and (3) ligand binding alters phenotype (DeWitt et al., 2001; Joslin et al., 2007). 

Importantly, all these methods are limited to studies of known factors.  

phenotype phenotype

normal loop blocked

reaction
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convection
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Figure 1-4 Methods for investigating autocrine/paracrine signaling. (a) As autocrine factors are secreted from a cell, 
they bind to receptors to trigger a downstream response (left), unless the receptor is blocked, in which case autocrine 
signals accumulate in the surrounding media (right). (b) Transport modes for cell-secreted soluble signals, including 
diffusion, reaction, and convection of ligands from sources to sinks. 

What is currently known about autocrine signaling in ESCs has primarily been determined using 

these methods. For example, when autocrine Wnt signals were identified to be necessary for 

mESC self-renewal, it was found that addition of either a Wnt antagonist or an inhibitor of Wnt 

signal production were able to halt self-renewal, an effect that could be reversed with exogenous 

Wnt addition (ten Berge et al., 2011). An alternative to varying cell density is to use conditioned 

media assays. Experiments in which media that has been exposed to one population of cells to 

condition it (i.e., to load it with cell-secreted factors) and then transferred to a separate cell 

population have been used in studies of both autocrine and paracrine signaling. In studies of 

autocrine signaling, conditioned media can be used as a surrogate for cell density, as cells can be 
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grown sparsely and then conditioned media added to simulate culture at high density; this 

approach has been used to find that autocrine factors are important for maintenance of a short G1 

cell cycle phase in hESCs (Becker et al., 2010). Conditioned media studies are even more 

powerful when studying paracrine signaling. Many in vitro protocols for differentiation of ESCs 

rely on conditioned media or on co-culture with other cell types (Banerjee et al., 2011; Kawasaki 

et al., 2000; Lam et al., 2010). One common method involves use of a transwell, an insert that 

allows paracrine signals to pass between cells cultured in a single well but separated by a 

protein-permeable membrane. Though useful, conditioned media assays may suffer from 

inconsistency, as the complement of growth factors present may vary based on cell seeding 

density, growth time, and preparation and storage of conditioned media.  

In addition to these conventional cell culture methods, microtechnologies that enable cell 

patterning and organization have also been adopted to investigate cell-cell signaling, either 

within colonies of cells or between colonies of the same or different cell types. Micropatterning 

has been used to study density-dependent autocrine signaling in ESCs by allowing for control 

over colony size, which in turn affects ligand source and sink levels. Modulating signaling by 

altering colony size can help to remove source/sink variations in autocrine signals while also 

indicating whether cell fate is density-dependent. For example, Peerani and colleagues patterned 

hESCs into different-sized colonies using microcontact printing and assessed the ESCs’ 

phenotype using quantitative immunocytochemistry, ultimately implicating endogenous BMP2 

and GDF3 as modulators of self-renewal (Peerani et al., 2007). Related studies with mESCs 

patterned at different colony sizes indicated the importance of endogenous Stat3 activation on 

self-renewal and showed that transcription downstream of Stat3 can be regulated by colony size 

(Peerani et al., 2009). Control of cell placement has also been used to manipulate and study 

contact-mediated signaling with mechanical control and micrometer precision (Hui and Bhatia, 

2007), a technique that could feasibly be applied to studies involving stem cells.  

In addition to their utility in placing cells to alter levels of secreted ligands, patterning techniques 

can also be used to pattern islands of specific matrix-associated molecules to limit their exposure 

within a population. ECM binding of cell-secreted factors limits their diffusion, which can be 

mimicked by attaching such factors to the surface on which cells are growing. For example, Shh 

attached to a polymer hydrogel surface was shown to promote the ostogenic differentiation of 
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mesenchymal stem cells (Ho et al., 2007), while attachment of EGF was able to sustain ERK 

signaling in these cells to promote cell spreading and survival (Fan et al., 2007). In addition to 

signaling molecules, structural ECM proteins can also be patterned and shown to be functional, 

as was shown for neuronal stem cells, which showed enhanced neuronal and astrocytic 

differentiation on immobilized fibronectin molecules but not laminins (Nakajima et al., 2007). 

Cell and substrate patterning techniques have also been combined to create experimentally 

convenient in vitro models of vivo environments. Bio-flip chip cell patterning creates patterns by 

overturning a cell-loaded microwell array onto a recipient substrate, whereupon the cells fall out 

of the well and onto the recipient substrate while maintaining their arrangement (Rosenthal et al., 

2007), and this technique has been combined with stenciling to pattern mESCs along with other 

cell populations found in the early embryo to create developmental models to study early 

embryonic patterning events in vitro (Toh et al., 2011).  

The endogenous extracellular matrix can itself be disrupted to determine its broad roles or the 

roles of specific molecules or classes of molecules, though relatively few studies exist that 

specifically probe endogenous matrix functionality. The disruption of proper heparan sulfate 

proteoglycan sulfation has been shown to cause neonatal lethality in vivo and to inhibit the 

ability of mESCs to differentiate properly in vitro (Ringvall et al., 2000; Lanner et al., 2010). As 

mentioned above, HSPG sulfation is known to be important for its binding function of many 

cytokines and growth factors (Bernfield et al., 1999), and the inability of ESC developmental 

progression in the absence of this function was primarily attributed to a lack of FGF4 signaling 

(Lanner et al., 2010). In this case, matrix disruption caused a matrix-based signal to no longer 

signal properly. Conversely, matrix remodeling can allow for proteins trapped within the matrix 

to be released, thereby increasing levels of available cell-secreted signals in the extracellular 

signaling environment (Taipale and Keski-Oja, 1997). 

1.6 Microfluidic approaches to study cell-secreted signaling 

While conventional approaches provide methods for uncovering the presence of autocrine and 

paracrine signaling pathways, revealing their importance, and identifying specific intercellular 

molecules involved, recent technological advances in microfluidic technology have enabled a 

more precise quantitative understanding of spatial and temporal parameters, thus allowing for 
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more controlled studies of the cell-secreted signaling environment. This section is adapted from a 

recently published review article (Przybyla and Voldman, 2012a). 

To control cell-secreted signaling, the modes by which secreted molecules are transported in 

liquids need to be considered. In general, ligand is produced by “source” cells at some rate 

(molecules/sec), and then can bind to cell surface receptors (reaction sink), diffuse away, or be 

convected away (e.g., by fluid flow) (Figure 1-4b). To directly control transport of ligand in the 

media, nondimensional numbers can be used to compare different modes of transport, and thus 

determine the appropriate microfluidic operation regime. A diffusion velocity can be estimated 

by D/L, where D is the ligand diffusivity (for a ~20 kD cytokine, D ~ 10-6 cm2/s), and L is a 

characteristic length (e.g., the chamber height). Similarly, a reaction velocity can be defined as 

konRs, where kon is the ligand binding on-rate (in M-1s-1), Rs is the receptor density (in mol/m2), 

and the convection velocity is simply v, the characteristic fluid velocity in the system. Ratios of 

these values lead to previously defined nondimensional numbers known as the Peclet number 

(convection/diffusion, vL/D), the Damkohler group I number (reaction/convection, konRs/v) and 

the Damkohler group II number (reaction/diffusion, konRsL/D). By altering these transport 

phenomena, one can alter the balance between diffusion, convection, and reaction, and in turn 

modulate the activity of autocrine loops to discover their effects on cell state.  

Microfluidics allows a decrease of L and the application of v, and thus allows tuning of both 

diffusion and convection. To decrease soluble signaling, one wishes to decrease the effect of 

reaction, which can be accomplished by increasing convection. The fundamental requirement of 

microfluidic systems used for removing soluble signals is that they have some mechanism for 

exchanging the medium in the culture chamber. Thus, these systems are typically comprised of 

polydimethylsiloxane (PDMS) microfluidic chambers with inlets and outlets, and often have 

valves (King et al., 2007; Unger et al., 2000) and debubblers (Kang et al., 2008) to provide 

additional functionality.  

Several microfluidic platforms have been described for the culture of ESCs, primarily to 

minimize reagent volumes for screens (Kamei et al., 2009; Villa-Diaz et al., 2009). Flow has also 

been used in microscale cultures to periodically replace the media in cell cultures to minimize 

nutrient depletion while allowing periodic accumulation of secreted factors, as was shown for 
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hESCs grown on a feeder layer that required a short pulse of media every 2-4 hours (Korin et al., 

2008). Determination of the cell-secreted signals that are sufficient and necessary to maintain 

ESC self-renewal can also be aided by the precise control afforded by microfluidics. The use of 

microfluidics to control soluble factor mass transport has been demonstrated for both hESCs 

(Cimetta et al., 2009) and mESCs (Kim et al., 2006; Blagovic et al., 2011). For hESCs, a system 

was developed that could be tuned to operate in either a convection- or diffusion-dominated 

regime, resulting in different percentages of differentiated cells (Cimetta et al., 2009). This effect 

was primarily attributed to the effects of shear in the convection-dominated regime, but also to a 

decrease in soluble signaling due to the fact that the relative amount of differentiation was 

density-dependent.  

In our lab, microfluidic techniques for controlling mESC soluble cell-secreted microenvironment 

were initially developed by Lily Kim, who demonstrated the first continuous, logarithmically 

scaled perfusion of mESCs for several days and showed that different perfusive flow rates 

affected mESC growth and colony size (Kim et al., 2006). A perfusion device designed by Lily 

Kim and Katarina Blagovic for growing mESCs at a single flow rate with two separate media 

conditions in triplicate chambers was then used to differentiate mESCs toward a 

neuroectodermal fate under perfusion (Blagovic et al., 2011). The viability of mESCs during this 

process was found to require cell-secreted factors beyond autocrine-acting FGF4. These studies 

laid the groundwork for using microfluidic perfusion to test the sufficiency and necessity of cell-

secreted factors on the self-renewal of mESCs, which is the basis of much of the work described 

below.  

1.7 Thesis specific aims and overview 

In this thesis, I will discuss my work involving manipulating the endogenous embryonic stem 

cell extracellular signaling environment and assessing the effects on embryonic stem cell fate. 

These studies involve implementation of conventional techniques and development of novel 

methods for disruption of ESC-secreted signals, combined with downstream assays of the 

resulting phenotypic and functional consequences. The work can be broadly categorized into 

three specific aims, as follows: 



26 
 
 

1. Determining the effects of globally depleting soluble mESC-secreted signals and 

exploiting these effects to control ESC fate 

2. Assessing the independent contributions of soluble and matrix-based endogenous signals 

with broad manipulations 

3. Identifying and mechanistically analyzing functional endogenous components of the ESC 

extracellular matrix 

In chapter 2, I describe the design and implementation of a microfluidic perfusion device for 

growth of mESCs under a continuous depletion of cell-secreted factors in serum-free culture, as 

part of aim 1. I discuss the motivation behind the device’s initial application as studying how 

cell-secreted signaling influences heterogeneity in mESC cultures. I then show that mESCs 

exposed to decreased levels of cell-secreted soluble signals exit their self-renewing state and 

exhibit marker expression and signal responsiveness indicative of a more primed epiblast-like 

state.  

Chapter 3 continues aim 1 by using the information gained from a depletion of ESC signals to 

manipulate and further characterize cells growing under perfusion. I first show results indicating 

that rapid directed differentiation is possible under perfusion given the right culture conditions, 

and I then describe a method for modeling and identifying the signals being removed under 

perfusion.  

In chapter 4, I turn towards different cell-secreted signals, those emanating from the extracellular 

matrix. To address aim 2, I disrupt soluble signaling using perfusion in combination with broad 

disruption of the extracellular matrix, and show that these two types of signaling act in generally 

different pathways and adjust cell fate in different ways. While disrupting soluble signals causes 

cells to exit their self-renewing state, disrupting ECM-based signals does the opposite, and these 

opposing actions can be reconciled by realizing the importance of cell-secreted signals that act to 

disrupt the matrix in normal cultures.  

An interesting conclusion from chapter 4 is further probed in chapter 5, as the sufficiency of 

matrix remodeling is demonstrated by exogenously adding matrix-remodeling proteins and 
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showing that they are able to maintain long-term LIF-independent mESC self-renewal, a result 

that I go on to explore mechanistically to address aim 3.  

Chapter 6 describes a novel technique and a new application for an existing technique, both 

aimed at assessing the origin and significance of heterogeneity in mESC populations and within 

mESC colonies by manipulating or exploiting different aspects of the cell signaling 

microenvironment, to further address aim 2.  

Finally, chapter 7 includes the broad conclusions that can be drawn from this work as a whole 

and describes several future directions that can be pursued using results and evidence described 

in the previous chapters.  
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Chapter 2 Effects of manipulating soluble ESC signaling 
under perfusion 
2.1 Introduction 

Determining the precise contributions of autocrine or paracrine signals to a particular process is 

difficult if the full complement of signals involved is unknown. Currently, such studies involve 

varying cell density or patterning cells at specific locations to find density-dependent responses 

(Lauffenburger and Cozens, 1989; Peerani et al., 2007). However, these methods are often 

incomplete due to the fact that autocrine loops can be self-sufficient even at clonal density (Van 

Zoelen et al., 1989). Further complicating matters, fluctuations in autocrine ligand concentration 

both within colonies and between colonies occur in a culture dish, leading to different levels of 

downstream pathway activation. Such differences in local concentrations of extracellular signals 

can cause and be exacerbated by population-wide heterogeneity.  

In mESC cultures, heterogeneity is due in part to the fact that ESCs are constantly shifting 

between naïve and primed states (Chambers et al., 2007; Enver et al., 2009), which have 

different ligand and receptor expression and production levels. While naïve ESCs are primarily 

dependent on LIF signaling through Stat3 to maintain self-renewal (Darnell, 1997; Jiang et al., 

2008), primed ESCs are closer to being in an epiblast-like state in which they may be more 

dependent on autocrine-acting Activin for maintenance of self-renewal (Greber et al., 2010). 

These opposing states cause heterogeneity in ligand production and uptake within mESC 

cultures, which can lead to difficulties when studying specific cell-secreted signaling pathways. 

Heterogeneity has been assessed within ESC colonies via specific marker expression (Singh et 

al., 2007; Toyooka et al., 2008), and this has been quantified in terms of how radial position 

within a colony relates to marker expression (Davey and Zandstra, 2006; Peerani et al., 2007). 

Building on these studies, we developed and tested a method to quantify the extent to which 

diffusible signaling affects heterogeneity in mESC cultures, showing that inhibition of 

MEK/ERK signaling causes mESC cultures to be more homogenously naïve. Because 

heterogeneity is due in large part to local differences in the cell-secreted extracellular signaling 

microenvironment, we sought to deplete cell-secreted signaling in general to determine whether 

other signals also contribute to heterogeneity.  
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We use a microfluidic perfusion system in which cells can be cultured under continuous media 

perfusion to remove cell-secreted soluble signals, thus providing a more neutral background with 

reduced signaling noise. In this chapter, we describe the characterization of this device in terms 

of transport parameters and practical operation with cells, and then we show that cells can 

successfully be cultured in the device. In order to analyze the phenotype of cells grown under 

perfusion, it is essential to compare them to cells grown in static culture under identical 

conditions. Thus, all experiments performed using perfusion involve cells grown in the device on 

polystyrene slides coated with gelatin, and these cells are compared to cells grown in gelatin-

coated standard polystyrene culture dishes at identical cell density in cells/mm2. To provide cells 

with a neutral signaling background, it is also important to use defined culture media, as use of 

feeder cells or addition of serum would create a noisier background that could obscure the 

contributions of cell-secreted factors. 

Using this device affords us the opportunity to test how a global depletion of ESC-secreted 

factors affects cells in terms of their fundamental characteristics. We use a combination of 

population-wide assays to assess mRNA levels and single-cell measurements to quantify relative 

intracellular levels of a protein of interest to assess the resulting phenotype after cells have 

undergone perfusion, and compare this to the phenotype seen in static cultures. We can also use 

this system to add in factors individually or together to test their specific effects in the neutral 

background of perfusion. Here, we describe how depleting cell-secreted soluble signals in mESC 

populations compares to inhibiting the specific intracellular signal ERK, and go on to further 

characterize the cells that result from several days of growth under continuous perfusion. 

Sections 2.2, 2.3, 2.5, and 2.6 of this chapter are adapted from Przybyla and Voldman (Przybyla 

and Voldman, 2012b). 

2.2 Microfluidic device specifications and transport parameters 

The microfluidic perfusion device used in all subsequent perfusion studies (Figure 2-1) is made 

from the transparent, biocompatible polymer polydimethylsiloxane (PDMS), a material 

commonly used for microfluidic cell culture (Meyvantsson and Beebe, 2008) that we have 

previously shown is suitable for culture of mESCs (Kim et al., 2006). Certain parameters need to 

be taken into consideration when designing a device and choosing operating conditions in order 



to ensure that cell-secreted factors are removed while cells are not being affected in other ways 

by device operation. To ensure secreted factor removal, we consider the three molecular 

transport mechanisms that act on secreted molecules, namely convection, diffusion, and reaction 

(i.e., ligand binding to receptor) (Figure 1-4b). In order for molecules to be removed, convection 

must dominate over reaction and diffusion. To compare the importance of the different transport 

mechanisms, we make use of established non-dimensional parameters. 

  

Pe is given by vh/D, where v is a characteristic fluid velocity in the system (in our case, the 

average velocity, ~0.0296 mm/s), h is a characteristic length (in our case, half the chamber 

height, 125 µm), and D is the diffusivity of a relevant molecules (for a ~20 kD cytokine, D ~ 10-6 

cm2/s). This results in Pe ~37, where Pe>1 indicates a convection-dominated regime. The ratio 

of the Peclet number and the Damkohler number Da is given by v/konRs, where kon is the ligand 

binding on-rate (~106 M-1s-1 for a strong interaction) and Rs is the receptor density (which we 

take to be ~12 receptors/µm2 for a 8 µm radius cell with ~10000 receptors). This results in Pe/Da 

of ~1500, indicating that convection dominates over reaction. As medium flows by the 

autocrine-secreting cells, the axial convection and transverse mass transport will induce a 

concentration boundary layer above the cells, increasing in thickness along the length of the 

chamber (Squires et al., 2008). The boundary layer in general will decrease flux to and from the 

surface, and thus the concentration of secreted factor at the cell surface will be higher at the cell 

outlet than the inlet.  The thickness of the boundary layer in microsystems such as ours generally 

scales as 1/Pe1/3 and thus will get thinner at higher Pe, while the flux through the boundary layer 

increases as Pe1/3, therefore motivating operation at high Pe and use of short chambers, along 
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Figure 2-1 Microfluidic device setup. Left panel shows the device, inlets and outlets clamped to an insert for 
imaging on the microscope. Right panel shows the PDMS device. 
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with experiments assessing axial heterogeneity. Together, these calculations suggest that secreted 

proteins that detach from the cell surface will be convected away and not recaptured.  

Using these transport parameters, the shear at the culture surface is ~0.007 dynes/cm2, two orders 

of magnitude lower than what is considered low fluid shear stress for cells (Grabowski and Lam, 

1995), and also much lower than the shears of 5-25 dyn/cm2 used to induce ESC-derived 

endothelial cells to begin expression of endothelial and tight junction markers (Nikmanesh et 

al.), or to induce endothelial cell-specific genes in mouse embryonic endothelial cells (Egorova 

et al., 2011). While mESCs have been shown to sense shear stress and respond to it dose-

dependently at stresses from 0.016-16 dyn/ cm2 (Toh and Voldman, 2011), ESCs have been 

grown indefinitely in bioreactors without any effects on self-renewal properties at shears up to 

6.1 dyn/cm2 (Cormier et al., 2006; Fok and Zandstra, 2005). In terms of cell removal, the 

detachment shear stresses for fibroblasts are ~30-50 dyn/cm2 (Crouch et al., 1985), and shear 

stresses of 5 dyn/cm2 have been applied to an endothelial monolayer for a week without 

noticeable cell detachment (Dewey et al., 1981), indicating that the shear required to detach 

adherent cells from substrates are typically >>1 dyn/cm2. For mESCs in particular, removal shear 

stresses have been reported to be >6.5 dyn/cm2 (Fok and Zandstra, 2005). 

Furthermore, our chamber height (250 µm) was chosen to be substantially higher than the colony 

heights (55 µm) to minimize the effects of cell or colony height or morphology on flow patterns. 

To account for any flow rate differences in the chambers that could result from the presence of 

three-dimensional cell colonies, we use a previously described model (Gaver III and Kute, 1998). 

In general, for a cell or colony whose height is less than 30% of the chamber height (for our 250-

µm high chambers, this corresponds to a 75 µm high colony), there is only a minor effect 

(0.05%) on flow rate realized in the system, due to increasing flow resistance from the decreased 

gap size between the colony and the chamber walls. Cells or colonies present in the chambers 

will also affect the shear stress, specifically increasing the surface shear stress as compared to the 

shear stress on a flat surface. However, Gaver and Kute demonstrate that the cells/colonies 

increase shear by a maximum of 3× with respect to a flat surface when the cell/colony height is 

<1/4 of the channel height (corresponding to 62 µm for our chambers). We measured colony 

heights in our chamber using optical microscopy to be 25-55 µm (average 40 µm), smaller than 

the 62 µm or 75 µm thresholds.  Thus, for our chamber geometry, any cells or colonies smaller 



than 62 µm in height would negligibly affect the flow and would have surface shear stresses well 

below shear stresses that have been shown to negatively affect cells. 

2.3  Minimal requirements for ESC growth under microfluidic perfusion 
 
To use microfluidic perfusion as a tool with which to characterize the contributions of ESC-

secreted signals, it was first necessary to determine the minimal media required to successfully 

culture healthy cells. As stated above, use of serum-free, defined media was essential to this 

study, but ESCs generally do not grow as well or as reliably in the absence of serum. While 

mESCs in static culture can be induced to differentiate into neuronal precursors in defined media 

known as N2B27 (Ying et al., 2003b), they do not proliferate well in this defined media under 

perfusion where cell-secreted factors are removed (Blagovic et al., 2011). N2B27 can be used to 

maintain mESC self-renewal by supplementation with LIF and BMP4, and we found that this 

minimal defined self-renewing media did allow for growth of mESCs under perfusion (Figure 

2-2). Once minimal defined conditions for mESC attachment and survival were established, we 

went on to show that cell-secreted factors were indeed removed and that cells growing under 

perfusion did not suffer any acute damage due to culture in the device. 

  

400 µm

Day 4

Day 0

200 µm

Day 5

Day 2

Figure 2-2 Images of cells growing for the indicated number of days in one chamber of a device. Left panel is a 
close-up of a portion of the chamber in, where yellow arrows represent colonies with ESC-like morphology, while 
white arrows represent surrounding differentiated-looking cells. 

In order to experimentally verify what our theoretical predictions regarding removal of cell-

secreted factors suggest, we sought evidence for soluble factor removal. A molecule known to be 

secreted at high levels by mESCs (Guo et al., 2006b), VEGF, was collected and levels were 

measured by ELISA. Interestingly, we found that levels of VEGF collected from cells under 

perfusion after 30 hours of culture were almost ten-fold higher than those from static cultures, in 
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both differentiation (N2B27) and self-renewal (N2B27 with added LIF and BMP4) medium 

(Figure 2-3). The increased VEGF collected from cells under perfusion is consistent with 

autocrine systems in which the binding of ligand to receptor is blocked (DeWitt et al., 2001). In 

these systems, where secreted ligand can be recaptured by its receptor, blocking that capture (via 

blocking antibody/small molecule (Lauffenburger et al., 1998), or in this case, by flow) causes 

more ligand per cell to be delivered into the bulk media and recovered (Figure 1-4a). These 

results verify removal and downstream recovery of secreted molecules in this system. 
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Figure 2-3 ELISA measurements of VEGF collected from mESCs cultured in static and perfused systems, either in 
self-renewal (N2B27+LIF+BMP4) or differentiation (N2B27) environments. Also shown are the VEGF levels 
measured in systems without cells (“flow through”). 

To show that mESCs grown under perfusion do not suffer damage as a result of being grown in 

the perfusion device, we characterized the cells after three days of perfusion in serum-free self-

renewal conditions. We found that cells grew with normal morphology (Figure 2-2), and that 

expression levels of the early differentiation markers Brachyury and FGF5 were not altered as 

compared to static self-renewal cultures (Figure 2-4), while those markers did increase in static 

differentiation conditions (Figure 2-4). Thus, we show that diffusible signaling can be reduced in 

this system and that cells under short-term perfusion predominantly resemble self-renewing 

mESCs.   
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Figure 2-4 mRNA expression levels of key markers after 3 days of growth in static or perfusion self-renewal culture 
or in static differentiation culture. 

2.4 Adjusting heterogeneity by manipulating exogenous signaling 

After establishing conditions appropriate for mESC growth under perfusion, we next wanted to 

assess the effects of depleting soluble cell-secreted signals. We initially expected such a 

depletion to cause cells to become more homogenous at a population-wide level, as we assumed 

the cells would experience less variability in local concentrations of extracellular signals. To 

develop a system for measuring homogeneity, we initially performed experiments in static 

culture using the FGF4-ERK signaling pathway as a model system. FGF4 is one of the most 

well-studied functional autocrine mESC signals, and it signals through FGF receptors to activate 

ERK, leading to downstream changes consistent with a transition to a primed stem cell state 

more amenable to ectoderm differentiation (Kunath et al., 2007; Stavridis et al., 2007). It has 

been shown that blocking intracellular ERK signaling causes mESCs to retain a more 

undifferentiated morphology and to cause mESC populations to become more homogeneous 

(Burdon et al., 1999). Consistent with this, continuous blockage of ERK signaling, combined 

with blockage of signals that inhibit growth, allows for maintenance of mESC self-renewal 

indefinitely over repeated passage (Ying et al., 2008). We also show that blocking ERK activity 

with two different MEK inhibitors, PD98059 and PD0325901, reduces mESC morphological 

heterogeneity, even in serum-free cultures (Figure 2-5a). Because MEK and ERK are the major 

downstream signals of extracellular FGF4 (Kunath et al., 2007), these data indicate that 
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endogenous FGF4 signaling through ERK may be primarily responsible for the heterogeneity 

seen in mESC cultures.  
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Figure 2-5 MEK inhibition increases homogeneity of mESC cultures. (a) Representative images of cells growing in 
the indicated conditions for five days. (b) Flow cytometry histograms showing levels of Nanog using direct 
immunofluorescence staining of cells grown in the indicated conditions. (c) Flow cytometry histogram of levels of 
Sox2 in a Sox2-GFP cell line. (d) mRNA levels of self-renewal markers from cells grown in the indicated 
conditions. 
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We can quantify the level of homogeneity in ESC cultures by measuring levels of the self-

renewal marker Nanog at the single-cell level using direct intracellular immunofluorescence 

combined with flow cytometry (Figure 2-5b). For each population, we measured the width of the 

flow cytometry histogram peak at half the maximum peak height (full width at half maximum, 

FWHM) as a measure of homogeneity in the system – smaller FWHM indicates greater 

homogeneity. We found that cells grown in the presence of a MEK inhibitor exhibited a lower 

FWHM overall, providing quantitative confirmation of increased homogeneity in this condition. 
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Similarly, Sox2-GFP reporter mESCs were used to assess population-wide heterogeneity in 

levels of the alternate self-renewal marker Sox2 (Figure 2-5c), and we found a much broader 

peak in the absence of the MEK inhibitor. We confirmed these general trends in expression 

levels of Nanog and Sox2 by analyzing mRNA levels by qPCR (Figure 2-5d). These results 

indicate that inhibiting MEK-ERK signaling causes a population-wide trend towards higher 

levels of self-renewal markers, and generates a more homogeneous population.  

Formation of a homogeneous self-renewing population could be due to a population-wide shift in 

expression levels or to a selective growth or survival advantage of cells with a higher propensity 

to self-renew. To determine whether we are selecting out a specific population, we performed 

cell proliferation assays. We initially performed cell cycle analysis and found that cells grown in 

the presence of the MEK inhibitor had more cells in G1 phase and fewer in S phase, whether in 

the presence or absence of LIF (Figure 2-6a), indicating that blockage of ERK signaling inhibits 

entrance of mESCs into S phase from G1 phase. This is consistent with previous results in which 

Fgf4 signaling through ERK was shown to be mitogenic (Burdon et al., 1999) and specifically to 

regulate the transition between G1 and S phase in a context-specific manner (Roovers and 

Assoian, 2000). We also found cell growth to be slower in the presence of the ERK inhibitor 

(Figure 2-6b), in keeping with the mitogenic action of Fgf4. To determine whether multiple 

populations were arising in the presence of this inhibitor such that cells with higher growth rates 

also expressed higher levels of the self-renewal marker Nanog, we performed flow cytometry to 

compare Nanog expression and Bromodeoxyuridine (BrdU) incorporation. BrdU is a thymidine 

analog that gets incorporated into newly replicated DNA synthesized during the S phase of the 

cell cycle, and thus, higher levels indicate increased proliferation. Consistent with cell cycle and 

counting results, levels of BrdU are lower in the presence of the inhibitor (Figure 2-6c), however, 

this did not correlate to Nanog protein expression levels (Figure 2-6d), indicating that higher 

Nanog levels do not confer a growth advantage in this system.   
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Figure 2-6 Growth and proliferation of cells grown with MEK inhibition. (a) Cell cycle analysis of fraction of cells 
in the indicated stages of the cell cycle. LB indicates supplementation of N2B27 media with LIF and BMP4. (b) 
Fold increase in cell number after the indicated number of days. (c) BrdU incorporation levels over five hours in the 
indicated conditions. (d) Flow cytometry plot showing relationship between Nanog immunostaining intensity and 
BrdU incorporation in the presence of LIF/BMP4 and PD03. 

Together, these data indicate that we are able to manipulate and quantify the heterogeneity of 

mESCs simply by blocking FGF4 signaling through ERK. The increase in homogeneity seen 

when ERK is blocked can be explained in terms of the ESCs uniformly entering a more naïve 

state in which they are not primed for differentiation. If cells in normal self-renewing culture 

exist in a balance between primed and naïve states, the inhibition of a signal that has been shown 

to help prime cells for differentiation can push all cells towards the more naïve state without 

selecting out a specific population, consistent with our results. Since FGF4 is a cell-secreted 

molecule that has been shown to be important for this phenotype, and it is likely removed by 

flow, we tested whether mESCs grown under continuous microfluidic perfusion would obtain a 

phenotype reminiscent of populations in which FGF4 signaling through ERK is blocked. 

However, after five days of perfusion, ESCs did not look more homogenous based on 

morphology (Figure 2-7a) or based on flow cytometry histograms of Nanog or Sox2 protein 

expression levels (Figure 2-7b,c). 
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Figure 2-7 Growing mESCs under perfusion does not create a more homogeneous population. (a) Representative 
morphology of cells grown for five days in static or under perfusion. LB indicates supplementation of N2B27 media 
with LIF and BMP4. (b) Flow cytometry histograms showing levels of Sox2 in a Sox2-GFP cell line. (c) Flow 
cytometry histograms showing levels of Oct4 in an mESC Oct4-GFP cell line. 

2.5 Exit from self-renewing ESC state under perfusion 

Upon finding that mESCs growing under perfusion for several days were not becoming more 

homogeneous based on morphology or protein expression, but instead actually appeared to be 

becoming less ESC-like (Figure 2-7a), we sought to determine how this manipulation actually 

affected ESC characteristics. Upon continued culture under perfusion, mESC growth stagnated 

such that by day five, less substrate surface area was covered by cells and colony size was 

smaller, and differentiated-looking cells were more numerous (Figure 2-8a,b, Figure 2-2). 
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Figure 2-8 Growth characteristics of cells under perfusion. (a) Fold increase in area of static or perfusion culture 
surfaces covered by cells over time. A 50 mm2 area was analyzed at each time point under each condition. (b) Day 5 
average colony diameter.  

When we examined the expression of key pluripotency genes in cells that were cultured for five 

days under perfusion in the presence of LIF and BMP4, we found that levels of the self-renewal 

markers Klf4, Rex1, and Nanog were downregulated (Figure 2-9a), and that Brachyury and 

FGF5 levels, which had been unaffected after three days of culture (Figure 2-4), were 

dramatically upregulated, along with levels of the differentiation marker Dnmt3b (Figure 2-9a). 

Oct4 and Sox2 mRNA levels did not change (Figure 2-9a), results consistent with measurements 

of protein levels by flow cytometry (Figure 2-9b), indicating that the cells still expressed some 

elements of the core stem cell transcription network. A similar expression pattern was seen 

between static and perfusion cultures with cells grown in static N2B27+2i/LIF media (Figure 

2-9c), indicating that the perfusion phenotype is not a result of activation or block of specific 

signaling pathways. The differentiation potential of cells grown under perfusion in the presence 

of LIF and BMP4 was also altered, as embryoid bodies (EBs) formed with slightly abnormal 

morphology (Figure 2-9d) and increased expression of the ectoderm differentiation markers 

Sox1 and Nestin as compared to cells grown in static conditions (Figure 2-9d).  
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Figure 2-9 ESCs exit their stable state under long-term perfusion. (a) mRNA expression levels of self-renewal (left) 
or differentiation (right) markers after five days in static or perfusion culture in N2B27+LIF +BMP4. (b) Flow 
cytometry histograms showing levels of Oct4 in an mESC Oct4-GFP cell line (top), levels of Sox2 in a Sox2-GFP 
cell line (middle), and levels of Nanog using direct immunofluorescence staining (bottom), all in static and perfusion 
day 5 populations. (c) mRNA expression levels of self-renewal (left) or differentiation (right) markers after five days 
in static or perfusion culture in N2B27+2i/LIF media. (d) Embryoid body timecourse mRNA expression of EBs 
made from cells previously grown in static culture (gray solid line) or perfusion culture for 2 days (blue solid line), 
or perfusion culture for 5 days (blue dashed line). Images show representative EBs on day 5 formed from cells 
grown under the conditions indicated. Scale bar = 800 µm. **=p<0.001, *=p<0.05 for pairwise comparisons, all data 
represents averages of at least three independent experiments and error bars represent SD. 

We did not observe any apparent heterogeneity in Oct4 protein levels or cell number along the 

length of the chamber (Figure 2-10a,b), suggesting that observed differences in phenotype are 

not simply due to spatially varying differentiation in the flow field. Additionally, it is unlikely 

that the phenotypic changes observed under perfusion were due to selection of a specific cell 

population, as there was no massive cell death during the culture period, the low shear rates 
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present in our system are >1000× below those known to cause ESC detachment (Fok and 

Zandstra, 2005), and in specifically designed experiments we recovered 600 cells released 

from all chambers over 5 days, which is <2% of the number of cells present in the chambers on 

day 5 (Figure 2-10c). 
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Figure 2-10 Spatial analysis and physical manipulations of cells grown under perfusion. (a) Quantification and 
image of Oct4 immunofluorescent staining of day 5 perfusion culture to assess the relative abundance of marker 
expression along the length of the chamber. No statistically significantly trend was apparent (p=0.53). (b) 
Quantification of surface area covered by cells over time on average between six chambers along the length of the 
chambers (light to dark grey). (c) Quantification of cells recovered from the perfused microdevice output over five 
days. Each bar represents the total number of cells recovered per chamber on either side of the device (3 
chambers/side). 

To ensure that the changes observed under perfusion were indeed due to removal of secreted 

factors, several control perfusions were performed. Increasing the LIF concentration five-fold 

did not restore Nanog levels (Figure 2-11a), suggesting that local concentration effects due to the 

perfusion transport environment are not the cause of the observed changes, while cells grown in 

the presence of cell-conditioned serum-containing media under perfusion did see restoration of 

Nanog to levels seen in static serum-containing culture (Figure 2-11b). Cells grown in a 

microdevice using a small-volume recirculating-loop system in which cells were fed with the 
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media collected under perfusion had similar marker expression to cells grown in static cultures, 

as did cells grown using defined feeding intervals (Figure 2-11c, recirc loop perf and pulse perf, 

respectively). Thus, approximating the soluble microenvironment of static culture by using 

recirculating loops or discrete feeding intervals to allow cells to condition the media generates a 

phenotype similar the static phenotype, but in a system that includes microculture and shear. 

Conversely, cells grown at a 4× lower perfusion rate (and thus 4× lower shear) did not show any 

substantial differences compared to cells grown at our normal perfusion rate (Figure 2-11c, perf 

25µl/h). Thus, lowering the shear but maintaining a convection-dominated microenvironment 

doesn’t substantially change phenotype, consistent with transport rather than shear being 

dominant. Together, these results further indicate that neither the microculture itself nor shear are 

artifactually altering the observed phenotype.  

LIF concentration
(ng/ml)

N
an

og
 m

R
N

A
ex

pr
es

si
on

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 50 10 50

a b

sta
tic

pe
rfu

sio
n

0

0.5

1

1.5

pe
rfu

sio
n+

CM

#

N
an

og
 m

R
N

A
ex

pr
es

si
on

c

R
e

la
tiv

e
 m

R
N

A
e

xp
re

ss
io

n

0

2

4

6

8

10

Brach

5

10

15

20

Fgf5

**

**

**
**

**

**
**

**

0

0.5

1

1.5

Nanog

0

0.5

1

1.5

Rex1

#

*
*

*
*

*

0

0.5

1

1.5
Oct4

*
#

Klf4

0

2

4

6

8

Dnmt3b

sta
tic

pe
rfu

sio
n

pe
rf 

25
 µ

l/h

pu
lse

 p
er

f

re
cir

c l
oo

p 
pe

rf

#
# #

sta
tic

pe
rfu

sio
n

pe
rf 

25
 µ

l/h

pu
lse

 p
er

f

re
cir

c l
oo

p 
pe

rf

sta
tic

pe
rfu

sio
n

pe
rf 

25
 µ

l/h

pu
lse

 p
er

f

re
cir

c l
oo

p 
pe

rf
sta

tic

pe
rfu

sio
n

pe
rf 

25
 µ

l/h

pu
lse

 p
er

f

re
cir

c l
oo

p 
pe

rf sta
tic

pe
rfu

sio
n

pe
rf 

25
 µ

l/h

pu
lse

 p
er

f

re
cir

c l
oo

p 
pe

rf
sta

tic

pe
rfu

sio
n

pe
rf 

25
 µ

l/h

pu
lse

 p
er

f

re
cir

c l
oo

p 
pe

rf

sta
tic

pe
rfu

sio
n

pe
rf 

25
 µ

l/h

pu
lse

 p
er

f

re
cir

c l
oo

p 
pe

rf
0

0.5

1

1.5
**

*

 

Figure 2-11 Control experiments under perfusion. (a) Nanog mRNA expression levels in static and perfusion with 
either 10 ng/ml LIF or 50 ng/ml LIF. (b) Nanog mRNA expression levels in static and perfusion in the presence of 
serum+LIF media, with or without the addition of soluble cell-secreted factors from static conditioned media (CM).  
(c) mRNA expression levels of self-renewal and differentiation markers in normal static and perfusion cultures 
compared to levels in cells grown under perfusion with 4X lower volume flowrate than normal (perf 25 µl/h), cells 
grown in a perfusion device with feeding intervals akin to those in static (pulse perf), and cells grown under 
recirculating perfusion in a total volume of 1 ml (recirc loop perf). **=p<0.001, * =p<0.05; #=p<0.05 for all 
pairwise comparisons, error bars represent SD. 

These results indicate that depleting cell-secreted signals does not allow mESCs to maintain their 

self-renewal program even in the presence of LIF and BMP4, a finding that motivated further 
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study into the nature of the cells that arise out of an environment with minimal cell-secreted 

signaling. 

2.6 Cells enter a primed epiblast-like state under perfusion 

Because mouse epiblast cells and the related EpiSCs express Oct4 and Sox2 and have low levels 

of Klf4 and Rex1 and high levels of Brachyury and FGF5 (Bao et al., 2009), we examined 

whether cells under perfusion, which have a comparable expression pattern, were similar to 

epiblast cells. Using a qRT-PCR array, we analyzed expression of self-renewal and 

differentiation markers over time in static and perfused self-renewal cultures (Table 2-1). Among 

the most highly altered genes in cells grown under perfusion, we found many post-implantation 

markers indicative of epiblast (Figure 2-12a), including FGF5 (Hayashi et al., 2008), Brachyury 

(T) (Tesar et al., 2007), Lefty1 (Bao et al., 2009), and Dnmt3b (Hall et al., 2010) which 

increased relative to static, and the ESC markers Gbx2 and Cd9, which decreased (Tesar et al., 

2007; Oka et al., 2002). Further growth (7 days) under perfusion results in increased expression 

of epiblast markers, including Eomes, Sox17, Lefty1, and Gata6 (Tesar et al., 2007) (Figure 

2-12b), suggesting entrance into a stable epiblast-like state. In order to further examine whether 

the cells grown under perfusion are specifically differentiating towards an epiblast-like cell state 

or are undergoing non-specific differentiation, we compared gene expression from days 3-7 of 

culture under perfusion to expression in cells undergoing undirected differentiation in EB culture 

and to expression in mESCs cultured in conditions that induce an EpiSC-like state (culture in the 

presence of Activin and FGF2 (Guo et al., 2009)). We observed higher expression of genes 

associated with mesendoderm differentiation in day 5 embryoid bodies compared to either 

EpiSC-like cells, or to cells grown under perfusion, where these genes were expressed at low 

levels at both day 5 and day 7 (Figure 2-12c). This signifies a lack of indiscriminate 

differentiation in cells with minimal cell-secreted signaling and instead indicates a more directed 

differentiation pathway, providing further evidence for exit from the ESC state towards a state 

that closely resembles an epiblast-like state. 
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Figure 2-12 An epiblast-like state is attained upon cell-secreted factor removal. (a) mRNA expression levels of 
markers from a qPCR array that changed expression more than two-fold on day 5 under perfusion as compared to 
day 5 in static conditions. (b) mRNA expression levels of epiblast-specific markers after 7 days of growth in self-
renewal media under perfusion (N2B27+LIF+BMP4, perfusion LB), or in EpiSC media in static culture 
(N2B27+Activin+FGF2, static AF), compared to levels at day 7 in self-renewal media in static culture. (c) mRNA 
expression levels of differentiation markers at 3, 5, and 7 days in either static AF, perfusion LB, or floating 
embryoid body culture (EB). (d) mRNA expression levels of EpiSC up- and down-regulated markers in cells grown 
in static or perfusion LB, or in static AF or static with all four additions (LBAF). 

 

Static Day 3 Perfusion Day 3 static Day 5 Perfusion Day 5 
Afp 25.42 0.824 115.4 2.312 
Bxdc2 0.673 0.775 0.580 0.372 
Cd34 0.614 0.922 0.767 0.777 
Cd9 1.231 0.990 2.259 0.705 
Cdh5 1.406 12.95 4.356 18.68 
Cdx2 3.449 0.961 13.89 4.588 
Col1a1 1.223 1.304 2.205 3.925 
Commd3 0.895 1.271 1.678 1.252 
Crabp2 0.796 1.671 0.934 4.878 
Ddx4 0.964 0.491 1.160 0.501 
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Des 1.109 0.361 1.379 0.562 
Diap2 1.458 0.984 0.568 1.009 
Dnmt3b 1.651 4.684 1.122 5.875 
Ednrb 0.713 1.401 1.593 2.027 
Eomes 2.195 1.158 2.715 1.058 
Fgf4 1.366 1.003 0.976 0.767 
Fgf5 22.72 30.72 23.93 115.6 
Flt1 4.886 4.410 13.82 11.56 
Fn1 1.600 1.120 1.060 1.296 
Foxa2 3.852 5.949 9.652 10.03 
Foxd3 0.518 0.827 0.356 0.867 
Gabrb3 1.780 1.177 1.473 2.019 
Gal 0.784 0.578 1.511 1.464 
Gata4 2.021 3.251 4.336 4.038 
Gata6 1.522 3.964 4.649 4.752 
Gbx2 0.243 0.219 0.174 0.059 
Gcg ND ND ND ND 
Gcm1 1.307 ND 1.361 ND 
Gdf3 0.725 0.808 0.623 0.640 
Grb7 2.194 1.168 2.143 2.811 
Hba-x 2.570 1.884 3.436 3.568 
Hbb-y ND ND ND ND 
Hck 0.641 0.193 0.557 0.123 
Iapp ND ND ND ND 
Ifitm1 1.743 1.163 0.831 1.067 
Ifitm2 0.696 0.857 0.422 0.564 
Igf2bp2 1.372 1.239 2.085 1.438 
Il6st 0.712 0.726 0.721 0.752 
Ins2 1.638 1.583 3.016 4.097 
Kit 1.427 2.001 3.662 5.039 
Krt1 1.546 3.450 1.278 8.982 
Lama1 1.688 2.910 5.201 8.675 
Lamb1-1 2.763 5.559 7.287 11.54 
Lamc1 2.025 3.903 5.544 10.43 
Lefty1 6.377 6.341 3.640 7.515 
Lefty2 8.879 4.911 3.595 7.003 
Lifr 0.814 0.828 1.056 1.391 
Lin28 1.088 1.267 0.981 1.804 
Myf5 ND ND ND ND 
Myod1 ND ND ND ND 
Nanog 0.751 0.356 0.604 0.340 
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Nes 1.715 1.496 3.188 8.222 
Neurod1 0.950 1.723 1.190 1.505 
Nodal 0.887 0.750 0.909 0.909 
Nog 9.297 31.35 26.47 57.41 
Nr5a2 0.597 0.595 0.375 0.343 
Nr6a1 1.830 1.518 2.960 2.825 
Numb 1.047 0.870 1.024 1.019 
Olig2 ND ND 3.428 3.307 
Pax4 ND ND ND ND 
Pax6 0.928 0.401 0.715 0.616 
Pdx1 1.242 1.196 1.999 1.320 
Pecam1 1.311 0.896 0.954 0.708 
Podxl 3.014 2.508 4.055 2.474 
Pou5f1 0.668 0.607 0.580 0.672 
Pten 0.909 1.183 0.860 1.899 
Ptf1a ND ND ND ND 
Rest 1.005 0.999 0.601 0.832 
Runx2 ND ND ND ND 
Sema3a ND ND ND ND 
Serpina1a ND ND ND ND 
Sfrp2 1.432 1.648 0.466 3.535 
Sox17 3.847 7.482 10.93 7.607 
Sox2 1.143 0.761 0.760 0.699 
Sst ND ND ND ND 
Sycp3 2.686 2.454 4.031 2.902 
T 0.979 1.167 1.953 23.96 
Tat 1.427 2.004 3.127 3.958 
Tcfcp2l1 0.777 0.477 0.592 0.308 
Tdgf1 1.234 0.600 1.454 0.728 
Tert 1.746 0.842 1.463 1.075 
Utf1 0.910 0.968 0.704 0.930 
Wt1 6.734 6.560 12.69 5.379 
Zfp42 0.601 0.510 0.312 0.169 
Table 2-1: Quantification of expression levels of genes in a stem cell marker panel in static and perfusion cultures at 
days 3 and 5 of culture, compared to expression levels on day 0. ND = Not Detected, indicating expression levels 
below the qPCR detection limit of 35 cycles. 

This transition that occurs under perfusion is surprising given that LIF and BMP4 are still 

present in the culture medium, as their presence was thought to be sufficient to maintain mESC 

self-renewal (Ying et al., 2003a). Indeed, we found that mild induction of the EpiSC-like state 

using Activin and FGF2 did not alter marker expression in static culture when in the presence of 
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LIF and BMP4, as addition of all four factors to static cultures does not cause the reduction in 

Klf4 or Rex1 or the increase in FGF5 seen in the presence of Activin and FGF2 alone (Figure 

2-12d). Thus, in conventional culture systems, ESCs are able to withstand state change cues as 

long as LIF and BMP4 are present, whereas these molecules do not have the same effect under 

perfusion, indicating a lack of sufficiency.  

One notable difference seen in cells under perfusion as compared to EpiSCs is a decrease in 

Nanog expression levels under perfusion. Nanog is required for the maintenance of pluripotency 

in mESCs (Mitsui et al., 2003) and EpiSCs (Greber et al., 2010), but as described in chapter 1.2, 

the upstream regulation occurs by different processes (Figure 1-1). ESCs require Stat3 activation 

for upregulation of Nanog (Darnell, 1997; Jiang et al., 2008), while in EpiSCs, Stat3 is still 

responsive to LIF but cells are not dependent on that pathway for self-renewal (Tesar et al., 

2007; Hanna et al., 2010); instead, Activin is required to upregulate Nanog through Smad2/3 

signaling (Greber et al., 2010). We found that cells cultured in perfusion maintained the ability to 

activate Stat3 by Y705 phosphorylation in response to LIF (Figure 2-13a), but without 

upregulation of downstream self-renewal genes (Figure 2-9a). However, addition of Activin 

under perfusion causes cells to upregulate Nanog protein and mRNA levels (Figure 2-13b,c), 

indicating a shift from an ESC state that requires LIF+BMP4 and is Activin-insensitive to an 

epiblast-like cell state that is Activin-responsive and LIF-insensitive. Activin supplementation 

under perfusion did not upregulate Rex1 and Klf4 (Figure 2-13c) or other downstream targets of 

Stat3, implying that Activin supplementation does not revert perfusion cultures back to an ESC 

state, nor does it broadly alter marker expression in static cultures (Figure 2-13d).  
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Figure 2-13 Signaling characteristics of perfused cells are representative of an epiblast-like state. (a) Phase and 
fluorescence images of cells grown in perfusion culture or in static culture with or without a Jak inhibitor (added 6 
hrs prior to staining) and stained for phosphorylated (Y705) Stat3. (b) Flow cytometry histogram depicting Nanog 
protein levels in the presence or absence of Activin (A). Inset depicts percent of cells in the M1 range. (c) Self-
renewal marker expression for cells cultured for five days in N2B27+LB in the presence or absence of Activin (A). 
(d) Relative levels of mRNA expression for self-renewal (left panel), early endoderm (middle panel), or other 
differentiation lineage (right panel) genes in the presence and absence of Activin under static and perfusion 
conditions. 

To test whether addition of Activin under perfusion is able to stabilize a self-renewing state that 

is more epiblast-like than ESC-like, we replated cells after culture with or without added Activin 

into either ESC or EpiSC static self-renewal medium (Figure 2-14a). While cells that had been 

previously grown under perfusion in ESC medium did not replate in either ESC or EpiSC 

medium (Figure 2-14b, light blue lines), cells perfused with added Activin could be replated and 

grown in EpiSC conditions, and showed EpiSC-like colony morphology (Figure 2-14b, purple 

line, Figure 2-14c). Conversely, cells that had been grown in static culture (without Activin) 

were only able to proliferate after being replated in ESC medium (Figure 2-14b, gray lines). 

Additionally, cells grown in static culture with added Activin were not able to be replated in 

EpiSC conditions (Figure 2-14b, black line), indicating that culture in the microdevice primes 

cells to be receptive to Activin supplementation for maintenance of self-renewal. Cells grown 

under perfusion were also unable to replate and grow in N2B27+2i/LIF minimal self-renewal 

media (Figure 2-14d), another characteristic that these cells share with epiblast cells (Guo et al., 
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2009). Together, our results demonstrate that a lack of diffusible signaling causes mESCs to 

leave their stable self-renewing state and enter a more epiblast-like state that is characterized by 

the expected marker expression profiles as well as the appropriate downstream signaling 

responses and state stabilization resulting from addition of Activin. However, since several self-

renewing multi- or pluripotent epiblast-like states have been identified (Chou et al., 2008; 

Rathjen et al., 1999; Tesar et al., 2007), the precise identity of the cells with reduced soluble 

signaling is not known, though it is clear that depletion of cell-secreted signals induces exit from 

the stable ESC state in conditions that do not allow for this exit in static cultures. 
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Figure 2-14 Self-renewal ability of cells grown under perfusion. (a) Schematic explaining experiment depicted in 
(b), where cells were grown in static or perfusion in N2B27+LB with or without Activin (A) for 5 days, then 
replated into either ESC (LB, solid lines) or EpiSC (Activin + FGF2 (AF), dotted lines) static culture conditions for 
four days. (b) Fold increase in growth of cells from conditions in (a) upon replating. (c) Images of representative 
colonies from replating into EpiSC medium, replated from indicated conditions, taken on day 3 after replating. Scale 
bar = 200 µm. (d) Fold increase in growth of cells that were replated into indicated conditions from growth in static 
or perfusion.  **=p<0.001, *=p<0.05 for pairwise comparisons, all data represents averages of at least three 
independent experiments and error bars represent SD. 

2.7 Discussion 

It is currently thought that mESCs grown in self-renewing culture conditions exist with some 

level of heterogeneity due to spontaneous conversion between a naïve ESC state and a more 

primed epiblast-like state (Chambers et al., 2007; Enver et al., 2009). In serum-free 

N2B27+LIF+BMP4 media, this interconversion is thought to be a result of the opposing actions 

of LIF and BMP4 signaling versus autocrine/paracrine FGF4-ERK signaling (Lanner and 

Rossant, 2010). Here, we show results consistent with this prior work and demonstrate the ability 

to quantify heterogeneity by performing flow cytometry after intracellular immunofluorescent 

staining for the self-renewal marker Nanog and measuring the width of the curve on the resulting 
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histogram at half the peak height. We also show that blocking FGF4-ERK signaling in static 

cultures does not provide a growth or survival advantage to more self-renewing cells, but that it 

causes a shift in the population of cells to a uniformly naïve state.  

If FGF4 was the primary cell-secreted stimulus acting in ESCs, one would expect global 

depletion of cell-secreted signaling to have a similar effect to ERK inhibition, maintaining ESCs 

in a more naïve state. To address this hypothesis, we implemented a microfluidic perfusion 

device for growth with mESCs in serum-free conditions and compared the cell phenotype after 

five days of perfusion to that after five days of growth in static cultures with ERK inhibition. 

Surprisingly, we find that a global reduction of cell-secreted signals does not cause ESC 

populations to have increased homogeneity, nor does it cause them to shift to a more naïve state. 

Instead, several days of continuous perfusion drives mESCs out of self-renewal and toward a 

defined lineage that closely resembles the epiblast state. This indicates that FGF4-ERK signaling 

is not the only cell-secreted signal affecting mESC differentiation. 

LIF/
BMP4

Perfusion

Secreted
factors

ESC
Nanog

Klf4

 

Figure 2-15 Model indicating that perfusion blocks secreted factors that in turn act to maintain the self-renewing 
mESC state along with LIF/BMP4. 

Critically, the transition out of the ESC state seen under perfusion occurs in the presence of LIF 

and BMP4 or 2i/LIF, which were previously shown to be sufficient to maintain self-renewal in 

static culture. This indicates the presence of an additional pathway involved in ESC maintenance 

that utilizes cell-secreted factors (Figure 2-15). These results emphasize the power of 

microfluidic perfusion in uncovering previously unknown roles for cell-secreted signals. We 

went on to harness this device for downstream applications and to use it to probe other aspects of 

the cell-secreted microenvironment. 
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2.8 Methods 

Perfusion culture device fabrication 

The microdevice consists of six 1.25 mm × 13 mm × 250 µm (W × L × H) chambers, with two 

separate media inputs and dual addressability. The microfluidic perfusion device was molded 

from polydimethylsiloxane (PDMS, Corning), after mixing in a ratio of 10:1 base to curing agent 

and degassing in a vacuum chamber for 30 minutes. The mold was fabricated from an Autocad 

file using a stereolithography foundry (Fineline Prototyping). Plastic replica molds were made 

for fabrication of multiple devices simultaneously (Desai et al., 2009). The fluidic and vacuum 

layers were cured separately and bonded after exposure to oxygen plasma. Input and output fluid 

holes as well as vacuum line holes were punched using a 0.072 inch diameter hypo tube. The 

device layout consists of two sets of triplicate mm-sized enclosed culture chambers with 

individual addressability to enable two experimental conditions side-by-side. These chambers are 

connected to external syringe pumps that provide continuous pulse-free perfusion, and the chip 

also includes microvalves to direct liquid flow and cells to the desired locations. 

Perfusion culture conditions 

For all perfusion experiments, the bonded device is autoclaved and allowed to dry, then clamped 

on top of a polystyrene culture slide in a custom microscope stage insert. The device must be 

secured tightly as it is cannot be bonded to the polystyrene surface, but not so tightly that liquid 

flow is obstructed or valve actuation is inhibited. Tubings are then connected and gelatin is 

perfused through the device for 1 hour to ensure proper flow patterns and valve operation, and to 

remove bubbles, as assessed by microscopic observation. The device and stage are put in the 

incubator for at least an hour to ensure the proper temperature is attained within the device. 

Then, mESCs at a density of 1 x 106 cells/mL are loaded into the device, chambers are sealed, 

surrounding cells are flushed from the inlets, and the device is placed in a humidified incubator. 

Cellsare seeded into gelatin-coated 12-well plates at a density of 2.5 x 104 cells/mL for static 

controls. Perfusion was initiated in the device once cells were firmly attached to the surface (~ 24 

hrs). Perfusion was run continuously at 0.1 ml/hr, unless otherwise noted. For pulse perfusion, 50 

μl of media per side of a device (3 chambers) was perfused in a span of 30 min once every 8 h to 

completely replenish the media in all three chambers (~4 μl chamber volume). For recirculating 
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perfusion, a peristaltic pump (Rainin Dynamax) was used at a flow rate of 0.1 ml/hr with a media 

reservoir of 500 μl in an eppendorf tube to create a total recirculating volume of about 1 ml. 

Culture conditions 

For information regarding cell lines and culture additions, refer to Appendix 1. For 2i/LIF 

culture, CHIR99021, PD0325901, and LIF were added to N2B27 media.  

Quantitative PCR 

For information regarding protocols and primers for standard qRT-PCR, refer to Appendix 1. 

Quantitative RT-PCR array analysis was performed using a mouse embryonic stem cell-specific 

PCR array (PAMM-081, SABiosciences). 

Flow cytometry 

After harvesting cells, direct intracellular immunostaining was performed with an Alexa Fluor 

647-linked anti-mouse Nanog antibody (eBioscience). Cell cycle analysis was performed on 

ethanol-fixed cells by adding RNAse and propidium iodide. BrdU analysis was performed after 

adding BrdU for five hours and fixing cells in formaldehyde. GFP-linked anti-BrdU antibody 

was added at 1:200 (Caltag Laboratories). Internal fluorescent intensity was measured on a 

FACSCaliber flow cytometer (BD Biosciences).  

Immunofluorescence 

For phospho-Stat3 staining, cells were incubated overnight with phosphorylated Stat3 antibody 

(Cell Signaling Technology) at 1:100 and secondary (anti-rabbit GFP, Invitrogen) was added for 

two hours at 1:1000. For Oct4, cells were incubated overnight with primary Oct4 antibody 

(Abcam) at 5 µg/ml and secondary (anti-goat Cy3, Abcam) was added for one hour at 1:250. 

Staining along the chamber was quantified using an automated MATLAB script, and differences 

in staining intensity in any area within the chamber was not found to be statistically significant. 

All cells were counterstained with 1:100000 Hoechst (Sigma). 

Embryoid body formation 

http://www.sabiosciences.com/rt_pcr_product/HTML/PAMM-081A.html
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ESCs were harvested from culture and replated at 4 x 105 cells in a 60-mm ultra low attachment 

culture dish (Corning). Cells were grown in ESC medium with no LIF, and medium was 

replenished every two days.  

ELISA 

Enzyme-linked immunosorbent assay was performed on samples from static conditioned 

medium, or from the medium collected from the perfusion output. Cells were either perfused for 

thirty hours or remained in static culture for thirty hours, and medium was collected. Results 

were normalized by the average cell density (using an exponential growth model and the 

initial/final cell numbers) and duration to determine a secretion in grams/cell/hr under both 

conditions. Because of the discrepancy in volume between these two types of samples, perfusion 

output medium was spun down using spin filter concentrator columns with a 3 kDa molecular 

weight cutoff (Millipore) and reconstituted to the same volume as the static conditioned medium. 

VEGF ELISA was purchased from R and D Systems, and assay was performed according to 

manufacturer’s instructions.  

Cell recovery 

To capture and count cells recovered from the perfusion device, cells were collected into 4% 

formaldehyde and transferred to 4°C twice daily. All recovered cells were combined and stained 

with Hoechst (Sigma), then transferred to a black-walled 96-well plate where they were 

automatically scanned and counted using a MATLAB script that was previously calibrated using 

known quantities of cells collected, treated, and counted in the same manner as the cells 

recovered from the device. 

 

 

 

 

  



54 
 
 

Chapter 3 Controlling ESC fate in the neutral background 
of perfusion 

3.1 Introduction 

Determining the effects of removing cell-secreted factors allows for an understanding of how 

such factors contribute to cell fate in a broad context. Microfluidic perfusion can also be used as 

a tool to determine the roles of specific cell-secreted factors and to manipulate cell fate 

accordingly, all in a system with reduced background noise. Because microfluidic platforms have 

the ability to provide precise control over the timing of signal addition or removal and monitor 

the resulting phenotype in real time, they have potential uses as screening platforms to identify 

and regulate endogenous or exogenous signals.  

Embryonic stem cells represent an interesting system to study mechanistically, not only because 

of their ability to self-renew indefinitely, but also because they can be induced to leave their self-

renewing state and enter down a path of differentiation toward a desired lineage. The 

development of methods to reprogram somatic cells into induced pluripotent stem cells in mouse 

(Takahashi and Yamanaka, 2006; Wernig et al., 2007; Okita et al., 2007) and human (Yu et al., 

2007; Takahashi et al., 2007) has stimulated increased efforts to specifically differentiate 

pluripotent stem cells into cell types of interest, as this technology allows for patient-specific 

cells of any desired lineage to be obtained for therapeutic use. However, creating populations of 

specifically differentiated cells from ESCs is difficult, and even the best techniques for specific 

differentiation result in a heterogeneous mixture of cells that may not be appropriate to use 

therapeutically (Kubo et al., 2004). In addition, there are barriers to testing the functionality of 

differentiated cells in vivo to ensure that they act identically to the cell type they are intended to 

substitute for, a problem particularly relevant to neuronal directed differentiation (Hansen et al., 

2011).  

Many differentiation protocols use timed exposure to various exogenous growth factors 

(Wichterle et al., 2002; Kouskoff et al., 2005) to drive cells to particular endpoints, often in an 

attempt to recapitulate timing of corresponding developmental stages. However, signaling 

changes that occur over time in vivo are difficult to assess and the timescales on which these 
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changes occur may be too small to reliably recapitulate using bulk culture methods. Thus, the 

ability to identify and implement defined conditions in which to reproducibly and efficiently 

create a homogeneous population of specifically differentiated cells would be useful in many 

contexts. By monitoring changes in soluble extracellular signals during differentiation, we can 

develop a better understanding of what extracellular signals are required for specific directed 

changes to occur. The collection of all molecules secreted by a given cell at a given time has 

been referred to as the secretome (Greenbaum et al., 2001). Determining and understanding what 

different populations of cells secrete and why is instrumental to any complete analysis of the 

extracellular microenvironment. During the early stages of mESC differentiation, it has been 

shown that some aspects of the secretome will change in a manner consistent with the eventual 

fate of the cells (Farina et al., 2011). Because increased amounts of cell-secreted proteins are 

collected when cells are grown under perfusion as compared to static (Figure 2-3), this system 

represents a platform that could be further optimized for high-throughput analysis of secretome 

changes and their significance during differentiation and development.  

Microfluidic perfusion is a powerful tool for determining the roles of specific cell-secreted 

signals and for adding specific signals back in a controlled manner, but to really get at how and 

when signals are being presented to the cells and how this relates to their resulting phenotype, it 

is necessary to model ligand secretion and uptake rates during perfusion as a function of cell 

density, flow rate, and ligand concentration. To that end, we have performed basic finite-element 

analysis using COMSOL to model the chambers in the perfusion device, but further analysis will 

be required to make testable predictions regarding specific ligand availability and signaling 

capacity for cells growing under perfusion. In this chapter, we provide basic experiments and 

analysis showing how microfluidics can address outstanding challenges in directed 

differentiation and in understanding regulation of endogenous signaling during differentiation 

processes.  

3.2 Using perfusion for directed differentiation 

In chapter 2, we found that mESCs grown under perfusion tend towards being more primed for 

differentiation. We wanted to exploit the fact that cells under perfusion were already primed by 

providing them with cues for directed differentiation and assessing their ability to rapidly and 



homogenously differentiate. Adding in Activin under perfusion helped to stabilize this more 

primed epiblast-like state, so we began by adding in Activin along with two mESC-secreted 

proteins that have been implicated in differentiation, FGF4 and TGFβ. Together, these three 

proteins in conjunction with LIF and BMP4 caused a general upregulation of differentiation 

markers and downregulation of self-renewal markers compared to cells grown under perfusion 

with just LIF and BMP4 (Figure 3-1a). The most dramatic change involved an upregulation of 

the early mesoderm marker Brachyury (Figure 3-1b), thus we pursued this line of evidence to 

assess the ability of perfusion to enhance directed differentiation. 
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Figure 3-1 Adding proteins under perfusion. (a) Relative mRNA expression levels of the self-renewal marker Nanog 
and several differentiation markers in cells grown for three days under perfusion in self-renewal media with or 
without the indicated additions. (b) Relative mRNA expression level of Brachyury in the same conditions as in (a). 
**=p<0.001, *=p<0.05. Data represent the average of technical replicates and error bars represent standard 
deviation.  

56 
 
 

Previously described changes seen under perfusion were typically assessed at day 5, since day 3 

cells did not show significant differentiation or self-renewal marker expression changes (Figure 

2-4). However, after only three days of addition of FGF4, Activin, and TGFβ, we saw highly 

upregulated expression of the mesoderm differentiation markers Brachyury and Nkx2.5, changes 

that did not occur in static culture (Figure 3-2a). This dramatic upregulation did not occur in 

markers indicative of ectoderm (FGF5) or endoderm (Gata4, AFP) lineages (Figure 3-1). Though 

FGF5 levels increase with early differentiation of many lineages, they do not continue to 

increase in lineages other than ectoderm, which is consistent with cells under the given 

conditions tending towards mesoderm and not ectoderm differentiation. We went on to form 

embryoid bodies from cells that had been grown under perfusion for three days in the presence of 

FGF4, Activin, and TGFβ, and found that they formed embryoid bodies with unique 



substructures (Figure 3-2b) and a higher propensity to beat as compared to embryoid bodies from 

normal static cultures. These results highlight the utility of perfusion in developing directed 

differentiation protocols, and indicate the importance of cell-secreted soluble signals in blocking 

exit of mESCs from self-renewal, even in the presence of differentiation-inducing cues. 
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Figure 3-2 Induction of mesoderm genes under perfusion. (a) Relative mRNA expression levels of Brachyury (left) 
and Nkx2.5 (right) after three days of growth in static or perfusion with or without added Activin, FGF4, and TGFβ. 
(b) Representative images of embryoid bodies grown for 3 days in the conditions indicated on top and transferred to 
floating culture for the number of days indicated at left. Scale bar = 800 µm. 

While the differentiation potential of these cells that express vastly higher levels of mesodermal 

markers has not been quantitatively monitored, we have formed embryoid bodies from normal 

static cultures and followed their expression of the mesodermal marker Brachyury over time 

using a Brachyury-GFP mESC line (Figure 3-3). A similar approach could thus be used to 

determine the timing and localization of Brachyury expression in embryoid bodies formed from 

cells initially more prone to mesodermal differentiation. Directed differentiation protocols could 

then be implemented to determine whether these cells are in fact more amenable to mesodermal 

differentiation and less amenable to differentiation towards other lineages, which could 

eventually lead to a more homogenous differentiated population. The proof-of-concept results 

showing that perfusion does allow for rapid and specific directed differentiation could be applied 

to direct differentiation toward other lineages, and could be used to optimize parameters for 

differentiation programs that are currently ill-defined.  
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Figure 3-3 Representative fluorescent images of embryoid bodies formed from Brachyury-GFP reporter mESCs, 
growing for the indicated number of days. Scale bar = 800 µm. 

 
3.3 Identifying and modeling ligands removed under perfusion 

The utility of microfluidic systems exists not only in their ability to control signals on a broad 

scale, but also in their ability to precisely control and monitor exogenous factor addition and 

endogenous factor removal. However, in order to enact this precise control, a more complete 

understanding of a given microfluidic system’s parameters and functionality in terms of its direct 

effects on cell signaling is crucial. For example, in order to directly manipulate the local impact 

of cell-secreted signals, it is imperative to quantitatively determine to what extent perfusion is 

removing these signals. Every candidate signal has a different mass, diffusivity, secretion level, 

associated receptor density, etc., so we began by attempting to establish a model system for the 

steady state surface concentration at the outlet versus the inlet for a molecule that is known to be 

secreted from mESCs, FGF4. Our model is simple but informs qualitative assumptions about 

removal of secreted molecules and how flow rate affects ligand exposure. Refer to (Moledina et 

al., 2012) for a recently published in-depth model of endogenous ESC signaling on cell fate.  

For our model, we used COMSOL to solve the transient two-dimensional convection-diffusion-

reaction problem in a rectangular geometry approximating our flow chambers.  Specifically, we 

solved 

· · , 

where c is the species concentration in mol/m3, t is time in s, u is linear velocity, D is the 

diffusivity of the reacting species in m2/s, and R is the reaction rate expression for the species in 

mol/(m3 his was subject to the following initial and boundary conditions: 
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·s). T

Inlet: , specified because we assume an input concentration of zero 
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Top of chamber: · 0, specified to indicate no flux into or out of the top of the 

chamber 

Outlet: · 0, specified to indicate an outflow by convection 

Flux from cells at bottom of chamber: · , specified to 

indicate that the flux of species c out of the bottom of the chamber (where cells are attached) is 

equal to the rate of spe etion minus the rate of reaction.  cies secr

For these conditions,  is the starting concentration, n is normal vector,  is the rate of 

species secretion from the cells,  is maximum rate of species reaction, and  is the 

substrate concentration at which the reaction rate is half of . 

We specified the flow velocity to be parabolic, and used the following initial parameters:  

Starting concentration   0 mol·m-3 

Forward rate constant      1000 m3·mol-1·s-1    

Backward rate constant     3e-4 s-1                  

Active site concentration   4e-12 mol·m-2          

Bulk ligand diffusivity        1e-9 m2·s-1                 

Surface ligand diffusivity       1e-11 m2·s-1              

Maximum velocity     0.029 mm·s-1                        

Channel width      1.25 mm                             

Secretion rate       2.37e-16 mol·m-2·s-1             

Chamber height    0.250 mm                          

Catalytic rate constant   1e-3 s-1                    

The transport parameters are taken from chapter 2.2 and from (Huang et al., 1998; Mehta and 

Linderman, 2006), while the secretion rate data is from Figure 2-3.    
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Figure 3-4 Perfusion chamber modeling results. (a) Plots show the concentration of a representative secreted ligand 
across the length of a perfusion chambers at a 100-fold range of flow rates (Q). The Cmax listed under each plot 
indicates the highest concentration in the chamber (dark red color). The flow rate used in our system is represented 
by the middle plot. (b) Graph representing how the maximal concentration of ligand changes with flow rate. 

Using these parameters, we profiled the steady state surface concentration of a theoretical cell-

secreted ligand with characteristics similar to FGF4 at flow rate Q=0.01, 0.1, and 1 mL/h 

(corresponding to Pe = 3.7, 37, and 370), which showed expected behavior (Figure 3-4) where 

concentration of secreted molecules at the outlet builds up more with slower flow rates, and there 

is no apparent boundary layer formed at the flow rate we use. Over several flow rates, we can 

monitor the concentration of secreted ligand at the middle versus the end of the chamber and 

determine how that changes with a low density versus high density of cells (Figure 3-5). Using 

this data with a theoretical ligand, our flow rate (0.029 mm/s) shows that there may be some 

changes in ligand concentration along the length of the chamber, but that these differences are 

small in terms of the range of ligand concentrations seen at all flow rates.  Though this analysis 

is rudimentary and does not take into account dynamic changes in cell growth and ligand 

production rates, it provides an initial framework in which to further model the relative 

concentration of specific ligand that is available to cells within the perfusion chamber. 
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Figure 3-5 Comprehensive steady-state modeling results showing how concentration of a representative ligand 
changes throughout the length of the chamber according to cell density and flow rate. 
 
To check the accuracy of the model predictions regarding removal of a candidate ligand such as 

FGF4, we assessed whether FGF4 appeared to be removed under perfusion. As described in 

chapter 2.4, autocrine/paracrine FGF4 signaling through MEK and ERK is a well-studied 

example of a cell-secreted factor that contributes to spontaneous differentiation of ESCs (Kunath 

et al., 2007; Stavridis et al., 2007; Burdon et al., 1999). Because we see an exit from self-renewal 

under perfusion, it is possible that FGF4 is still signaling under perfusion at levels high enough 

to elicit the differentiation phenotype. We thus sought to determine whether ERK signaling was 

still active under perfusion and thereby mediating the observed changes. We do see active ERK 

signaling, but LIF is known to activate ERK in a context-dependent manner (Niwa et al., 2009), 

and adding the potent MEK inhibitor PD0325901 (PD03) under perfusion was effective at 

inhibiting active ERK (Figure 3-6a). However, this addition did not cause an upregulation of the 

self-renewal genes Oct4, Nanog, Klf4 or Rex1 under perfusion, whereas it was effective in 

upregulating these genes in static cultures (Figure 3-6b), as previously reported (Ying et al., 

2008). In addition, PD03 did not decrease differentiation marker expression to the level of static 

controls (Figure 3-6c). The fact that inhibition of downstream pathways does not affect the cells 

under perfusion supports the idea that perfusion is removing cell-secreted FGF4, and shows that 
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the transition out of the ESC state seen under perfusion is not a result of signaling through the 

MEK/ERK pathway. 
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Figure 3-6 Inhibiting ERK signaling under perfusion. (a) Fluorescent images of cells grown in perfused culture in 
N2B27+LB with and without the MEK inhibitor PD0325901 (PD03), stained for phosphorylated ERK1/2 (red) and 
counterstained with DAPI (blue). Scale bar = 100 µm. (b) Expression levels of self-renewal markers after growth in 
static or perfusion self-renewal culture in the presence or absence of PD03. (c) Relative levels of mRNA expression 
for differentiation genes in the presence and absence of PD03 under static and perfusion self-renewal conditions. 
**=p<0.001, * =p<0.05; #=p<0.05, ##=p<0.001 for all pairwise comparisons, all data represents averages of at least 
three independent experiments and error bars represent SD. 

As shown in Figure 2-11c, when we recirculate media from the outlet of perfusion back through 

the chamber, we see a reversal of the trend to exit the self-renewing state under normal perfusion 

conditions, indicating that proteins are being removed that are important for maintenance of self-

renewal. More than one signal is likely responsible for the exit from self-renewal seen under 

perfusion, as the extracellular signaling environment of mESCs is very complex, and 

determining the combinatorial effects as well as the importance of signal presentation at the 

proper time and dose could benefit from the establishment of a high-throughput microfluidic 

screening system and from more controlled and testable model development. 

3.4 Discussion 

In this chapter, we discuss the utility of microfluidic perfusion in manipulating and monitoring 

cells. We first performed a proof-of-concept study in which mesoderm-inducing proteins were 

added to mESCs growing under perfusion, resulting in a dramatic upregulation of mesoderm 

genes after only three days. While this study is incomplete, it highlights a very promising future 

application for microfluidic perfusion and mESCs. Perfusion is desirable for directed 

differentiation as it provides a more neutral background in which cell-secreted proteins are 
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removed, thus eliminating factors that may inhibit or act in opposition to differentiation-inducing 

signals. Perfusion also allows for precisely timed factor addition and removal, which is often 

necessary during directed differentiation to mimic endogenous autocrine or paracrine signaling 

processes that occur in vivo (Murry and Keller, 2008). For example, it is known that the timing 

of FGF4 signaling is critical to mESC neuronal specification in vitro and epiblast formation in 

vivo (Stavridis et al., 2007; Yamanaka et al., 2010), and critical time windows have been found 

for addition of BMP4, Wnt3a, and Activin A to initiate mesodermal specification (Jackson et al., 

2010). However, the temporal windows described in these examples were resolved only to days 

or half-days, which may not correspond to the true temporal resolution. Because the volume of 

our microfluidic chambers is about 4 µl, media can be exchanged very rapidly and in an 

automated fashion, allowing precise temporal requirements to be addressed.  

Using microfluidics to mimic the in vivo environment can be extended to optimize protocols for 

directed differentiation and to better understand the interplay between exogenous factors and 

endogenous loops that operate during differentiation. Such studies are performed at moderate 

scale using traditional culture conditions (Purpura et al., 2008), but could potentially be 

performed more easily and at lower cost using microfluidics. While our device does not allow for 

optimization on this scale, multiplexing to a multichamber device and using an automated system 

for media changes on the order of minutes or seconds could be a powerful tool for screening 

many different additions at different concentrations and for different lengths of time. Once time 

windows have been narrowed down, as in some of the experiments described above, 

concentrations and sequential additions can be further optimized to create very precise protocols 

for creating or inhibiting the ability to undergo early differentiation events. 

For all studies involving using microfluidic perfusion to manipulate cell signal presentation, a 

complete understanding of how endogenous or exogenous signals affect cells, either directly or 

indirectly, requires the ability to make and test predictions regarding ligand output and ligand-

receptor interactions. Here we provide a simple model for determining how the concentration of 

a secreted ligand changes within a perfusion chamber based on flow rate and cell density, but 

this model is incomplete in its predictive ability. We were able to verify the fact that FGF4 

signals are not functionally active in signaling through ERK under perfusion, which implies that 

other cell-secreted signals are contributing strongly to the exit from the self-renewing state. 
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However, we did not assess whether the levels of FGF4 were similar or different along the length 

of the chamber, nor did we determine the concentration of FGF4 removed under perfusion. Next 

steps would involve using an experimental setup with known levels of a secreted protein that 

could be tested in its ability to be removed at different flow rates and with different cell densities, 

and using this data to make a more complete model that could then be reapplied to predict 

similar outcomes with other signaling molecules.  

The ability to confirm the removal of FGF4 under perfusion indicated the need to look more 

broadly at cell-secreted signals in order to identify the nature of the signals required to maintain 

self-renewal. Microfluidic perfusion of adherent cells is somewhat limited by the fact that certain 

types of cell-cell signaling are not addressed, such as those that act by cell-cell contact or 

through the extracellular matrix. In the next chapter, we will address this limitation and show 

that we can manipulate both cell-secreted soluble signals and extracellular matrix-based signals, 

with different consequences. 

3.5 Methods 

For information regarding cell lines, culture additions, and qPCR protocols, refer to Appendix 1. 

For information regarding perfusion culture or embryoid body formation, refer to the methods in 

chapter 2.8. 

Immunofluorescence 

For phospho-ERK1/2 staining, cells were incubated overnight with phosphorylated ERK1/2 

antibody (BD Biosciences) at 1:100 and secondary (anti-mouse AF546, Invitrogen) was added 

for two hours at 1:1000. Cells were counterstained with 1:100000 Hoechst (Sigma). 

Finite-element modeling 

 

The MEMS module of COMSOL version 3.5a was used for finite-element modeling. A steady-

state 2-dimensional convection and diffusion model was used, adapted from the provided 

Transport and Adsorption and Transport of Diluted Species models. 
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Chapter 4 Depletion of soluble versus extracellular matrix-
based signaling 
4.1 Introduction 

In addition to soluble signals whose presence can be depleted using perfusion, cells also secrete 

extracellular matrix proteins that bind under or between the cells and thus are not affected by 

perfusion to the same extent as are soluble diffusible secreted signals. As described in chapter 

1.3, signals emanating from the endogenous ECM are complex and can be very significant, such 

that the contributions of ECM-based signals cannot be ignored when discussing the cell-secreted 

microenvironment. It may be useful to think of the endogenous ECM as a dense mesh or a net in 

which the structural components such as collagen, laminin, and fibronectin can act to bind or trap 

endogenously secreted cytokines and growth factors (Hynes, 2009). These and other ECM 

proteins such as integrins and proteoglycans can also act alone as signaling proteins or as 

cofactors for soluble or matrix-bound proteins (Keung et al., 2010).  

Heparan sulfate proteoglycans (HSPGs) function as a reservoir of growth factors in the matrix 

(Hynes, 2009), or as a cofactor for signaling proteins such as FGFs, BMPs, and TGFβ (Taylor 

and Gallo, 2006), functions that depend on the ability of proteoglycans to be properly sulfated. 

To manipulate this function in mESCs, Lanner et al. used multiple methods to block the sulfation 

of HSPGs, including a small molecule inhibitor and a sulfating enzyme knockout cell line, and 

found that cells grown under these conditions become more homogeneously naïve (Lanner et al., 

2010). This result was reminiscent of previous results in which blocking FGF4-ERK signaling in 

mESCs caused a similar phenotype, and indeed, Lanner et al. found that the major extracellular 

signal involved in HSPG-mediated induction of a more primed state was autocrine FGF4. While 

we showed in chapter 3.3 that FGF4 is not a functional signal under perfusion, presumably due 

to its removal, other components of the ECM may still be affecting the cells undergoing 

perfusion. Many other aspects of the ECM could also be contributing to the perfusion phenotype, 

so we sought to determine the effects of manipulating ECM-based signaling using the sulfation 

inhibitor sodium chlorate or the enzyme collagenase, both alone and in the context of perfusion. 

In this way, by individually modulating both diffusible and ECM-based cell-secreted signals, we 
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could probe the specific roles of each, or combine the two to block signals secreted into the ECM 

and the mass media. 

While we can manipulate the ECM exogenously by adding sulfation inhibitors or collagenase, 

cells also have endogenous mechanisms that they use to manipulate the ECM. The most 

prominent class of endogenously secreted remodeling enzymes is the MMP family (Matrisian, 

1990), consisting of 23 members in mice (Nuttall et al., 2004). Each MMP has specific 

substrates, and some MMPs are secreted while others are transmembrane proteins, but all are 

initially expressed as pro-enzymes that require proteolytic cleavage to become active proteases. 

Secretion levels of endogenous MMPs and whether or not they have a functional role in ESC 

biology has not been studied extensively, but their function has been shown to be important 

during early embryonic development as the embryo undergoes implantation and gastrulation 

(Huang, 2006; Coyle et al., 2008; Das et al., 1997). 

More generally from a developmental biology perspective, ECM and basement membrane 

production are crucial steps in proper gastrulation and embryonic development (Lu et al., 2011; 

Hammerschmidt and Wedlich, 2008), so understanding more general roles of ECM-based signals 

and how the matrix is formed and remodeled endogenously is important. Using microfluidic 

perfusion allows us to study ECM proteins in the absence of diffusible signals, which may 

normally act to obscure signaling pathways specific to ECM. Signals emanating from the ECM 

have been shown to regulate processes as diverse as neuronal cell migration (Perris and 

Perissinotto, 2000) and cancer cell invasion (Stetler-Stevenson et al., 1993), and such signals are 

dysregulated in muscular dystrophies (Campbell, 1995) and some forms of cardiovascular 

disease (Dollery et al., 1995). However, the specific functions of ECM-based and diffusible 

autocrine signaling in these systems is not yet well characterized, so the ability to discretely 

regulate both while reproducibly monitoring the outcome has wide relevance. 

Sections 4.2 and 4.4 of this chapter are adapted from Przybyla and Voldman (Przybyla and 

Voldman, 2012b). 

4.2 Extracellular matrix remodeling under perfusion 
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In chapter 2.5, we found that growing mESCs under constant media perfusion caused them to 

exit their self-renewing state, even in the presence of cues previously thought to be sufficient to 

maintain self-renewal. To determine the processes responsible for this exit, we looked for signals 

that may still be acting to elicit a state change in the absence of soluble autocrine factors. The 

fact that the endogenous ECM is intact under perfusion prompted us to explore the possibility 

that proteins trapped within the ECM could be contributing to the perfusion phenotype.  

As described in chapter 1.4, the ECM has been implicated in contributing to spontaneous 

differentiation of mESCs by binding of cell-secreted factors (Lanner et al., 2010), or by its 

structural or mechanical properties (Chowdhury et al., 2010). To broadly assess the effects of 

disrupting the ECM under perfusion, we initially used sodium chlorate, a sulfation inhibitor that 

blocks the ability of most proteoglycans to act as protein tethers or reservoirs within the ECM 

(Baeuerle and Huttner, 1986; Humphries and Silbert, 1988). Sodium chlorate is able to remove 

sulfated heparan chains, as shown by staining for sulfated heparin in the presence of sodium 

chlorate (Figure 4-1a). As has been shown previously, disruption of heparan sulfation in static 

culture decreased spontaneous differentiation (Figure 4-1b). On a molecular level, disrupting 

heparan sulfation in static cultures caused an upregulation of the self-renewal markers Nanog 

and Klf4 and a decrease in levels of the differentiation marker FGF5 (Figure 4-1c). These 

changes in static culture are reminiscent of changes that occur when ERK is blocked (see chapter 

2.4), and in terms of protein expression, Sox2-GFP reporter mESCs have a very similar flow 

cytometry histogram in the presence of either sodium chlorate or ERK inhibition (Figure 4-1d).  
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Figure 4-1 Disruption of heparan sulfation inhibits differentiation. (a) Immunofluorescence staining for sulfated 
heparan after five days of growth in the presence or absence of sodium chlorate. Scale bar = 100 µm. (b) 
Representative morphology of cells grown in static or perfusion self-renewal with or without sodium chlorate (+/-
SC). Scale bar = 200 µm. (c) mRNA expression levels of self-renewal and differentiation markers in the presence 
and absence of sodium chlorate with or without the addition of soluble heparin in static or perfusion self-renewal. 
(d) Flow cytometry histograms showing levels of Sox2 in a Sox2-GFP cell line. **=p<0.001, * =p<0.05; #=p<0.05, 
##=p<0.001 for all pairwise comparisons, all data represents averages of at least three independent experiments and 
error bars represent SD. 

Whereas blocking ERK signaling under perfusion had no obvious effects on the cells (see 

chapter 3.3), disrupting heparan sulfate under perfusion had dramatic consequences. First, we 

noticed a higher prevalence of large healthy mESC colonies under perfusion in the presence of 

sodium chlorate compared to its absence (Figure 4-1b). In terms of marker expression, the self-

renewal markers Oct4, Nanog, Klf4, and Rex1, levels of which had all decreased under 

perfusion, were restored to or beyond levels seen in static cultures, while differentiation markers 

68 
 
 



that had increased were restored to the low levels seen in static culture (Figure 4-1c). To show 

that these dramatic changes were due to functional disruption of heparan sulfate chains, we 

added soluble heparin along with sodium chlorate to restore the heparan sulfate binding function, 

and this reduced levels of self-renewal markers to the levels seen under baseline perfusion 

conditions (Figure 4-1c). Adding low concentrations of collagenase to disrupt the ECM produced 

a similar phenotype as that resulting from the addition of sodium chlorate, in terms of 

morphology (Figure 4-2a) and marker expression (Figure 4-2b). Interestingly, Fgf5 expression 

levels did not decrease in the presence of collagenase whereas it did in the presence of sodium 

chlorate (Figure 4-1c), indicating that this upregulation may be due to a specific heparan-sulfate 

binding protein that is not disrupted by collagen removal. Taken together, these data indicate that 

broadly disrupting the ECM by either small molecule or enzyme addition under perfusion allows 

ESCs to maintain their self-renewing state, while functional recovery of ECM protein binding 

causes cells under perfusion to exit this state, indicating the importance of ECM disruption in 

mESC self-renewal. 
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Figure 4-2 Effects of collagenase addition under perfusion. (a)  Representative morphology of cells grown in the 
indicated conditions. Scale bar = 200 µm. (b) mRNA expression levels of self-renewal (left) and differentiation 
(right) markers for cells grown in static and perfusion compared to levels in cells grown in perfusion in the presence 
of 1 ng/ml collagenase. **=p<0.001, * =p<0.05; #=p<0.05, ##=p<0.001 for all pairwise comparisons, all data 
represents averages of at least three independent experiments and error bars represent SD. 

Expression and production of ECM proteins is highly controlled at the transcriptional level, with 

many auto-regulatory loops involved to maintain appropriate levels of ECM proteins (Levenberg 

et al., 1998). To determine how this regulation was affected by perfusion, we used data from 

Table 2-1 to check expression levels of ECM structural proteins over five days in static versus 

perfusion. Levels of most such proteins were higher in perfusion as compared to static, even on 
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day 3, before many other changes were apparent (Figure 4-3). This indicates a relatively rapid 

misregulation of ECM formation upon depletion of soluble cell-secreted signals such that ECM 

proteins are produced at higher levels, which may help to explain why large-scale disruption of 

the matrix mitigates the phenotype seen under perfusion. Further work could involve measuring 

the rate and composition of endogenous matrix buildup in both static and perfusion cultures. 
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Figure 4-3 mRNA expression levels of structural ECM genes over five days in static or perfusion. Data are obtained 
from Table 2-1. 

4.3 Contributions of soluble versus ECM-based signals 

We next sought to gain a more complete understanding of how disrupting heparan sulfate 

proteoglycan binding functionally affects mESCs. From experiments involving blocking either 

soluble signaling (perfusion), ECM-based signaling (sodium chlorate or collagenase), or both, 

we observed that cell-secreted signals emanating from different sources can have drastically 

different effects on cells. However, all these studies included exogenously added LIF and BMP4. 

To determine how these modes of signaling function in the absence of exogenously added 

signals, we assessed the contribution of soluble versus ECM-based signals in serum-free N2B27 

media alone.  

We analyzed expression of markers indicative of early differentiation towards the ectoderm 

(FGF5), endoderm (Gata4), or mesoderm (Brachyury) lineages in cells grown for five days 

without LIF or BMP4. In static cultures, cells grown in the presence of sodium chlorate have 

increased levels of Gata4 compared to those without sodium chlorate (Figure 4-4). Conversely, 

cells grown under perfusion show very different expression patterns for ectoderm and mesoderm 
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markers depending on whether they are grown in the presence or absence of sodium chlorate 

(Figure 4-4). These results are consistent with a situation in which, when soluble cell-secreted 

signals are dominant over ECM-based signals (static culture with sodium chlorate), cells tend 

towards endoderm differentiation, whereas the dominance of ECM-based signals over soluble 

signals (perfusion culture without sodium chlorate) causes cells to differentiate towards 

mesoderm and ectoderm. However, this data only includes monitoring expression of one marker 

per differentiation lineage at a single timepoint, while any conclusive claims about 

differentiation trajectories would require assessing expression levels and dynamics of many 

additional lineage markers. 
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Figure 4-4 mRNA expression levels of a self-renewal marker (Nanog) and early differentiation markers indicative of 
the three somatic lineages, mesoderm (Brachyury), ectoderm (FGF5), and endoderm (Gata4), after five days in the 
indicated conditions in the absence of LIF and BMP4. 

Because of these drastic changes in marker expression upon exposure of mESCs to different 

types of cell-secreted signals, we wanted to assess the potential of cells grown under these 

conditions to self-renew and to remain pluripotent. To assess self-renewal, we replated cells after 

growth in static or perfusion in media containing LIF and BMP4 in the presence or absence of 

sodium chlorate and found that the only cells that were able to replate and grow were those 

grown in normal static conditions (Figure 4-5). However, the inability of cells grown in sodium 

chlorate to successfully be cultured further could be because they were not able to properly 

attach to the culture surface due to the effects of residual sodium chlorate. Because the ability to 

self-renew implies maintenance of pluripotentiality, we further explored self-renewal ability by 

assessing this characteristic.   
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Figure 4-5 Fold increase in growth of cells that were replated into static self-renewal media from growth in static or 
perfusion in the presence or absence of sodium chlorate. 

To determine whether mESCs grown in static or perfusion in the presence or absence of sodium 

chlorate were able to differentiate and maintain the full range of pluripotent potential, we formed 

embryoid bodies and checked morphology and expression of differentiation markers. We noticed 

that mESCs grown in the presence of sodium chlorate, which expressed self-renewal markers 

(Figure 4-1c), had greatly diminished embryoid body forming efficiency, and formed bulbous, 

uncompact embryoid bodies (Figure 4-6a), indicating that the ability of these cells to remain 

fully poised for differentiation was compromised. To further assess pluripotentiality, we 

compared histology sections from embryoid bodies formed from cells that had been grown in 

N2B27+LIF+BMP4 media in perfusion and static cultures in the presence or absence of sodium 

chlorate. As expected, we found that the largest and most complex-looking EBs were formed in 

the presence of both soluble and ECM-based cell-secreted signals (Figure 4-6b). We also 

analyzed marker expression from these EBs and found that removing soluble signals using 

perfusion seems to bias cells toward mesodermal differentiation and away from endoderm or 

ectoderm, while removing ECM-based signals with sodium chlorate biased cells toward an 

endoderm fate and away from mesoderm (Figure 4-6c). The very low number and small size of 

EBs formed from cells grown in perfusion in the presence of sodium chlorate prohibited 

characterization of this condition in terms of marker expression. The differentiation biases seen 

from cells grown under perfusion or in the presence of sodium chlorate are consistent with the 

results seen above (Figure 4-4), whereby soluble cell-secreted signals bias mESCs towards 

endoderm, while ECM-based signals provide a bias towards mesoderm differentiation.  
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Figure 4-6 Embryoid body differentiation after manipulation of exogenous signaling. (a) Representative morphology 
of embryoid bodies growing in differentiation media after five days of exposure to the indicated conditions. (b) 
Histology sections of day 10 embryoid bodies from the same conditions as those in (a). Red boxes indicate regions 
of complex substructure including defined membrane edges and invagination. (c) Marker expression on day 9 of 
markers representing differentiation toward the three germ layers. # = p<0.05 for all pairwise comparisons. 

Our initial studies with microfluidic perfusion indicated that in the absence of diffusible 

autocrine signaling, mESCs lose self-renewal characteristics and acquire early ectoderm and 

mesoderm differentiation characteristics on a population-wide level. Here, this trend was further 

supported using media without exogenous LIF and BMP4, with results also indicating that 

depletion of ECM-based autocrine signaling causes endoderm markers to increase (Figure 4-4). 

Finally, when both diffusible and ECM-based cell-secreted signals are inhibited by growing cells 

under perfusion with sodium chlorate, the cells have markers indicative of self-renewing cells, 

while they in fact do not retain the ability to differentiate properly (Figure 4-6). It is possible that 

mESCs in conventional static culture are able to stably regulate these distinct signals to maintain 

their balance between the naïve and poised states, thus allowing them to effectively retain their 

self-renewal and pluripotency characteristics. 

4.4 Removal of endogenous matrix remodeling proteins affects ESC self-renewal 

So far in this chapter, we have shown that blocking ECM-based signals is able to block the 

transition to a primed epiblast-like state that is normally induced by removing soluble cell-

secreted proteins. However, the precise nature of the proteins involved in inducing this transition 
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is unclear. To determine whether there was a direct link between removing secreted signals and 

matrix remodeling, we looked towards endogenously secreted molecules responsible for 

remodeling and curating the ECM, the MMP family of proteins (Matrisian, 1990). MMPs are 

known to be secreted by mESCs (Guo et al., 2006b), so we analyzed expression of various 

members of the MMP family in self-renewing cultures and found that, while MMPs are 

expressed at low levels upon initial mESC plating, after five days in culture, MMP expression 

levels increase significantly, and tend to be higher in self-renewing cultures compared to 

differentiation cultures (serum+retinioic acid) (Figure 4-7). It is thus possible that ECM 

breakdown is functionally significant in the maintenance of self-renewal.  
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Figure 4-7 mRNA expression levels of MMPs during growth in static cultures under self-renewing (serum+LIF) or 
differentiation (serum+retinoic acid) conditions. 

Because the exit from the ESC state seen under perfusion is related to the presence of the intact 

ECM, it is possible that a removal of MMPs under perfusion is responsible. MMPs are highly 

regulated at the transcriptional level by feedback mechanisms, they require proteolytic cleavage 

to become active, and they act at the level of a single molecule instead of activating a signaling 

cascade. For these reasons, their removal by perfusion could quickly and completely block their 

functionality. We show that we are able to recover MMP2 from perfused cells (Figure 4-8a), 

illustrating that it is being removed by flow. Levels of MMP2 protein were lower from cells 

under perfusion compared to those in static, which was also the case for transcript levels (Figure 

4-8b), as would be expected if positive transcriptional feedback regulation mechanisms were 

being affected. Similarly, levels of MMP9 expression are lower in perfusion cultures as 

compared to static, a trend that is not affected by disrupting the matrix exogenously (Figure 

4-8c). Thus, endogenous matrix remodeling proteins are being removed under perfusion, and as 

we have already shown that levels of matrix structural proteins increases under perfusion (Figure 
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4-3), we hypothesize that the inability of mESCs to properly regulate their matrix under 

perfusion may be responsible for the resulting phenotype.  
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Figure 4-8 MMP production and secretion. (a) Secreted protein levels of MMP2 in static and perfusion culture over 
five days, analyzed by ELISA. (b) Relative levels of MMP2 mRNA expression in static and perfusion cultures. (c) 
Relative levels of MMP9 mRNA expression in static and perfusion cultures in the presence or absence of sodium 
chlorate. 

To determine whether mESC-secreted MMPs are functional in terms of self-renewal, we blocked 

these endogenous remodeling proteins in static culture and assessed the resulting phenotype. We 

found that adding the MMP inhibitor Batimastat caused an increase in FGF5 and a decrease in 

Klf4 and Nanog levels, trends that were also seen under perfusion (Figure 4-9a). We also found 

that ESCs cannot be cultured for multiple passages in conditions where MMPs are inhibited by 

the presence of the small molecule MMP inhibitor, Ro32-3555. After two passages in the 

presence of this inhibitor, cells grew poorly and differentiated (Figure 4-9b), and were no longer 

viable by passage 3. Cells that were seeded in self-renewal media, switched to self-renewal 

media+Ro32-3555 after a 24 hour attachment period, and grown in this media for five additional 

days showed a decrease in Nanog expression levels (Figure 4-9c), indicating that the inhibitor is 

not merely causing an exit from self-renewal by altering attachment or growth. Together, these 

results indicate that matrix remodeling is critical in maintaining the mESC state and that removal 

of cell-secreted factors means that matrix remodeling cannot occur properly, thus inducing exit 

from the self-renewing state. 
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Figure 4-9 MMPs are functional in mESC cultures. (a) Relative mRNA expression levels of cells grown in the 
indicated conditions, Bat = Batimastat, an MMP inhibitor. (b) Cells grown with or without MMP inhibitor Ro32-
3555 for multiple passages, scale bar = 400 µm. (c) Relative Nanog mRNA expression levels of cells grown for five 
days in Ro32-3555 or DMSO. * =p<0.05. 

 

4.5 Discussion 

The extracellular matrix significantly contributes, directly or indirectly, to the cell-secreted 

microenvironment of adherent cells. Here we show that, in addition to the known pro-self 

renewal LIF/BMP4 signals and the pro-differentiation FGF4-ERK autocrine stimulus, there also 

exist ECM-bound factors that control the exit from mESC self-renewal. In normal cultures, 

matrix remodeling is constantly occurring to modulate levels of or access to these factors. 

However, under perfusion, the secreted factors that are responsible for remodeling are removed 

such that ECM turnover does not occur and mESCs exit their naïve self-renewing state (Figure 

4-10). 
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Figure 4-10 Model depicting the normal function of ECM-based and secreted endogenous factors in the exit from 
the self-renewing ESC state, and how perfusion disrupts these signals.  
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The cell-secreted extracellular environment can be broadly separated into soluble and ECM-

based signals. Here, we show that we can manipulate both modes of signaling individually or in 
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parallel, resulting in mESC populations with vastly different differentiation potentials. This 

ability can be useful when trying to determine the influence of soluble or ECM-based signaling 

on specific processes, including directed differentiation or maintenance of self-renewal. These 

results also show that it is crucial to consider these multiple modes of signaling when discussing 

the contributions of cell-secreted signals, as soluble versus tethered ligands can act in very 

different ways, which will be discussed further in chapter 6.  

Here, we show that the ECM contributes to spontaneous differentiation in mESC cultures, thus 

implicating matrix remodeling as a crucially important process in controlling presentation of 

proteins from the ESC microenvironment to maintain self-renewal, and we show that the 

presence of LIF and BMP4 and a matrix remodeler is sufficient for this maintenance. An 

important class of endogenous cell-secreted ECM remodelers is the MMP family, and we show 

that their inhibition in static culture causes mESC differentiation. While various components of 

the ECM have been shown to play a role in enhancing or inhibiting ESC self-renewal 

(Chowdhury et al., 2010; Domogatskaya et al., 2008; Hayashi et al., 2007; Lanner et al., 2010), 

this is the first demonstration of the importance of ECM remodeling on maintenance of mESC 

self-renewal. 

By showing that removal of soluble cell-secreted proteins causes mESCs to exit their self-

renewing state, that MMPs are removed under perfusion and are functional in mESC cultures, 

and that matrix remodeling under perfusion causes mESCs to remain self-renewing, we can 

indirectly implicate the removal of MMPs in the phenotype resulting from perfusion. A model 

then emerges in which MMPs normally act in mESC cultures to curate the matrix, either by 

removing proteins that normally inhibit self-renewal, or by releasing trapped pro-self-renewal 

ligands and allowing them to signal. Under perfusion, this system is disrupted and cells exit their 

self-renewing state unless exogenously provided with matrix remodeling proteins.  

These results further emphasize the power of microfluidic perfusion in uncovering previously 

unknown roles for cell-secreted signals. This robust method can be broadly applied to other cell 

types to test hypotheses based on the effects of cell-secreted signals or the roles and 

contributions of ECM-based signals. Once we uncovered the importance of endogenous MMPs 

in maintaining mESC self-renewal, we went on to further characterize this novel role and 
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determine the mechanism by which MMPs act to aid in the maintenance of self-renewal, the 

results of which are described in chapter 5. 

4.6 Methods 

For information regarding cell lines, culture additions, and qPCR protocols, refer to Appendix 1. 

For information regarding perfusion culture, flow cytometry, or embryoid body formation, refer 

to the methods in chapter 2.8.  

Immunofluorescence 

For HepSS staining, cells were blocked with endogenous biotin blocking kit (Invitrogen) and 

incubated overnight with HepSS antibody at 1:100 (Lifespan Biosciences) and secondary 

antibody (TMR NeutrAvidin, Invitrogen) was added at 1:500 for one hour. Cells were 

counterstained with 1:100000 Hoechst (Sigma). 
ELISA 

Enzyme-linked immunosorbent assay was performed on samples from static conditioned 

medium, or from the medium collected from the perfusion output. Because of the discrepancy in 

volume between these two types of samples, perfusion output medium was spun down using an 

Amicon 3 kD cutoff filter spin column and reconstituted to the same volume as the static 

conditioned medium. MMP2 ELISA was purchased from RayBioTech, and assay was performed 

according to manufacturer’s instructions. 

Cell replating 

Cells grown for five days in static or perfusion culture were trypsinized and replated at the same 

density as the original seeding density in static self-renewal conditions in 96-well plates. Three 

wells of cells in each condition were recovered and counted daily using a Coulter counter.  

Embryoid body histology 

Embryoid bodies were transferred to a 1.5 ml tube and allowed to settle by gravity. Media was 

removed and liquified HistoGel was added, then tube was transferred to ice to allow HistoGel to 

solidify. The resulting specimen was wrapped in lens paper and placed in a histology cassette, 
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then incubated in formalin overnight. The next day, cassettes were transferred to 70% ethanol 

and sectioned and H&E stained in the histology facility.  
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Chapter 5 Matrix remodeling maintains ESC self-renewal 
in static cultures 
5.1 Introduction 

After showing that extracellular matrix remodeling is necessary to retain mESC self-renewal in 

the absence of soluble autocrine cues, we further probed the role of the matrix in contributing to 

cell phenotype to determine whether remodeling alone is sufficient to maintain self-renewal. The 

mechanisms behind how extracellular matrices affect ESC fate are largely unexplored, so we 

sought to further investigate this important aspect of the ESC extracellular microenvironment.  

Routine culture of mESCs generally involves a feeder layer composed of mitotically inactivated 

mouse embryonic fibroblasts (MEFs) coupled with exogenous addition of LIF (Tremml et al., 

2008). These conditions have also been used to reprogram somatic cells to pluripotency after 

ectopic expression of defined factors (Takahashi and Yamanaka, 2006; Okita et al., 2007; 

Wernig et al., 2007; Maherali et al., 2007).  MEFs are known to contribute to mESC self-renewal 

by the secretion of LIF (Smith et al., 1988; Williams et al., 1988), but many mESC lines grow 

better in the presence versus the absence of feeders even with exogenous LIF, indicating that the 

contribution from MEFs extends beyond LIF secretion.  

Several novel mechanisms have recently been described that allow for the maintenance of mESC 

self-renewal in the absence of LIF, including simultaneous inhibition of ERK and GSK3 (Ying et 

al., 2008), inhibition of NF-κB signaling (Dutta et al., 2011), inhibition of Src signaling (Li et al., 

2011), and induction of Smad signaling (Soncin et al., 2009). These studies indicate that 

inhibition of many signaling pathways can not only aid in self-renewal but can actually be 

sufficient for its maintenance. Our results from chapter 2 and chapter 4 show that LIF is not 

sufficient for mESC maintenance, even with the addition of BMP4 in serum-free conditions. 

Thus, other pathways are clearly important in maintaining self-renewal, and based on the fact 

that matrix remodeling is necessary for self-renewal, it is possible that signals upstream of these 

other pathways lie within the matrix. Matrix remodeling may be causing matrix-based signals to 

be removed from the matrix surface during remodeling and thus not signal normally, or it may be 
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allowing signals from within the matrix to be presented to the cells, thus providing additional 

extracellular signals.  

In chapter 4, we forced remodeling of the matrix by adding sodium chlorate or collagenase, and 

showed that this affected cells differently than did depleting endogenous soluble signals. Now, 

we show that we can remodel the matrix in a more controlled way by adding MMP1, and find 

that this addition is sufficient to maintain long-term LIF-independent mESC self-renewal. We go 

on to further characterize the system, describing a novel system for LIF-independent mESC self-

renewal that relies on an endogenously secreted factor. The work described in this chapter is 

currently being prepared for publication.  

5.2 Feeder cells secrete MMPs that functionally influence ESC self-renewal 

Because endogenous ECM remodeling proteins are necessary for mESC self-renewal (Figure 

4-9), we investigated whether one of the roles of feeder layers beyond LIF secretion involves 

enhancing matrix remodeling. We found that, consistent with the role of MEFs in providing a 

supportive self-renewal environment for mESCs, MEFs secrete high levels of MMPs as 

compared to mESCs (Figure 5-1a). To see whether mESCs are able to induce MMP secretion by 

MEFs, we grew mESCs on a transwell insert above a MEF culture and compared expression 

from these MEFs to that of MEFs grown alone (Figure 5-1b). We found that MEFs grown in the 

presence of mESC-secreted signals had higher levels of MMP expression, indicating a paracrine-

mediated effect (Figure 5-1c). However, mESCs grown in the presence of MEF-secreted signals 

did not have higher expression levels of MMPs (Figure 5-1d), indicating that this paracrine 

upregulation is not universal.  
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Figure 5-1 MMP secretion by feeder cells. (a) mRNA expression levels of MMPs in ESCs or feeders. (b) Diagram 
showing setup for generating MEF expression levels show in (c). (c) mRNA expression levels of MMPs in feeders 
or in feeders above which ESCs were growing on a transwell insert. (d) mRNA expression levels of selected MMPs 
in ESCs alone, in the presence of feeders on a transwell, or in the presence of feeder-conditioned medium (CM). 

To test the functionality of the MMPs secreted by MEFs in maintaining mESC self-renewal, we 

added the small molecule MMP inhibitor Ro32-3555 to a culture of mESCs and MEFs, and 

found that it did not affect MEF survival, but did inhibit mESC growth (Figure 5-2a). This effect 

was quantified using two separate mESC reporter cell lines with GFP linked to histones H2A or 

H2B to count the relative number of ESCs versus feeders in the resulting co-cultures, and there 

was significantly more mESC survival in the presence of MMPs (Figure 5-2b).  
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Figure 5-2 Functionality of MMPs secreted by feeders. (a) Images of ESCs growing on feeders for two days in the 
presence or absence of the MMP inhibitor Ro32-3555. Enlarged image shows the presence of an intact feeder layer 
in both cases. All scale bars = 400µm. (b) Fraction of ESCs in the total cell population after two days of growth on a 
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feeder layer in the presence or absence of Ro32. Data was obtained using two separate ESC cell lines with GFP 
fused to histone H2A or H2B. *=p<0.05 for pairwise comparisons. 

Together, these results indicate that MEFs secrete matrix remodeling proteins, and that inhibition 

of such proteins affects mESC self-renewal. The effects of MEFs on maintenance of ESC self-

renewal are known to act beyond secretion of LIF, and here we provide evidence for a novel role 

that MEFs play by acting to remodel the extracellular matrix. 

5.3 MMP1/collagenase maintain ESC self-renewal 

Because MMP1a is the most highly expressed metalloproteinase in the mESC-MEF paracrine 

system (Figure 5-1c), we added exogenous MMP1 to pure ESC cultures to assess the effect of 

matrix remodeling on self-renewal in the absence of feeders. Remarkably, we found that addition 

of MMP1 was able to maintain mESC colony morphology in serum-based media in the absence 

of LIF after four days of growth (Figure 5-3a), with relatively high expression of self-renewal 

markers Nanog and Rex1 and low expression of early differentiation markers FGF5 and Dnmt3b 

(Figure 5-3b). MMP1 is also known as interstitial collagenase, and acts by cleaving collagen type 

I, II, and III. To ensure that the maintenance of mESC self-renewal was a functional effect of 

MMP1 activity, we also added type I crude collagenase to mESC cultures in the absence of LIF 

and found a similar upregulation of self-renewal markers and downregulation of early 

differentiation markers (Figure 5-3b). 
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Figure 5-3 Acute effects of collagenase addition. (a) Representative images of mESCs after four days of growth in 
the indicated conditions. Scale bar = 200µm. (b) mRNA expression levels of self-renewal and differentiation 
markers after four days in the indicated conditions in the presence of serum. (c) mRNA expression levels of self-
renewal and differentiation markers after four days in the indicated conditions in serum-free media. (d) mRNA 
expression levels of FGF5 and Nanog; x-axis numbers indicate the MMP1 concentration added in ng/ml. 
**=p<0.001, * =p<0.05; #=p<0.05 for all pairwise comparisons, all data represents averages of at least three 
independent experiments and error bars represent SD. 

A similar result was observed in serum-free N2B27 media, where cells with MMP1 added for 

five days had a similar expression pattern to cells with added LIF and BMP4, which was distinct 

from the pattern seen in N2B27 media alone, where levels of self-renewal markers decrease 

while levels of differentiation markers increase (Figure 5-3c), an effect that was found to be 

dose-dependent (Figure 5-3d).  

To determine whether other MMPs have the same effect, we added a gelatinase (MMP2) and a 

stromelysin (MMP3), and found that they were not able to halt differentiation (Figure 5-4), while 

addition of collagenase is able to maintain self-renewal (Figure 5-3b), indicating that cleavage of 

collagen is an integral event in MMP1-mediated self-renewal.  
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Figure 5-4 Contributions of other MMPs. (a) FGF5 mRNA expression from cells grown in the presence of other 
recombinant MMPs. (b) Representative images from mESCs grown for three days in the indicated conditions in the 
presence of serum. Scale bar = 200µm. 

To look more closely at the expression pattern that emerges in the presence of MMP, we 

performed high-throughput RNA sequencing analysis on mESCs grown in serum-free media in 

the presence or absence of LIF and BMP4 with or without added MMP. We found that the 

correlation between the MMP and LIF/BMP4 conditions was higher than that between the MMP 

and no addition conditions (Figure 5-5a,b). Further analysis of genes whose expression increased 

significantly (greater than 9-fold) in the presence of MMP in the presence or absence of 

LIF/BMP4 generated a list of seven genes that went up in the presence of MMP under any 

conditions (Figure 5-5c). Closer analysis of the genes that were specifically up- or down-

regulated in the presence of MMP compared to its absence yielded a list of selected genes of 

interest (Figure 5-5d). The genes that decrease in the presence of MMP include several collagen 

genes, which would be expected if a negative feedback loop existed whereby the presence of 

MMP caused a downregulation of MMP target proteins. Other genes on this list include genes 

implicated in differentiation and fate specification, including many genes from the FGF, Hox, 

and Sox families. Conversely, genes that go up in the presence of MMP include self-renewal 

genes such as Esrrb, genes in the Dppa family, Nanog, Pou5f1 and Zfp42, as well as other MMP 

family genes. Finally, performing pathway analysis on genes altered in the presence versus the 

absence of MMP showed several pathways affected by the presence of MMP, the most 

significant being genes related to stem cell pluripotency, as expected (Figure 5-5e). These data 

indicate that MMP addition causes broad-scale changes in mESCs that activate pathways 

associated with self-renewal. 
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Figure 5-5 High-throughput RNA-sequencing data. (a) Heatmap comparing RNA-seq data from cultures of cells 
grown with LIF/BMP4 (LB), MMP1, neither, or both, clustered hierarchically using an average linkage after log2 
transformation. (b) Correlation between all genes expressed in the RNA-seq dataset in the indicated conditions. (c) 
Representation of genes that increase in expression by more than 9-fold after addition of MMP. Grey gene names 
indicate the 7 genes that are present in all three datasets. (d) Tables showing representative genes that increase or 
decrease due to the presence of MMP in serum-free cultures. (e) Pathway analysis showing the most significantly 
upregulated pathways in the presence of MMP versus its absence, generated using RNA-seq data. 
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In an attempt to create a tool with which to study MMP1-mediated phenomena, we established a 

doxycycline-inducible MMP1a-GFP mESC line that successfully upregulated mRNA expression 

levels of MMP1a upon doxycycline stimulation in a dose-dependent manner (Figure 5-6a). 

However, MMP1a expression was only mildly effective at promoting mESC self-renewal 

(Figure 5-6b). We suspect that this is due in part to the fact that MMPs require significant post-

translational modification and processing to become active, and the presence of the GFP moiety 

may have hindered these processes. It is also possible that mESCs do not possess the machinery 

required to process this protein at high efficiency. Finally, doxycycline has an inhibitory effect 

against MMPs, and MMP1 in particular (Smith Jr. et al., 1999), so overexpressing MMP1 in a 

constitutive system would likely be more effective than using this doxycyline-inducible system. 
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Figure 5-6 Inducible MMP1a-overexpressing cell line. (a) Relative MMP1a mRNA expression levels in control cells 
or the MMP1a-inducible line. Numbers represent concentration of added doxycycline in µg/ml. (b) Relative mRNA 
expression levels of the indicated genes in the MMP1a-inducible cell line grown for four days in the indicated 
conditions. 

5.4 Long term LIF-independent culture of ESCs is possible in the presence of MMP1 

The maintenance of self-renewal marker expression in the presence of MMP1 or collagenase 

over five days is interesting, but does not show that MMP is functional in terms of affecting 

mESC self-renewal or pluripotency. To address this, we cultured mESCs for several passages in 

the complete absence of LIF but presence of MMP1 in serum-containing media, and found that 

these cells had indistinguishable morphology (Figure 5-7a) and similar growth kinetics (Figure 

5-7b) and protein levels (Figure 5-7c) to cells grown in the presence of LIF. At twenty passages, 

we found very similar gene expression patterns (Figure 5-7d), with the exception of a modest 

increase in FGF5. However, FGF5 is a very sensitive early differentiation marker that increases 
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up to 60-fold after 5 days in media with no LIF or MMP1 (Figure 5-3b), so a slight upregulation 

after 20 passages does not indicate significant differentiation.  
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Figure 5-7 Long-term maintenance of self-renewal by MMP1 addition. (a) Representative images of cells grown 
under the indicated conditions for the indicated number of passages. Scale bar = 200µm (b) Fold growth of cells 
during each passage over the course of 11 passages in the indicated conditions. (c) Flow cytometry histograms of 
Oct4-GFP reporter mESCs after two passages with indicated additions (top) and of Nanog immunofluorescent 
staining intensity after five passages with indicated additions (bottom). (d) mRNA expression levels of a broad 
marker panel after 20 passages in serum-containing media with added LIF or MMP1. All error bars represent SD. 

For mESCs to be truly self-renewing, they must also be able to retain their pluripotency. To 

assess pluripotency, we made embryoid bodies from mESCs cultured for five passages in the 

presence of MMP1 and absence of LIF, and found normal embryoid body formation as well as 

normal expression patterns of differentiation markers (Figure 5-8). 
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Figure 5-8 Embryoid body mRNA expression level timecourse after EB growth for the indicated number of days 
with no LIF or MMP1, after five passages in media supplemented with either LIF or MMP1. Image shows 
representative embryoid bodies from MMP1 condition on day 5. Scale bar = 400µm. 

5.5 Pathways not implicated in MMP-mediated self-renewal 

To identify the mechanism behind MMP-mediated mESC self-renewal, we first looked toward 

pathways that have been previously implicated in LIF-independent maintenance of mESC self-

renewal, described in chapter 5.1. We found that MMP1 addition does not inhibit ERK signaling, 

as assessed by the presence of active ERK (Figure 5-9a), nor does it inhibit expression of 

downstream NF-κB targets (Figure 5-9b), indicating that MMP1 does not act through either of 

these signaling pathways. Self-renewal is also not being maintained through the action of Smads, 

as Smad inhibition actually enhances MMP1-mediated self-renewal (Figure 5-9c). This result 

also indicates that the cells have not transitioned to a more epiblast stem cell-like state, in which 

self-renewal is mediated through Smad2/3 instead of Stat3 (Figure 1-1).  
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Figure 5-9 Signaling pathways not involved in MMP-mediated self-renewal. (a) Phosphorylated ERK levels with the 
indicated additions, analyzed by ELISA (PD03 = PD0325901, ERK inhibitor). (b) mRNA expression levels of NF-
κB downstream target genes after addition of the NF-κB inhibitor Bay11-7085, or of MMP1 for the indicated 
number of hours. (c) mRNA expression of differentiation and self-renewal markers in the presence or absence of 
SB431542, an Alk4/5/7 inhibitor of Activin/Nodal signaling. 

Endogenous Wnt signaling has recently been shown to be important for mESC self-renewal (ten 

Berge et al., 2011), and Wnt has also been shown to bind to the extracellular matrix and heparan 

sulphate proteoglycans (Schryver et al., 1996; Fuerer et al., 2010). It thus represented an 

attractive candidate for contributing to MMP1-mediated self-renewal. However, we found that 

inhibition of extracellular Wnt or inhibition of the export of Wnt to the extracellular domain, by 

the protein Dkk1 (Berendsen et al., 2011) or by the small molecule inhibitor IWP2, respectively 

(Figure 5-10a), caused neither a drastic reduction in levels of self-renewal markers nor a 

significant increase in levels of differentiation markers in the presence of MMP (Figure 5-10b). 

We also found that TCF-eGFP reporter mESCs (ten Berge et al., 2008) that report on Wnt 

pathway activation were not activated in the presence of MMP1 (Figure 5-10c,d), nor were 

canonical downstream Wnt targets upregulated after short-term stimulation with MMP1 (Figure 

5-10e). Thus, it is unlikely that the primary signaling pathway involved in MMP-mediated self-

renewal uses endogenous Wnt signals. 
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Figure 5-10 Wnt signaling is not involved in MMP-mediated self-renewal. (a) Model indicating relevant Wnt 
inhibitor mechanisms of action and downstream signaling activities. (b) mRNA expression levels of self-renewal 
and differentiation markers in the presence of Wnt pathway inhibitors. (c) Flow cytometry histogram of Wnt 
reporter activation after two days of the indicated additions to mESCs grown on feeders. (d) Representative 
fluorescent and phase images of cells analyzed in (c). Scale bar = 200µm. (e) mRNA expression levels of Wnt 
downstream target genes after short-term addition of MMP for the indicated number of hours. 

5.6 MMP acts by releasing a gp130 ligand that signals through Stat3 

The most well-studied and first-described mechanism of maintaining mESC self-renewal 

involves signaling of LIF (Smith et al., 1988) through the homodimeric gp130-LIFR receptor 

complex to activate JAK. We thus assessed whether MMP1 was causing a similar signaling 

pathway to be activated, perhaps by allowing an endogenous ligand to be released from the 

extracellular matrix to initiate the pathway. We found that gp130, a common receptor subunit for 

many extracellular LIF-family signaling proteins (Heinrich et al., 2003), is required for MMP1-

mediated self-renewal, as its knockdown shifted transcription patterns toward those seen in a 

more differentiated state (Figure 5-11a). Likewise, signaling through JAK is essential for this 

phenotype, as its inhibition by small molecule causes rapid differentiation in the presence of 

either MMP1 or LIF (Figure 5-11b).  
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Figure 5-11 Signals directly downstream of LIF are active in MMP-mediated self-renewal. (a) mRNA expression 
levels after shRNA-mediated gp130 knockdown in the presence of MMP compared to levels using a control shRNA 
vector. (b) mRNA expression levels of self-renewal markers after addition of a JAK inhibitor. 

The primary transcription factor that acts downstream of gp130 and JAK to maintain LIF-

mediated self-renewal is Stat3 (Hirai et al., 2011), which activates a number of genes involved in 

maintenance of self-renewal (Chen et al., 2008). We thus asked whether Stat3 was active in the 

presence of MMP1, and found that the addition of MMP1 induced Stat3 phosphorylation (Figure 

5-12a,b), whereas this was not the case with the addition of MMP3 (Figure 5-12b). The 

activation of Stat3 is known to rapidly cause transcriptional changes of several downstream 

targets, including Socs3, Klf4, and Stat3 itself (Bourillot et al., 2009). We find that, as soon as 1 

hour after stimulation with either LIF or MMP1, transcription levels of all three genes increase 

significantly (Figure 5-12c), further indicating that Stat3 is being activated in both cases. 
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Figure 5-12 Stat3 is activated with addition of MMP. (a) Phosphorylated (T705) Stat3 levels with the indicated 
additions, analyzed by ELISA. (b) Immunofluorescence staining for phosphorylated (T705) Stat3 in cells grown in 
the indicated conditions. Scale bar = 200µm. (c) mRNA expression levels of Stat3 downstream targets after short-
term addition of LIF/BMP4 or MMP1. *=p<0.05 for pairwise comparisons. 

The functional significance of Stat3 activation in the presence of MMP was tested using shRNA 

knockdowns. Knockdown of Stat3 causes rapid differentiation in the presence of LIF (Figure 

5-13), and we found that this also held true in the presence of MMP, as assessed via morphology 

(Figure 5-13a) and gene expression (Figure 5-13b). This result was confirmed using a separate 

hairpin to target Stat3, to ensure that the effect of the knockdown was specific to this molecule 

(Figure 5-13c). Thus, addition of MMP triggers a signaling cascade that acts through the gp130-

JAK-Stat3 pathway, with similar sensitivity to inhibition and activation kinetics as the pathway 

stimulated by exogenous LIF addition. 
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Figure 5-13 Stat3 signaling is required for MMP-mediated self-renewal. (a) Representative images of cells after two 
passages with added LIF or MMP1 with a control shRNA construct or Stat3 shRNA, construct 1346. Scale bar = 
200µm. (b) mRNA expression levels of self-renewal and differentiation markers in cells grown in indicated 
conditions with a control shRNA or Stat3 shRNA, construct 1346. (c) mRNA expression levels of self-renewal and 
differentiation markers in cells grown in indicated conditions with a control shRNA or Stat3 shRNA, construct 
1413. **=p<0.001, *=p<0.05 for pairwise comparisons. 

Knowing that gp130, JAK, and Stat3 are all involved in MMP-mediated self-renewal, we went 

on to see whether we could identify the upstream ligand responsible for activating this signaling 

pathway. Because inhibition of essential components of the LIF-mediated self-renewal pathway 

are able to inhibit MMP1-mediated self-renewal, and the fact that LIF is known to be secreted 

and detected by mESCs in an autocrine manner (Davey et al., 2007; Zandstra et al., 2000), it is 
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possible that endogenous LIF itself is responsible for the MMP1-mediated phenotype. To check 

this, we added a blocking antibody to LIF and found that the antibody was able to successfully 

block LIF-mediated self-renewal, but interestingly, it did not affect MMP1-mediated self-

renewal (Figure 5-14a). It is unlikely that MMP is acting as a direct signal due to the fact that the 

inhibition of its enzymatic function affects ESC self-renewal (Figure 5-2), so we looked toward 

other candidate ligands that could be released from the matrix by MMP. Other ligands in the LIF 

family that use the gp130 receptor and are both secreted by mESCs and have the appropriate 

receptors expressed include IL-11, oncostatin M (OSM), ciliary neurotrophic factor (CNTF), 

cardiotrophin-1 (CT-1), and cardiotrophin-like cytokine factor 1 (CLCF1) (Heinrich et al., 2003) 

(Figure 5-14b). 

 Referring to our RNA-sequencing data, we found a very strong upregulation of the IL11 

receptor in the presence of MMP, indicating a possible feedback mechanism that could be acting 

to allow mESC sensitivity to IL11 for activation of the gp130-Stat3 pathway. Knocking down 

IL11 did not affect LIF-mediated self-renewal, as expected, but it also did not affect MMP-

mediated self-renewal (Figure 5-14c). Of the other ligands mentioned above, OSM (Yoshida et 

al., 1994), CNTF (Conover et al., 1993), and CT-1 (Pennica et al., 1995) have been shown to be 

able to maintain ESC self-renewal. These three proteins were all also able to activate Stat3, as 

the Stat3 downstream target Socs3 showed significant upregulation after 1 hour in the presence 

of any of these ligands, and blocking the ligands using blocking antibodies inhibited this activity 

(Figure 5-14d). However, blocking the ligands in the presence of MMP did not block Stat3 

transcriptional activity to baseline levels, alone or together (Figure 5-14e), indicating that the 

ligand activating the gp130-JAK-Stat3 pathway upon addition of MMP is not a ligand that has 

been previously implicated in maintaining mESC self-renewal. 
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Figure 5-14 Upstream ligand is not a known gp130 ligand. (a) mRNA expression levels of self-renewal and 
differentiation markers after addition of a LIF-blocking antibody to cells with added LIF or added MMP1. (b) Model 
depicting other ligands that act through the gp130 receptor to activate JAK and Stat3 and downstream targets. (c) 
mRNA expression of self-renewal and differentiation markers after IL11 knockdown in the presence of LIF or 
MMP. (d) mRNA expression levels of a Stat3 target gene after 1 hour of indicated additions. (e) mRNA expression 
levels of a Stat3 target gene after 1 hour of indicated additions. O/C/C indicates blocking the three ligands OSM, 
CT1, and CNTF. ##=p<0.001, #=p<0.05 for pairwise comparisons. 

5.7 Discussion 
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Regulation of cell signaling at the level of the ECM has been shown to occur in many contexts. 

Embryonic stem cells have been shown to maintain self-renewal on softer substrates approaching 

the stiffness of the cells themselves (Chowdhury et al., 2010), and substrate stiffness has been 

shown to affect neuronal stem cell differentiation (Keung et al., 2011) and the availability of 

autocrine signals (Wells and Discher, 2008). Reducing the sulfation of heparan sulfate 

proteoglycans in the ECM has been shown to help maintain self-renewal of mESCs by reducing 



signaling from autocrine FGF4 ligands (Lanner et al., 2010). Here, we find that the ECM also 

harbors mESC-secreted self-renewal-promoting factors that can be released or activated to signal 

through the gp130-JAK-Stat3 pathway, thus providing the first evidence for an endogenously 

secreted factor that is produced at sufficient levels to maintain ESC self-renewal (Figure 5-15).  

gp130
ligand

paracrine signal

gp
13

0

MMP

STAT3JAK

MEF ESC

MMPs

SR genes

diff. genes

 

Figure 5-15 Model depicting the effect of matrix remodelling on mESCs. 

The actions of ECM-based signals require dynamic regulation of the ECM, which is performed 

endogenously by matrix metalloproteinases, both in vitro and in vivo during development (Vu 

and Werb, 2000). For mESCs, though endogenous secretion levels of MMPs are low, we show 

that co-culture with MEFs that secrete high levels of MMPs enhances mESC self-renewal. The 

ability of MEFs to maintain self-renewal was partly clarified by isolation of LIF as a diffusible 

factor produced by stromal cells (Smith et al., 1988), but the fact that many mESC lines self-

renew better with feeders than with just serum+LIF suggests that MEFs have other roles besides 

secreting LIF.  Here we find a novel role for MEFs in their secretion of MMPs, a mechanism that 

could be important in other co-culture systems to release cell-type-specific secreted factors from 

the extracellular matrix.   

The identification of a stem-cell-secreted factor produced at levels sufficient to maintain ESC 

self-renewal indicates the importance of autocrine signals present in any cell’s extracellular 

matrix. Autocrine ligands have been identified that contribute to mESC self-renewal, including 

LIF (Zandstra et al., 2000) and Wnt3a (ten Berge et al., 2008). However, autocrine levels of LIF 

are not high enough to maintain self-renewal, and autocrine Wnt, while necessary for 

maintenance of self-renewal, is not sufficient to maintain self-renewal in the absence of LIF. We 
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find that blocking CNTF appears to decrease Stat3 transcriptional activity, though it does not 

decrease Stat3 activity to baseline levels. This indicates that CNTF may be acting in part to cause 

the signaling through Stat3 required to maintain self-renewal in the presence of MMP1, but it 

does not account for full activation of the signal. It is possible that matrix-based ligands are 

acting through other mechanisms such as by activation of integrins, as integrin activation has 

been shown to activate Stat3 in other specific systems (Guo et al., 2006a). The secretion and 

sequestering of functional autocrine-acting ligands likely extends beyond those that act on ESCs, 

and the specific mechanisms by which they can be removed and activated may vary in different 

systems. This study shows that the extracellular matrix is an often-overlooked but major source 

of signaling molecules, and opens up the possibility for further studies on the diverse effects of 

extracellular matrix remodeling on maintaining and directing stem cell fate. 

5.8 Methods 

For information regarding cell lines, culture additions, and qPCR protocols, refer to Appendix 1. 

For information regarding flow cytometry or embryoid body formation, refer to the methods in 

chapter 2.8. 

Cell culture 

Mouse embryonic fibroblasts were cultured in DMEM supplemented with 3% fetal bovine serum 

(Hyclone), 4 mM L-glutamine and 1X penicillin-streptomycin. Transwell assays were performed 

in 6-well plates using 3.0 µm polyester membrane 24 mm inserts (Corning). 

RNA-sequencing 

mRNA libraries were prepared from total RNA isolated with Trizol (Invitrogen) and purified 

with Dynabeads mRNA purification kit (Invitrogen). RNA was fragmented using Ambion RNA 

Fragmentation Reagents (Invitrogen), first strand cDNA was prepared using SuperScript III 

Reverse Transcriptase (Invitrogen), and second strand cDNA was prepared using Second Strand 

Buffer (Invitrogen) and DNA Polymerase I (New England Biolabs). Whole transcriptome 

mRNA sequencing of barcoded samples was performed on an Illumina GAIIx and data was 

processed according to the Illumina pipeline – Firecrest as the image analysis module, Bustard as 

the base calling module, and Bowtie for sequence alignment. Reads were mapped to the mouse 
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reference genome and RPKM values were generated with help from the MIT BioMicro core 

facility and Fugen Li. Heat map was generated using the freely downloadable software Java 

Treeview and Cluster 3.0.  

Inducible cell line construction 

The doxycycline-inducible MMP1a-GFP cell line was made by cloning a purchased MMP1a 

cDNA (Source BioScience) into the pLV-TetO plasmid obtained from Laurie Boyer’s lab. After 

confirming the presence of the desired insert by sequencing, the MMP1a-containing plasmid was 

transfected into 293 cells along with gag-pol (Delta8.2) and env (VSV G) lentiviral transfection 

plasmids using Fugene HD. The resulting filtered 293-conditioned media was used to infect 

mESCs 48 h later and cells were induced with doxycyline so GFP-positive cells could be sorted. 

Short-term target inductions 

To test for the rapid induction of transcriptional targets, cells were plated at approximately 5 x 

104 cells/ml in a 12-well plate in LIF-containing media. The next day, media was replaced with 

no-LIF media. 24 hours later, media containing the desired activators and/or inhibitors was 

prepared and added for 1-4 hours. Cells were immediately washed with PBS and harvested by 

trypsin, then analyzed for target gene expression using qRT-PCR.  

ELISA 

Enzyme-linked immunosorbent assay was performed on media collected from wells in which 

cells were grown for 48 hours. Results were normalized by the average cell density (using an 

exponential growth model and the initial/final cell numbers) and duration to determine a 

secretion in grams/cell/hr under both conditions. Media was spun down using an Amicon 3 kD 

cutoff filter spin column. Phospho-ERK ELISA was purchased from R and D Systems, and assay 

was performed according to manufacturer’s instructions. Phospho-Stat3 ELISA was purchased 

from RayBioTech, and assay was performed according to manufacturer’s instructions. 

Immunofluorescence 
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For activated Stat3, cells were incubated overnight with primary phospo-Stat3 antibody (Cell 

Signaling Technology) at 1:100 and secondary (anti-rabbit AF488, Invitrogen) was added for 

two hours at 2 µg/ml. Cells were counterstained with 1:100000 Hoechst (Sigma). 

 shRNA knockdown experiments 

For shRNA knockdowns, candidate shRNA hairpins were cloned into a packaging vector for 

transfection into Phoenix cells and subsequent infection into mESCs. shRNA-containing cells 

were GFP sorted and immediately plated for knockdown verification or experimental use. 

shRNA constructs used are listed below. 

Gene Starting nt shRNA sequence 
Stat3 1346 TGCTGTTGACAGTGAGCGACTGAGTTGAATTATCAGCTTATAGTGAAGCCAC

AGATGTATAAGCTGATAATTCAACTCAGGTGCCTACTGCCTCGGA 
Stat3 1413 TGCTGTTGACAGTGAGCGCCAGAGGGTCTCGGAAATTTAATAGTGAAGCCA

CAGATGTATTAAATTTCCGAGACCCTCTGATGCCTACTGCCTCGGA 
gp130 909 TGCTGTTGACAGTGAGCGACACCATATAATTTATCAGTGATAGTGAAGCCAC

AGATGTATCACTGATAAATTATATGGTGGTGCCTACTGCCTCGGA 
IL11  1363 TGCTGTTGACAGTGAGCGCGAGGATTTAAATACATATCTATAGTGAAGCCA

CAGATGTATAGATATGTATTTAAATCCTCTTGCCTACTGCCTCGGA 
IL11  1481 TGCTGTTGACAGTGAGCGACAGAGCATCACCTTATAACTATAGTGAAGCCA

CAGATGTATAGTTATAAGGTGATGCTCTGGTGCCTACTGCCTCGGA 
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Chapter 6 Manipulating ESC organization and signaling 
6.1 Introduction 

So far, we have described and implemented methods for controlling different types of mESC 

endogenous signaling. In this chapter, we describe a new method for probing how the 

accessibility of extracellular signals affects mESC phenotype, and implement an existing method 

to dissect the relationship between morphology and function in heterogeneous mESC cultures.  

One prevalent method by which to manipulate and assess cell-cell signaling involves patterning 

cells in specific locations and monitoring their interactions. Many of these approaches involve 

creating regions of proteins on a surface to which cells can be added. For example, microscale 

cell patterns can be created by using substrates that include chemically modified regions to 

which cells can attach (Chen et al., 1997; Kane et al., 1999), or by physically constraining cell 

location (Folch et al., 2000; Flaim et al., 2005). Signaling proteins can also be patterned so that 

the differing effects of tethered versus soluble ligands can be determined (Fan et al., 2007). 

However, there are limitations to patterning cells, especially cells that grow in colonies or 

clumps, such as ESCs. If mESCs are patterned as single cells, significant time is required for 

colony formation, which may compromise the surface functionalization or cellular properties. 

Instead, patterning mESCs as large clumps may cause them to form abnormally structured 

colonies that do not accurately mimic the colonies formed in normal culture. Therefore, a method 

by which patterns can be formed around already-established ESC colonies growing in normal 

culture could aid in studies of intracolony signal propagation and local signal presentation. To 

this end, we use polyethylene glycol diacrylate (PEGDA) hydrogels onto which ligands can be 

tethered. 

Polyethylene glycol diacrylate (PEGDA) is a biocompatible polymer that can form hydrogels in 

the presence of photoinitiator and UV light (Nguyen and West, 2002). Photopolymerizable PEG 

hydrogels have been used for a variety of tissue engineering applications due to their 

biocompatibility and mild polymerization conditions, including their use in drug delivery 

systems (Peppas et al., 1999), in cell encapsulation for transplantation (Cruise et al., 1999; 

Pathak et al., 1992), and as a scaffold for cartilage regeneration (Elisseeff et al., 1999). For these 
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and other purposes, it is often desirable to incorporate growth factors within PEG hydrogels for 

signaling or slow release, the most direct incorporation method being direct loading into the 

hydrogel during formation (Zhu, 2010). However, this approach gives a rapid burst release of 

protein, so other means of growth factor incorporation has included protein adsorption (Holland 

et al., 2005) or covalent tethering of acrylated growth factors (DeLong et al., 2005).  

Because PEGDA remains in liquid form until activated by UV, it can be used to form hydrogels 

in specific patterns and locations. Here, we show a novel method for the incorporation of 

proteins in and on polymerized PEGDA hydrogels to provide signals to adherent cells in specific 

locations. Immobilization of ligands onto substrates can be functionally relevant from a signaling 

point of view, as many important cell signaling proteins are presented from within the 

extracellular matrix, both in vivo and in vitro. Immobilized ligands may act differently than 

soluble ligands, as they can have local concentration differences and gradients can be established 

(Saha and Schaffer, 2006), and activation of their downstream signaling pathways may be 

sustained due to the fact that ligands are not endocytosed by the cell (Kuhl and Griffith-Cima, 

1996). For example, it was shown that LIF bound to thin films supported mESC pluripotency for 

two weeks in the absence of soluble LIF (Alberti et al., 2008), and LIF has been shown to exist 

naturally in both matrix-bound and soluble forms, with potentially distinct biological functions 

(Robertson et al., 1993). We can use the PEGDA hydrogel patterning system to specifically 

pattern signals around already-formed colonies with the ability to pattern two or more signals in 

any conformation around growing cells. This will allow for studies involving how signal 

presentation affects stem cell properties and how signals act together or in opposition in 

established mESC colonies. 

PEGDA hydrogels have also been adapted for use in polymerization-activated cell sorting, a 

technique developed in our lab for selective photo-encapsulation of undesired cells growing in a 

culture dish, allowing for recovery of desired cells at high purity. Because this method is applied 

to adherent cells growing in a dish, it allows for selection and recovery of cells based on 

morphological characteristics or subcellular localization in a way that alternative sorting methods 

cannot achieve. Here, we have applied this method to sort mESCs based on morphology.  
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As described in chapter 2.4, mESCs exist as a heterogeneous population with an apparent 

correlation between morphology and the primed versus naïve state. In addition to population-

wide heterogeneity, expression within a colony has been shown to be heterogeneous for the 

pluripotency markers pSTAT3, Nanog, and Oct4, with a radial organization caused by autocrine 

signaling between cells (Davey and Zandstra, 2006). While intracolony heterogeneity can be 

measured by immunofluorescence, it is often obvious morphologically. For example, in hESC 

cultures, it was found that cells at the outer edge of colonies are morphologically and 

biologically distinct from central cells in the absence of feeders, adopting a more feeder-like 

morphology, a phenomenon attributed to differences in local concentrations of intracolony 

paracrine signals (Moogk et al., 2010). Though such intracolony spatial heterogeneity is also 

seen in mESC populations, it is not known whether the cells on the outside of a colony are more 

differentiated than cells in the center, whether both types of cells can interconvert, or whether 

both types of cells are necessary to maintain a stable ESC population. Because most cellular 

separation methods rely on detaching cells from the substrate before assaying them, it has not 

previously been possible to separate mESCs based on morphology alone.  

Our method of using hydrogels for sorting cells involves use of a transparency mask to shield 

cells meant to be collected, while other cells in the culture are exposed to UV light in the 

presence of PEGDA prepolymer such that they are selectively encapsulated and not recovered. A 

similar method also developed in our lab, termed radical-activated cell-sorting, uses UV light to 

create locally active reactive oxygen species that selectively kill unwanted cells growing in a 

dish such that desired cells can be monitored and collected. These techniques were both applied 

to mESC populations in an attempt to separate cells based on morphological phenotype. Such an 

approach could allow us to separate naïve and primed populations and assess their ability to 

interconvert, and it could also allow for separation of different sections of a colony to probe 

functional differences in cells at the center versus the outside of a single colony. 

6.2 Patterning signals around existing ESC colonies 

We implemented hydrogels made from photopolymerizable PEGDA as a method for patterning 

externally accessible proteins in specific locations around growing cell colonies. First, we 

showed that we could include proteins in the PEGDA prepolymer that polymerized into the 



hydrogel, and that we could tether proteins to the hydrogen for external accessibility. To do this, 

we incorporated streptavidin linked to acrylamide within the prepolymer and showed that it was 

stable within the polymerized hydrogel for several days, as there was no functionally significant 

leaching from the hydrogel for three days and the small increase in streptavidin concentration 

seen was probably due to evaporation of the surrounding liquid (Figure 6-1a). We then 

biotinylated fluorescently labeled BSA and showed that it bound specifically to the structures in 

which streptavidin was incorporated (Figure 6-1b).  
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Figure 6-1 Selective tethering of proteins to hydrogels. (a) The change in streptavidin (SA) concentration in PBS in 
one well of a 96-well plate with several SA-containing PEGDA structures. (b) Phase (left) and fluorescence (right) 
images of PEGDA structures. The bottom structure contains SA while the top does not. Both structures were 
incubated with biotin-linked BSA conjugated with a texas red fluorophore. The central spot is for alignment. 

Before implementation with cells, we optimized concentrations and binding times in an effort to 

use the least amount of reagents to achieve a reasonable signal. We used biotinylated BSA linked 

to a texas red fluorophore and measured fluorescent intensity to quantify binding of protein to 

the outside of the hydrogels. We found that little or no binding occurred at concentrations below 

0.5 µM BSA (Figure 6-2a), while concentrations higher than 0.5 µM did not appreciably 

increase levels of bound protein (Figure 6-2b). Conversely, higher concentrations of streptavidin 

did increase bound protein levels (Figure 6-2b,c), and increasing incubation time of biotinylated 

BSA also increased signal at high concentrations of streptavidin (Figure 6-2c). Based on this 

data, we chose a streptavidin concentration of 10 µM, a biotinylated molecule concentration of 

0.5 µM, and an incubation time of 10 minutes.  

104 
 
 



20’
0.1 BSA

20 SA

15’

1.5 BSA
10 SA

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12

[BSA-biotin] ( M)�

5 min incubation

0

500

1000

1500

2000

2500

3000

0 10 20 30 40

time in BSA -biotin (min)

1.5 M BSA�

0.5

1.5

10
5 (0.5uM BSA)

�M SA

re
la

tiv
e
 in

te
n
si

ty

re
la

tiv
e
 in

te
n
si

ty

a b c

 
Figure 6-2 Optimization of concentrations and times for hydrogel preparation. (a) PEGDA structures with the 
indicated concentration of SA and BSA (in µM), with BSA incubated for the indicated number of minutes. (b) 
Fluorescent intensity of structures with biotin-linked BSA-texas red added for 5 minutes at the given concentrations 
with varying SA concentrations polymerized within the hydrogels. (c) Fluorescent intensity of structures with 1.5 
µM biotin-linked BSA-texas red incubated for varying times with different SA concentrations. 

Once we were able to consistently and stably pattern proteins on polystyrene, we generated a 

mask to polymerize structures around one half of an average-sized mESC colony. We then 

patterned LIF around established colonies to analyze how far this signal was able to propagate 

through the colony (Figure 6-3a). This procedure is very scalable, as polymerization only takes 

seconds, and we were able to pattern more than 100 structures in a 35 mm dish for a single 

experiment (Figure 6-3b). Hydrogels without streptavidin incorporated provided a control within 

the same dish, and we could pattern left-facing structures with streptavidin and right-facing 

structures without streptavidin for easy identification and quantification (Figure 6-3b).  

 

 

a b

Figure 6-3 PEGDA structures around mESC colonies. (a) Image of a structure with tethered LIF at two days after 
structure formation and four days after mESC plating. mESCs are fixed and stained with an Oct4 antibody. Scale bar 
= 100 µm. (b) Composite image of the bottom left corner of a culture dish with multiple PEGDA structures formed 
around existing mESC colonies. 
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While this approach allowed for observation of striking morphological differences within the 

colony, we found quantification to be simpler when LIF was attached at a single point on the 

edge of a colony. For quantification, the colony was fixed and stained for expression of the 

pluripotency marker Oct4 after 2 days of exposure to the LIF-tethered PEGDA post, and the 

Oct4-GFP intensity was quantified after masking the cell image using information from the 

DAPI channel, which stains cell nuclei (Figure 6-4a). We found that cells growing near posts to 

which LIF was tethered generally had higher levels of Oct4 expression (Figure 6-4b), and this 

method could be adapted to quantify the relationship between distance from the post and Oct4 

expression level. 
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Figure 6-4 Quantification of Oct4 fluorescence in the presence or absence of tethered LIF. (a) Scheme for using 
DAPI images to mask the colony area around a PEGDA post for quantification. Scale bar = 100 µm. (b) 
Quantification results from cells near PEGDA structures that do or do not contain streptavidin after 3 days of growth 
after addition of biotinylated LIF. Data for each condition represent averages of six independent experiments.  

Though this result showed that we could successfully pattern LIF adjacent to a growing ESC 

colony, we did not pursue this research any further because there were no clear questions to be 

addressed using this technology at the time of its development and optimization. However, now 

that we have delineated some roles of matrix-based versus soluble signals and we know more 

about how microenvironmental cues affect mESC fate, this technology could be applied in the 

future to compare the effects of soluble and matrix-bound cues, with more specific applications 

discussed in chapter 7.2.  
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6.3 Morphological assessment of cell fate 

The most straightforward way to quickly assess the maintenance of self-renewal is by monitoring 

cell morphology. However, morphology is notoriously difficult to quantify and is instead used 

almost exclusively as a qualitative assessment. As explained in chapter 2.4, several days of 

culture generates heterogeneous mESC populations, but it is unclear the extent to which 

heterogeneous cultures contain multiple populations that are reversible. For example, mESC 

colonies tend to have a densely packed, three-dimensional center, whereas cells at the edges of 

the colonies are more spread out and single cells can be identified, more reminiscent of 

differentiated cells. However, it is not known whether the edge cells express lower levels of self-

renewal markers or whether they can re-form healthy ESC colonies upon passage. To answer 

such questions, a method must be used in which cells can be sorted while alive and adherent on a 

culture dish, as removing them from the dish would disrupt their substrate attachments and 

therefore their morphology. For this, we applied two related techniques, radical-activated and 

polymerization-activated cell sorting, diagrammed in Figure 6-5. 
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Figure 6-5 Techniques for sorting adherent cells by morphology. A mask is applied to cells growing in a dish to 
block desired cells (shown as green), and photointiator solution is added without PEGDA prepolymer for radical-
activated cell sorting and with prepolymer for polymerization-activated cell sorting. UV is then applied to the entire 
dish. In radical-activated cell sorting, cells exposed to UV light die and can be removed from the dish by washing 
(bottom panel, center). In polymerization-activated cell sorting, the UV-exposed cells are bound in the hydrogel so 
desired cells can be removed by trypsinization and replated (bottom panel, right side).  
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As a method of sorting mESCs based on morphology, we first applied radical-activated cell 

sorting to populations of mESCs and showed that a mask could be applied to block targeted 

colonies from UV exposure such that they could survive, while non-targeted colonies died and 

lost fluorescence (Figure 6-6a). These dead cells could be washed away and the remaining cells 

would consist of the targeted population (Figure 6-6b).  

 

Before UV after vigorous wash

a

b

Before UV 1 h after treatment 18 h after treatment

18 h after treatment

Figure 6-6 Radical-activated sorting of mESCs. (a) Phase and fluorescent images of Sox2-GFP reporter mESCs 
before and after masking center colony (yellow circle) and exposing the rest of the dish to UV. Blue circles show the 
same point in all three images, note fluorescence before treatment and removal of cells and lack of fluorescence after 
treatment. (b) Another example of sorting mESCs by masking the center cells (yellow circle) and exposing the rest 
to UV. The day following treatment, all cells that had been exposed to UV can be removed by washing the dish, 
leaving the desired cells. Scale bars = 100 µm. 

While this approach allowed us to select and monitor specific populations, we wanted to be able 

to quickly remove and recover different subpopulations within a dish for downstream assays and 

for replating and monitoring growth or self-renewal of the separate subpopulations. To automate 

the sorting process, we implemented MATLAB scripts that were able to identify self-renewing 
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colonies within a dish (Figure 6-7a), which we could use to selectively mask these colonies or to 

create an inverse mask and selectively mask the non-self-renewing cells. With Eloise Shaw, a 

high-school student intern in the lab, polymerization-activated cell sorting was performed such 

that entire colonies that looked more or less self-renewing could be successfully isolated from 

identical cultures and compared using qRT-PCR (Figure 6-7b,c). We were able to quantify a 

difference in differentiation marker expression in colonies that appeared to be more self-

renewing morphologically (Figure 6-7c), but further work will be required to functionally define 

these sorted populations of cells or to sort different populations within single colonies. 
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Figure 6-7 Polymerization-activated sorting of mESCs. (a) Images of cells growing in a dish and the associated 
mask produced using a MATLAB script that identifies self-renewing colonies. (b) Images of differentiated-looking 
mESCs targeted for sorting, before and after hydrogel polymerization and after trypsinizing and removing the 
desired cells. The center of the image was targeted for recovery. Scale bar = 100 µm. (c) Relative FGF5 mRNA 
expression in sorted populations of mESCs. Morphologically distinct differentiated cells on day 5 of culture in 
serum-free media with LIF and BMP4 were sorted and compared to colonies that appeared to be more self-
renewing. The control is day 2 mESCs grown in the presence of serum and LIF. 

 

6.4 Discussion 

In this chapter, we describe methods for signal patterning and cell sorting that have potential for 

further studies regarding how established ESC colonies respond to and generate extracellular 

signals. Our novel method for presenting signals to existing mESC colonies at desired locations 
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can be adapted for many other applications. Multiple proteins could be patterned on a single dish 

simply by polymerizing streptavidin-containing structures sequentially and adding biotinylated 

proteins between polymerization steps. Thus, signaling proteins could be patterned 

asymmetrically to study how signals enhance or oppose one another within a single colony. 

Because this method can be applied to cells in any configuration at any time during their culture 

period, there is unlimited spatial and temporal control over signal presentation. This could allow 

for in-depth studies of how the signaling microenvironment affects cells in terms of tethered 

versus soluble signals. Moreover, any adherent cell type can be adapted for use with this system, 

as the size of the posts or shape of the polymerized structure can be immediately altered based on 

a given cell or colony morphology. However, it is important to consider that many other methods 

exist for patterning signals, some of which may be easier to implement or more appropriate to 

address particular questions.   

One drawback of our signal patterning method is that its analysis relies on in situ cell position 

within a colony. This greatly limits the kinds of assays that can be pursued, as most downstream 

analysis techniques require harvesting cells in bulk for further preparation steps. To partially get 

around this limitation, we can combine patterning techiques with our ability to selectively sort 

populations of cells by position or morphology. After several days of localized signal 

presentation, separate regions of cells that were exposed or not exposed to a tethered signal could 

be isolated, allowing for more sophisticated analyses beyond immunofluorescent staining. 

However, this approach may still dilute out much of the positional information present in the 

dish and it does not allow for high-resolution analysis of signal propagation within a colony.  

The ability to perform morphology-based sorting of mESCs that we demonstrated in this chapter 

could theoretically be used to selectively sort and analyze subpopulations or areas of colonies in 

normal culture. However, we have not yet successfully sorted sections of a single colony due to 

the fact that ESCs growing in colonies have very strong cell-cell bonds such that when one 

portion of the colony is targeted for polymerization-activated cell sorting, the majority of the 

colony ends up being trypsinized and recovered downstream. Further optimization could 

therefore go into making a stronger polymer for ensuring encapsulation or finding cell 

dissociation methods that are more efficient than trypsin at breaking up colonies. Alternatively, 

radical-activated cell sorting may be a better approach, as part of a colony could be selectively 
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killed and removed, leaving the remainder of the colony. However, we have seen aberrant cell 

death in the cells masked during this process, indicating that the free radicals intended to kill the 

unmasked cells may diffuse and damage the masked cells, making this method in its current state 

unreliable for delicate cells such as mESCs. Thus, instead of trying to sort out sections of 

colonies, these morphology-based methods may be best suited to sorting specific subpopulations 

within a heterogenous population of ESCs, for example, for sorting out cells within a 

differentiating population that are more or less amenable to differentiation toward a specific 

lineage.  

The increasing sophistication of imaging technologies and the ability to monitor cells over long 

periods of time has allowed for a better understanding of the relationship between how cell 

morphology relates to function. For example, fibroblasts were tracked during reprogramming to 

induced pluripotent stem cells and their successful reprogramming potential was found to be 

related to expression of certain markers but not others, which did not always correlate with 

colony morphology (Chan et al., 2009). Morphological characteristics have also been identified 

that precede molecular marker activation during reprogramming (Smith et al., 2010). A similar 

approach could be used during directed differentiation by imaging and tracking ESCs over 

several days and quantifying the information encoded in their morphology, including parameters 

such as cell size, nucleus size, cell/colony shape, and colony edge properties. Once cells with 

different morphological characteristics are identified, they could then be sorted out and assayed 

for other phenotypic characteristics, including mRNA/protein expression levels and functional 

differentiation potential. In this way, cells that are more likely to adopt a particular 

differentiation lineage fate over another can be identified early in a label-free system and isolated 

to identify the molecular mechanisms behind their specific differentiation propensity. 

6.5 Methods 

PEGDA hydrogel preparation 

Polyethylene glycol diacrylate (PEGDA) 1000 (Laysan Bio) solution was combined with 2.5% 

w/w catalase (Sigma) to prevent cells from free radical damage. Irgacure® 2959 photoinitiator 

(CIBA) was dissolved in 100% methanol (250 mg photoinitiator (PI) per 1 mL methanol) and 
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vortexed. Immediately prior to sorting, 6 μL of the PI solution was added to 1 mL of the PEGDA 

solution to constitute the final prepolymer, which was added to cells growing in the culture dish.  

PEGDA signal patterning 

For signal patterning, a transparency mask was inserted in the light path of the microscope with 

the desired shape and the microscope UV filter was applied to only cure the hydrogel at the 

desired location. A ten second UV exposure was sufficient to cure the hydrogel. This process 

could be automated by picking the desired locations for PEGDA structures before adding the 

hydrogel. 10 µM streptavidin (Sigma) was used for all experiments. Texas Red-linked BSA 

(Invitrogen) and LIF (esgro, Millipore) were used at 0.5 µM and were incubated with the 

PEGDA structures for 20 minutes in a humidified incubator at 37°C. Biotin was conjugated to 

these proteins in-house using the EZ-Link Micro Sulfo-NHS-Biotinylation Kit (Pierce), at a 50-

fold molar excess. Specifically, 200 µl BSA at 1 mg/ml was incubated with 18.4 µl biotin, 

whereas 50 µl LIF at 0.1 mg/ml was incubated with 1.52 µl biotin. 

Morphology-based cell sorting 

For radical- or polymerization-activated cell sorting, the entire plate was masked using a 

specially-generated transparency mask that blocked the desired cells. A photoinitiator solution 

was added for radical-activated sorting (PEGDA solution minus PEGDA), while the PEGDA 

solution described above was used for polymerization-activated sorting. The entire dish was 

exposed to UV light for 12 minutes. After exposure, the excess photoinitiator solution or 

prepolymer was aspirated and cells were trypsinized if further analysis was required. A custom 

MATLAB script was used to identify self-renewing colonies. 

Immunofluorescence 

For Oct4 staining, cells were incubated overnight with primary Oct4 antibody (Abcam) at 5 

µg/ml and secondary (anti-goat AF488, Abcam) was added for one hour at 1:250. Cells were 

counterstained with 1:100000 Hoechst (Sigma). 
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Chapter 7 Conclusions 
7.1 Contributions 

The primary objective of this thesis was to establish methods to manipulate the embryonic stem 

cell extracellular signaling environment, and to implement those methods to improve our 

understanding of how cell-secreted signals contribute to embryonic stem cell self-renewal and 

differentiation. The major contributions by which this goal was achieved are summarized below.  

Demonstrating a requirement for mESC-secreted soluble factors 

We successfully established the first conditions for multi-day culture of mESCs in serum-free 

media with decreased soluble signaling by growing cells under continuous microfluidic 

perfusion in N2B27 media with LIF and BMP4, and showed that cell-secreted factors are being 

removed and cells can survive. We then assessed the resulting cell phenotype after five days of 

continuous perfusion and found that the cells that started out as mESCs exited their self-

renewing state. This result was unexpected and novel, as the media in which the cells were 

growing was previously thought to be sufficient for self-renewal. We went on to find that the 

cells growing for several days under perfusion exhibited a more primed epiblast-like phenotype, 

indicating that the default steady state of pluripotent stem cells in the absence of cell-secreted 

soluble signals is more primed than naïve. Together, these results establish a platform for 

assessing sufficiency of exogenous signals to produce a given phenotype and for determining the 

contributions of endogenously secreted soluble signals. Because this platform is suitable for 

several day culture of embryonic stem cells, it should be easily applicable to other stem cell 

systems and for cells such as cancer cells, whose growth and metastasis often depends on cell-

secreted signals. 

Revealing the necessity of mESC extracellular matrix remodeling  

After finding that mESCs exit their self-renewing state under perfusion, we went on to determine 

the signals responsible for this exit. When thinking about the cell-secreted microenvironment as 

a whole, it became clear that some cell-secreted signals were not being affected under perfusion, 

including those that remained part of the extracellular matrix. We found that broadly disrupting 

the binding function or structural integrity of the ECM using sodium chlorate or collagenase, 
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respectively, caused cells growing under perfusion to maintain their self-renewing state, which 

was our initial indication of the importance of matrix remodeling on maintaining self-renewal. 

Based on this novel role for ECM-based signals, we sought a connection between removing 

soluble signals and affecting matrix remodeling. Matrix metalloproteinases normally act to 

remodel the matrix, and we show for the first time that this class of proteins is required to 

maintain mESC self-renewal. Thus, because MMPs are removed under perfusion, they are no 

longer able to perform their essential duties as matrix remodeling proteins, resulting in an exit 

from the stable self-renewing mESC state. The necessity of MMPs extends to paracrine culture 

as well, as we found that the high levels of MMPs secreted by feeder cells functionally aid in 

mESC self-renewal, a newly identified contribution that feeders provide to mESCs. This 

contribution is unique in that it acts at the level of the extracellular matrix, whereas previously 

identified contributions from feeder cells have involved either ligand secretion or contact-

mediated signaling.   

Establishing the sufficiency of MMP1 to maintain self-renewal 

To more specifically examine the effects of matrix remodeling, we grew mESCs in the absence 

of LIF but the presence of MMP1 and, astonishingly, found that self-renewal was maintained 

with similar morphology, growth rates, mRNA and protein expression levels, and 

pluripotentiality for several passages. While mESCs grown in serum in the absence of LIF 

degenerate and die after 4-5 passages, we have been able to maintain mESC growth and proper 

morphology for 30 passages in serum+MMP1, and it is likely that this effect could be extended 

indefinitely. A similar effect is seen with addition of a crude collagenase cocktail but not with 

MMPs that have substrates other than collagen, indicating the specificity of the matrix proteins 

involved. MMP1 thus represents the first exogenously added non-LIF-family protein that has 

been identified with the ability to maintain LIF-independent ESC self-renewal.  

Identifying a novel non-canonical autocrine system involved in mESC self-renewal 

We found that MMP1 is not acting to maintain self-renewal by inhibiting pathways that have 

been previously implicated in opposing self-renewal, but that it is instead acting in what is likely 

to be an indirect manner through the gp130-JAK-Stat3 pathway. While more work is required to 

further characterize exactly how ECM remodeling is able to maintain mESC self-renewal in 
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terms of the signal upstream of gp130 and how collagenase causes this ligand to transition from a 

latent to an active state, the fact that the upstream effector of self-renewal is an endogenous 

signal is a novel concept that represents the first example of an mESC-secreted signal that is 

produced at amounts sufficient to maintain self-renewal. The mechanism by which exogenous or 

endogenous MMPs act at the level of the endogenous extracellular matrix to activate another 

cell-secreted signal represents a new kind of indirect autocrine system that will alter the general 

perception of how cell-secreted signals contribute to fundamental cellular processes and may 

enhance our understanding of how matrix remodeling contributes to development at early 

embryonic stages. 

7.2 Future directions 

Many of the results presented in this thesis are far from being complete works, and the results 

that do appear to complete a story actually leave many routes of questioning open to pursue. 

Here I describe several broad directions with specific starting points that future work could take 

to continue and enhance the research described above or to utilize and adapt techniques and 

preliminary results for new but related projects.  

Using perfusion as a screening platform 

We showed that growing mESCs under perfusion caused them to exit their self-renewing state, a 

fate that could be avoided by simultaneously disrupting the extracellular matrix. While these 

results show that LIF and BMP4 are not sufficient to maintain mESC self-renewal and that 

matrix-based components play a role, we still have not identified the full complement of soluble 

factors required to maintain self-renewal. To do so is difficult given our current perfusion setup 

because it would require high-throughput screening of different combinations of factors at 

different absolute and relative concentrations. However, the microfluidic perfusion device could 

be adapted for use as a screening platform by including many small chambers for growing 

mESCs with a simple readout that only requires a small number of cells and no removal of cells 

from the chip, such as using a reporter cell line or performing immunofluorescence staining. 

Perfusion systems can provide several advantages over traditional screens performed in 

multiwell plates, including the fact that cell loading and media changes can be automated, small 
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media volumes are typically used, and there is precise temporal control over when factors are 

added and removed.  

Several design considerations need to be taken into account to design a useful perfusion platform 

with many independent culture chambers. Ideally, cells would be loaded into all chambers 

simultaneously, allowed to attach, and perfusion with different media formulations would begin 

after cell attachment. This would require that all chambers can be addressed both simultaneously 

and individually, a task that can be accomplished if cells are loaded through a common opening 

that is used as a cell output during perfusion culture. For a first generation device with separate 

media inputs, a medium-throughput device with between 10-20 chambers would be most 

practical to develop and test. Once cell loading and culture are optimized in this sort of system, 

more sophisticated systems with overlapping combinatorial inputs could be devised. The small 

chamber size inherent to microfluidic cultures allows for precise temporal control over factor 

addition, providing an additional screening parameter. For any high-throughput system, 

developing an automated input method for media addition is essential to ensure proper delivery 

of factors to the right places at the right times, and this work is ongoing in the lab.  

Once the microfluidic perfusion device is adapted to become a high-throughput system, it could 

be used in a variety of ways, two of which are described in more detail below. As mentioned 

above, perfusion is a powerful means of assessing the sufficiency of signals to elicit a specific 

process or phenotype. Because soluble cell-secreted signals are being removed under perfusion, 

the media composition is more defined under perfusion than in static culture. Thus, if cell-

secreted signals are important mediators of a particular response, this will likely become clear 

under perfusion. For mESCs, we can go beyond the finding that LIF and BMP4 are not sufficient 

to maintain self-renewal to determine what is in fact sufficient. Candidate molecules that have 

been shown to act extracellularly to aid in mESC self-renewal could be added to mESCs growing 

under perfusion, alone or in combination in the presence of LIF and BMP4, and a simple assay 

could be devised to assess the resulting phenotype. A simple assessment of the maintenance of 

self-renewal versus the transition to a more epiblast-like state that could be implemented in a 

high-throughput manner involves comparing FGF5 levels, as levels of FGF5 mRNA increase 7-

fold under normal perfusion conditions (Figure 2-9a). An FGF5 reporter cell line would thus be 

very useful for this type of screen, as the relative fluorescence levels could be measured easily 
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and quickly. If promising candidates were found for addition that significantly decreased FGF5 

reporter protein levels, these signals could be applied to mESCs growing in the larger scale 

perfusion device such that the cells could be removed and tested downstream in qPCR and flow 

cytometry assays for further verification of self-renewal characteristics.  

Another application for a high-throughput screening platform was discussed in chapter 3, 

involving determining conditions for specific, high-efficiency directed differentiation. Perfusion 

is a good system with which to identify conditions for directed differentiation of mESCs for 

many reasons. First, it provides a neutral signaling background in which cell-secreted factors are 

not acting to enhance or block any exogenously added factors to be tested. Second, we have 

shown that mESCs are already primed for differentiation in the absence of cell-secreted signals, 

which means they may be more easily convinced to differentiate in one way or another given the 

correct signals. Third, perfusion culture can be scaled up given the appropriate output assay, as 

mentioned above, so multiple conditions could be assessed at once and an optimized 

differentiation cocktail could be devised. We have already shown that rapid and specific 

differentiation towards the mesoderm lineage is possible under perfusion (Figure 3-2). Because 

growth of ESCs under perfusion predisposes them to a meso- or ectodermal fate (Figure 4-4), 

another system that could utilize such technology is the derivation of excitatory cortical neurons 

from pluripotent stem cells.  

In vitro derivation of excitatory neurons has been performed using neural stem cells, but these 

neurons may not have the ability to generate all types of cortical neurons in vivo (Hansen et al., 

2011). Pluripotent stem cells may therefore be a better starting cell type for this process, and 

induced pluripotent stem cells can be created from cells with neuronal disease backgrounds. 

Many such diseases target only one type or group of neurons, so to determine the specific disease 

mechanisms, it is necessary to have protocols in place for generating specific and functional 

neurons of all types. Given an appropriate marker for the desired type of neuron to be generated, 

a screen could be performed in a specially designed perfusion device, as in the above example, to 

add in candidate factors and assess fluorescent intensity levels. Though the cell yield from the 

screening platform would likely be too low to perform functional studies on the resulting cells, 

promising candidates from the screen could be applied to scaled-up cultures such that cells could 

be harvested and tested functionally, making this platform more of a discovery platform than an 
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actual method for large-scale differentiation. The applications described in this section could be 

applied to other types of differentiation and for screens of other multipotent stem cells, as could 

the use of this type of platform for screening for sufficient self-renewal conditions. Thus, the 

production and implementation of such a system is a promising new direction for perfusion 

research now that conditions and protocols for pluripotent stem cell growth under perfusion have 

been established and the resulting phenotype has been characterized. 

Monitoring and quantifying changes in secretome profile during self-renewal and 

differentiation 

Perfusion can be used as a tool to more efficiently differentiate cells, and its small cell-to-media 

volume ratio and its temporal control also make it an ideal platform for assessing subtle changes 

in how the protein secretion profile changes during a differentiation protocol. The information 

obtained regarding such changes could be used to more precisely recreate differentiation 

progression in vitro by identifying and adding back in relevant factors at appropriate stages of 

differentiation. To more fully understand what is secreted and when, we also need to be able to 

create testable models of protein secretion under perfusion, which could then be combined with 

downstream assays for verification. To achieve these goals, another area in which our system 

could be improved is by integration of our microdevice with other microsystems for downstream 

analysis of small media volumes or small cell numbers.  

As ESCs differentiate toward a particular lineage, they downregulate secretion of molecules 

whose functions involve maintaining pluripotency while upregulating secretion of lineage-

specific factors (Farina et al., 2011). However, studies to date have analyzed secreted proteins in 

large-scale cultures at a few discrete time points over the course of differentiation, and thus do 

not provide a complete picture of how the secretion profile changes over time. Perfusion could 

feasibly be used to perform this type of analysis, one problem being that small cell numbers in 

large perfusion volumes may mean that any cell-secreted proteins, particularly those secreted at 

low levels, are obscured by proteins in the media, which is a problem we ran into in a previous 

attempt to submit perfusion samples for mass spectrometry analysis. To get around this, we 

could use the small media volume of the perfusion chambers to our advantage by collecting the 

chamber media at several timepoints per day after allowing cell-secreted proteins to accumulate 
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in the chambers, and combine this with methods to remove the most prevalent background media 

protein, BSA, from the media prior to analysis. The resulting cell-conditioned media could then 

be analyzed by mass spectrometry with the advantage that it is already concentrated in a way that 

cell-secreted proteins should dominate over proteins present in the media.  

Using mass spectrometry to analyze secretion profiles gets at which proteins are secreted and 

when, but to quantify levels of secretion and secretion patterns within a population, more 

sophisticated modeling techniques need to be employed. We introduced a simple model in 

chapter 3.3 for removal of a cell-secreted ligand at different flow rates and cell densities. 

However, this model was never tested experimentally and is likely to be missing important 

parameters. Thus, further work could go in to refining this model, perhaps starting with an 

engineered cell secretion system that can be easily monitored. For example, an inducible 

overexpression system could be generated and calibrated such that addition of the inducer (e.g., 

doxycyline) at a specific level is known to trigger secretion of a certain amount of protein per 

cell. Then, the inducer could be added to cells growing under perfusion at different flow rates 

and densities and the outflow media could be collected and analyzed by ELISA. This system 

could be put in place for many different ligands, each with their own overexpression cell line, 

such that the effects of ligand diffusivity and receptor densities can be accounted for. With all the 

resulting data demonstrating how flow rate relates to ligand removal at different cell densities, a 

more thorough model can be developed and used to describe the secretion rates and binding 

characteristics of diverse endogenous ligands.   

Both the preceding examples for using information gleaned from microscale perfusion involve 

collecting the media from the device and applying it to a macroscale assay, either mass 

spectrometry or ELISA. Many other desirable downstream applications for the media from 

perfusion or the cells themselves are also best performed with large numbers of cells, especially 

for stem cells as they are, by definition, functionally defined, and this limits our ability to design 

and perform assays. The screening experiments described in the prior example were designed to 

use fluorescence markers or immunostaining, but this approach only provides information about 

one or a few parameters. To enhance the downstream analytical ability and thus the utility of the 

perfusion device, integration of the device with other microsystems that have been optimized to 

perform biological assays on small scales would be immensely useful. Microscale devices have 



been designed to perform mass spectrometry (Song et al., 2010) and protein quantification 

(Kellner et al., 2011; Dixit and Kaushik, 2012), among other biological assays, and though 

implementation with our existing device or with a more high-throughput version would require 

significant time and effort, it would enable the investigation of much more sophisticated 

questions involving secretion profiles and cell phenotype resulting from manipulations of 

endogenous signals.  

Assessing specificity and universality of matrix remodeling proteins 

We found that addition of MMP1 allows for long-term LIF-independent maintenance of mESC 

self-renewal. However, the extent to which this phenomenon holds true for other cell systems or 

with other MMPs is completely unknown. We showed that neither MMP2 nor MMP3 are able to 

maintain mESC self-renewal (Figure 5-4a), and we also have results indicating that MMP 

production from feeder cells is not necessary for mEpiSC self-renewal (Figure 7-1). These 

results bring up many new research directions, including determination of why MMP1 and 

collagenase work as functionally significant mESC matrix remodelers, while other classes of 

MMP molecules don’t; finding whether other MMPs have the same effect as MMP1 in ESCs or 

other stem cell systems; and identifying a corresponding in vivo role for MMP autocrine or 

paracrine signals in the developing embryo.  

noneRo32

 

Figure 7-1 Images of EpiSCs growing on feeders after two passages in the presence or absence of the collagenase-
specific MMP inhibitor Ro32-3555. Scale bars = 400 µm. 

There are 23 MMPs in mice, 16 of which are secreted (Nuttall et al., 2004), all with unique 

cleavage substrates and tissue expression patterns. Of these, MMP1a, 1b, 8, and 13 cleave triple-
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helicar fibrillar collagens specifically, while the others cleave gelatin (partially hydrolyzed 

collagen) or other extracellular matrix proteins. While it would be simple to add in other MMPs 

to ESC cultures and test their ability to maintain self-renewal or activate Stat3, the more 

interesting study would involve finding what factors are released upon addition of different 

MMPs, as it is possible that specific cell-secreted proteins are bound in the matrix by different 

structural ECM molecules or activated upon cleavage by specific MMPs. To find these putative 

ECM-bound factors, addition of MMP could be combined with perfusion to immediately remove 

and identify factors released from the matrix, using methods described in the preceding section. 

This approach could potentially be used to definitively identify the ligand responsible for 

MMP1-mediated self-renewal and to identify other endogenously secreted ligands that are 

normally trapped within the ECM in ESC cultures.  

Based on our result indicating that mEpiSCs are not affected by MMP inhibition to the extent 

that mESCs are (Figure 7-1, compare to Figure 5-2), we might assume that this phenomenon is 

specific to the mESC system, which makes sense considering that the ligand involved in MMP1-

mediated ESC self-renewal acts through a pathway that is not relevant to mEpiSC maintenance. 

However, the MMP inhibitor used in these co-culture experiments is specific to collagenases, so 

it remains possible that other MMP-family proteins are required to maintain EpiSC self-renewal, 

which could easily be tested by employing other inhibitors. It would also be interesting to 

determine the effect of exogenous MMP1 or other MMPs on EpiSC self-renewal in the absence 

of other exogenously added factors. EpiSCs require FGF2 and exogenous or endogenous Activin 

for self-renewal, but it is possible that these or related molecules are being produced by the cells 

and getting trapped in the ECM, as is the case with ESCs. Perhaps MMP1 would not cleave the 

appropriate matrix molecule to allow the EpiSC signal to escape, but a different MMP would. 

These sorts of questions can extend beyond pluripotent stem cells to more committed stem cell 

systems and addition of the right kind of matrix remodeling proteins could allow for a more 

realistic recapitulation of the in vivo niche.  

The fact that ESCs rapidly produce a complex endogenous ECM when grown in vitro is not so 

surprising given the importance of cell-cell adhesions and basement membrane formation in the 

developing embryo. When tissue-specific expression of MMPs in mouse was assessed, it was 

found that almost all MMPs are present in the uterus or placenta at some point during embryonic 
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development, and that MMP1a and 1b are found exclusively in the uterus and testis and no other 

organs (Nuttall et al., 2004). Thus, the paracrine role played by feeder cells in supplying MMPs 

to ESCs could also be present in the early embryo, which receives paracrine signals from the 

uterus (Figure 1-3). In another study, MMP expression was monitored in the implanting 

blastocyst and only MMP1a, 1b, 2, and 9 were detected (Chen et al., 2007), indicating possible 

autocrine roles for these proteins as well. Knocking out any individual MMP does not cause 

embryonic lethality, but this is likely due to the fact that enough MMPs are present to take over 

necessary functions in the absence of one. Thus, testing the in vivo functionality of specific 

MMPs may require overexpressing the protein and checking for misregulation, or knocking out 

more than one closely related MMP, like both MMP1a and 1b. While these sorts of studies are 

not trivial, the mechanisms involved in the progression from pre- to post-implantation blastocyst 

require significant cell movement and complex signaling patterns, all actions that can involve 

MMPs, and the fact that MMPs function so significantly in mESCs provides further evidence 

that they may have an important role in embryonic development.   

Developing and implementing methods for further characterizing endogenous ECM 

properties 

Exogenously remodeling the ECM has allowed us to uncover a fascinating new mechanism by 

which mESCs can maintain their self-renewal. However, endogenous matrix remodeling proteins 

are constantly at work in normal cultures, and their roles are almost completely uncharacterized 

in in vitro stem cell systems.  Recent work has identified ECM structural properties as strongly 

contributing to stem cell fate in many systems (Engler et al., 2006; Saha et al., 2008; Chowdhury 

et al., 2010) and tools have been developed for measuring ECM structural properties. More work 

is also going in to creating synthetic matrices to mimic those that are found in in vivo niches 

(Keung et al., 2010), and understanding how these matrices compare to and interact with 

endogenous ECM will be crucial to generating reliable, defined in vitro tissue engineering 

systems. The relevance and functions of cell-secreted signals can vary widely depending on the 

signals’ extracellular location, whether they are bound at the membrane surface, secreted in the 

bulk media, or bound to or within the ECM. Future work could therefore also go into 

characterizing and quantifying the differences in how soluble versus tethered signals act, using 

the ability to localize patterns of specific signals around stem cell colonies.  
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Current methods for measuring ECM structural properties mostly rely on atomic force 

microscopy (AFM) (Ludwig et al., 2007). The sensitivity of AFM allows it to take force 

measurements of single cells by assessing their deformability, a property that has been found to 

vary greatly between different cell types (Chowdhury et al., 2008). However, the elastic 

modulus, essentially a quantification of deformability, of endogenous ECMs has not been 

assessed. Beyond its ability to activate or remove ECM-bound signaling proteins, matrix 

remodeling also has the ability to broadly alter ECM structural properties. While adding 

collagenase to mESC cultures at low concentrations allows cells to maintain self-renewal in the 

absence of LIF (Figure 5-3b), adding it at high concentrations actually causes the cells to be 

removed from their substrate and form spheroid cultures, a phenomenon that is most apparent in 

serum-free cultures. This indicates that collagenase is broadly altering the structural properties of 

the endogenous ECM and is likely performing this function to some extent at low concentrations. 

Because it has been shown that mESCs self-renew in the absence of LIF on soft substrates 

(Chowdhury et al., 2010), it is possible that the ECM structural changes caused by collagenase 

contribute to the LIF-independent self-renewal phenotype we describe, a question that could be 

addressed by devising a way to measure endogenous matrix stiffness. 

Conversely, it is possible that the ability of soft substrates to enhance self-renewal is due to the 

fact that cell-secreted proteins that are normally bound in the matrix are more accessible in a 

more porous matrix. For stem cell maintenance and tissue engineering applications, many types 

of artificial matrices have been described, but the mechanisms that make them more or less 

appropriate for specific applications are largely unknown. The contribution of the endogenously 

secreted matrix is also not often taken into account, so better methods for assessing endogenous 

ECM makeup and determining how secreted signaling proteins interact with and bind to 

structural matrix proteins could aid in the production of more relevant in vitro models for stem 

cell maintenance and differentiation in embryonic and adult stem cell systems.   

The endogenous ECM contains many proteins that have both soluble and matrix-bound forms. 

These forms can have functionally different consequences (Robertson et al., 1993; Saha and 

Schaffer, 2006), so determining which secreted proteins exist in these different forms and what 

their functional differences are is important when describing the cell-secreted microenvironment. 

Proteins bound in the ECM may signal for longer than soluble proteins due to their inability to 
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diffuse from the receptor, and they may be bound in concentrated pockets in the ECM with other 

proteins, such that the simultaneous signaling of two or more proteins elicits a different signaling 

result than signals acting alone through any single pathway. The actions of exogenous signals are 

generally assessed by adding in soluble forms of the proteins of interest, but it is becoming 

increasingly apparent that ECM-bound signals also contribute to cell phenotype in a major way. 

Thus, studies using our tethered protein presentation system could be combined with studies 

using identical soluble cues to distinguish the contributions of each type of signal and could be 

broadly applied to further uncover methods by which ECM-bound proteins act in contrast to their 

soluble counterparts.  

All the methods described in this section have the added benefit that they can be implemented 

using any stem cell system, or even more generally with any adherent cells. Applying and 

combining the techniques and approaches described in this chapter to study and manipulate 

exogenous signals could therefore be used for defining optimal culture systems and addressing a 

wide range of questions involving the contributions or limitations of extracellular signals, 

allowing for further discoveries regarding how the cell-secreted microenvironment affects cell 

phenotype. 
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Appendix General Methods 

ESC culture and cell lines 

Mouse ESCs (CCE, ABJ1 (Bortvin et al., 2004), Sox2-GFP, 7xTCF-eGFP (ten Berge et al., 

2008), Brachyury-GFP (Fehling et al., 2003), H2A-GFP (a gift from the Boyer lab), and H2B-

GFP (Foudi et al., 2009) lines) were routinely cultured in medium consisting of DMEM 

supplemented with 15% defined fetal bovine serum (Hyclone), 4 mM L-glutamine, 1 mM non-

essential amino acids, 1X penicillin-streptomycin, 100 µM β-mercaptoethanol (Sigma) and 10 

ng/mL LIF (ESGRO, Chemicon). All cell culture reagents were from Invitrogen unless otherwise 

noted. Cells were grown at 37°C in a humidified incubator with 7.5% CO2. For serum-free 

culture, N2B27 medium with 10 ng/mL LIF and 10 ng/mL BMP-4 (R and D Systems) was used 

(Ying et al., 2003a) and wells were pre-coated with gelatin. All additives to cell cultures are 

listed below.  

Culture media additives 

Additive Concentration Source 
Inhibitors 
PD0325901 1 μM Stemgent 
CHIR99021 3 μM Stemgent 
sodium chlorate 20 mM Sigma-Aldrich 
JAK inhibitor I 1 μM Calbiochem 
Batimastat 10 μM Tocris 
Ro 32-3555 50 μM Tocris 
Bay 11-7085 50 μM Tocris 
IWP2 2 μM Sigma 
SB431542 1 μM Sigma 
   
Recombinant proteins 
Activin 30 ng/ml Peprotech 
FGF2 12 ng/ml Peprotech 
FGF4 5 ng/ml R and D Systems 
TGFβ 40 ng/ml Peprotech 
TIMP1 50 ng/ml Peprotech 
MMP1 50 ng/ml Peprotech 
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MMP2 50 ng/ml Peprotech 
MMP3 50 ng/ml Peprotech 
Dkk 100 ng/ml Peprotech 
Wnt3a 100 ng/ml Peprotech 
CT-1 10 ng/ml Peprotech 
CNTF 10 ng/ml Peprotech 
OSM 10 ng/ml Peprotech 
   
Antibodies 
Phospho-Stat3 1:100 Cell Signaling Technology 
Phospho-ERK1/2 2.5 µg/ml BD Biosciences 
Secondary antibodies 2 µg/ml Invitrogen 
HepSS 10 µg/ml Lifespan Biosciences 
Oct4 5 µg/ml Abcam 
LIF blocking antibody 500 ng/ml R and D Systems 
CT-1 blocking antibody 7.5 μg/ml R and D Systems 
CNTF blocking antibody 7.5 μg/ml R and D Systems 
OSM blocking antibody 7.5 μg/ml R and D Systems 
   
Other 
heparin 1 μg/ml Sigma
collagenase 1 ng/ml - 20 μg/ml Sigma #C9722 
Retinoic Acid 1 μM Sigma 
Doxycycline 2 μg/ml Sigma 
Hoechst 100 ng/ml Sigma 
 

Quantitative RT-PCR 

Cells were harvested using TrypLE Express trypsin replacement (Invitrogen) and total RNA was 

isolated using the RNeasy Mini Kit (Qiagen), according to manufacturer’s instructions. RNA 

was converted to cDNA using the DyNAmo cDNA synthesis kit with Oligo(dT) primer or the 

ProtoScript cDNA synthesis kit with Oligo(dT) primer (New England Biolabs). Quantitative 

PCR reactions were set up using the DyNAmo SYBR Green qPCR kit (New England Biolabs) or 

the iQ SYBR green supermix (Bio-Rad), according to manufacturer’s instructions. Reactions 

were run on an MJ Opticon DNA Engine thermal cycler or on a Bio-Rad C1000 thermal cycler 

using a CFX96 real-time system. Primers are listed below.  
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Quantitative RT-PCR primers 

Gene qRT-PCR forward primer qRT-PCR reverse primer 

FGF5 GAAAAGACAGGCCGAGAGTG GAAGTGGGTGGAGACGTGTT 

Nanog CTGCTCCGCTCCATAACTTC TTTCCCTAGTGGCTTCCAAA 

Gapdh CACTGAGCATCTCCCTCACA GTGGGTGCAGCGAACTTTAT 

T CAGCCCACCTACTGGCTCTA GAGCCTGGGGTGATGGTA 

Dnmt3b GCATGAAGGCCAGATCAAAT GCTTCCACCAATCACCAAGT 

AFP CCTGTGAACTCTGGTATCAG GCTCACACCAAAGCGTCAAC 

Gata4 TCTCACTATGGGCACAGCAG GGGACAGCTTCAGAGCAGAC 

Sox17 CTTTATGGTGTGGGCCAAAG GCTTCTCTGCCAAGGTCAAC 

Klf4 CAGGCTGTGGCAAAACCTAT CGTCCCAGTCACAGTGGTAA 

Sox1 CCTGAAAATGATGCTGCTGA GGAGTAGCTGTGGGTGTGGT 

Nestin GATCGCTCAGATCCTGGAAG AGTTCTCAGCCTCCAGCAGA 

Sox2 AACGCCTTCATGGTATGGTC TCTCGGTCTCGGACAAAAGT 

Oct4 CACGAGTGGAAAGCAACTCA TTCATGTCCTGGGACTCCTC 

Rex1 CCCCCTGGAAGTGAGTCATA CCACTTGTCTTTGCCGTTTT 

Eomes TTCCGGGACAACTACGATTC GACCTCCAGGGACAATCTGA 

Nodal ACCATGCCTACATCCAGAGC ATGCTCAGTGGCTTGGTCTT 

Lefty1 TATGTGGCCCTGCTACAACA GGAGGTCTCTGACACCAGGA 

Gata6 CAAAAGCTTGCTCCGGTAAC TGAGGTGGTCGCTTGTGTAG 

Wt1 ATCCGCAACCAAGGATACAG GGTCCTCGTGTTTGAAGGAA 

Hbb-y GGCCTGTGGAGTAAGGTCAA GCAGAGGACAAGTTCCCAAA 

Hba-x ATGCGGTTAAGAGCATCGAC GGGACAGGAGCTTGAAGTTG 

Stat3 AGGACATCAGTGGCAAGACC TGGTCGCATCCATGATCTTA 

Socs3 GAGATTTCGCTTCGGGACTA GGAGCCAGCGTGGATCTG 

Vim AGGAGGCCGAGGAAT GGT CATCGTTGTTCCGGTTGG 
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Igfbp2 CCCCTGGACATCTCTACTCC GGGTTCACACACCAGCACTC 

MMP1a ATTCATGCCAGAACCTGAGC TGCCTTTGAAATAGCGGACT 

MMP2 ATGACATCAAGGGGATCCAG GGAGTGACAGGTCCCAGTGT 

MMP3 TCAGTACCTTCCCAGGTTCG TTTCAATGGCAGAATCCACA 

MMP8 CTTTCAACCAGGCCAAGGTA GAGCAGCCACGAGAAATAGG 

MMP9 CATTCGCGTGGATAAGGAGT TCACACGCCAGAAGAATTTG 

MMP13 ACACTGGCAAAAGCCATTTC TTTTGGGATGCTTAGGGTTG 

Axin2 CCAACACTTTGGCACAGCTA TTCCTGTCCCTCTGCTGACT 

Cdx1 CAACGCCTAGAGCTGGAAAA GATCTTTACCTGCCGCTCTG 

C-myc CCAGATCCCTGAATTGGAAA TCGTCTGCTTGAATGGACAG 

Gp130 ACCAGATTCCTGTGGACGAC AGAATCCACATGCACAACCA 
 
 
Statistical analysis 

All results were analyzed by student’s T-test and the resulting pairwise p-values are reported. 

Significance was established at p<0.05, and was evaluated up to the level of p<0.001. 

 

 


	Chapter 1 Introduction                                         
	1.1  Significance
	1.2  Embryonic stem cells
	1.3  Cell-secreted microenvironment
	1.4  Embryonic stem cell and in vivo microenvironment: soluble and ECM-based signals
	1.5  Manipulating extracellular signaling
	1.6  Microfluidic approaches to study cell-secreted signaling
	1.7  Thesis specific aims and overview

	Chapter 2 Effects of manipulating soluble ESC signaling under perfusion
	2.1  Introduction
	2.2  Microfluidic device specifications and transport parameters
	2.3   Minimal requirements for ESC growth under microfluidic perfusion
	2.4  Adjusting heterogeneity by manipulating exogenous signaling
	2.5  Exit from self-renewing ESC state under perfusion
	2.6  Cells enter a primed epiblast-like state under perfusion
	2.7  Discussion
	2.8  Methods

	For phospho-Stat3 staining, cells were incubated overnight with phosphorylated Stat3 antibody (Cell Signaling Technology) at 1:100 and secondary (anti-rabbit GFP, Invitrogen) was added for two hours at 1:1000. For Oct4, cells were incubated overnight with primary Oct4 antibody (Abcam) at 5 µg/ml and secondary (anti-goat Cy3, Abcam) was added for one hour at 1:250. Staining along the chamber was quantified using an automated MATLAB script, and differences in staining intensity in any area within the chamber was not found to be statistically significant. All cells were counterstained with 1:100000 Hoechst (Sigma).
	Chapter 3 Controlling ESC fate in the neutral background of perfusion
	 Introduction
	3.2  Using perfusion for directed differentiation
	3.3  Identifying and modeling ligands removed under perfusion
	3.4  Discussion
	3.5  Methods

	Finite-element modeling
	The MEMS module of COMSOL version 3.5a was used for finite-element modeling. A steady-state 2-dimensional convection and diffusion model was used, adapted from the provided Transport and Adsorption and Transport of Diluted Species models.
	Chapter 4 Depletion of soluble versus extracellular matrix-based signaling
	4.1  Introduction
	4.2  Extracellular matrix remodeling under perfusion
	4.3  Contributions of soluble versus ECM-based signals
	4.4  Removal of endogenous matrix remodeling proteins affects ESC self-renewal
	4.5  Discussion
	4.6  Methods

	For HepSS staining, cells were blocked with endogenous biotin blocking kit (Invitrogen) and incubated overnight with HepSS antibody at 1:100 (Lifespan Biosciences) and secondary antibody (TMR NeutrAvidin, Invitrogen) was added at 1:500 for one hour. Cells were counterstained with 1:100000 Hoechst (Sigma).
	Chapter 5 Matrix remodeling maintains ESC self-renewal in static cultures
	5.1  Introduction
	5.2  Feeder cells secrete MMPs that functionally influence ESC self-renewal
	5.3  MMP1/collagenase maintain ESC self-renewal
	5.4  Long term LIF-independent culture of ESCs is possible in the presence of MMP1
	5.5  Pathways not implicated in MMP-mediated self-renewal
	5.6  MMP acts by releasing a gp130 ligand that signals through Stat3
	5.7  Discussion
	5.8  Methods

	Chapter 6 Manipulating ESC organization and signaling
	6.1  Introduction
	6.2  Patterning signals around existing ESC colonies
	6.3  Morphological assessment of cell fate
	6.4  Discussion
	6.5  Methods

	Chapter 7 Conclusions
	7.1  Contributions
	7.2  Future directions


