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ABSTRACT 
 

The structural behavior of masonry arches under various forms of loading is well-studied; however, 
the three-dimensional behavior of barrel vaults and groin vaults is not as well understood.  This thesis 
aims to address this problem by performing scale model testing of barrel and groin vaults as a 
complement to analytical solutions.  The behavior of the model vaults are observed in four cases: (1) 
spreading supports, (2) vertical point loads applied at various locations of the vault’s geometry, (3) point 
loads applied to an initially deformed vault, and (4) horizontal acceleration through tilting.   

In all cases, extensive experimental testing is carried out on a subset of three model vaults: two 
barrels and one groin vault, all with the same radius and thickness ratio but with different angles of 
embrace. High-speed cameras are used to capture the collapse mechanism of the vaults. The analyses 
include equilibrium methods executed through Excel and Matlab programs, publicly available online 
applets for arch stability, and hand calculations. 

The testing and analysis carried out in this thesis reveal several properties that can be used by 
engineers studying existing structures. First, a groin vault’s spreading capacity is determined by the 
constituent barrel vault that is spreading.  This simplifies the analysis to a two-dimensional problem. 
Second, the load capacity of a barrel vault is linearly proportional to the initial deformation in span. So, if 
a vault experiences a span increase that is 25% of the maximum it can withstand, its load capacity 
decreases by 25%. Nearly all vaults have experienced deformations due to settlement over time and will 
therefore respond differently to loading than a perfect vault which is the common starting point in 
analysis.  This work can be applied to the understanding and maintenance of masonry vaults in service 
throughout the world.   
 
Thesis Supervisor: John A. Ochsendorf 
Title:  Associate Professor of Building Technology and 

Civil and Environmental Engineering 
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Chapter 1

Introduction

Masonry construction dominates the landscape of structures built before the end of the

nineteenth century (Heyman 1995). While it is rare for new unreinforced masonry struc-

tures to be built today, many historical masonry buildings are still in use. In some cases,

these buildings have survived hundreds of years of settlement and deterioration. It is neces-

sary for contemporary engineers to be able to accurately assess masonry structures in order

to appropriately maintain them as historic landmarks and eliminate potentially hazardous

situations.

Current engineering education and practice focuses on steel and reinforced concrete struc-

tures, which are primarily based on material strength and elasticity. However, safety in

traditional masonry construction is often a problem of stability and geometry (Block et al.

2006). Modern materials allow for towering buildings and long span bridges to be built that

would never be possible using unreinforced masonry. Unfortunately, this focus in current

engineering education and practice has led to a break in understanding over the last few

generations of how to analyze the collapse conditions for traditional masonry structures.

Over the years, a strong understanding of the load capacity of masonry arches has been

created (Heyman 1982; Livesley 1992). However, the three-dimensional behavior of vaults is

less well known (Boothby 2001). Complex methods have been developed to analyze masonry

structures including computer simulations and numerical methods. These developments have

been applied to a wide range of structures, including arches, domes, and �ying buttresses,

but the forms of barrel vaults and groin vaults have been neglected to a certain extent.

1.1 Problem Statement

This thesis explores the collapse mechanisms of barrel vaults and groin vaults experimen-

tally and analytically. Physical and computational models are used to determine collapse

limits due to:

10



CHAPTER 1. INTRODUCTION

1. Applied point loads

2. Spreading of the supports

3. Applied point loads on an initially deformed structure

4. Constant horizontal acceleration (through tilting)

The results of the physical models are supported by analytical approximations. The analysis

is developed by expanding upon existing tools and methods. The aim of this thesis is to

quantify failure modes and provide engineers with recommendations and tools for accurately

assessing the current safety of barrel vaults and groin vaults in existing infrastructure.

1.2 Literature Review

A good number of methods and tools have been developed to understand arch behavior.

It is useful to understand these methods so that they can be expanded to three dimensions to

better explain the collapse mechanisms of vaults. More complex methods have been devel-

oped to analyze masonry structures including computer simulations and numerical methods.

1.2.1 Arch analysis

Traditional masonry arches, as mentioned previously, are stable primarily because of their

geometry, not because of their material properties. The collapse mode of an arch can be

determined based on the shape and self-weight of the arch plus the position at which the

load is applied (Pippard et al. 1936). The capacity of these arches can be determined using

an equilibrium calculation, commonly shown as a line of thrust. The thrust line represents

the resultants of the stresses exerted at the interfaces between voussoirs (Heyman 1982).

The compression forces at the interface must be in equilibrium with the self-weight and any

external forces. The locus of pressure points is then represented as a thrust line (Figure 1.1).

The set of compressive forces can be found using graphical methods and equilibrium

equations. Graphical methods involve creating a force polygon such as the one shown in

Figure 1.2. A linear scale is established to represent force, then the vertical force acting

on each voussoir, including self-weight and external loads, is drawn in the appropriate scale

end-to-end as the base of the force polygon. Then, an initial value of horizontal thrust is

established. This determines the angle of each segment of the polygon, which become the

angle of the thrust line for the matching block of the arch. The horizontal thrust value can

11
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Figure 1.1: (a) Thrust line analysis assumes that all forces on each block of an arch are in
equilibrium. (b) The thrust line is a visualization of the compressive forces within the arch.
A possible thrust line for an arch due to self-weight only is shown.

be varied until the entire line lies within the masonry. This method is entirely graphical

and does not require calculation, making it an e�cient tool for designers of vaulted masonry

(Allen and Zalewski 2010). Figure 1.2 is a special case because it shows the minimum

thickness ratio for an arch of 180°. This is evidenced by the thrust line lying just within the

masonry.

The location of the thrust line can also be determined using equilibrium equations. Global

equilibrium is used to solve for the horizontal and vertical reactions at the abutments. Then,

the location of the thrust line at each block interface can be solved using local equilibrium.

A rigid arch is indeterminate to the third degree (Ochsendorf and Romano 2010), meaning

that an in�nite set of possible thrust lines can be found that represent the forces within a

typical arch. The lines can be de�ned given the horizontal force and the location of the

line at two points within the arch. A lower bound solution, is any one of these thrust

lines that meet the requirements of stability. If the supports move, hinges typically form to

accommodate this displacement. The hinges reveal points where the thrust line must act

because only a single point of contact remains for the force to be transferred (Heyman 1995).

The uniqueness theorem states that at collapse, one line of thrust can be found within the

masonry. This collapse condition is also known as an upper bound solution.

Three main assumptions are made when analyzing historical masonry structures using

classical limit analysis (Heyman 1982). First, masonry cannot carry tensile forces. This

is a conservative assumption and is true for the most part. While individual blocks could

carry some amount of tension before failing in a brittle manner, the mortar between the

blocks carries a minimal amount and will separate. Second, friction between the voussoirs is

12
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Figure 1.2: Graphical method of thrust line calculation. The force polygon to the right
determines the angle of the thrust line for each block. The horizontal thrust is equal to
the horizontal dimension of the triangle. (MIT Masonry 2012) This arch is the minimum
thickness ratio for a 180° arch to stand only loaded by self-weight.

su�cient to prevent failure due to sliding of one voussoir relative to another. This assumption

has been shown to be correct in practice, though in rare cases sliding can occur. Third,

masonry has in�nite compressive strength. This is an unsafe assumption. However, arches

commonly fail as a result of mechanisms that are triggered at stresses, which are an order of

magnitude lower than the crushing strength of stone. Also, while local crushing may occur

at hinges, this typically does not a�ect the integrity of the system as a whole.

1.2.2 Collapse of arches due to spreading supports

A documented issue in historic buildings is the movement of buttress walls over time.

Buttress walls can lean outwards due to di�erential settlement of foundations (Ochsendorf

2002). One example is the basilica at Vézelay, France, which has su�ered extreme deforma-

tions over time, but still stands (Figure 1.3).

As the buttresses lean, the supports of the vault move, increasing the span, which causes

the crown to lower and hinges to open in order to accommodate the shifting thrust line.

The horizontal thrust increases as the supports spread until collapse. Ochsendorf (2006) has

shown that span increase of an arch is dependent upon its thickness ratio, angle of embrace,

and voussoir size. Tools to analyze the spreading failures of arches have been developed by

Block et al. (2006).

The work discussed thus far has only assessed arch behavior and not delved into the

three-dimensional world of barrel and groin vaults. While it may seem a logical step that

barrel vaults follow the hinging pattern of arches, this has not been experimentally veri�ed,

13
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Figure 1.3: Many of the arches along the nave of Vézelay Abbey have su�ered extreme
deformations over time. As the span increases, the crown of an arch lowers and hinges open.
The arches in the foreground have �attened, but those in the background remain circular.
Photo credit: Isabel Tarrío

nor has the behavior of more complex groin vaults.

1.2.3 3D �Network analysis� of barrel vaults

The behavior of arches under various loading conditions including spreading supports has

been studied extensively. However, the three dimensional action displayed by barrel vaults

is discussed in only a limited number of papers. O'Dwyer (1999) proposes a force network

model to analyze vaults. This method extends the idea of a line of thrust in an arch into

a surface of thrust within a vault. This surface describes the resultants of forces within a

vault.

The network is de�ned by a set of nodes and members. The nodes represent points where

discrete forces are applied. These forces can include the self-weight and other distributed

forces which have been discretized. The members represent possible paths the force can take

between nodes. The results of the analysis are very dependent on these paths, so they must

be chosen with the actual behavior of the vault in mind. The horizontal x- and y-coordinates

are de�ned for each node. The height of the node, the z-coordinate, is unde�ned, but an

envelope within which it can move is set by the geometry of the actual vault. The surface

14
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Figure 1.4: Possible force paths within a barrel vault (O'Dwyer, 1999)

Figure 1.5: Nodal diagram of thrust network (O'Dwyer, 1999)

of thrust cannot pass outside of the geometry of the vault because that would represent

tension occurring within the vault, which is impossible, just like the line of thrust cannot

pass outside of the arch.

O'Dwyer illustrates the method with an example of a barrel vault. He argues that a

point load applied to a barrel vault can take one of many paths to the abutment, and

several of these options are shown in Figure 1.4. He then models the force network as in

Figure 1.5 asserting that this network represents the most basic improvement to analyzing

the load on a vault as being supported by a single arch rib. To investigate his argument,

loads are applied at points A, B, and C in Figure 1.5 and the maximum capacity of the arch

and vault of the same geometry are compared. It is found that the network model predicts

a 325% increase in capacity over the arch when both are loaded at point A. The increase is

only 116% for a load at point C, but it is clear that the vault bene�ts from providing many

paths for the force to travel over to the abutments no matter where the load is applied.

More recently, Block and Ochsendorf (2007) have expanded upon these funicular methods

by using the concept of duality between the geometry of a structure and the in-plane forces

on each node. Graphic statics is also rooted in this theory. Block and Lachauer (2012) have
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continued this work to analyze quadripartite vaults and applied the method to the intricate

nave vaults of Sherborne Abbey in England. Both of these studies provide rigorous math-

ematical studies of possible thrust network conditions within vaults, however, they do not

verify the predictions with physical testing. By providing experimental data, this thesis aims

to round out the study of three-dimensionality in vaults.

1.2.4 Arch behavior under seismic conditions

Many masonry structures are located in seismic regions and have a varied history of suc-

cess surviving large seismic events (DeJong 2009). The actual performance of these structures

in earthquakes is very complex and di�cult to predict. Investigations of arch behavior un-

der impulse base motion (De Lorenzis et al. 2007) and rocking based on earthquake time

histories (DeJong et al. 2008) have been done to begin to understand the two-dimensional

behavior of arches due to these stresses. Just as with other failure loads, the arch will col-

lapse when a four hinge mechanism forms. Clemente (1998) presents a model for stone arch

behavior under base motion using a two part method. First, a static analysis is conducted

to �nd the collapse mechanism, then the non-linear equation of motion is solved. Because of

the complex nature of failure of vaults under earthquake loads, experimental data, includ-

ing both collapse loads and footage of collapse, for barrel and groin vaults can expand the

understanding of three-dimensional behavior.

1.2.5 Scale model contributions to masonry analysis

A novel approach for testing vaulted structures is creating physical scale models. Three-

dimensional printing provides a unique opportunity to create detailed representations of

vaulted structures at a cost much lower than full-size experiments. Additionally, calcula-

tions require signi�cant assumptions about material properties and other modeling param-

eters (Quinonez et al. 2010). The addition of data from empirical models can enhance the

value of numerical analysis. Because of the geometrical nature of masonry collapse analysis,

structures can be scaled down for physical testing. This is true because material proper-

ties do not typically govern in collapse analysis of historical masonry. Scale models were

used in medieval times by designers because the notion of scaling up geometry of masonry

structures was well understood. Scale model experiments on domes have been performed

by Zessin et al. (2010) to study the e�ect of supports spreading uniformly outwards. The

results are compared to the cracking patterns of the Pantheon. Additionally, Van Mele et al.

(2012) have done scale model testing of a model groin vault with di�erential settlement of

one support.
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CHAPTER 1. INTRODUCTION

1.3 Summary

This chapter has identi�ed four areas of research in the performance of historic masonry

barrel and groin vaults and discussed the previous work in each topic. There are several

analysis methods that have been developed, most of which focus on arch behavior. However,

this thesis will expand the work to include physical experiments, compare them to results

from current techniques, and suggest new techniques for analyzing masonry vaults. Next,

the experimental and analytical methodology will be discussed.

17



Chapter 2

Methodology

Three physical models are used for the experimental portion of this thesis: two barrel vaults

and one groin vault. Each vault is made of individual blocks and is accompanied by a platform

to serve as the abutments and formwork to facilitate the construction of the vault for repeated

experiments. This chapter details the creation of the models as well as experimental set up

and introduces the analysis methods.

2.1 Models

2.1.1 Model geometries

The geometrical properties of each model are summarized in Figure 2.1. All models have

the same thickness ratio (0.138), radius, and voussoir size so that comparisons can be drawn

between them.

r o
=

197m
m

α=110˚

L = 323mm

r i
=

1
7
3
m

m

10˚
r o

=197m
m

α=130˚

L = 357mm

r i
=

173m
m

10˚

(a) (b)

Figure 2.1: Vault dimensions. (a) The �rst barrel vault (254 mm deep) and the constituent
barrels of the groin vault (318 mm deep) have an angle of embrace of 110°. (b) The second
barrel vault is 130° (254 mm deep). The thickness ratio of all vaults is 0.138.
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Figure 2.2: Computer model of 110° barrel vault showing interlocking rows of blocks.

Figure 2.3: Two of the �ve block geometries used to form the groins

Figure 2.2 displays the computer model of the 110° barrel vault. Rows of blocks are either

made up of eight blocks that are 32 mm deep or two blocks that are 48 mm deep and �ve

blocks that are 32 mm deep. This creates the interlocking pattern between rows.

In addition to square blocks, the groin vault also requires special blocks to create the

groins. There are �ve di�erent geometries; two are shown in Figure 2.3. The blocks are

fabricated as two mirror image components that are secured together with tape to realistically

represent the construction of groin vaults. The performance of the groin vault is compared

with the blocks along the groin both separate and �xed to its pair.

2.1.2 Model fabrication

First, the geometry of the vault is established in Rhinoceros (www.rhino3d.com) a mod-

eling program. Then, it is transformed into an input �le for the Z-Corp (www.zcorp.com)

printer by separating and arranging the blocks in an appropriate space for the printer bed.

The printer functions by laying adhesive on a bed of powder material then applying a thin

layer of powder over the entire bed and repeating the process, changing the adhesive pattern

with each layer to create the blocks. The blocks are allowed to dry in the bed and then
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CHAPTER 2. METHODOLOGY

carefully excavated. Upon removal, the blocks are chalky and fragile so they are coated

twice in polyurethane to increase the durability of the material and, therefore, preserve the

initial shape.

Other key pieces of the models are the platform that serves as the abutments and the

formwork that assists in the assembly of the vaults for repeated tests. The platform is

designed so that one abutment (two adjacent supports for the groin vault) can move slowly

away from the other when threaded rod is turned. This feature is used for the spreading

support experiments and to create the initial displacements for the point load experiments

on a deformed vault. The formwork is shaped to match the outer shell of the vaults so that

the blocks can be laid in it upside down, then the platform placed on top and the entire

assembly �ipped over. This allows the vaults to be built e�ciently for repeated testing.

2.2 Experimental Set-up and Procedure

All tests are recorded using high-speed video. This allows for the exact collapse mecha-

nism to be observed. The speci�cs of each experiment are listed below.

2.2.1 Spreading supports

As mentioned previously, the abutments are designed to move apart as a threaded rod is

turned. For each experiment, the model is erected in an undeformed state and the abutment

is moved at a constant rate until the vault collapses. The maximum deformation is recorded.

2.2.2 Vertical point loads

Point loads are applied using a vertical arm that is slowly lowered using a hand crank

(Figure 2.4). A cube with a divot is attached to the end of the arm so that the load can

be applied through a sphere that sits between the arm and the vault. As the crank is

turned and the arm lowers, the displacement and load are recorded, generating a load versus

displacement plot in real time. The load is increased until the vault collapses.

These experiments are carried out on the barrel vault with an angle of embrace of 130°

and the groin vault. The point loads are applied along a line at the center of the depth of

the arch as shown in Figure 2.5.

2.2.3 Point loads on an initially deformed vault

For this experiment, the barrel vault with an angle of embrace of 130° is constructed as

normal, then spread to 25, 50, and 75% of the maximum deformation established by the �rst

experiment. Then, the procedures for the second experiment are followed.
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Figure 2.4: Point load application assembly. A vertical arm with a sphere at the end is
lowered to simulate a true point load, while the displacement and load are measured.

A         B        C         D   

0.2L

0.4L

0.6L

L

A        B        C        D          E   

Figure 2.5: The barrel vault is loaded at midspan and 20, 40, and 60% of the half span. The
groin vault is loaded in the same locations along an arm as well as near the edge.

2.2.4 Constant horizontal acceleration (through tilting)

The model is placed on a large tilting platform. As one end of the platform is raised, an

inclinometer records the maximum angle of incline before collapse. The barrel vault with

an angle of embrace of 130° and the groin vault are tested in this manner. The barrel vault

is tilted in three orientations: with the abutments parallel, perpendicular, and 45° to the

axis of rotation. Given the symmetry of the groin vault, it is only tested in the last two

orientations (Figure 2.6).

2.3 Analytical Methods

Each experiment is accompanied by an appropriate mathematical analysis. These analyses

include equilibrium methods executed through Excel and Matlab functions, publicly available

online applets for arch capacity, and centroid analysis. The details of each will be discussed

in the appropriate chapter.
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Barrel Vault Groin Vault

Axis of Rotation Axis of Rotation Axis of Rotation

45˚

Axis of Rotation Axis of Rotation

45˚

Figure 2.6: For the tilting experiments, the barrel vault is oriented parallel, perpendicular,
and 45° to the axis of rotation. Due to the symmetry of the groin vault, it is only tilted in
the last two orientations.

2.4 Summary

The experiments and analysis presented in this thesis are divided into four sections. Each

includes repeated testing of scale models as well as analysis that can be used to predict

behavior of existing structures. The spreading and point load results are used as a basis for

the load capacity of deformed vaults. The �rst set of analysis discussed is the capacity of

vaults to maintain stability with spreading supports.
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Chapter 3

Vault capacity for spreading supports

It is common for the walls of masonry buildings to lean outwards over time as foundations

settle. The span of vaults that are supported by these walls must increase to accommodate

the movement. As the span increases, the horizontal thrust grows and puts additional

pressure on the walls, causing them to spread farther, and the cycle continues. This chapter

looks at the capacity of barrel and groin vaults to increase in span as their abutments move

outwards over time.

3.1 Experimental Results

Scale model testing is done on the 130° barrel vault, 110° barrel vault, and groin vault. It is

observed that the barrel vaults hinge along the lines of voussoirs, just as an arch made of very

deep continuous blocks would. The hinging patterns are recorded using high-speed cameras.

As one abutment begins to move away from the other, three hinges open (Figure 3.1.a). When

two hinges open on the same side, it indicates that the thrust line is passing by the very edge

of the vault at that location. This occurs when the hinge location is shifting (Figure 3.1.b).

The vault collapses when the fourth hinge opens at the abutment (Figure 3.1.c) allowing all

the segments to rotate and collapse.

The groin vault exhibits similar cracking patterns with an extrados hinge opening at

the crown. The arms of the vault perpendicular to the direction of spreading begin to tilt

along the crack and show a linear crack at the edge of the crossing barrel (Figure 3.2). The

experiment is performed with the blocks along the groin separate as well as with the pairs

�xed to each other. The spreading capacity is the same for both con�gurations.

The initial span and average results of all trials are summarized in Table 3.1. For results

from all trials, see Appendix B.1.
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(a)

(b)

(c)

Figure 3.1: Hinging patterns of the 130° barrel vault (a) at partial deformation, (b) when
hinge location is shifting, and (c) at collapse. Hinges are marked with black dots.
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Figure 3.2: The groin vault cracks along the crown of the vault and the perpendicular arms
crack linearly. A few blocks fall out at the crown, indicating that they do not carry any
compression forces.

Table 3.1: Average vault span increase to cause collapse
Initial Span [mm] Distance Spread [mm] Percent Increase

Barrel (130°) 308 23 7.5%
Barrel (110°) 278 26 9.4%
Groin (110°) 278 27 9.7%

3.2 Analytical Results

Two methods are used to predict the capacity of each vault to increase in span un-

til collapse. The �rst is a publicly available applet called �Arch Collapse I,� which is

part of the InteractiveThrust suite available through the Masonry at MIT group website

(web.mit.edu/masonry). The second is a Matlab code called BarrelSpread based on the

DomeSpread code presented in Zessin's PhD dissertation (2012).

Due to repeated testing, the corners of the blocks su�ered slight chipping, e�ectively

rounding the corners and moving the actual hinge location towards the interior of the arch.

To account for this in the calculations, an e�ective thickness of 80% of the perfect geometry
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is compared to the capacity of the full thickness. This ratio is proven to accurately represent

the behavior of arches by DeJong (2009).

3.2.1 InteractiveThrust

The �Arch Collapse I� applet of the InteractiveThrust suite (MIT Masonry 2012) allows

the user to input the geometry of the arch, angle of embrace, and hinge locations by manip-

ulating particular points on an image of an arch. As the user slides the abutment, increasing

the span, the hinging geometry and thrust line update in real time. It is the responsibility

of the user to identify the proper position for the maximum spread of the arch by moving

the hinges and determining where the thrust line passes out of the arch. The applet assumes

that the arch can hinge at the crown. This is not possible in the scale models used in this

experiment as there is an odd number of blocks with one centered at the crown.

To simulate the scale models, the appropriate geometry is input into the applet and the

hinge location is adjusted based on the voussoir size (Figures 3.3 and 3.4).

(a) (b)

Figure 3.3: InteractiveThrust results for a 130° arch of (a) full thickness and (b) e�ective
thickness of 80%. The predicted increases are 12.9% and 9.8%, respectively.

(a) (b)

Figure 3.4: InteractiveThrust results for a 110° arch of (a) full thickness and (b) e�ective
thickness of 80%. The predicted increases are 11.3% and 8.6%, respectively.
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3.2.2 Matlab simulations

The Matlab program, BarrelSpread, requires the user to input the angle of embrace,

thickness ratio, and number of blocks in the arch. It calculates voussoir size and allows

for a block to be centered at the crown of the arch. The program is a modi�ed version of

DomeSpread created by Zessin (2012) and the full code can be found in Appendix C.1.

BarrelSpread models half of an arch, assuming a symmetric hinging pattern. It operates

by identifying three hinge locations - B, C, and D (Figure 3.5). B and C are �xed at the

extrados and intrados, respectively, and D moves along the abutment as the thrust line is

continually calculated. Each iteration begins with a small increment of displacement (dx )

of segment CD to the right. Next, the vertical displacement (dy) is calculated using the

geometry of the rotated segment BC (Eq. 3.1). Then, the horizontal thrust is calculated

using the local equilibrium of segment BC (Eq. 3.2). The horizontal thrust is constant

throughout the entire arch, so once that is determined, a local equilibrium equation can be

solved to determine the position of D along the abutment in terms of a radius (rd) from

the center of segment CD (Eq. 3.3). When D reaches the extrados, the arch has attained

its maximum spread, which is equal to dx/L (Figure 3.5). The predicted maximum span

increases for an arches of 130° and 110° are shown in Figures 3.6 and 3.7, respectively.

dy = yB − yC −
√

2 (dx)xB − 2 (dx)xC + yB2 + yC2 − dx2 − 2yByC (3.1)

∑
MB = 0 = WAC (xC − xB) −WBC (x̄BC − xB) −H (yB − yC) (3.2)

∑
MC = 0 = −WCD (x̄CD − xC) +Wtotal (rdsinα + dx+ xC) −H (yC − rdcosα) (3.3)

dy

D

C

B

dx

dx

L

Figure 3.5: Schematic of hinge locations and displacement of arch.
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Figure 3.6: BarrelSpread results for a 130° arch of (a) full thickness and (b) e�ective thickness
of 80%. The predicted increases are 12.4% and 9.4%, respectively.
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Figure 3.7: BarrelSpread results for a 110° arch of (a) full thickness and (b) e�ective thickness
of 80%. The predicted increases are 11.1% and 8.5%, respectively.

3.3 Discussion

The experimental, InteractiveThrust, and Matlab results are summarized in Figure 3.8.

The experimental results of the groin vault and barrel vault of the same size di�er by only

28



CHAPTER 3. VAULT CAPACITY FOR SPREADING SUPPORTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

130° Barrel

110° Barrel

Groin

Percent Spread

Exp Avg

Exp Trial

Matlab, t
full

Matlab, t
e!

Applet, t
full

Applet, t
e!

Legend:

Figure 3.8: Summary of experimental, InteractiveThrust, and BarrelSpread results. Each
experimental trial result is noted by a gray �x� and the experimental average is highlighted
by a black circle with bars representing one standard deviation. BarrelSpread results are
squares and InteractiveThrust results are diamonds. The full thickness is represented by a
solid marker for each and the e�ective thickness by an open marker.

3%. The 130° barrel vault had a lower span increase than the 110° vault even though the

opposite was predicted.

Overall, estimating the behavior of all the vaults as arches is a good method because the

hinging patterns of each vault follow that of an arch. In all experimental trials, the hinges

formed along a single, straight line for the entire depth of the vault.

There are several di�erences between the experiment and the geometry represented in

each analytical approximation. First, the model has an odd number of evenly sized voussoirs,

resulting in one block being centered at the crown of the arch. The InteractiveThrust applet

assumes that the arch will hinge at the crown. In reality, the thrust line passes very close to

the extrados at the crown, which allows hinges to begin opening on both sides of the central

voussoir. Eventually, one hinge snaps closed due to slight imperfections in construction.

This behavior is con�rmed in the high-speed video footage. BarrelSpread more accurately

represents the behavior of the vault by allowing the hinge at the crown to form at an angle

of one half of a voussoir from the center.

Another di�erence is introduced by the method of input for the geometry in each approx-

imation. BarrelSpread allows the exact geometry of the arch to be used for the calculations.

The applet has discrete jumps in the thickness ratio (t/r) and abutment displacement that

depend on the sensitivity of the user controlling particular points of the geometry displayed

on the screen.

Finally, BarrelSpread determines the collapse geometry through a series of checks that

the thrust line remains within the geometry of the arch. The applet allows the user to

deform the arch in any manner and does not indicate valid or invalid results. It is the user's
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responsibility to establish whether a given thrust line is stable or not and where the intrados

hinge should be placed.

A major �nding of these experiments is that the capacity of a groin vault to deform due

to spreading is dominated by its constituent barrel vault that is spreading. The groin vault

can be analyzed as two barrel vaults. The vault whose abutments are moving apart forms

an extrados hinge near the crown and an intrados hinge along the haunches of the arch. The

open ends of the second barrel begin to tilt upwards. In some experiments, a linear crack,

approximately tracing the edge of the �rst vault, forms (Figure 3.2). The dominant behavior

of the groin vault is that of the �rst barrel, so the estimation of the capacity of the groin

vault can be done by analyzing an arch of the same angle of embrace and voussoir size.

Both the applet and Matlab program produce safe estimates for the 110° barrel vault and

groin vault. It should be noted that the 130° barrel vault have unexpectedly low experimental

results. Both analytical methods predict a span increase 11% greater than the 110° arch.

However, the average experimental result is 20% lower. This discrepancy can be accounted

for by the greater opportunity for construction errors introduced when the arch is made up

of 13 blocks instead of 11. With more blocks, there are more opportunities for dynamic

instabilities to occur. While care was taken to minimize any disturbances, some vibration is

introduced by the rotation of the threaded rod required to move the abutment. Additionally,

both methods analyze the arches as three rigid links, which signi�cantly reduces the number

of degrees of freedom from that of the scale model and reduces the sensitivity of the analysis

to dynamic e�ects.

The behavior observed in the groin vault mirrors that shown by Van Mele et al. (2012)

when one of the four supports is lowered in their study. The groins remain intact and

several blocks fall out near the crown, revealing areas where compressive forces are not being

transferred.

3.4 Summary

Experiments are done on three-dimensional printed vaults of three di�erent geometries:

130° barrel vault, 110° barrel vault, and a groin vault made up of two 110° barrel vaults

crossing at a right angle. These experiments are compared to two simpli�ed approximations:

a publicly available online applet and a Matlab program presented in this thesis. Both

approximations assume that the vaults deform as a very deep arch, hinging in a linear

manner.

The method of approximating vaults as arches resulted in reliable estimates for the 110°

barrel vault and groin vault. By using an e�ective thickness of 80% of the full thickness,

safe estimates are established for the spreading capacity. If a 110° barrel vault spanning �ve
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meters experiences a span increase of 2%, the support moves 10 cm. This may seem like a

signi�cant increase visually, but it is still well below (at least four times) any predictions of

collapse. Another signi�cant �nding is the capacity of the groin vault can be estimated as

that of a barrel vault with the same angle of embrace. Next, the load capacity of undeformed

vaults is examined.
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Chapter 4

Point loads imposed on vaults

Other than bridges, historical masonry vaults are less likely to experience singular point

loads than spreading supports. However, these loads can provide insight into the response of

vaults to extreme load cases. In many tools, uniform loads such as self-weight are discretized

as point loads to simplify the analysis process. Vertical point loads applied to barrel and

groin vaults are discussed in this chapter.

4.1 Experimental Results

Point loads are applied at four points along the center of the depth of the 130° barrel vault

(Figure 4.1). Point A is at the crown of the vault and the following points move towards

the abutment by 20% of the half-span. A similar loading pattern is used for the groin vault.

Loads are applied at the same spacing along the crown of one arm plus a �fth point at the

edge of the crossing arm (Figure 4.2).

As the barrel vault is loaded, a three hinge mechanism begins to form. However, instead

of hinging evenly through the depth of the vault, only one block is activated at the point

of application, then, with each row moving away from the load, another block hinges and

a triangular pattern of activated blocks forms. Figure 4.3 shows the progression of hinging

from the front of the vault. First, the vault is undeformed (part a). When it is partially

deformed, the blocks along the center of the depth begin to hinge, but the blocks at the

edge of the vault are not activated by the thrust and show no hinging (part b). Finally, the

collapse mechanism forms with the four hinges propagating to the edge of the vault (part c).

The load capacity for each vault and load location is summarized in Table 4.1. The barrel

vault has the highest capacity when loaded at the crown. The load capacity decreases as the

point of application moves towards the quarter span and then increases slightly as it reaches

point D. The groin vault capacity remains fairly constant at the center three points, then

increases at points D and E, which are closer to the open end of the arm.
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A         B        C         D   

0.2L

0.4L

0.6L

L

Figure 4.1: Point loads are applied at four locations along the barrel vault. They are centered
in the depth of the barrel.

A        B        C        D          E   

Figure 4.2: Point loads are applied at four locations along one arm of the groin vault following
the spacing (20% of half-span) used for the barrel vault plus a �fth point located at the
theoretical intersection of the crossing vault with the line of loads.

Table 4.1: Maximum load carried by the barrel and groin vault at each location
Barrel [N] Groin [N]

A 15.2 16.6
B 12.8 14.2
C 9.70 18.7
D 11.5 32.1
E N/A 90.0
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(a)

(b)

(c)

Figure 4.3: Still frames from high-speed footage of barrel loaded at midspan. Shown is (a)
the undeformed vault, (b) the initial bulge to left of load, and (c) four hinges at collapse.
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4.2 Analytical Results

Several analysis methods are developed to predict the capacity of the barrel and groin vaults.

Each is based on thrust line analysis of a two-dimensional arch.

Arches collapse when a four-hinge mechanism forms. When an external point load is

applied, the location of three of the hinges can be predicted. The natural shape of the thrust

line under self-weight is a smooth curve that can vary within the masonry based on how

much horizontal thrust is applied (Figure 4.4.a). When a point load is applied, the thrust

line begins to straighten on either side of the load. To remain within the arch, the ends of the

thrust line move towards the corners of the end blocks and three hinges form (Figure 4.4.b).

The fourth hinge forms when the thrust line touches the intrados. Depending on the location

of the load and the geometry of the arch, the intrados hinge near the abutment may move

up the leg of the arch so that the fourth hinge can form (Figure 4.4.c)

P P
collapse

lower bound solution lower bound solution upper bound solution
(a) (b) (c)

Figure 4.4: Shape of thrust line under (a) self-weight, (b) addition of a single point load
less than collapse capacity, and (c) addition of a point load at collapse capacity with shifted
intrados hinge. Hinges are identi�ed by dots.

4.2.1 Collapse load Excel program

An automated program is developed in Excel to calculate the thrust line as well as horizontal

and vertical reactions of an arch when the geometry of the arch, self-weight, and applied

point loads are given. The user increases the external load until a solution is found where

the thrust line sits just within the masonry, indicating the collapse load. Each time the load

is increased, a check is made that the radius of the thrust line location is greater than the

inner radius.

Once the geometry is entered, the program calculates the horizontal and vertical reactions

by solving three simultaneous equations (4.1-4.3): two from global equilibrium (Figure 4.5.a),

and one from a local equilibrium of the left hand side of the arch contained between the

abutment and applied load (Figure 4.5.b). The program assumes that three of the hinge

locations are known: the intrados of the abutment closest to the point load, the extrados at
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Figure 4.5: Forces and dimensions for (a) global and (b) local equilibrium equations.

the point of load application, and the extrados of the opposite abutment. Therefore, only

one more hinge location must be found along the intrados between the two extrados hinges.

∑
MP = 0 = −R1 (xP − xA) +R2 (xB − xP ) +H (yB − yA) −Wtotal (xC − xP ) (4.1)

∑
Fy = 0 = R1 +R2 − P −Wtotal (4.2)

∑
MP = 0 = −R1 (xP − xA) +H (yP − yA) −WC1 (xP − xC1) (4.3)

Next, the thrust line is built in two pieces, each of which start at an abutment and meet

at the point of load application. This is done by solving for the local equilibrium at each

space between blocks (Eq. 4.4, Figure 4.6).

∑
MA = 0 = −WC (xC − xA) − (R1 −WC) (xn − xA) +H (yn − yA) (4.4)

where

xn = rnsinθn (4.5)

yn = rncosθn (4.6)

Variations of this program are used in the following three analyses with minor modi�ca-

tions to adapt to the parameters of each.
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Figure 4.6: Forces and dimensions used to solve for the location of compression forces in a
segment to build the thrust line.

4.2.2 Uniform depth arch analysis

A simpli�ed approach to assessing the capacity of a barrel vault is to analyze it as

a two-dimensional arch of uniform depth. Depending on the depth of arch selected, this

method can either greatly underestimate or overestimate the capacity of the vault because

the amount of material that is assumed to move changes, which a�ects the energy required

for the collapse mechanism to form. This method was applied to the barrel vault of 130° for

a slice of the vault that is one block thick (32 mm) and for the entire depth (254 mm). The

two results provide a maximum and minimum for the capacity of the vault. The calculations

are repeated using an 80% e�ective thickness.

Table 4.2: Arch analysis results for 130° barrel vault (t/r = 14%)

Load Location
Capacity [N]

Single block (32 mm) Full vault (254 mm)
t teff = 0.8t t teff = 0.8t

A 5.9 3.1 46.7 24.8
B 4.1 2.6 32.6 20.5
C 4.1 2.6 32.6 20.5
D 4.2 2.8 33.4 22.6

4.2.3 Varied depth approximation

A second approximation of the vault capacity stems from the idea that when a point load

is applied to a barrel vault, the force can radiate outward towards the abutment instead of

in a straight line square to the arch (Figure 4.7.a). To simulate this capacity using the Excel

program, it was assumed that each row of blocks incorporates one more block, e�ectively
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(a) (b)

Figure 4.7: (a) When a point load is applied to a barrel vault (at the dot), the force paths
can radiate outwards as they approach the abutment. (b) This idea can be translated to
the barrel vault discretely by incorporating one more block width in each row moving away
from the loaded point as shown by shaded blocks.

Table 4.3: Summary of Excel results for the varied depth approximation of 130° barrel vault
capacity. (t/r = 14%)

Load Location
Capacity [N]
t teff = 0.8t

A 50.1 29.8
B 30.0 20.8
C 30.0 20.8
D 33.5 24.8

making each successive block heavier (Figure 4.7.b).

The pattern of activated blocks is the same for loads at A, B, and C with the load being

applied as shown in Figure 4.7.b for B and C and one block to the left for point A. Point

D shifts the triangles of activated blocks by one row, making the small triangle smaller and

activating more blocks around the large triangle. The results are summarized in Table 4.3.

4.2.4 Superimposed crossing arches

To expand upon the idea of the force paths radiating out from the loaded point, the

combined capacity of three crossing arches is estimated. One arch spans across the center of

the depth of the vault and two more cross from corner to corner (Figure 4.8.a). Each arch is

assumed to be one block (32 mm) deep. The two crossing arches are elliptical because they

are an angled slice of the barrel vault. The principles of circular arches can be applied to

elliptical ones. The Excel program was edited to include the irregular angles and centroids of

the blocks in the elliptical arch. The circular arch has a capacity of 5.9 N and one elliptical
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Figure 4.8: The barrel vault capacity can be estimated by superimposing three arches on
the geometry of the vault. Arch position and geometry are shown in (a) plan and (b)
cross-section.

Figure 4.9: The elliptical arch along the groins of the cross fault varies only slightly from
the circular arch of the cross-section of the vault.

arch can carry 4.9 N. So, together the estimated capacity is 15.6 N. By using an e�ective

thickness of 80%, the total capacity reduces to 6.9 N (3.1 for the circular and 1.9 N for each

elliptical arch), which represents a 56% reduction in capacity.

The capacity of the groin vault is more involved to calculate because of its intricate

geometry. The capacity at the center can be estimated by summing the load capacity of the

elliptical arches formed along the groins. Because the vaults cross at right angles, the groins

are a 45° slice across the barrels. The elliptical arch varies only slightly from the circular

one (Figure 4.9). The representative thickness of the elliptical arch is set to 32 mm based

on the geometry of the blocks. The capacity of one elliptical arch is 18.1 N, so the estimated

capacity of the groin vault is 36.2 N. Using an e�ective thickness of 80%, the calculated total

groin vault capacity is reduced to 10.7 N.

4.3 Discussion

The average experimental results along with the four analytical predictions for the barrel

vault are summarized in Table 4.4 and Figure 4.10. The groin vault average experimental

results are summarized in Table 4.5 along with the crossing arch approximation for a load

applied at the center of the vault.
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Table 4.4: Summary of experimental and analytical results for a vertical point load applied
at four locations along a 130° barrel vault. (t/r = 14%)

Load Experimental Single Arch Full Depth Arch Varied Depth Crossing Arches
Location Average t teff t teff t teff t teff

A 15.2 5.9 3.1 46.7 24.8 50.1 29.8 15.6 9.2
B 12.8 4.1 2.6 32.6 20.5 30.0 20.8 � �
C 9.7 4.1 2.6 32.6 20.5 30.0 20.8 � �
D 11.5 4.2 2.8 33.4 22.6 33.5 24.8 � �

Table 4.5: Summary of experimental and analytical results for a vertical point load applied
at �ve locations along a 110° groin vault. (t/r = 14%)

Load Experimental Crossing Arches
Location Average t teff

A 16.6 36.2 10.7
B 14.2 � �
C 18.7 � �
D 32.1 � �
E 90.0 � �
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Figure 4.10: Summary of experimental and analytical results for a vertical point load applied
at four locations along a 130° barrel vault (t/r = 14%). The experimental average is high-
lighted by a black circle with bars representing one standard deviation. For each method,
the full thickness is represented by a solid marker for each and the e�ective thickness by an
open marker.

4.3.1 Barrel vault

The experimental results and analysis display a similar overall pattern in the capacity of

the vault. The vault can support the greatest load when it is applied at the midspan. This
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CHAPTER 4. POINT LOADS IMPOSED ON VAULTS

Figure 4.11: Triangular hinging of 110° barrel vault.

follows arch theory. As the load moves towards points B and C, the capacity decreases. This

is because point C is very close to the quarter point, which is the weakest point of the arch.

Finally, point D supports slightly more than point C because it is past the quarter point and

closer to the abutment, so the load has a more direct path to the stable support.

The experimental results show that vaults do indeed have a higher capacity than a 2D

arch of the same geometry. The hinging pattern in the scale model test show one or two

blocks being activated in the rows closest to the point of load application and more blocks

being included with each row moving towards the abutments. This triangular shape suggests

the force path radiates outwards as it moves away from the load. Although it is not studied

extensively here, the barrel vault with an angle of embrace of 110° displays the unique hinging

behavior of the barrel form quite well (Figure 4.11). The blocks at the edges of the vault

remain largely una�ected in the rows closest to the load application, while hinges form at

the center of the depth. The selective movement of blocks reveals which ones are supporting

the additional compressive force of the applied point load.

The �rst analytical approximation of estimating the vault as an arch with single blocks

of various thickness is a crude representation of the vault behavior. When a depth of one

block is used, the results are two to three times less than the experimental results. When

the full depth of the vault is used, the capacity is overestimated by about three times. The

depth could be calibrated to come up with a safe estimate of the capacity, but this brute

force method may not be extensible to other geometries. While applying the idea of e�ective

thickness lowers the full depth approximation, it is still too high to be useful.

The varied depth approximation yields a result that is higher than the single arch full

depth approximation. At �rst pass, this may seem counter-intuitive given that varying
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CHAPTER 4. POINT LOADS IMPOSED ON VAULTS

the depth of each row of blocks results in a lower overall mass than using the full depth.

However, by concentrating the mass of the arch towards the abutments, as is done in the

varied depth approximation, the thrust line of the unloaded arch is steeper than an arch

with evenly distributed mass. Therefore, a higher external load is necessary to change the

geometry of the thrust line so that it approaches the edge of the masonry. In a physical

sense, this behavior indicates that more energy is required to move blocks that are closer to

the haunches than to the crown of the vault. The method overestimates the capacity of the

vault by three times using the full thickness and two times using the e�ective thickness, so

it is not a useful tool for engineers assessing the capacity of existing masonry vaults.

The most successful estimation is the crossing arches method. By estimating the barrel

vault as one circular and two elliptical arches crossing at the center of the span, the possible

pathways for the force to transfer to the abutments are better represented than with a single

arch. This analytical model represents each of the arches as one block deep and predicts

the vault capacity to be 15.6 N, which is a 2% overestimates of the experimental result. By

using the e�ective thickness, the model suggests a capacity of 9.2 N, which is 60% of the

experimental average. This could be an acceptable safe limit for predicting the capacity of

the vault with a generous factor of safety built in.

4.3.2 Groin vault

Testing on the groin vault is done with the pairs of groin blocks �xed to each other to best

represent the actual construction of groin vaults. The experimental results show a fairly

stable load capacity of the vault for points A, B, and C, which are centralized on the vault

(Etlin 2011). The capacity of points D and E increase signi�cantly. It is likely that the results

of point E are skewed because of the particular geometry of the constituent barrel vaults.

The thickness and angle of embrace of each vault allow straight lines to be drawn from a

load applied at midspan to the abutments. Because the line is straight, the load can increase

in�nitely without changing shape and will therefore never pass out of the masonry. Since

point E is applied so close to the edge of one of the arms of the groin vault, the theoretical

in�nite capacity of the arch is increasing the capacity in a way that is not possible in vaults

without this same geometrical property.

Because of its complex geometry, estimating the capacity of the groin vault analytically

is a di�cult task. It is reasonable to assume that a load applied to the center of the span will

be carried to the abutments in the most direct way possible, which is along the groin. The

groins take the form of elliptical arches because the vault is an intersection of two barrels at

a right angle. Using e�ective thickness, the crossing arches method suggests a capacity of
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64% of the experimental average. Just as with the three crossing arches for the barrel vault,

this method produces an acceptable safe limit for predicting the capacity of the vault. More

accurate upper bound methods are needed to quantify the collapse capacity of groin vaults,

but that is beyond the scope of this work.

4.4 Summary

The barrel and groin vault are subjected to vertical point loads applied to the exterior

of the vault. The barrel vault capacity is at a maximum when loaded at the center of the

span, decreases as the loaded point moves towards quarter span, and increases again slightly

after passing the quarter point. The groin vault shows a fairly uniform capacity when loaded

towards the center and a much higher capacity as the load moves towards the edge of an

arm, but this behavior may be dominated by the particular geometry of the model vault.

An Excel program is created to estimate the capacity of the vault based on thrust line

analysis. It is altered to accommodate three analysis methods: uniform depth arch analy-

sis, varied depth approximation, and superimposed crossing arches. The uniform depth and

varied depth analyses overestimate the capacity of the barrel vault and are therefore unsuc-

cessful tools for assessing vaults. The superimposed crossing arches method provides a very

safe lower bound estimate for both the barrel and groin vault when an e�ective thickness of

80% is used. In the next chapter, these results are extended to include the load capacity of

initially deformed vaults.
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Chapter 5

Load capacity of an initially deformed

vault

It is common practice to estimate vault capacity based on perfect geometry, assuming

exact construction and no changes to the structure during its lifetime. In reality, all struc-

tures su�er deformations over time due to factors such as foundation settlement, structural

retro�ts, and uneven loading. In this chapter, experiments on a model barrel vault and

development of an accompanying analysis method are discussed. Two studies are done: one

with the load applied at a single point while the initial deformation is varied and one with

the load location varied for a single initial deformation.

5.1 Experimental Results

The 130° barrel vault is subjected to loading after an initial deformation is applied. Given

the maximum spreading capacity established in Chapter 3, values for 25%, 50%, and 75%

deformation are determined. The vault is constructed as normal, the abutments are spread

to the desired deformation, then a load is applied. Figure 5.1 shows the progression of

hinging and collapse as the vault is loaded in the center. Triangular hinging regions begin

to form on either side of the load and eventually the hinges spread across the entire depth

of the vault. The hinges snap between adjacent rows as the thrust line adjusts to hold the

forces within the masonry. In each test, the �nal hinging pattern includes a hinge near the

point of load application. The vault collapses when a hinge forms at the extrados of the

vault at an abutment.

First, an in depth study is done for the vault loaded at midspan with each initial displace-

ment. The results are summarized in Figure 5.2. Next, the maximum capacity for the vault

with initial deformation of 50% and loads applied at points B, C, and D is tested. The aver-
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(a) (b)

(c) (d)

Figure 5.1: Still frames from high-speed footage of load testing of 130° barrel vault when
initially deformed 25% of maximum spreading capacity. Progression of collapse is shown
from (a) unloaded position to (d) collapse state.

age results are shown in Figure 5.3 along with the maximum load capacity for an undeformed

vault in order to see the trends. The full trial results can be found in Appendix B.3.

5.2 Analytical Results - Matlab simulation

DomeSpread presented in Chapter 3 and Zessin (2012) is used as a starting point to

analyze the load-carrying capacity of an arch that is initially deformed. The code, Barrel-

Spread+Load solves the maximum spread an arch can sustain, then calculates the geometry

if the spreading is instead stopped at 25, 50, or 75% of the maximum. The user inputs the

angle of embrace, thickness ratio, number of blocks in the arch, and �nal intrados hinge

location. The load is simulated by increasing the weight of a one degree segment of the arch

directly to the right of the extrados hinge at the crown. The horizontal thrust in the arch

is recalculated each time the load is increased by solving the local equilibrium of the middle

segment of the arch. With the updated horizontal force, the thrust line can be calculated for

the entire arch. The results for a one block deep (32 mm) arch of full thickness and e�ective

thickness of 80% are shown in Figures 5.4 and 5.5, respectively. The full Matlab function of

BarrelSpread+Load can be found in Appendix C.2.
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Figure 5.2: Trial and average results (marked with an X and dot, respectively) for 130°
barrel vault (t/r = 14%) loaded at midspan with initial deformations of 0, 25, 50, and 75%
maximum abutment spread.
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Figure 5.3: Average experimental results for 130° barrel vault (t/r = 14%) loaded at midspan
with initial deformations of 0, 25, 50, and 75% applied before loading at four points along
mid depth.
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Figure 5.4: BarrelSpread+Load estimation of arch load capacity when arch has initial defor-
mation of (a) 25%, (b) 50%, and (c) 75% of maximum spreading. Load capacity prediction
is 9.3, 3.2, and 0.8 N, respectively. Estimation assumes arch is one block (32 mm) deep and
has full thickness.
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Figure 5.5: BarrelSpread+Load estimation of arch load capacity when arch has initial defor-
mation of (a) 25%, (b) 50%, and (c) 75% of maximum spreading. Load capacity prediction
is 3.2, 1.4, and 0.5 N, respectively. Estimation assumes arch is one block (32 mm) deep and
has an e�ective thickness of 80%.

5.3 Discussion

The experimental average and Matlab results are summarized in Figure 5.6. The experi-

mental results are four times the predicted e�ective thickness results while the full thickness

results are between the two.

When an initial deformation is applied to the barrel vault, hinges open to accommodate

the shifting thrust line. Then, when a load is applied, the hinges must shift as the thrust

line �attens to re�ect the single load. This adds complexity to the problem of solving the
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Figure 5.6: Experimental averages and Matlab predictions of load capacity of 130° barrel
vault (t/r = 14%) loaded at midspan with initial deformations of 25, 50, and 75% applied
before loading.

�nal collapse mechanism analytically.

In the experimental results, a linear relationship is displayed between the initial defor-

mation (ranging from none to total collapse) and load carried. The averages for loading at

point A follow a linear trend with R2= 0.99. Trends for points B, C, and D are based on

three data points, but seem to follow the linear trend that is established by more extensive

testing at point A.

The BarrelSpread+Load approximations display a similar trend to that established ex-

perimentally. The experimental averages are three to four times greater than the e�ective

thickness predictions. This mirrors the predictions for point loads on an undeformed vault

discussed in Chapter 4. As established in Chapter 4, a single arch approximation does not ac-

curately predict the capacity of the barrel vault. A more extensive study including methods

to approximate the three-dimensional force paths of a vault would be the next steps.

The current simulation assumes symmetry about the center line of the vault. However,

the thrust line is not symmetrical in the model studied because there is an uneven number

of blocks. The thrust line approaches the shape of a �V� with the vertex at the point of load

application. When there is a central voussoir (caused by an uneven number of blocks), the

vertex shifts to one side so that a hinge can form, creating uneven legs. BarrelSpread+Load

models only the shorter leg, causing the capacity to be slightly overestimated. The overes-

timation results in predictions that do not relate linearly to each other (Figure 5.6). Future

work would extend the approximation to model the entire arch in order to more accurately

predict the capacity.
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5.4 Summary

In this chapter, point load experiments are performed on the 130° barrel vault with initial

deformations imposed by spreading the supports. A Matlab program, BarrelSpread+Load,

is also developed to predict the capacity of vaults of various geometries. The code predicts

values that are signi�cantly lower than the experimental results because the model is based

on a single arch and does not account for the three-dimensional capacity of the barrel vault.

A major �nding in this study is the linear relationship between load capacity and initial

deformation. With this rule of thumb, engineers monitoring unreinforced masonry struc-

tures can estimate the remaining strength of a barrel vault given its capacity for loading,

maximum span increase when undeformed, and the amount the supports have spread over

time. Another major concern for the stability of historic masonry structures, earthquake

loading, is explored in the next chapter.
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Chapter 6

Lateral acceleration of vaults

Masonry vaults are found all over the world, including regions of high seismic activity.

Unlike modern structures that are designed to meet strict seismic codes by absorbing energy

through material deformation, vaults must continuously contain the thrust line within the

geometry to remain stable.

The actual behavior of masonry structures under earthquake loads is complex and di�cult

to predict due to the rapidly changing location of the thrust line; a �rst-order approximation

of horizontal acceleration can be achieved by tilting the structure. When the structure

is tilted, gravity remains vertical, causing a local equilibrium on the structure with one

component of gravity acting normal to the tilted surface and a second component acting

parallel to the surface (Figure 6.1). Horizontal acceleration (α) is equal to the tangent of

the angle of tilt (γ) multiplied by gravity.

6.1 Experimental Results

Testing is performed on two of the model vaults: the barrel vault with angle of embrace

N

α

g

γ

Figure 6.1: When tilted, a structure is locally subjected to a constant horizontal acceleration
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130° and the groin vault. Each vault is tilted in multiple directions in order to establish the

behavior of the vault under the wide range of accelerations experienced in an actual seismic

event.

The barrel vault is tilted in three orientations. First with the abutments parallel to the

axis of rotation, then perpendicular, and �nally at a 45° angle (Figure 6.2). Each orientation

allows for a di�erent behavior to be observed. When the vault is tilted with the abutments

parallel to the axis of rotation, the vault behaves as an arch, hinging linearly along the depth

of the vault. This is re�ective of the barrel vault behavior due to spreading. When the vault

is tilted with the abutments perpendicular to the axis of rotation, a triangular section of the

vault falls o� with a combination of rotating and sliding. Finally, when the vault is tilted

with the abutments at an angle to the axis of rotation, the vault hinges, but in a pattern

that zigzags across the rows, not straight across as in the parallel test (Figure 6.3).

Next, the groin vault is tilted in two orientations (Figure 6.4). Testing on the groin

vault is done with the pairs of groin blocks �xed to each other to best represent the actual

construction of groin vaults. Given the symmetry of the vault, this is as extensive a survey as

done for the barrel vault. When the vault is tilted in the parallel orientation, the constituent

barrel whose abutments are parallel to the axis hinges as the single barrel does. The arms

of the barrel that is perpendicular to the axis tilt in the same direction as the closest hinges.

When the groin vault is tilted at a 45° angle, the elliptical arches clearly provide the most

support for the vault. The groin that is perpendicular to the axis hinges in four locations as

an arch is expected to. These hinges propagate through the arms of the vault (Figure 6.5).

The maximum horizontal acceleration sustained in each orientation for both vaults is

summarized in Table 6.1. For full trial results see Appendix B.4.

Axis of Rotation Axis of Rotation Axis of Rotation

45˚

(a) (b) (c)

Figure 6.2: The barrel vault is tilted with the abutments (a) parallel, (b) perpendicular, and
(c) 45° to the axis of rotation.
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(a)

(b) (c)

Figure 6.3: Collapse mechanism of the barrel vault when subjected to tilting (a) parallel,
(b) perpendicular, and (c) 45° to the axis of rotation.
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Axis of Rotation Axis of Rotation

45˚

(a) (b)

Figure 6.4: The groin vault is tilted with the abutments (a) parallel, and (b) 45° to the axis
of rotation.

(a) (b)

Figure 6.5: Collapse mechanism of the groin vault when subjected to tilting (a) parallel and
(b) 45° to the axis of rotation.

Table 6.1: Average experimental results from tilting test
Vault Orientation Angle Horizontal Acceleration

B
ar
re
l Parallel 24.2° 0.45g

Perpendicular 27.6° 0.52g
45° 30.5° 0.59g

G
ro
in Parallel 33.7° 0.67g

45° 38.6° 0.80g

6.2 Analytical Results

Two methods are used to estimate the capacity of vaults when tilted in di�erent directions.

One is an online applet similar to that used to analyze spreading capacity of arches and the

second is a calculation of centroid stability.
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6.2.1 InteractiveThrust

An online applet called �Mechanism of Lateral Thrust� (DeJong 2010) estimates the lateral

stability of an arch. This applet is used to estimate the capacities of the barrel and groin

vaults when tilted with abutments parallel to the axis of rotation. Like the spreading applet,

this lateral thrust applet requires the user to input the angle of embrace, thickness ratio,

and adjust the angle of incline. The user can also manipulate the location of points A, B,

and C along the thrust line. The results for the full and e�ective thickness of the 130° arch

and 110° arch are shown in Figures 6.6 and 6.7.

(a) (b)

Figure 6.6: InteractiveThrust results for a 130° arch (t/r = 14%) of (a) full thickness and
(b) e�ective thickness of 80%. The predicted angles are 31.9° and 26.8°, respectively.

(a) (b)

Figure 6.7: InteractiveThrust results for a 110° arch (t/r = 14%) of (a) full thickness and
(b) e�ective thickness of 80%. The predicted angles are 45.5° and 40.0°, respectively.

6.2.2 Centroid stability

When the vault is tilted with its abutments perpendicular to the axis of rotation, hinges do

not easily develop because the blocks are staggered with respect to the direction of tilting.

54



CHAPTER 6. LATERAL ACCELERATION OF VAULTS

Instead, the dominant failure mechanism is overturning. Therefore, to estimate the capacity

of the vault, the centroid of a triangular portion is calculated and the angle of tilt before it

passes outside of the supporting structure is calculated (Eq. 6.1, Figure 6.8).

tanγ =
ȳ

z̄
(6.1)

For the barrel vault, the angle of collapse is found to be 32.8°, which is equivalent to 0.65g.

It should be noted that the theory of e�ective thickness does not apply in this calculation

because a thrust line is not being used.

γ

y

z

Figure 6.8: Elevation view of barrel vault with triangular section of blocks included in
centroid calculation highlighted in gray and point of collapse when centroid is no longer
supported by the structure after a rotation of γ.

6.3 Discussion

The experimental and analytical results for all horizontal acceleration tests are summarized

in Figure 6.9 and Table 6.2.

The barrel vault, when tilted with its abutment parallel to the axis of rotation, behaves

as an arch, hinging along the rows of blocks. The applet over predicts the capacity by 13%

when an e�ective thickness of 80% is applied. Although care was taken to move the tilting

platform as smoothly as possible, some vibrations from the motor may have caused collapse

to occur sooner than predicted.
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Table 6.2: Summary of experimental and analytical results for tilting tests including γ=
angle of tilt and α= horizontal acceleration.

Vault Orientation
Experimental InteractiveThrust Centroid

Average t teff Stability
γ γ γ γ

Barrel
Parallel 24.2° (0.45g) 31.9° (0.62g) 26.8° (0.51g) � �

Perpendicular 27.6° (0.52g) � � � � 32.8° (0.65g)
45° 30.5° (0.59g) � � � � � �

Groin
Parallel 33.7° (0.67g) 45.5° (1.02g) 40.0° (0.84g) � �
45° 38.6° (0.80g) � � � � � �

Angle of Tilt at Collapse (°)
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Figure 6.9: Summary of experimental and analytical results for tilting tests. The experimen-
tal average is highlighted by a black circle with bars representing one standard deviation.
InteractiveThrust results are squares and the centroid stability result is a triangle. The full
thickness is represented by a solid marker for each and the e�ective thickness by an open
marker.

The method of centroid stability overestimates the actual collapse by 20%. This can be

attributed to some blocks sliding before overturning occurs. Friction tests were performed

to establish that the average coe�cient of friction between two blocks is 0.44. This allows

the blocks to develop an angle of 23° before sliding. The centroid calculation is based on
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the observed overturning of the blocks in the experiment, but additional overturning planes

could be considered to better predict the capacity of this orientation.

Future work would include assessing lateral stability of elliptical arches. This would be

useful for predicting the capacity of the groin vault tilted at an angle to the axis of rotation

because it appeared that the arch along the groin controlled the capacity of the vault. Also,

the analysis of elliptical arches may be helpful in predicting the capacity of the barrel vault

when tilted at an angle.

6.4 Summary

Tilting tests can be used as a �rst order approximation of earthquake loads by applying

a constant horizontal acceleration to a structure. In this chapter, experiments on the 130°

barrel vault and groin vault are discussed. Both vaults are tilted with the abutments parallel,

perpendicular, and 45° to the axis of rotation and the angle of tilt is recorded, which can then

be converted to a constant horizontal acceleration. Two analytical methods are presented

to begin to explain the behavior. First, an online applet is used to predict the behavior

of the vaults when the dominant failure mechanism mirrors that of an arch. The applet

overestimates the capacity of the both vaults. Second, centroid stability is considered for

the portion of the barrel vault that is subject to overturning. This method overestimates the

capacity of the vault slightly as well. A contributing factor to this is the maximum angle of

tilt of the blocks is less than the predicted angle. Future work in this area would include the

stability of elliptical arches under lateral loading so that the capacity of barrel vaults and

groin vaults tilted an an able to the axis of rotation can be predicted.
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Chapter 7

Conclusions

This thesis presents results from four major areas: spreading supports, point loads, load-

ing of an initially deformed vault, and lateral acceleration. Each area is supported with ex-

perimental results from scale model testing and simpli�ed analytical approximations. Scale

model experiments can give great insight into the performance of full-scale structures at

very low cost. Fabrication and construction costs are orders of magnitude lower than full-

scale models. Three-dimensional printing allows for any shape to be built without need

for a skilled mason. Additionally, they can be reused for multiple experiments, increasing

their cost e�ectiveness further. These experiments should be considered as useful tools for

practicing engineers to examine the stability of a vault and how close it is to a collapse

mechanism.

While the scale models may reveal details that can disappear in the assumptions of

mathematical models and suggest the true three-dimensional behavior of vaults, the simpli-

�ed analytical models provide a more accessible route for engineers to evaluate structures.

The models presented in this thesis allow for a wide range of geometrical parameters to be

used as inputs and results to be presented with a basic understanding of vault behavior on

the part of the user.

7.1 Investigation review

First, the spreading capacity of a vault is examined. Experimentally, it was found that groin

vaults have a span increase capacity equal to the constituent barrel vault that is being spread.

This makes estimating the span increase capacity very straightforward. Barrel vaults can be

analyzed as arches with very deep voussoirs because the hinges form linearly along the rows

of blocks. A two-dimensional arch approximation estimates the capacity nicely. This thesis

presents a Matlab program, called BarrelSpread, for predicting the span increase, which does

an e�ective job.
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Second, the point load capacity of a barrel and groin vault is investigated. The experi-

ments reveal hinging patterns that suggest the force paths in barrel vaults radiate outwards

from the point of load application to the abutments. This informs the creation of analytical

approximations. Four methods are presented in Chapter 4. The most accurate assumes the

load capacity is equal to that of three superimposed arches: one circular one at the center

depth and two crossing diagonally from opposite corners. Using an e�ective thickness of

80%, this method predicts the capacity within 40% of the experimental results. By using

this method, engineers can establish a safe, lower limit estimation.

The third investigation looks for a trend between the �rst two limits already established:

maximum span increase and maximum load capacity. Through extensive experimental test-

ing of the barrel vault loaded at midspan, it is determined that load capacity decreases

linearly with initial deformation. That is to say, a 25% initial deformation reduces the load

capacity by 25%. A Matlab program, called BarrelSpread + Load, is presented, which de-

termines the geometry of the partially deformed vault and then increases the applied load

until the thrust line can no longer be held within the vault. It is a good �rst step in ana-

lyzing the capacity of a deformed vault with a point load; however, it does not include the

three-dimensional load paths as the analysis loads on a perfect vault did. And so, future

work will include the extension of this analysis. This investigation is potentially the most

useful for engineers evaluating existing structures. Most current analysis is based around

perfect geometry, but structures in use have su�ered deformations over time and therefore

have a di�erent geometry. This analytical model is a strong �rst step in providing engineers

with a tool to assess the capacity of vaults that have su�ered deformations.

The fourth and �nal investigation is a look at the stability of vaults when exposed to

the lateral accelerations of earthquakes. As a �rst-order approximation, the model vaults

are tilted, which causes a component of gravity to apply constant horizontal acceleration

to the vault. The main result of this section is a thorough documentation of the collapse

mechanisms of the barrel and groin vault that form when lateral acceleration is applied

in di�erent directions. high-speed footage records the �nal acceleration and mechanism at

collapse of the structures. Simple analysis is done through use of an online applet and

geometric calculations of the stability of sections to overturn. The footage can be used to

inform more complex analysis in the future. Additionally, engineers examining vaults in

the �eld can look for particular hinging patterns as signs of weakening due to horizontal

acceleration.

Each of these investigations sheds light on the behavior of unreinforced masonry barrel

and groin vaults. Several useful analytical approximations are introduced as new tools for

engineers to establish safe lower bounds on the capacity of vaults. Additionally, the detailed
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documentation through high-speed footage of model collapse provides insight to cracking

patterns in existing structures that engineers can use to determine the stresses on a vault

through observation.

7.2 Key �ndings

Several key conclusions can be drawn from the scale model experiments and simpli�ed ana-

lytical models:

� As the supports of a barrel vault spread apart, it will hinge as if made up of very deep

voussoirs. Therefore, it can be analyzed as a two-dimensional arch.

� The spreading capacity of a groin vault is governed by the constituent barrel that

is spreading, so a two-dimensional arch analysis of the single barrel will provide an

adequate estimation of maximum span increase.

� An e�ective method for estimating the capacity of a barrel vault to carry vertical point

loads is three superimposed arches crossing at the point of load application.

� The capacity of a barrel vault decreases linearly with the initial support deformation.

� Tilting provides an e�ective �rst-order approximation for the behavior of vaults in

response to earthquake loads.

7.3 Future work

The studies presented in this thesis have several logical extensions. Experiments can be

carried out for more barrel geometries in order to create a �rmer lower limit for the span

increase capacity. Next, in the point load analysis, the crossing arch analysis can be expanded

to include more load locations. Each new load position requires new arch geometries to

be computed. Additionally, more accurate upper bound methods are needed to quantify

the groin vault capacity. The three-dimensional models can be expanded to accommodate

the initial deformation explored in Chapter 5 as the current models only examine two-

dimensional behavior. Finally, there are many open questions regarding the behavior of

vaults under earthquake loading. Investigations into the stability of elliptical arches with

lateral accelerations can be applied to stability analysis of barrel and groin vaults tilted at

an angle.
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Complete experimental results

B.1 Spreading tests

Trial 130° Barrel Vault 110° Barrel Vault Groin Vault

1 21.4 25.4 27.0

2 23.8 27.8 28.6

3 26.2 27.8 20.6

4 19.8 25.4 30.2

5 23.8 24.6 29.4

Average 23.0 mm 26.1 mm 27.1 mm

B.2 Point load tests

Trial
Barrel Vault Groin Vault

A B C D A B C D E

1 13.24 12.38 10.63 11.80 15.1 16.8 18.5 28.7 82

2 16.10 12.79 9.08 12.40 17.1 12.5 15.5 36.2 98

3 16.66 13.11 9.39 9.80 17.8 13.5 20.5 32.2 87

4 14.25 � � 11.90 16.5 14.1 20.4 31.3 93

5 15.74 � � �

Average 15.20 12.76 9.70 11.48 16.6 14.2 18.7 32.1 90

64



APPENDIX B. COMPLETE EXPERIMENTAL RESULTS

B.3 Point load on an initially deformed vault tests

B.3.1 Barrel vault loaded at midspan with 0, 25, 50, and 75%

initial deformation

Trial
Initial Deformation

0% 25% 50% 75%

1 13.24 12.44 5.64 2.90

2 16.10 10.56 7.78 5.78

3 16.66 10.92 6.23 1.90

4 14.25 � 5.97 �

5 15.74 � � �

Average 15.20 11.31 6.41 3.53

B.3.2 Barrel vault loaded at mid depth with 50% initial deforma-

tion

Trial
Load Location

A B C D

1 5.6 5.2 6.3 8.1

2 7.8 6.1 5.7 7.0

3 6.2 5.4 6.4 10.1

4 6.0 4.3 � �

Average 6.4 5.3 6.1 8.4

B.4 Tilting tests

Trial
Barrel Groin

Parallel Perpendicular 45° Parallel 45°

1 28.3 24.3 32.0 34.3 40.5

2 28.8 24.4 31.1 37.3 36.9

3 25.6 23.8 28.2 29.6 38.3

Average 27.6 24.2 30.4 33.7 38.6
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Matlab Code

C.1 BarrelSpread

1 % Calculate minimum thrust and final collapse state for a spreading arch

2 % to replicate models: alpha =65/55 , n=13/11 , uncomment 'Force Hinges '

3 % t/r= .1376( full), .1101( t_eff)

4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Adapted from function written by Jennifer Zessin and presented in: %

7 % Zessin , J. (2012). Collapse analysis of unreinforced masonry %

8 % domes and curving walls . Ph.D. thesis , MIT. %

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 function [spread_final ,dip_final ,H_Hmin ,hinges] = ...

12 barrel_spread (alpha ,t_R ,n,dx_start ,figs)

13

14 close all;

15

16 fig1_title = ['Minimum Thrust State for \alpha = ',int2str(alpha) ,...

17 '\circ , t/R = ',num2str(t_R)];

18 fig2_title = ['Collapse State for \alpha = ',int2str(alpha) ,...

19 '\circ , t/R = ',num2str(t_R)];

20

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 % DETERMINE MIN THRUST STATE - NO SPREAD

23 [H_min ,v_tot ,hinges] = barrel_min_thrust (alpha ,t_R ,n,figs);

24

25 intrados = hinges (2)*pi /180;

26 extrados = hinges (1)*pi /180;
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27

28 %%% *** Force Hinges ***% for use when replicating model

29 intrados = 35*pi/180;

30 extrados = 5*pi/180;

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34 % DEFINE GEOMETRY PARAMETERS

35 % embrace

36 alpha = alpha*pi/180;

37 % t and R properties

38 R = 100;

39 t = R*t_R;

40 ri = R-t/2;

41 ro = R+t/2;

42

43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44 % DETERMINE VALID THRUST STATE - SPREADING

45

46 valid = 1;

47

48 % set precision of dx step

49 dx_precision = 1/100;

50 i = 1;

51 i_max = 0.8*R/dx_precision;

52

53 while (valid == 1) && (i < i_max)

54

55 valid = 0;

56

57 dx = dx_start + (i-1)*dx_precision;

58

59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

60 % DEFINE GEOMETRIC PARAMETERS

61

62 % points Bo ,Co

63 Bo = ro*[sin(extrados), cos(extrados)];

64 Co = ri*[sin(intrados), cos(intrados)];

65

66 % define volumes vAB , vBC , vAC , vCD

67 % define center of gravity of BC and CD

68 % AB

69 [~,~,vAB] = segment_properties_EES(ri ,ro ,0,extrados);
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70 % AC

71 [~,~,vAC] = segment_properties_EES(ri ,ro ,0,intrados);

72 % BC

73 [xBCo ,yBCo ,vBC] = segment_properties_EES(ri ,ro,extrados ,intrados);

74 % CD

75 [xCDo ,~,vCD] = segment_properties_EES(ri ,ro ,intrados ,alpha);

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

77

78 % define points B, C, D {where B(2) and D(1), D(2) are unknown}

79 B = [Bo(1), 0]; %B only lowers , so Bx is constant

80 C = [Co(1)+dx, Co(2)]; %C moves right , so Cy is constant

81 D = [0, 0]; %D can float along abutment as the abut

82 %moves right without rotation

83

84 % determine y displacement {length of BC is constant}

85 % syms dy

86 % dy = eval(solve('(Bo(1)-Co(1))^2+(Bo(2)-Co(2))^2=...

87 %(Bo(1)-Co(1)-dx)^2+(Bo(2)-dy -Co(2))^2', dy));

88 dy = Bo(2)-Co(2) -...

89 (2*dx*Bo(1) -2*dx*Co(1)+Bo(2) ^2+Co(2)^2-dx^2-2*Bo(2)*Co(2))^(1/2)

;

90

91 % define B(2) {D(1) and D(2) still unknown}

92 B(2) = Bo(2)-dy;

93

94 % determine rotation of bar BC

95 rotBC = atan((Co(2)-Bo(2))/(Bo(1)-Co(1)))-atan((C(2)-B(2))/(B(1)-C

(1)));

96 % determine new position of xBC ,yBC

97 temp = rot_ccw ([xBCo -Bo(1),yBCo -Bo(2)],rotBC);

98 xBC = B(1)+temp (1);

99

100 % determine thrust from equilibrium of BC

101 H = (vAC*(C(1)-B(1))-vBC*(xBC -B(1)))/(B(2)-C(2));

102

103 % determine rd -> D(1), D(2)

104 xCD = xCDo+dx;

105 rd = (vCD*(xCD -C(1))+H*C(2)+v_tot *(C(1)-dx))/...

106 (v_tot*sin(alpha)+H*cos(alpha));

107 D = [rd*sin(alpha)+dx, rd*cos(alpha)];

108

109 % check global equilibrium , by checking validity of rd

110 valid = range_check (0,ro*sin(alpha)+dx ,D(1));
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111

112 if valid == 1

113 H_increase(i) = H;

114 spread(i) = dx/(ri*sin(alpha));

115 dip(i) = dy/ri;

116 B_final = B;

117 C_final = C;

118 D_final = D;

119 rotBC_final = rotBC;

120 Co_final = Co;

121 vAB_final = vAB;

122 vAC_final = vAC;

123 else

124 mode = 'D is invalid ';

125 end

126 i = i+1;

127 end

128

129 spread_final = spread(i-2) *100;

130 dx_final = spread(i-2)*(ri*sin(alpha));

131 dip_final = dip(i-2) *100;

132 dy_final = dip(i-2)*ri;

133 H_final = H_increase(i-2);

134 H_Hmin = H_increase(i-2)/H_min;

135

136

137 n=180;

138 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

139 % thrust in BC

140 % define x,y coordinates for thrust line

141 temp = rot_ccw (([0,- dy_final]-B_final),rotBC_final);

142 O = B_final+temp;

143

144 j_max = round(n*(intrados -extrados)/2/ alpha);

145 xy2=zeros(j_max ,2);

146 r=zeros(j_max ,1);

147 for j = 1:j_max

148 phi2 = extrados +(intrados -extrados)/j_max*j;

149 [x_cg ,y_cg ,vol] = segment_properties_EES(ri ,ro,extrados ,phi2);

150 % calc rotated cg of segment Bb wrt O

151 temp = rot_ccw ([x_cg ,y_cg]-Bo,rotBC_final);

152 xBb = temp (1)+B_final (1)-O(1);

153
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154 r(j) = (H_final *( B_final (2)-O(2))+vol*xBb+vAB_final *( B_final (1)-O(1)

))/...

155 (( vAB_final+vol)*sin(phi2 -rotBC_final)+H_final*cos(phi2 -

rotBC_final));

156 xy2(j,:) = [r(j)*sin(phi2 -rotBC_final)+O(1),r(j)*cos(phi2 -

rotBC_final)+O(2)];

157 end

158

159 % thrust in CD

160 j_max = round(n*(alpha -intrados)/2/ alpha);

161 xy3=zeros(j_max ,2);

162 r=zeros(j_max ,1);

163 for j = 1:j_max

164 phi2 = intrados +(alpha -intrados)/j_max*j;

165 [x_cg ,~,vol] = segment_properties_EES(ri ,ro ,intrados ,phi2);

166

167 r(j) = (vol*(x_cg -Co_final (1))+H_final*Co_final (2)+( vAC_final+vol)

*...

168 Co_final (1))/( H_final*cos(phi2)+( vAC_final+vol)*sin(phi2));

169 xy3(j,:) = [r(j)*sin(phi2)+dx_final ,r(j)*cos(phi2)];

170 end

171 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

172

173 if figs == 1

174 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

175 % PLOT DEFORMED GEOMETRY

176 barrel = segment_outline(ri ,ro,pi/2,pi/2-alpha ,0,0,0);

177 % AB

178 AB = segment_outline(ri ,ro ,pi/2,pi/2-extrados ,0,-dy_final ,0);

179 % CD

180 CD = segment_outline(ri ,ro ,pi/2-intrados ,pi/2-alpha ,dx_final ,0,0);

181 % BC

182 BC = segment_outline(ri ,ro ,pi/2-extrados ,pi/2-intrados ,0,0,0);

183 temp = rot_ccw ([BC(:,1)-Bo(1),BC(:,2)-Bo(2)],rotBC_final);

184 BC = [temp (:,1)+Bo(1),temp (:,2)+B_final (2)];

185

186 %plot

187 figure (2)

188 plot(barrel (:,1),barrel (:,2),'k:','LineWidth ' ,1);

189 hold on;

190 plot(AB(:,1),AB(:,2),'g',BC(:,1),BC(:,2),'g',CD(:,1),CD(:,2),'g' ,...

191 'LineWidth ' ,2);

192 hold on;
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193 plot([ B_final (1);xy2(:,1)],[B_final (2);xy2(:,2)],'r' ,...

194 [C_final (1);xy3(:,1)],[C_final (2);xy3(:,2)],'r');

195 hold on;

196 plot(D_final (1),D_final (2),'k.',C_final (1),C_final (2),'k.' ,...

197 B_final (1),B_final (2),'k.','MarkerSize ' ,20);

198 axis equal;

199 axis ([0 1.1*ro 0 1.1*ro]);

200

201 legend('Undeformed State ','Collapse State ');

202 title(fig2_title);

203

204 text (.97*ri ,2,['Span increase = ',num2str(spread(i-2) *100) ,'%'],...

205 'VerticalAlignment ','bottom ','HorizontalAlignment ','center ','

FontSize ' ,10)

206 text (.97* C_final (1) ,.97* C_final (2) ,[int2str(intrados *180/ pi),'\circ'

],...

207 'VerticalAlignment ','top','HorizontalAlignment ','right ','

FontSize ' ,10)

208 text (1.03* B_final (1) ,1.03* B_final (2) ,[int2str(extrados *180/ pi),'\

circ'],...

209 'VerticalAlignment ','bottom ','HorizontalAlignment ','left','

FontSize ' ,10)

210 text(2,2,['\it{Voissoir size: }',int2str (10),'\circ'],...

211 'VerticalAlignment ','bottom ','HorizontalAlignment ','left','

FontSize ' ,10)

212 end

213

214 end
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C.2 BarrelSpread+Load

1 % Calculate minimum thrust and final collapse load for an arch that has

2 % been spread to 25, 50, or 75% of collapse state and loaded at hinge

3 % to replicate models: alpha =65/55 , n=13/11 , uncomment 'Force Hinges '

4 % t/r= .1376( full), .1101( t_eff)

5

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 % Adapted from function written by Jennifer Zessin and presented in: %

8 % Zessin , J. (2012). Collapse analysis of unreinforced masonry %

9 % domes and curving walls . Ph.D. thesis , MIT. %

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11

12

13 function [spread_final ,dip_final ,H_Hmin ,hinges] = ...

14 barrel_spread_load_fix (alpha ,t_R ,n,dx_start ,position ,figs)

15

16 close all;

17

18 fig1_title = ['Minimum Thrust State for \alpha = ',int2str(alpha) ,...

19 '\circ , t/R = ',num2str(t_R)];

20 fig2_title = ['Collapse State for \alpha = ',int2str(alpha) ,...

21 '\circ , t/R = ',num2str(t_R)];

22

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 % DETERMINE MIN THRUST STATE - NO SPREAD

25 [H_min ,v_tot ,hinges] = barrel_min_thrust (alpha ,t_R ,n,figs);

26

27 intrados = hinges (2)*pi /180;

28 extrados = hinges (1)*pi /180;

29

30 %%% *** Force Hinges ***% for use when replicating model

31 intrados = 45*pi/180;

32 extrados = 5*pi/180;

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

36 % DEFINE GEOMETRY PARAMETERS

37 % embrace

38 alpha = alpha*pi/180;

39 % t and R properties

40 R = 100;
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41 t = R*t_R;

42 ri = R-t/2;

43 ro = R+t/2;

44

45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46 % DETERMINE VALID THRUST STATE - SPREADING

47

48 valid = 1;

49

50 % set precision of dx step

51 dx_precision = 1/100;

52 i = 1;

53 i_max = 0.8*R/dx_precision;

54

55 while (valid == 1) && (i < i_max)

56

57 valid = 0;

58

59 dx = dx_start + (i-1)*dx_precision;

60

61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62 % DEFINE GEOMETRIC PARAMETERS

63

64 % points Bo ,Co

65 Bo = ro*[sin(extrados), cos(extrados)];

66 Co = ri*[sin(intrados), cos(intrados)];

67

68 % define volumes vAB , vBC , vAC , vCD

69 % define center of gravity of BC and CD

70 % AB

71 [~,~,vAB] = segment_properties_EES(ri ,ro ,0,extrados);

72 % AC

73 [~,~,vAC] = segment_properties_EES(ri ,ro ,0,intrados);

74 % BC

75 [xBCo ,yBCo ,vBC] = segment_properties_EES(ri ,ro,extrados ,intrados);

76 % CD

77 [xCDo ,~,vCD] = segment_properties_EES(ri ,ro ,intrados ,alpha);

78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

79

80 % define points B, C, D {where B(2) and D(1), D(2) are unknown}

81 B = [Bo(1), 0]; %B only lowers , so Bx is constant

82 C = [Co(1)+dx, Co(2)]; %C moves right , so Cy is constant

83 D = [0, 0]; %D can float along abutment as the
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84 %abut moves right without rotation

85

86 % determine y displacement {length of BC is constant}

87 % syms dy

88 % dy = eval(solve('(Bo(1)-Co(1))^2+(Bo(2)-Co(2))^2=...

89 %(Bo(1)-Co(1)-dx)^2+(Bo(2)-dy -Co(2))^2', dy));

90 dy = Bo(2)-Co(2) -...

91 (2*dx*Bo(1) -2*dx*Co(1)+Bo(2) ^2+Co(2)^2-dx^2-2*Bo(2)*Co(2))^(1/2)

;

92

93 % define B(2) {D(1) and D(2) still unknown}

94 B(2) = Bo(2)-dy;

95

96 % determine rotation of bar BC

97 rotBC = atan((Co(2)-Bo(2))/(Bo(1)-Co(1)))-atan((C(2)-B(2))/...

98 (B(1)-C(1)));

99 % determine new position of xBC ,yBC

100 temp = rot_ccw ([xBCo -Bo(1),yBCo -Bo(2)],rotBC);

101 xBC = B(1)+temp (1);

102

103 % determine thrust from equilibrium of BC

104 H = (vAC*(C(1)-B(1))-vBC*(xBC -B(1)))/(B(2)-C(2));

105

106 % determine rd -> D(1), D(2)

107 xCD = xCDo+dx;

108 rd = (vCD*(xCD -C(1))+H*C(2)+v_tot *(C(1)-dx))/...

109 (v_tot*sin(alpha)+H*cos(alpha));

110 D = [rd*sin(alpha)+dx, rd*cos(alpha)];

111

112 % check global equilibrium , by checking validity of rd

113 valid = range_check (0,ro*sin(alpha)+dx ,D(1));

114

115 if valid == 1

116 H_increase(i) = H;

117 spread(i) = dx/(ri*sin(alpha));

118 dip(i) = dy/ri;

119 B_track(i,:) = B;

120 C_track(i,:) = C;

121 D_track(i,:) = D;

122 rotBC_track(i) = rotBC;

123 Co_track(i,:) = Co;

124 vAB_track(i) = vAB;

125 vAC_track(i) = vAC;
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126 xBC_track(i) = xBC;

127 else

128 mode = 'D is invalid ';

129 end

130 i = i+1;

131 end

132

133 a = mod(i-2,4);

134 % change 'final ' designation to 50%

135 spread_final = spread ((i-2-a)*position /4) *100;

136 dx_final = spread ((i-2-a)*position /4)*(ri*sin(alpha));

137 dip_final = dip((i-2-a)*position /4) *100;

138 dy_final = dip((i-2-a)*position /4)*ri;

139 H_final = H_increase ((i-2-a)*position /4);

140 H_Hmin = H_increase ((i-2-a)*position /4)/H_min;

141

142 % pick out points at 50%

143 B_final = B_track ((i-2-a)*position /4,:);

144 C_final = C_track ((i-2-a)*position /4,:);

145 D_final = D_track ((i-2-a)*position /4,:);

146 rotBC_final = rotBC_track ((i-2-a)*position /4);

147 Co_final = Co_track ((i-2-a)*position /4,:);

148 vAB_final = vAB_track ((i-2-a)*position /4);

149 vAC_final = vAC_track ((i-2-a)*position /4);

150 xBC_final = xBC_track ((i-2-a)*position /4);

151

152 n=180;

153 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

154 intrados = intrados - 10*pi/180;

155 % new position for C (displaced) and rotation of BC

156 Co_final = [ri*sin(intrados), ri*cos(intrados)];

157 C_final = Co_final +[dx_final , 0];

158 rotBC_final = atan(( Co_final (2)-Bo(2))/...

159 (Bo(1)-Co_final (1)))-atan(( C_final (2)-B_final (2))/...

160 (B_final (1)-C_final (1)));

161 % update vAC , vBC , xBC_final

162 [~,~,vAC] = segment_properties_EES(ri ,ro ,0,intrados);

163 [xBCo ,yBCo ,vBC] = segment_properties_EES(ri ,ro,extrados ,intrados);

164 temp = rot_ccw ([xBCo -Bo(1),yBCo -Bo(2)],rotBC);

165 xBC_final = B(1)+temp (1);

166

167 load = 0;

168 h=0;
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169 valid = 1;

170 while (valid == 1)

171

172 valid = 0;

173 load = load +1;

174 % apply load to one degree segment BE

175 % point of load application

176 temp = rot_ccw (([0,- dy_final]-B_final),rotBC_final);

177 O = B_final+temp;

178 pointE = extrados+pi /180;

179 [x_cg ,y_cg ,volE] = segment_properties_EES(ri,ro,extrados ,pointE);

180 % calculate rotated cg of BE wrt shifted center of segment

181 temp = rot_ccw ([x_cg ,y_cg]-Bo,rotBC_final);

182 xBb = temp (1)+B_final (1)-O(1);

183

184 % determine thrust from equilibrium of BC

185 H_final = ((vAC+load)*( C_final (1)-B_final (1)) -...

186 vBC*(xBC_final -B_final (1))-load*(temp (1)))/...

187 (B_final (2)-C_final (2));

188 h=h+1;

189 H_track(h)=H_final;

190

191 % initialize counter for thrust line tracking

192 j_max = round(n*(intrados -pointE)/2/ alpha);

193 xy2=zeros(j_max ,2);

194 r=zeros(j_max ,1);

195

196 % find equilibrium for BE

197 j=1;

198 phi2 = pointE;

199 r(j) = (H_final *( B_final (2)-O(2))+(load+volE)*xBb+vAB_final *( B_final

(1)-O(1)))/...

200 (( vAB_final+load+volE)*sin(phi2 -rotBC_final)+H_final*cos(phi2 -

rotBC_final));

201 xy2(j,:) = [r(j)*sin(phi2 -rotBC_final)+O(1),r(j)*cos(phi2 -

rotBC_final)+O(2)];

202 E_final = xy2(1,:);

203 E = phi2 *180/ pi;

204

205 % thrust in EC

206 for j = 2:j_max

207 phi2 = pointE +(intrados -pointE)/j_max*j;

208 [x_cg ,y_cg ,vol] = segment_properties_EES(ri ,ro,pointE ,phi2);
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209

210 % calc rotated cg of segment EC

211 temp = rot_ccw ([x_cg ,y_cg]-E_final ,rotBC_final);

212 xBb = temp (1)+E_final (1)-O(1);

213 % define x,y coordinates for thrust line

214 r(j) = (H_final *( E_final (2)-O(2))+vol*xBb+( vAB_final+load+volE)

*( E_final (1)-O(1)))/...

215 (( vAB_final+vol+load+volE)*sin(phi2 -rotBC_final)+H_final*cos

(phi2 -rotBC_final));

216 xy2(j,:) = [r(j)*sin(phi2 -rotBC_final)+O(1),r(j)*cos(phi2 -

rotBC_final)+O(2)];

217 end

218

219

220 % thrust in CD

221 j_max = round(n*(alpha -intrados)/2/ alpha);

222 xy3=zeros(j_max ,2);

223 r=zeros(j_max ,1);

224 for j = 1:j_max

225 phi2 = intrados +(alpha -intrados)/j_max*j;

226 [x_cg ,~,vol] = segment_properties_EES(ri ,ro ,intrados ,phi2);

227

228 r(j) = (vol*(x_cg -Co_final (1))+H_final*Co_final (2)+( vAC_final+

vol+load)*...

229 Co_final (1))/( H_final*cos(phi2)+( vAC_final+vol+load)*sin(

phi2));

230 xy3(j,:) = [r(j)*sin(phi2)+dx_final ,r(j)*cos(phi2)];

231 D_final = xy3(j,:);

232 end

233

234 % stop when thrust line reaches extrados (at abutment)

235 if max(r)>=ro

236 valid = 0;

237 else

238 valid = 1;

239 end

240 end

241 %Load conversion from area to N, 19 is area of one deg slice with R=100,

242 %0.049 is weight of one deg slice of model block

243 load=load /19.186*0.049

244 %remove ; for tracking

245 Co_track;

246 r;
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247 xy2;

248 E_final;

249 E;

250 H_track ';

251 spread_for_leg = ['Spread to ',int2str(position *25),'% of collapse '];

252 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

253

254 if figs == 1

255 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

256 % PLOT DEFORMED GEOMETRY

257 barrel = segment_outline(ri ,ro,pi/2,pi/2-alpha ,0,0,0);

258 % AB

259 AB = segment_outline(ri ,ro ,pi/2,pi/2-extrados ,0,-dy_final ,0);

260 % CD

261 CD = segment_outline(ri ,ro ,pi/2-intrados ,pi/2-alpha ,dx_final ,0,0);

262 % BC

263 BC = segment_outline(ri ,ro ,pi/2-extrados ,pi/2-intrados ,0,0,0);

264 temp = rot_ccw ([BC(:,1)-Bo(1),BC(:,2)-Bo(2)],rotBC_final);

265 BC = [temp (:,1)+Bo(1),temp (:,2)+B_final (2)];

266

267 %plot

268 figure (2)

269 plot(barrel (:,1),barrel (:,2),'k:','LineWidth ' ,1);

270 hold on;

271 plot(AB(:,1),AB(:,2),'g',BC(:,1),BC(:,2),'g',CD(:,1),CD(:,2),'g' ,...

272 'LineWidth ' ,2);

273 hold on;

274 plot([ B_final (1);xy2(:,1)],[B_final (2);xy2(:,2)],'r' ,...

275 [C_final (1);xy3(:,1)],[C_final (2);xy3(:,2)],'r');

276 hold on;

277 plot(D_final (1),D_final (2),'k.',C_final (1),C_final (2),'k.' ,...

278 B_final (1),B_final (2),'k.','MarkerSize ' ,20);

279

280 axis equal;

281 axis ([0 1.1*ro 0 1.1*ro]);

282

283 legend('Undeformed State ',num2str(spread_for_leg),'location ','

northeast ')

284 title(fig2_title);

285

286 text (.97*ri ,2,['Span increase = ',num2str(spread ((i-2-a)*position /4)

*100) ,'%'],...
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287 'VerticalAlignment ','bottom ','HorizontalAlignment ','center ','

FontSize ' ,10)

288 text (.97* C_final (1) ,.97* C_final (2) ,[int2str(intrados *180/ pi),'\circ'

],...

289 'VerticalAlignment ','top','HorizontalAlignment ','right ','

FontSize ' ,10)

290 text (1.03* B_final (1) ,1.03* B_final (2) ,[int2str(extrados *180/ pi),'\

circ'],...

291 'VerticalAlignment ','bottom ','HorizontalAlignment ','left','

FontSize ' ,10)

292 text(2,2,['Load capacity = ',num2str(load),' N'],...

293 'VerticalAlignment ','bottom ','HorizontalAlignment ','left','

FontSize ' ,10)

294

295 end

296

297 end
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C.3 Barrel Minimum Thrust

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Adapted from function written by Jennifer Zessin and presented in: %

3 % Zessin , J. (2012). Collapse analysis of unreinforced masonry %

4 % domes and curving walls . Ph.D. thesis , MIT. %

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 function [H_min ,v_tot ,hinges] = barrel_min_thrust (alpha ,t_R ,n,figs)

8

9 close all;

10

11 fig_title = ['Limiting Thrust State for \alpha = ',int2str(alpha) ,...

12 '\circ , t/R = ',num2str(t_R)];

13

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 % DEFINE GEOMETRY PARAMETERS

16 % embrace

17 alpha = alpha*pi/180;

18 % t and R properties

19 R = 100;

20 t = R*t_R;

21 ri = R-t/2;

22 ro = R+t/2;

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 % DETERMINE MIN THRUST STATE - NO SPREAD

25 % initialize min thrust

26 H_min = 10^10;

27

28 % discretization

29 m_max = 50;

30 k_max = m_max;

31

32 d_phi = 2* alpha/n;

33

34 [x_cg_tot ,~,v_tot] = segment_properties_EES(ri,ro ,0,alpha);

35

36 % search for a valid min thrust state

37 for k = 1:k_max+1

38 for m = 1:m_max+1

39

40 % define thrust line position at crown and springing
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41 rise = ro-t*(k-1)/k_max;

42 run = ro -t*(m-1)/m_max;

43

44 % calc H for given thrust line constraints

45 H = v_tot*(run*sin(alpha)-x_cg_tot)/(rise -run*cos(alpha));

46

47 % define x,y coordinates for thrust line

48 max_count = ceil(n/2) +1;

49 xy=zeros(max_count ,2);

50 r=zeros(max_count ,1);

51

52 xy(1,:) = [0,rise];

53 r(1,:) = rise;

54

55 if mod(n,2)

56 phi2_2 = d_phi /2;

57 else

58 phi2_2 = d_phi;

59 end

60 [x_cg ,~,vol]= segment_properties_EES(ri,ro ,0,phi2_2);

61

62 r(2,:) = (H*rise+vol*x_cg)/(vol*sin(phi2_2)+H*cos(phi2_2));

63 xy(2,:) = r(2)*[sin(phi2_2),cos(phi2_2)];

64

65 for j = 3: max_count

66 phi2 = phi2_2 + d_phi *(j-2);

67 [x_cg ,~,vol]= segment_properties_EES(ri,ro ,0,phi2);

68

69 r(j,:) = (H*rise+vol*x_cg)/(vol*sin(phi2)+H*cos(phi2));

70 xy(j,:) = r(j)*[sin(phi2),cos(phi2)];

71 end

72

73 % check validity of thrust state and check if min/max , store info

74 valid_min = range_check(ri ,ro ,r);

75 if (valid_min == 1) && (H < H_min)

76 H_min = H;

77 xy_final_min = xy;

78 r_final_min = r;

79 end

80 end

81 end

82

83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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84 within = 5;

85 percent = (r_final_min -ri)./t*100;

86 index_test1 = percent > 100- within;

87 index_test2 = percent < within;

88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

89 % determine intrados and extrados hinges

90 [~, min_index] = min(r_final_min);

91 [~, max_index] = max(r_final_min (1: max_count -1));

92

93 max_index2 = find(index_test1 ,1,'last');

94 min_index2 = find(index_test2(max_index2:max_count) ,1,'first ');

95 min_index2 = max_index2+min_index2 -1;

96

97 if mod(n,2)

98 % hinges = d_phi *180/pi*[( max_index -1.5) ,(min_index -1.5)];

99 hinges = d_phi *180/pi*[( max_index2 -1.5) ,(min_index2 -1.5)];

100 else

101 % hinges = d_phi *180/pi*[( max_index -1) ,(min_index -1)];

102 hinges = d_phi *180/pi*[( max_index2 -1) ,(min_index2 -1)];

103 end

104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

105

106 if figs ==1

107

108 barrel = segment_outline(ri ,ro,pi/2,pi/2-alpha ,0,0,0);

109

110 %plot

111 figure (1);

112 plot(barrel (:,1),barrel (:,2),'b','LineWidth ' ,2.5);

113 hold on;

114 plot(xy_final_min (:,1),xy_final_min (:,2),'r.:');

115 hold on;

116

117 % hold on;

118 axis (1.1*ro*[0 1 0 1]);

119 axis square;

120

121 legend('Barrel ','Minimum Thrust ')%,'Hinge Location ');

122 title(fig_title);

123 end

124 end
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C.4 Arch Segment Outline

1 % creates vector of dome outline {all angle inputs are in radians}

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Used with permission from Jennifer Zessin %

5 % Zessin , J. (2012). Collapse analysis of unreinforced masonry %

6 % domes and curving walls . Ph.D. thesis , MIT. %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 function [segment_outline_vector] = segment_outline(ri,ro,start_angle

,end_angle ,x_shift ,y_shift ,ccw_rotation)

10

11 % corner_points = [x_ro_start ,y_ro_start;x_ro_end ,y_ro_end;x_ri_end ,

y_ri_end;x_ri_start ,y_ri_start]

12 corner_points = [ro*cos(start_angle);

13 ro*cos(end_angle);

14 ri*cos(end_angle);

15 ri*cos(start_angle)];

16

17 x_ro = (corner_points (1):( corner_points (2)-corner_points (1))/1000:

corner_points (2))';

18 y_ro = sqrt(ro^2-x_ro .^2);

19

20 x_ri = fliplr(corner_points (4):( corner_points (3)-corner_points (4))/1000:

corner_points (3))';

21 y_ri = sqrt(ri^2-x_ri .^2);

22

23 segment_outline_vector = [cat(1,x_ro ,x_ri ,x_ro (1))+x_shift ,cat(1,y_ro ,

y_ri ,y_ro (1))+y_shift ];

24

25 if ccw_rotation == 0

26 else

27 segment_outline_vector = rot_ccw(segment_outline_vector ,ccw_rotation

);

28 end

29

30 end
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C.5 Arch Segment Properties

1 % Calculate the centroid position of a segment of an arch ,

2 % bounded by ri ,ro and phi1 ,phi2

3

4 function [x_cg ,y_cg ,area] = segment_properties_EES(ri,ro,phi1 ,phi2)

5

6

7 phi = phi2 - phi1;

8 area = (ro^2 - ri^2)*phi /2;

9

10 r_cg = 4*sin(phi /2)*(ro^3-ri^3) /(3* phi*(ro^2-ri^2));

11 x_cg = r_cg*sin(phi1+phi/2);

12 y_cg = r_cg*cos(phi1+phi/2);

13

14 end

C.6 Counter-clockwise Vector Rotation

1 % rotates a vector [x1 ,y1;x2,y2;...]

2 % ccw by a specified amount 'a' in radians

3

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Used with permission from Jennifer Zessin %

6 % Zessin , J. (2012). Collapse analysis of unreinforced masonry %

7 % domes and curving walls . Ph.D. thesis , MIT. %

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 function [rotated_vector] = rot_ccw(vector ,angle)

11

12 rotated_vector = ([cos(angle),-sin(angle);sin(angle),cos(angle)]...

13 *vector ') ';

14

15 end
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