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ABSTRACT 

This paper presents and evaluates a global precipitation 
retrieval algorithm for the Special Sensor Microwave 
Imager/Sounder (SSMIS).  It is based on those developed 
earlier for the Advanced Microwave Sounding Unit 
(AMSU) [1]-[6] and employs neural networks trained with 
122 global storms that spanned a year and were simulated 
using the fifth-generation National Center for Atmospheric 
Research/Penn State Mesoscale Model (MM5) and a 
radiative transfer program validated using AMSU 
observations.  Only non-icy surfaces at latitudes less than 
50º have been analyzed because their surface effects are 
more predictable.  Sensitivity to surface emissivity 
variations was reduced by using only more surface-
insensitive principal components of brightness temperature.  
Based on MM5 simulations, retrievals for land are slightly 
less accurate than those for sea and all are useful for rates 
above 1 mm/h.  F-16 SSMIS, NOAA-15 AMSU, and Global 
Precipitation Climatology Project (GPCP) annual estimates 
generally agree.  SSMIS retrieves less precipitation for some 
areas partly due to its higher resolution that resolves 
precipitation better.  SSMIS overestimates precipitation over 
under-vegetated land requiring the near-surface evaporation 
correction illustrated earlier for AMSU [6].   

 
Index Terms— Special Sensor Microwave 

Imager/Sounder (SSMIS), microwave precipitation 
estimation, precipitation, rain, remote sensing, satellite.

1. INTRODUCTION 
 

SSMIS [7]-[8] was first launched in October 2003 aboard 
the Air Force Defense Meteorological Satellite Program 
(DMSP) F-16 Spacecraft.  Its 24-channels conically scan the 
Earth’s surface at a constant incidence angle of 53.1° with 
spatial resolutions that range from 46.5 x 73.6 km at 19 GHz 
to 13.2 x 15.5 km at 183 GHz over the full width of its 
~1700-km swath.  SSMIS combines in one conically 
scanned dual-polarization instrument the approximate 
functionality of the conically scanned dual-polarization 
DMSP satellite Special Sensor Microwave Imager (SSMI) 
for surface and precipitation sounding, and the two cross-

track scanned Special Sensor Microwave Sounders, SSMT-1 
for temperature profiles and SSMT-2 for humidity profiles.  
SSMIS provides better spatial resolution than SSMT but 
with reduced swath width.  Although the frequencies 
employed by SSMIS are similar to those of AMSU, 
problematic differences include:  1) vertical polarization was 
used for the SSMIS 50-GHz temperature-profile sounding 
channels, 2) to improve spatial resolution most SSMIS 
channels are diffraction limited rather than having roughly 
constant beamwidth across various bands, and 3) SSMIS 
views at a high constant zenith angle.  These differences 
relative to AMSU contributed to revisions of the existing 
AMSU precipitation retrieval algorithm architecture [6] in 
order for SSMIS to produce successful retrievals.  These 
algorithmic differences involve the channel-bias corrections, 
the channels and principal components (PCs) used, and the 
use of less mature SSMIS algorithms (which time will 
remedy). 

 
2. SIGNAL SELECTION AND CONDITIONING 
 

Table I shows SSMIS (S) channel specifications [7] and 
AMSU (A) channels with similar frequencies.  Only SSMIS 
channels with corresponding AMSU channels were used in 
precipitation retrieval.  SSMIS channels 6, 7, and 19-24 
generally sense altitudes above precipitation and were not 
used.  Since SSMIS channels 12 and 13 are strongly affected 
by surface signatures, they were also omitted.  To reduce 
surface signals, vertically polarized channels (V-pol) were 
used for window frequencies that measure dual polarization. 
Preprocessing steps using the satellite observations 
included: 1) correction for biases between SSMIS and MM5 
brightness temperatures (TBs), 2) determination of surface 
classification, and 3) computation of principal components 
(PCs) for surface-sensitive channels and selection of those 
with useful signal-to-noise (SNR) ratios.  Although AMSU-
based precipitation retrievals usefully exploit 53-GHz H-
polarized brightness temperature perturbations due to 
precipitation, F-16 SSMIS V-polarized 53-GHz 
perturbations are smaller and were not used (F17 is H-
polarized near 53 GHz).  Since it views a single zenith 
angle, SSMIS-observed TBs were not corrected to those at 
nadir.  Such a correction was performed for AMSU.  
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TABLE I 
SSMIS CHANNEL SPECIFICATIONS [7] AND AMSU CHANNELS WITH 

SIMILAR FREQUENCIES (CHANNELS 19-24 OMITTED HERE)

S 
Ch. 

SSMIS 
Freq. (GHz) 

Spatial Res. 
 

Spec. 
NE T 

(K) 
A 
ch. 

A Freq. 
(GHz) 

1 50.3 (V) 37.7 × 38.8 0.4 A3 50.3 (V) 
2* 52.8 (V) 37.7 × 38.8 0.4 A4 52.8 (V) 
3* 53.596 (V) 37.7 × 38.8 0.4 A5 53.596 (H) 
4* 54.4 (V) 37.7 × 38.8 0.4 A6 54.4 (H) 
5* 55.5 (V) 37.7 × 38.8 0.4 A8 55.5 (H) 
6 57.29 (R) 37.7 × 38.8 0.5 - - 
7 59.4 (R) 37.7 × 38.8 0.6 - - 
8* 150 (H) 13.2 × 15.5 0.875 B2 150 (H) 
9* 183.3±6.6 (H) 13.2 × 15.5 1.2 B5 183.3±7 (V) 

10* 183.31±3 (H) 13.2 × 15.5 1.0 B4 183.3±3 (V) 
11* 183.31±1 (H) 13.2 × 15.5 1.25 B3 183.3±1 (V) 
12 19.35 (H) 46.5 × 73.6 0.7 - - 
13 19.35 (V) 46.5 × 73.6 0.7 - - 

14* 22.235 (V) 46.5 × 73.6 0.7 A1 23.8 (V) 
15 37 (H) 31.2 × 45.0 0.5 - - 

16* 37 (V) 31.2 × 45.0 0.5 A2 31.4 (V) 
17* 91.655 (V) 13.2 × 15.5 0.9 B1 89 (V) 
18 91.655 (H) 13.2 × 15.5 0.9 - - 

Polarization: V = Vertical; H = Horizontal; R = Right-hand Circular.  
Polarization for AMSU is at nadir.  A1 and B1 stand for AMSU-A and B 
channel 1, respectively. Only F-16 uses V-pol on channels 1-5; F17 uses H. 
* Channels used for the SSMIS precipitation retrievals. 
 

In order for model-trained retrievals to perform well, 
there can be no TB biases between SSMIS and the model 
predictions used to train the retrieval algorithm.  These 
biases were determined by aligning TB histograms for 26 
globally distributed storms simultaneously viewed by F-16 
SSMIS and modeled by MM5 as initialized using NCEP 
analyses.  TBs were computed as for AMSU [1].  Each 
storm is ~950-km square.  The two histograms were aligned 
at their highest TBs that matched at one order of magnitude 
below the average peaks of the two histograms (where the 
histograms are steep); examples are shown in Fig. 1.  This 
matching only removes systematic biases, while validation 
of the model predictions is most sensitive when TBs are 
lowest, as shown in [1]-[2].  The resulting bias corrections 
were added to the observed SSMIS TBs.  A global set of 
122 storms [1] was used for training the precipitation 
estimator. 

 

 
Fig. 1 Histograms of 52.8 and 183±6.6 GHz SSMIS and MM5 TBs aligned 
to yield the bias correction for SSMIS required to reconcile MM5 retrievals 
with SSMIS data. 

Surfaces were classified as snow-free land, snow-
covered land, ice-free sea, and sea ice, where snow and ice 
surfaces were classified using the AMSU surface 
classification algorithm [9] with some modifications 
providing best match between SSMIS and AMSU surface 
classes.  Since surface emissivities of ice, snow, and frozen 
ground are complex and difficult to model, this first version 
of the SSMIS precipitation retrieval algorithm considers 
only snow-free land and ice-free sea with |lat| < 50º using 
separate algorithms called land and sea. 

To reduce the sensitivity to surface emissivity and other 
unwanted geophysical variations, PCs were computed 
separately for land and sea surfaces using observed TBs for 
all orbits of day 13 of all months in year 2006 from SSMIS 
channels that correspond to AMSU-A channels 1-6 and 8, 
and AMSU-B channels 1-5.  PCs offering good 
precipitation-to-noise ratios were identified and later used as 
inputs to the neural networks (NNs) that estimated 
precipitation.  Good PCs for land are PC numbers 1 and 2, 
whereas those best for sea are PC numbers 2–5.  Fig. 2 
shows examples of PC1 for land and PC2 for sea. 
 

 
Fig. 2. Land PC#1 and Sea PC#2.  

 
3. NEURAL NETWORK RETRIEVALS 

 
The brightness temperatures (TBs) at 5-km resolution were 
simulated for 12 selected SSMIS channels described above 
using 122 MM5 global storms spanning a year; the same 
method was used in [1].  The FASTEM surface emissivity 
model [10] was used for sea and the assumed emissivity for 
land was uniformly distributed randomly between 0.91 and 
0.97. 

The neural network (NN) had 5, 3, and 1 neurons 
arranged in three layers; the last neuron was linear and those 
in the first two layers were sigmoidal.  NNs were trained 
separately for land and sea surfaces, where the inputs 
included the good PCs described earlier.  The best NN with 
the smallest rms errors of the ten NNs for each surface type 
was chosen.  From the set of 122 MM5 storms, each of 
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which has 190×190 5-km pixels, 281,088 pixels were used 
for training (half for training and one quarter for each of 
testing and validation) and 269,498 other pixels were used 
for evaluation.  The closest distance between any training 
and final evaluating pixel was ~14 km.  NNs were trained to 
estimate MM5 surface precipitation rate (RR) at 15-km 
resolution.     

 
4. RETRIEVAL RESULTS 

 
Fig. 3 shows scatter plots between MM5 truth and SSMIS 
estimates separately for land and sea.  Fig. 4 shows 
comparisons of the probability distributions over RR.   
Table II shows simulated rms, mean, and standard errors for 
land and sea for different RR ranges defined by MM5.  
Estimates for land are slightly less accurate than those for 
sea as evaluated using MM5 and all are useful for rates 
above ~1 mm/h.  Fig. 5 shows comparisons of MM5-
simulated and observed TBs for SSMIS ch. 9, MM5 RR, 
and RR estimated using MM5-simulated and SSMIS-
observed TBs, respectively.  The storms from left to right 
are over sea on 8/20/2006 at 10:06 UTC, and over land on 
2/25/2006 at 11:55 UTC, respectively.  

Fig. 6 compares annual precipitation estimates (mm/yr) 
for F-16 SSMIS, NOAA-15 AMSU [6], and Global 
Precipitation Climatology Project (GPCP) [11] for year 
2006.  NOAA-15 mean equatorial crossing times are ~2.5 
hours ahead of F-16.  GPCP data are 1-degree resolution and 
incorporate data from many satellites and rain gauges.  
SSMIS and AMSU annual totals were only from single 
satellites.  SSMIS overestimates precipitation in under-
vegetated land, e.g., in North Africa and the Middle East, 
because those estimates were not corrected for near-surface 
evaporation whereas AMSU data were.  SSMIS estimates 
have less precipitation in several places, particularly for |lat| 
> 30º, partly because it has higher spatial resolution and 
resolves more precipitation, as illustrated in Fig. 7.   

 
5. SUMMARY AND CONCLUSION 

 
The first MM5-trained SSMIS precipitation retrieval 
algorithm was described, evaluated, and found to yield 
useful retrievals.  MM5 comparisons suggest that SSMIS 
retrievals are useful above 1 mm/h for both land and sea.  
Comparison of F-16 SSMIS annual precipitation generally 
agrees with NOAA-15 AMSU and GPCP.  Whereas SSMIS 
underestimates in several areas partly due to its higher 
spatial resolution, it overestimates over under-vegetated land 
due to near-surface evaporation. 
 

6. ACKNOWLEDGMENT 
 

The authors would like to thank Hilawe Semunegus and 
Axel Graumann at NOAA for providing us with SSMIS 
data. 

 
Fig. 3. Scatter plots between MM5 truth and SSMIS estimates for the 
evaluating pixels for land and sea. 
 

 
Fig. 4. MM5 and SSMIS RR probability distributions for the evaluating 
pixels of 122 MM5 storms for land and sea. 
 

TABLE II 
RMS, MEAN, AND STANDARD ERRORS (MM5 - ESTIMATE) FOR15-KM 

RESOLUTION MM5-SIMULATED SURFACE PRECIPITATION RATE 
RETRIEVALS (MM/H), WHERE THE RR RANGE IS DEFINED BY MM5

RR Range 
(mm/h) 

RMS Error Mean Error 
MM5-SSMIS Standard Error 

Land Sea Land Sea Land Sea 
0-0.125 0.45 0.53 -0.19 -0.18 0.41 0.50 

0.125-0.25 0.98 1.10 -0.41 -0.31 0.89 1.05 
0.25-0.5 1.13 1.06 -0.43 -0.24 1.05 1.03 

0.5-1 1.47 1.43 -0.44 -0.23 1.40 1.41 
1-2 1.94 1.63  -0.36 -0.10 1.90 1.63 
2-4 2.62 2.47 0.04 -0.28 2.62 2.45 
4-8 4.17 3.75 1.28 0.29 3.97 3.74 
8-16 7.72 6.99 4.98 3.52 5.90 6.04 

16-32 15.27 14.39 13.12 10.66 7.83 9.67 
32-64 28.91 28.46 26.37 24.18 11.88 15.03 
> 64 58.31 56.42 53.04 52.10 24.72 21.81 

Italics highlights rms errors that exceed the upper bound listed in column 1 
and therefore indicate poor utility. Boldface: rms errors below the range 
minimum listed in column 1. 
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Fig. 7. Surface precipitation rate estimates (mm/yr) for NOAA-15-AMSU 
and F-16-SSMIS for 5/24/2006. 
 

 
Fig. 6. Annual precipitation total (mm/yr) for F-16 SSMIS estimates, 
NOAA-15 AMSU estimates, and GPCP for year 2006. 
 

 
Fig. 5. Top to bottom: MM5-simulated and observed TB for SSMIS ch. 9, 
MM5 RR, and RR estimated using MM5-simulated and SSMIS-observed 
TBs.  Left to right: storms over sea on 8/20/2006 at 10:06 UTC and over 
land on 2/25/2006 at 11:55 UTC, respectively. 
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