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ABSTRACT

Network hydrogel polymers prepared by simultaneously cross-

linking polyvinyl alcohol (PVA) and grafting the anticoagulant

heparin to the matrix with a mixture of formaldehyde and

glutaraldehyde by the acid-catalyzed acetal reaction have pre-
viously demonstrated excellent blood compatibility. To study
the effect on network properties of the reactants in the hydro-
gel synthesis, equilibrium polymer contents in saline solution

as a function of temperature and stress-strain behavior were

measured for a range of specimens. Rubber elasticity theory,

modified for application to a network formed in the presence of

solvent and subsequently swollen, was used to interpret the

stress-strain data.

The results indicated that glutaraldehyde functions as the

cross-linking agent and formaldehyde functions to modify the
network by the introduction of cyclic formals on the PVA chains.
The formation of cyclic formals, favored by higher concentra-

tions of acid and formaldehyde and longer reaction times, tends
to increase network polymer concentrations, to reduce the

amount of cross-linking per original PVA chain, and to accentu-
ate the shrinkage of the network with temperature.

Hydrogels prepared with heparin exhibited lower polymer
contents, higher amounts of cross-linking, and reduced thermal
response relative to controls without heparin. This was attri-

buted to a buffering effect of heparin on the reaction mixture,
which resulted in the introduction of less cyclic formal.

Permeability studies on heparinized hydrogel membranes

revealed improved permeabilities relative to conventional hemo-
dialysis membranes on an equivalent thickness basis. This was

attributed to the high water content of the hydrogel.

Thesis Supervisors: Edward W. Merrill
Professor of Chemical Engineering

Kenneth A. Smith
Professor of Chemical Engineering
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CHAPTER 1

SUMMARY

A. INTRODUCTION

Whenever blood contacts a foreign surface, such as that of

an artificial kidney circuit, a series of biochemical reactions

are initiated which ultimately lead to blood coagulation (18).

In the application of hemodialysis as a clinical technique for

the treatment of chronic renal failure, there are numerous

hemorrhagic complications that arise from the necessity to ad-

minister an anticoagulant to the patient (21,24,25,26). If

nonthrombogenic materials were available to construct the blood-

contacting surfaces of the dialysis circuit, a significant im-

provement in hemodialysis therapy could be achieved.

Since the membrane represents by far the largest area con-

tacted by blood during the hemodialysis therapy, any attack on

the problem must improve the blood compatibility of the mem-

brane surface. Few of the various biomaterials now under study

for their nonthrombogenic properties could be used as a hemo-

dialysis membrane. A significant exception is the network

hydrogel materials of Merrill et al. (59) to which a naturally

occurring anticoagulant called heparin has been covalently

bonded. Recently reported in vivo test results indicate the

superior blood compatibility of these materials (61). Owing

to their high water content, these materials are feasible for

application as hemodialysis membranes as well as for construc-

tion of the tubing and cannulae of the artificial kidney

circuit.
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The principal objective of this thesis was to study the

effect of the various reaction variables in the network synthe-

sis on the properties of the hydrogel polymers of Merrill et

al. To accomplish this objective, the theory of rubber elasti-

city was modified for application to a hydrogel system. This

analysis was used to interpret experimentally measured moduli

of a range of hydrogel compositions synthesized under carefully

controlled reaction conditions. Along with experimentally mea-

sured volume fractions of polymer in the gels as a function of

temperature, these data were used to explain the effect of vari-

ous reaction variables in the system.

A procedure was developed to cast membranes of the hydro-

gel material with a suitable support. Permeability measure-

ments were made on these membranes.

B. BACKGROUND

1. Hydrogel Chemistry

In the synthesis of the nonthrombogenic network hydro-

gels, polyvinyl alcohol fC-C + (PVA) is cross-linked by a mix-
OH

ture of aldehydes (formaldehyde and glutaraldehyde) via acid-

catalyzed acetal formation with the secondary hydroxyls on the

polymer "backbone." Heparin (Figure 2-4) is coupled to the

matrix by acetalization with the secondary hydroxyls on the

3-carbon of the anhydroglucose unit.

For formaldehyde as the specific aldehyde the reaction

schemes shown in Equation (1-1) are envisioned. With glutaral-

dehyde (pentanedial) each end of the molecule can participate

in an acetal reaction and the following network structures

can be proposed.
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Reactions with Formaldehyde (1-1)
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Two facts from studies on the general acetal reaction

shed light on the probable network structures formed. The ace-

tal reaction is an equilibrium reaction and forcing conditions

for the removal of water are often employed (62). Also, the

equilibrium of acetal formation does depend upon the structure

of the alcohol, six-membered ring acetals being highly favored

(kfi).

Inasmuch as the hydrogel synthesis is carried out in an

approximately 85% aqueous medium, it would suggest that the

principal structure formed is the cyclic acetal. Therefore,

glutaraldehyde functions as the key cross-linking agent by

forming two cyclic acetal structures with different PVA chains.

Formaldehyde, able to form only a single cyclic formal, serves

to modify the character of the network polymer chains.

2. Modulus Evaluation

a. Study of Cross-Linked Networks

Parameters relevant to a discussion of cross-

linked polymer networks may be defined with the aid of Figure

1-1. The polymer network is comprised of N polymer chains of

M M

Polymer Chain

Polymer Chain with
Crosslinks

Figure 1-1. Idealized Network.
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molecular weight M (Mn for polydisperse polymer) before cross-

linking. In the cross-linked network there are v/2 cross-

linked points or a total of v cross-linked subchains of molecu-

lar weight Mc (number average value), if each cross-link is

taken as a tetrafunctional crossover point. Since real poly-

mer networks are formed from macromolecules of finite molecu-

lar weight, correction factors are employed to relate ve, the

number of subchains effective in network deformations, to v,

the total number of subchains.

The objective of this thesis is therefore achieved by

appropriate theoretical analysis of experimental data to find

V or the analogous parameter Mc as function of reaction condi-

tions. For solvated networks the theory of network deformation

by isotropic swelling (76), as expressed by Equation 1-3, might

be employed.

ln(l-v2) + v2 + Xv$ = V ( -(vl/ 3 - V2) (1-3)

Unfortunately application of the theory requires a knowledge of

the polymer-solvent interaction parameter X1 0 which is not

accurately known for PVA in water, and which is unknown for

the hydrogel network consisting of at least two polymer seg-

ments (vinyl alcohol and cyclic formal), not to mention grafted

heparin when present.

Since the hydrogels described herein exhibit characteris-

tic rubber-like elasticity, the application of the theory of

network elasticity, which does not require a knowledge of ther-

modynamic parameter Xl, is a viable alternative. Application

of the theory to deformations of bulk elastomers in which the
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cross-links were introduced in the unswollen, amorphous state

has received considerable attention in the literature (103,

107,112). With the most recent refinements (102), the theory

leads to the following equation for the isothermal, unidirec-

tional deformation of an elastomer:

T = =RT (s--) -- ( - 1 (1-4)
0 ~T a

Stress T in force per unit initial cross-sectional area is a

2function of (a - 1/a.) with a = L/L , the elongation in the

0)

x-direction relative to a gauge length L9. The parameter (v /V)

is the number of effective subchains1 expressed in moles per

unit sample volume. The parameter (r ./r ) enters the deriva-
i o

tion in the development of the expression for the Helmholtz

free energy of deformation from the statistics of a single chain

and is frequently called the "front factor." For loosely cross-

linked networks the parameter is essentially equal to one (120).

With the aid of the following definitions:

V Vv=- N=-- (1-5)

c n
and the network correction factor proposed by Flory (105):

ve = v - 2N (1-6)

the equation may be written in terms of Mc as follows:

r. 2
RT ( - -- (a- (1-7)

vMc r2 Mn a

1. "Effective" in. the sense that they contribute to the
elastic restoring force f.
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Careful experimentation (108,109,111) has indicated that

under ideal conditions, i.e., equilibrium between the tensile

and retractive force at each elongation, the relationship be-

tween force and elongation is correctly represented by the

theoretical equation (1-7).

b. Application to Hydrogel Networks

To apply the theory of rubber elasticity to a

study of the polyvinyl alcohol hydrogel system, there are two

important modifications which must be made. In the convention-

al theory the parameters v and N are defined assuming that the

cross-linking is carried out in bulk amorphous polymer, which

is not the case for the hydrogels synthesized from reaction mix-

tures containing from 6-10 wt % PVA. The definitions are

appropriately modified by the inclusion of the term v2 ,i repre-

senting the volume fraction of polymer (cc polymer/cc solution)

at the cross-linking volume V1 . Hence,

V. V.
v= . v -,C (1-8)

vM 2,i M 2,i
C

V. V.
vM v2i C2,i

For the purposes of this study the volume V, which represents

the relaxed state of the network, was taken as the volume of

the system at the end of the reaction period characterized by

v * By a series of experiments it was found that the volume

fraction of polymer at 70*C in the original reaction environ-

ment was the same within 10% as the volume fraction at 700 C

measured in buffered saline. 1

1. 0.3 N ions, pH = 7.3.
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Since the hydrogels synthesized at 70*C do undergo a sig-

nificant volume change (swelling) when equilibrated with saline

at room temperature (25*C), the isotropic deformation intro-

duced into the network by this volume change must be taken into

account to correctly evaluate stress-strain data for Mc. A

swelling factor 6 was defined in terms of the sample volume as

reacted (704C) V. and the swollen equilibrium volume of the

sample at 25 0C, Vs'

6 = -= 2,2 5 *C (1-10)
V s 2,70*C

Since the sample is now deformed by both isotropic swelling and

unidirectional elongation, the parameter 6 enters the deriva-

tion as a correction for the extension parameter a. The final

form of the equation used in the study of the hydrogel mate-

rials is as follows:

fC 2 , 6 1/3 2M
T RT( (1- - ( -a(1-11)

O5s c Mn a

The subscript s on A denotes the swollen, unstretched speci-

men cross section, and the front factor (r /r2) has been taken

equal to one, as explained earlier.

In the application of this theory to the study of a swol-

len cross-linked network, one must remain cognizant of those

factors which would cause non-Gaussian behavior of the sub-

chains and thus violate one of the basic assumptions of the

theoretical development. Among these are finite extensibility

of the chains, stress crystallization, and the presence of

microcrystalline regions or inhomogeneities in the network
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structure.

In this work only small sample elongations were used

(a < 1.5), and this precluded any problem with finite extensi-

bility of the chains as well as assuring the validity of the

constant volume deformation assumption, which is used to derive

the (a - 1/a 2) dependence of T. Stress crystallization normally

occurs only at higher elongations and is unlikely in a highly

swollen network. Extreme reaction conditions such as would

lead to inhomogeneous structures, e.g., by a phase separation

of the cyclic formal portion of the network, were scrupulously

avoided. Indeed, hydrogels of this character would have little

value in the proposed biomedical applications.

Microcrystallization of the PVA component of the gel can-

not be completely ruled out. Solutions of PVA and water con-

taining 6 wt % have been observed to become slightly turbid

upon standing, suggesting a phase separation (possibly crystal-

lization), but hydrogels of the same polymer content will main-

tain their clarity indefinitely on storage in buffered saline.

It is to be supposed that the presence of cyclic acetals along

the backbone of the polymer as well as grafted heparin in some

compositions should significantly reduce the level of crystal-

lization, if any, as compared to a PVA solution of equal

concentration.

C. EXPERIMENTAL WORK

1. Hydrogel Synthesis

Because of the complexity of the hydrogel reaction,

the decision was made in this work to begin with a hydrogel



24

composition that had previously demonstrated adequate biocom-

patible properties and to synthesize various compositions,

varying one reactant at a time. This control composition and

a summary of the compositions prepared in this work are pre-

sented in Table 4-1. Except as noted, reaction conditions

were 70*C for 60 minutes.

The choice of feasible reaction conditions is limited pri-

marily by the necessity to maintain heparin activity. In

earlier work Merrill et al. (59) demonstrated that the heparin

would remain viable for reaction conditions of one hour at 70*C

with acid concentrations (H +) less than 0.2 N. The solubility

properties of heparin prevent the addition of any significant

amount of miscible, nonaqueous solvents such as alcohol, methyl

acetate, or acetone to affect the reaction equilibrium.

All compositions studied in this work were prepared by

careful weighing or dilution from analyzed stock solutions.

The two grades of PVA used were Du Pont Elvanol (R) 73-125G

(M = 100,000) and Elvanol (R) 71-30 (Mn = 60,000). After the
n n

reactants had been homogeneously mixed, the casting solution

was degassed under vacuum and the hydrogel was cast between

two 1/4-inch polished glass plates (6" x 6") with an aluminum

shim (0.040 inches) to fix the reaction volume. The glass

plates were clamped with a specially fabricated aluminum holder

and were suspended in a thermostatted, circulating water bath

(70.0 + 0.2*C) for reaction. At the end of the reaction time

the hydrogel was removed from between the glass plates and

quenched in room temperature buffered saline.
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2. Volume Fraction Determination

For each hydrogel specimen four volume fraction de-

terminations were done at 25*C, two at 370 C, and two at 700 C.

All determinations were done with the sample in equilibrium

with buffered saline. For each determination the weight of

the sample in air and the weight of the sample suspended in

buffered saline (25*C) were recorded and used to calculate the

sample volume. The sample was then thoroughly washed in dis-

tilled water, dried in a circulating air oven, and the solids

weight noted. With the known density of PVA the volume frac-

tion at temperature of interest (cc polymer/cc hydrogel) could

be calculated.

3. Modulus Determination

Three samples for each hydrogel specimen were cut

using a standard steel die (0.250 inch width) and their thick-

ness measured with an Ames Dial Comparator. Stress-strain data

were measured with an Instron Universal Testing Machine (Table

Model) using a 0-50 gram load cell and the lowest rate of ex-

tension (0.2 inch/minute) to assure equilibrium between the

tensile force and the elastic retractive force. To prevent

loss of fluid from the sample during the experiment either by

evaporation or by exudation, all runs were carried out with

the sample immersed in a room temperature bath of buffered

saline.

4. Permeability Studies

Hydrogel membranes (6.0 + 1.0 mils) were cast with a

calendered, nonwoven nylon fabric (0.4 oz/yd 2, 1.3 + 0.3 mils
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thickness) as support using the synthesis apparatus described

above. Permeability data for a range of solutes were obtained

using the batch dialyzer apparatus and analytic techniques

developed by Colton (j. Stagnant diffusion studies with myo-

globin and albumin were performed using commercially available

lucite test cells (transport area approximately 10 cm 2) and

the Micro-Biuret analysis for proteins (141). All measurements

were performed with the solutes in buffered saline.

D. RESULTS AND DISCUSSION

1. Results for Control Composition

Figure 5-1 presents a plot of the tensile stress in

force per unit swollen cross section as a function of the ex-

tension parameter (a - 1/a ) for one sample of the control com-

position measured in buffered saline at 25*C. Except for

slight deviations at very low values of the extension para-

meter, which are caused by experimental error in measuring

small values of force and extension, the points fall almost

perfectly on a straight line, as predicted by the theory of

rubber elasticity. These data are representative of all modu-

lus determinations performed in this work.

Table 5-1 presents a summary of the data for five hydro-

gel specimens, all prepared according to the control composi-

tion. Elastic modulus as reported is the slope of the plot of

stress T as a function of (a - 1/a2 ), i.e., 3T/3(a - 1/a2 ), and

is not to be confused with Young's modulus E, defined as

3T/D(ca - 1). Values of Mc are calculated according to Equation

(1-11). The values of modulus and Mc reported are the average
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of three determinations on each specimen, and the volume frac-

tion data are the average of all determinations on the five

specimens.

Throughout this discussion the units for elastic modulus

(E.M.) are dynes per square centimeter, Mc is given in grams

per gram-mole, and concentrations are expressed in gmoles reac-

tant per gmole PVA mer 4CH 2 - CHOH*.

2. Effect of Glutaraldehyde

With glutaraldehyde as the independent variable the

results shown in Figure 5-2 were obtained. The sample contain-

ing zero glutaraldehyde proved to be a viscous mass insoluble

in water but impossible to study, indicating that formaldehyde

contributes little to the cross-linking of the network. Since

the experimentally measured elastic modulus will be a function

of both the amount of cross-linking (M c) and the polymer con-

tent of the specimen (v2,2 5 *C), both of which vary with the

amount of cross-linking, the Mc data must be considered to

interpret the effect of the reaction variable.

While the number of cross-links per chain (proportional to

l/M c) does increase with higher concentrations of glutaralde-

hyde, the values of Mc appear to approach an asymptote, though

additional data at higher levels of glutaraldehyde would be re-

quired to confirm this point. What this suggests is that some

equilibrium limitation exists in the chemical cross-linking of

the PVA. While such an equilibrium undoubtedly depends on the

water present in the system, certainly the other components

such as formaldehyde, methanol, and possibly PVA hydroxyls also
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affect it.

3. Effect of Acid Concentration, Reaction Time, and
Formaldehyde Concentration

The effect of increasing the concentration of sul-

furic acid in the reaction mixture is presented in Figures 5-4

and 5-5. As the concentration of acid increases, the value of

the elastic modulus rises but Mc also increases, indicating

fewer cross-links per initial PVA macromolecule. Figure 5-5

shows that the increasing values of the elastic modulus are,

in fact, caused by the higher volume fraction of polymer in

the test specimen. Higher sulfuric acid concentrations favor

the introduction of increasing amounts of cyclic formal groups

in the hydrogel matrix to produce the drastic thermal response

seen in Figure 5-5. Since the amount of cross-linking drops

(higher M c) as the cyclic formal content of the network

increases, these data suggest a competitive reaction between

formaldehyde and glutaraldehyde.

Studies with longer reaction times and varying formalde-

hyde concentrations indicated, in summary, that, as formalde-

hyde concentration is increased or as time of reaction is in-

creased, the cyclic formal content of the network chains rises

and the amount of cross-linking per initial polymer chain

falls (higher M c). These trends are similar to those seen

when hydrogen ion concentration was increased and lend support

to the concept of a competitive reaction between formaldehyde

and glutaraldehyde.

4. Higher Polymer Concentration

Figure 5-11 presents the effect on Mc of the weight
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fraction of PVA in the initial reaction mixture (w2 ,0 ) for the

two PVA starting materials. The near superposition of the two

curves for the two molecular weight species offers encourage-

ment that the network correction factor (eqn. 1-6) is a reason-

able approximation.

The decreasing value of Mc as polymer concentration rises

represents another aspect of the competitive reaction between

the two aldehydes. Since the formaldehyde concentration was

held constant (6.0 wt %), the molal ratio of formaldehyde to

PVA was, in fact, decreasing. At the lowered F/PVA molal ratio

fewer PVA hydroxyls were blocked by unstable formaldehyde hemi-

acetals and were thus available for cross-linking by the

glutaraldehyde.

5. Heparinized Hydrogels

Hydrogel specimens prepared with 1.0 wt % heparin at

PVA contents of 0.06 and 0.10 weight fraction exhibited slight-

ly lower elastic moduli, lower values of Mc, and a notably

less pronounced thermal response when compared with controls

of the same PVA content. While the lower shrinkage of the

heparin-containing specimens might be ascribed to the counter-

vailing influence of the highly charged polyanion heparin on

the network contraction, the reason for lower values of Mc is

not immediately obvious. Since the grafted heparin content of

the hydrogel network (0.7 mg/g PVA dry basis) is far too low

to contribute any significant number of cross-links to the net-

work, one must presume that the heparin has affected the reac-

tion in some other manner.
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Quantitative chemical analysis of the stock heparin re-

vealed that at least one of the carboxylic acid groups per

tetramer is in the sodium form. If, in addition, one allows

for some buffering effect from the two sulfamate groups on the

heparin tetramer, the final hydrogen ion concentration of the

reaction mixture (0.06 N initially) is in the range of 0.035

to 0.590 N. Comparison of the results for a heparinized hydro-

gel with an unheparinized control synthesized with 0.04 N H as

shown in Table 5-9 lends support for the proposed explanation.

6. Permeability Studies

Permeability studies on heparinized hydrogel mem-

branes synthesized according to the control composition in

Table 4-1 with 1.0 wt % heparin showed that the hydrogel mem-

branes have improved permeabilities relative to conventional

hemodialysis membranes when compared on the basis of equivalent

thickness. The improvement is especially significant for the

so-called middle molecular weight solutes of current interest

in hemodialysis research and can be attributed to the high

water content of the hydrogels. Protein permeation studies

indicate that the transport of these solutes is higher than

desirable for the heparinized hydrogels of this study with a

water content of vH0 = 0.95.

E. CONCLUSIONS

1. The theory of rubber elasticity proposed in this work

for application to networks formed in a solvated state proved

to be a viable experimental method to study the effect of reac-

tion variables on the hydrogel networks.
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2. The importance of the two processes occurring during

the hydrogel synthesis--cross-linking and chain modification--

were demonstrated. Glutaraldehyde functions as the cross-link-

ing agent by formation of two cyclic acetals with PVA hydrox-

yls, and formaldehyde functions primarily to modify the net-

work chains by formation of cyclic formals.

3. Higher amounts of cyclic formal in the network tend

to increase the equilibrium volume fraction of polymer at any

temperature and to accentuate the thermal response of the

network.

4. Conditions which favor the introduction of more

cyclic formal--higher acid concentration, longer reaction times,

and higher molal ratios of formaldehyde to PVA--tend to de-

crease the amount of glutaraldehyde cross-linking per PVA chain.

5. Heparin exerts a buffering effect on the reaction

mixture, and this accounts for the properties observed with

heparinized hydrogels.

6. The improved permeability characteristics of heparin-

ized hydrogel membranes relative to conventional hemodialysis

membranes is attributed to their high water content.
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CHAPTER 2

INTRODUCTION

A. MOTIVATION AND PURPOSE

For the past two decades considerable research has been

devoted to the improvement of hemodialysis as a clinical treat-

ment for chronic renal failure. The most significant advances

have come from cooperation among numerous disciplines includ-

ing physicians, engineers, chemists, and hematologists.

According to the Report of the Committee on Chronic Kidney

Disease, 35,000 patients per year die of chronic renal failure

and of this group 7,000 per year would be good candidates for

treatment (L). Current statistics place the total number of

patients receiving regular dialysis treatment at about 3,500,

though these statistics are not complete (2). Based on statis-

tics of the National Dialysis Registry (2), a five-year sur-

vival is an optimistic estimate for patients on dialysis.

Clearly there are still large numbers of patients who are

unable to receive treatment. There is a real lack of medical

resources to handle the problem. The cost of dialysis is often

raised as a crucial element which discourages the expansion of

available facilities. If one considers a five-year survival

of 50% of the patients receiving treatment along with 7,000

new patients per year, the imagination staggers at the dimen-

sion confronting society ten years hence, if all were treated.

The need for further research to understand and improve the

dialysis treatment is clearly necessary.

It is the purpose of this thesis to focus on one particu-



33

lar area of hemodialysis research, namely, membrane develop-

ment. Though the motivation for this work lies in the bio-

medical area, the research has in fact been an application of

the principles of polymer science to study a hydrogel system

based on dialdehyde crosslinking of polyvinyl alcohol that has

certain unique advantages for application as a hemodialysis

membrane.

For the reader who desires some background in kidney

physiology and types of kidney failure, a standard text of

medical physiology ( or the more detailed discussions by

Smith (.6i) and Pitts (7) will be helpful. While this background

is not essential to the understanding of the work in this

thesis, it will be useful to the reader who has not been pre-

viously exposed to the physiological basis of the engineering

problems in hemodialysis research.

B. HEMODIALYSIS

Hemodialysis as a replacement for kidney function, first

successfully applied by Kolff in 1944 (8), is illustrated in

Figure 2-1. Blood passes in laminar flow on one side of a

semipermeable membrane; dialyzate, an osmotically balanced

solution of electrolytes and glucose, flows on the other side.

Solutes such as urea, creatinine, uric acid, excess electro-

lytes, and other trace materials diffuse across the membrane

in response to the concentration driving force maintained be-

tween the blood side and the dialyzate bath. In normal opera-

tion water is removed from the blood to relieve excess edema

in the patient either by decreasing the dialyzate osmolality
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or by increasing the hydrostatic pressure difference between

blood and dialyzate.

Mass transfer from the blood stream to the dialysis bath

occurs through three resistances in series--the blood side

resistance, the membrane resistance, and the dialyzate side

resistance. For small solutes such as urea a considerable

amount of the transport resistance resides in the liquid bound-

ary layers, but for larger solutes (MW 500 or more) the membrane

resistance becomes the controlling one with current dialysis

membranes (9).

Figure 2-2 illustrates a typical artificial kidney cir-

cuit. Access to the patient is gained through an arterio-

venous (A-V) shunt. Many dialysis systems require the use of

a blood pump since the normal A-V pressure drop (100 mm Hg)

is not adequate to maintain the desired blood flow rates

through the dialyzer. Illustrated in Figure 2-2 is a coil-

type artificial kidney, though other geometries in common use

are the flat plate configuration and the hollow fiber devices

(10,11). A key feature to note is the regional heparinization

of the patient's blood to prevent activation of the clotting

mechanism when the blood contacts the foreign surfaces of the

hemodialysis circuit.

C. DEVELOPMENT OF MEMBRANE CRITERIA

1. Improved Permeability to Middle Molecular Weight
Solutes

For a number of years there has been speculation that

so-called middle molecular weight molecules play an important
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role in the toxicity of uremia (12). Middle molecules refer

to as-yet-undefined substances in the molecular weight range

500-5000 which, because of their size, are removed slowly

relative to urea during dialysis. The principal mass transfer

resistance to these solutes resides in the dialyzer membrane.

Two clinical observations support this hypothesis. A com-

parison of the results of hemodialysis and peritoneal dialy-

sis suggests that, since patients on the latter therapy remain

well and free of uremic neuropathy in spite of higher urea and

creatinine levels (13), the peritoneum must be passing some

toxic substances more readily than cellophane. This can be

interpreted as an increased permeability of the peritoneal mem-

brane to middle molecules relative to cellophane. Secondly,

the prevention of peripheral neuropathy is found to be depen-

dent upon an adequate number of hours of dialysis per week

rather than on maintaining certain pre-dialysis levels of serum

urea and creatinine (14). Since the plasma concentration of

small molecules falls rapidly during dialysis, longer dialysis

times contribute little to the removal of these solutes. How-

ever, the concentration gradient for the more slowly diffusing

middle molecules remains high throughout the dialysis, so in-

creased dialysis time could significantly improve the removal

of these substances.

Babb, Scribner, and colleagues (15) are currently investi-

gating these hypotheses by a series of clinical strategies de-

signed to selectively increase and decrease the pre-dialysis

levels of solutes in the low molecular weight range and in the
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middle molecular weight range. Though not conclusive, their

results have been encouraging (16). Translated into a crite-

rion for membrane development, the need for a membrane with

permeabilities to low molecular weight solutes comparable to

commercial cellulosic membranes and with improved permeabili-

ties to middle molecular weight solutes is indicated.

2. Non-Thrombogenic Dialysis Membrane

The human body is protected from unwanted bleeding

by the blood coagulation mechanism (Figure 2-3). Two semi-

complementary pathways each involve a cascade series of activa-

tion of proteins resulting in the conversion of soluble fibri-

nogen to an insoluble fibrin clot. The roman numerals on the

figure refer to specific clotting factors.

Living tissues, such as blood vessel walls, lungs, and

brain, contain a lipid-protein complex (Factor III, tissue

thromboplastin) capable of activating Factor X in the presence

of Factor VII. In response to tissue damage Factor III is re-

leased and the cascade proceeds to a fibrin clot within

seconds.

Even in the absence of tissue damage, contact with a for-

eign surface can produce clotting via the intrinsic pathway.

In this case, the mechanism begins with conversion of Factor

XII (Hageman) from an inactivated to an activated form. Acti-

vated Factor XII initiates a series of biochemical reactions

culminating in the conversion of prothrombin to thrombin

which catalyzes the conversion of fibrinogen to fibrin.

Briggs and MacFarlane have presented a good discussion of
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blood coagulation (17). The article by Deykin (18) is an ex-

cellent review of the mechanism of thrombogenesis.

Any clinical situation requiring blood contact with a for-

eign surface has to overcome the intrinsic clotting mechanism.

This is most frequently done by administering a naturally

occurring anticoagulent called heparin, a highly sulfated

a-1,4 linked, mucopolysaccharide (19), shown in Figure 2-4.

Heparin interferes with the clotting mechanism by complexing

activated Factor IX, and it also interferes with active throm-

bin, probably by complexing (20).

If suitable non-thrombogenic biomaterials were available

for the construction of the blood-contacting surfaces of the

dialysis circuit (tubing, cannulae, membrane), there are sev-

eral disadvantages in the heparinization that could be over-

come. The system for administering and back-titrating the

heparin during dialysis (Figure 2-2) is complex and contri-

butes to the capital cost of the equipment. Also associated

with regional heparinization is a problem known as "heparin

rebound." The protamine in the heparin-protamine complex is

preferentially lysed such that free heparin occurs in the

bloodstream several hours after dialysis, causing a hemophilic

syndrome (21).

A simplified procedure would be advantageous in light of

the trend toward home dialysis to reduce treatment cost (22,23).

Heparin therapy has been indicated as the cause of bilateral

adrenal hemorrhage (24). Additional hemorrhagic complications

arising during long-term dialysis have been discussed in the
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review by Pendras and Erickson (25) and in the article by

Remmers et al. (26).

One of the major improvements in hemodialysis has been the

sorbent-based, low-volume dialyzate regeneration system re-

ported by Gorden and colleagues (27). Here the 200-liter dialy-

sis bath has been successfully replaced by a six-liter system

that regenerates the dialyzate by means of a sorbent cartridge

containing urease, zirconium phosphate, zirconium oxide, and

activated charcoal. While the advantages of this system are

numerous and have been discussed in the above reference, one

that should be noted here is the portability of the system and

the fact that it gives the dialysis patient far greater freedom

to travel. In this context a non-thrombogenic dialysis system

could offer an additional advantage to the dialysis patient.

Since the dialysis membrane represents by far the largest

surface area contacted by blood in the artificial kidney cir-

cuit, any effort to eliminate or reduce the amount of heparin

used per dialysis must improve the blood compatibility of the

membrane. Thus another requirement for membrane development

is (ideally) that the membrane be non-thrombogenic.

3. Additional Membrane Requirements

Other requirements for a suitable dialysis membrane

(28,29,30) will be summarized here.

(a) Good mechanical strength--the membrane should

have sufficient mechanical strength and tear

resistance to permit fabrication into exist-

ing dialysis devices.
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(b) Physical stability--the membrane should not

contain any elutable toxic substances that

could leach into the bloodstream during dialy-

sis. Also it should not undergo any change

in physical properties (strength, tear resis-

tance, permeability) while in storage or in

use.

(c) Chemical stability--the membrane should not

degrade either by chemical or biological

attack when in contact with the blood or in

storage.

(d) Retention of proteins--the membrane should have

negligible transport ("cut off") of the plasma

proteins, albumin (MW 69,000) being the smallest

in the series.

D. CURRENT MEMBRANE RESEARCH

The most commonly used hemodialysis membrane is Cupro-

phane (R-Bemberg), a cellulosic membrane produced by the

cuprammonium process. Because Cuprophane (R-Bemberg) can be

produced commercially in thin (0.001 inch), uniform, pinhole-

free sheets of reasonable physical strength, it has enjoyed

wide application in hemodialyzers. The principal drawbacks

of the membrane are that it will activate the intrinsic clot-

ting mechanism, that its permeability to solutes in the middle

molecular weight range is less than desired, and that it has

poor resistance to tear propagation when water-swollen.

Current membrane research can be categorized as follows:
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1. Efforts to Improve Cellulosic Membranes

Within this group falls the research on the produc-

tion of ultra-thin membranes to improve transport properties

(31), the variation of coating techniques and other treat-

ments to affect membrane morphology and hence permeability

(32,33,34), and the attempts to treat existing membranes to

make them non-thrombogenic (35,36). Cellulose acetate mem-

branes are also being studied for application in hemodialy-

sis (37,38).

2. Insolubilization of Water-Soluble Polymers

Successful dialysis membranes have a reasonably high

equilibrium water content, usually greater than 50%. Recog-

nition of this fact has led various investigators to study the

transport properties of membranes prepared by cross-linking

polymers such as polyvinyl alcohol, polyethylene glycol, and

polyvinylpyrrolidone and by hydrolyzing polyvinylbutyral

(28,30). The cross-linked poly (2-hydroxyethyl-methacrylate)

hydrogels of Wichterle and Lim have been considered for appli-

cation as dialysis membranes (39).

3. Copolymers of Water-Soluble and Water-Insoluble

Polymers

The logic here is that the water-soluble portion

will impart "swellability" to the membrane and the insoluble

portion will contribute to the strength of the material. Ex-

amples here are membranes prepared from Bisphenol A copoly-

ether-carbonates (40), block copolymers of polyoxyethylene

oxide and polyethylene terephthalate (41), and block copoly-

ether-urethanes (42).
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4. Other Approaches

In this category fall efforts such as the collagen

membranes of Stenzel (43) prepared by solubilization with en-

zymes and cross-linking with ultraviolet radiation, and the

study of synthetic polypeptides as possible hemodialysis mem-

branes (44). Also, the development of hollow fiber membranes

for hemodialysis (45,46) represents a novel approach for mem-

brane configuration in a hemodialysis device. Cross et al.

have suggested their polyelectrolyte complexes for use as hemo-

dialysis membranes (47).

While results on these various areas of hemodialysis mem-

brane research have indicated some success, usually as improved

permeabilities relative to Cuprophane (R-Bemberg), none has

been superior enough in all aspects to replace it as the mem-

brane for regular dialysis treatment. Looking into the future,

one can envision sophisticated systems which discriminate on

the basis of selected characteristics, such as stereospecific

structure, electric polarizability, or solubility characteris-

tics of the molecules, so that the efficiency of artificial

kidneys would be much enhanced (48). Except for the very

limited selectivity of some block copolymer membranes (49),

it is likely that dialysis membranes will continue to select

molecules primarily on the basis of size. Indeed, the best

criteria available (29) for which solutes to remove and which

to retain are scanty.

Few dialysis membranes under study are superior to

Cuprophane (R-Bemberg) in blood compatibility and none are
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non-thrombogenic. The development of a non-thrombogenic mem-

brane with good transport properties and adequate physical

strength would represent a significant contribution to the im-

provement of hemodialysis therapy.

E. NON-THROMBOGENIC MATERIALS

A logical approach to the problems presented above would

be to select a material that has previously demonstrated non-

thrombogenic character and adapt it for application as a hemo-

dialysis membrane. With the excellent review of Salzman (50)

and the summary of Bruck (51) in the literature, no attempt

will be made here to discuss the entire field.

A good portion of the research on non-thrombogenic sur-

faces has been directed toward the study of rigid materials

and hydrophobic materials for various applications such as

heart valves, cannulae, and catheters. While these materials

could be used in the artificial kidney circuit, they have no

application as hemodialysis membranes. The work of Gerson (52)

on modifying cellulose to make it non-thrombogenic attacked

the problem but was not completely successful.

The hydrogels of Lim and Wichterle (53) and the poly-

electrolyte complexes of Cross and Michaels (47) have demon-

strated reasonable results as non-thrombogenic surfaces,

probably because of their high water content (51). While high

water content is an advantage for a blood-contacting surface

(50), it is unlikely that that factor alone can impart long-

term blood compatibility to a material (51).

Heparinization of various polymeric materials has received

considerable study (54,55,56,57). Most investigators have
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devised techniques of modifying the surface to contain cationic

groups onto which the heparin is ionically linked. Lipps (35)

and Britton (36) attempted to heparinize cellulose by ionic

coupling, but were not completely successful. Martin et al.

(37) are pursuing the heparinization of cellulose by another

ionic bonding technique, but they have no conclusive results

on blood compatibility. Lagergren and Erickson (58) have ion-

ically bonded heparin to a rigid substrate and then have chem-

ically cross-linked the heparin monolayer. Their results are

quite impressive, but their technique could not be used to

treat a dialysis membrane.

F. HEPARINIZED HYDROGELS AS NON-THROMBOGENIC MATERIALS

Merrill and colleagues were the first to covalently bond

heparin to a polymer matrix without diminishing the biological

activity of the heparin (59). Their material is a polyvinyl

alcohol hydrogel and could be used as a dialysis membrane.

In vitro assessment of the material indicated that the material

does not activate the intrinsic clotting mechanism and, in

particular, does not activate Factor XII, the first step in

the intrinsic clotting cascade (59).

In vivo tests, the sine qua non for any non-thrombogenic

material, had been hampered primarily by the physical proper-

ties of the material. Usually poor fluid mechanics for blood

flow resulted in stagnation points near the vessel-hydrogel

junction or the cannula-hydrogel junction. Clotting factors,

activated by contact with the teflon cannula in an A-V shunt

configuration (Figure 2-5) or by damaged endothelial lining

(resulting from surgical difficulties) in the classic Gott
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position (Figure 2-6), were not washed downstream to be dealt

with by natural defenses. A thrombus adherent to the teflon

cannula in the A-V shunt or adherent to vessel wall at the

hydrogel-vessel junction in the Gott model would result, obscur-

ing valid evaluation of the material.

Recent in vivo results presented in a report by Wong (60)

and in a paper by Merrill et al. (61) have been most encourag-

ing. Improved A-V shunts with good hemodynamics were implanted

for periods of 5 minutes, 60 minutes, and 240 minutes. While

both the heparinized hydrogel shunts and the unheparinized

hydrogel controls remained patent for more than four hours,

electron microscopic examination of the control shunts revealed

numerous platelet thrombi adherent to the gel, having devel-

oped at some time between 5 and 60 minutes. Although the

thrombi had disappeared after some four hours, a layer of de-

granulated platelet-protein-fibrin coating was deposited on the

wall. In contrast, hydrogels with covalently bonded heparin

showed no thrombi at any time, relatively few clusters of

platelets on the surfaces in the interval between 5 and 60 min-

utes of implantation, and these platelets seemed not to be

granulated. After four hours of implantation, the surface of

the heparinized hydrogel was found to have no platelets on it

whatever. Though further in vivo evaluation of these materials

is necessary, the results indicate superior performance of the

heparinized gels relative to the unheparinized controls. Study

of this material for ultimate application in the artificial

kidney circuit is needed.
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G. STATEMENT OF OBJECTIVES

The objectives of this thesis are twofold:

1. To study the chemistry of the network hydrogel poly-

mers of Merrill and Wong. In particular, to study the

effect on physical and chemical properties of

various reaction variables.

2. To develop techniques for preparing membranes with

this material and to evaluate their transport

properties.

H. THESIS PROGRAM

To accomplish the first objective of this thesis, the

classic theory of rubber elasticity was modified for applica-

tion to a hydrogel system. This analysis was used to interpret

experimentally measured moduli of a range of hydrogel composi-

tions synthesized under carefully controlled reaction condi-

tions. Along with experimentally measured volume fractions of

polymer in the gels as a function of temperature, these data

are used to explain the effect of various reaction variables

in the system.

A procedure was developed to cast membranes of the hydro-

gel material with a suitable support. Permeability measure-

ments were made on these membranes.

I. PREVIOUS WORK

Previous studies on these hydrogels have been done by

Merrill and Wong and will be appropriately referenced in the

body of the thesis.

Odian and Leonard (30) studied polyvinyl alcohol membranes
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crossed with allyl methracrylate under radiation. Markle et

al. (28) cross-linked polyvinyl alcohol films with dialdehyde,

but their reaction conditions were considerably different than

those employed here.
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CHAPTER 3

THEORETICAL BACKGROUND

SECTION I. HYDROGEL CHEMISTRY

A. GENERAL ACETAL REACTION

The key reaction in the hydrogel synthesis is the acid

catalyzed acetalization of a carbonyl group and an alcohol.

The general reaction may be written:

R R OH R OR"
H+

C0 + R "OH -* C s C + H O (3-1)

R' R' OR" R' OR"

Hemiacetal Acetal

It proceeds through the unstable hemiacetal form and requires

the acid catalyst for conversion to the acetal.

At present the reaction mechanism shown in (3-2) is

accepted for acetal formation (62). Although acetal cleavage

was thoroughly examined, kinetic data on acetal formation are

poor because the reaction starts from the hemiacetal for which

precise concentration measurements are difficult. Qualitative

conformation for the reaction mechanism may be found in its

being the exact reverse of the thoroughly studied mechanism of

hydrolysis; all steps of the reaction are reversible. Since

the rate-determining step of acetalization is the formation of

cation II from the protonated hemiacetal I, it is to be

expected that substituents will have effects analogous to those
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they exert in the rate-determining step of acetal cleavage,

involving cation formation from the protonated acetal III.

The following influences of the alcoholic component are

evident from the mechanism of acetal formation. Branching in

the alcohol component decreases the concentration of hemi-

acetal, from which the acetal formation starts (63). The equi-

librium in the protonation step of the hemiacetal should depend

somewhat on the structure. The rate of acetalization will be

influenced by the alkoxy group of the hemiacetal, but will be

55
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independent of the entering alcohol molecule, since reaction

with the latter takes place after the rate-determining cation

formation.

The acetal reaction is an equilibrium reaction and, as

a rule, does not go to completion. Branching of the alkyl

group either in the aldehyde or in the alcohol decreases the

tendency to form acetals (64). The equilibrium being essen-

tially unfavorable for the formation of acetals, the main prob-

lem in their preparation is to shift the equilibrium by reduc-

ing the concentration of water. In favorable cases it is

sufficient to keep the concentration of water low by addition

of a large excess of alcohol. Another method is the removal of

water by azeotropic distillation (65).

The equilibrium of acetal formation does depend on the

structure of the alcohol. For example, the pentaerythritol

acetal of formaldehyde hydrolyzes 104 times more slowly than

formaldehyde diethyl acetal (66). Assuming similar rates of

formation, it follows that the six-membered ring acetal has an

equilibrium constant greater by a factor of about 10 . There-

fore, the preferred form in water solution (unfavorable equi-

librium) is the cyclic acetal.

Studies on acetal hydrolysis established a linear depend-

ence of the reaction rate on the acidity function of the solu-

tion (67). This is probably valid for acetal formation as

1. For acid concentrations [H +] of less than 1.0 N the acidity
function HO ~ pH. A complete discussion of the acidity
function and data on acetal hydrolysis are in reference
(67).



57

well, the anion of the acid being unimportant.

B. SYNTHESIS OF HYDROGEL NETWORK

In the synthesis of the non-thrombogenic network hydrogels

polyvinyl alcohol C-C + (PVA) is cross-linked by a mixture of
OH

aldehydes (formaldehyde and glutaraldehyde) via acetal forma-

tion with the secondary hydroxyls on the polymer backbone.

Heparin (Figure 2-4) is coupled to the matrix by acetalization

with the secondary hydroxyls on the 3-carbon of the anhydro-

glucose unit.

While the acetalization of PVA has been well studied be-

cause of its commercial importance in the production of resins

such as polyvinyl butyral and polyvinyl formal (j8), the reac-

tion conditions for the hydrogel system differ significantly.

1. Instead of reaction as bulk polymer, the PVA is

cross-linked in a 6-10 wt.% aqueous solution.

2. The dialdehyde glutaraldehyde (pentanedial) was

used as well as formaldehyde to effect cross-linking.

3. Heparin initially present in the reaction mixture

with the PVA is grafted to the matrix.

4. Milder reaction conditions are used to avoid degrada-

tion of the biological activity of heparin.

With formaldehyde as the specific aldehyde the reaction

schemes shown in (3-3) below are envisioned.

HEP represents a heparin molecule grafted to the matrix.

Since the primary alcohol methanol is also present in the reac-

tion mixture, structures such as shown in (3-4) may also be

present. However, based on the discussion of the acetal mech-

anism (Section 3-I-A), the cyclic acetal is the most stable
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form. The principal effect of the formaldehyde is probably

a modification of the polymer backbone by the formation of

cyclic acetals.

Since each end of a glutaraldehyde can participate in a

reaction, it functions as the key cross-linking agent. The

following reactions can be proposed.

(3-3)

(3-4)
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Ultimately one cannot rule out a reaction of glutaraldehyde

with four different PVA chains, but the probability of this

would seem low. Again recalling the inherent stability of the

six-membered ring, the participation of one glutaraldehyde in

two cyclic acetals is probably favored.

Methanol could function here also as a "capping" reagent.

A few potential structures are as shown in (3-6). Clearly

other variations are possible.
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0

HEP

Clearly other variations are possible.

C. PREFERRED REACTION COMPOSITION

Previous work by Wong (69) has led to a preferred reac-

tion mixture for synthesis of the hydrogels. The casting solu-

tion contains 0.060 weight fraction polyvinyl alcohol (volume

fraction 0.047) with other components listed in Table 3-1.

Concentrations are expressed directly and as a molal ratio of

the component to a repeat unit -CH 2 - CHOHt of polyvinyl alco-

hol (mer weight 44 grams).
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TABLE 3-1. STANDARD (CONTROL) HYDROGEL

Reaction Mixture

concentration mole ratio

Polyvinyl alcohol 4CH2 CHOHt

Formaldehyde (HCHO)

*Methanol (CH 3OH)

Glutaraldehyde (OCH(CH2 ) 3CHO)

Sulfuric acid (H2So 4 )

Acetic acid (CH3COOH)

6.0 wt %

6.0 wt %

ca. 2.0 wt %

0.076 wt %

0.06 N

1.0 N

*Methanol enters the reaction mixture because it is present

as a stabilizer (ca. 12 wt %) in stock formalin solution

(ca. 37 wt % HCHO).

TABLE 3-2. HEPARIN-HYDROGEL REACTION

Reaction Mixture

concentration mole ratio

Polyvinyl alcohol 4CH2 CHOH*

Formaldehyde (HCHO)

*Methanol (CH3OH)

Glutaraldehyde (OCH(CH2) 3CHO)

Sulfuric acid (H2 so 4 )

Acetic acid (CH3 COOH)

Heparin, sodium

6.0 wt %

6.0 wt %

ca. 2.0 wt %

0.076 wt %

0.06 N

1.0 N

1.0 wt %

1.00

1.47

0.50

0.0056

0.0440

0.73

1.00

1.47

0.50

0.0056

0.0440

0.73

0.03**

**0.03 mole ratio of heparin hydroxyls (taken as 5 per tetra-

mer) to polyvinyl alcohol repeat units.
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The mixture is normally reacted at 700 C for 60 minutes

followed by quenching at room temperature in buffered saline

(pH = 7.4, 0.30 N in ions).

D. LIMITATIONS ON REACTION CONDITIONS

The choice of feasible reaction conditions is limited pri-

marily by the heparin. Since heparin is insoluble in all sol-

vents except water, many of the classical coupling reactions

such as diisocyanate reactions cannot be used. In addition,

there are numerous references in the literature documenting

the deactivation of heparin when exposed to acid in aqueous

media (70,71,72). Since there is some indication that higher

molecular weight species of heparin are biologically more

active (73), it could be postulated that the exposure to acid

causes a cleavage of the glucosidic linkages. More likely,

however, the heparin undergoes a change in conformation that

affects its activity (74). Heparin normally exists in solu-

tion in a helical conformation held together by internal hydro-

gen bonds. The acid media could interfere with the hydrogen

bonding and thereby permit a change in conformation.

In their earlier work, Merrill et al. (59) demonstrated

that for a certain range of reaction conditions the heparin

would remain viable. Their data appear in Figure 3-1, where

the ordinate "(Protamine/Heparin) Weight Ratio" can be inter-

preted as a measure of the activity of heparin remaining after

reaction relative to the control value at 0.0 N acid. Reac-

tion conditions are therefore limited to one hour at 70
0 C for

acid concentrations less than 0.2 N. Somewhat longer exposures

at lower temperatures could be tolerated.
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In the discussion of the general acetal reaction (Section

3-I-A) it was noted that acetal reactions are usually equili-

brium-limited and that forcing conditions for removal of water

are often employed. Unfortunately the solubility properties

of heparin prevent the addition of any significant amount of

miscible, nonaqueous solvents such as alcohols, methyl acetate,

or acetone.

Besides the limitations imposed on the reaction conditions

by the necessity for preserving heparin activity, experimental

realities also preclude the synthesis of certain compositions.

This will be noted in the experimental section.

E. SOLUTION PROPERTIES OF POLYVINYL ALCOHOL

Polyvinyl alcohol, the "backbone" of the hydrogel matrix,

exhibits some curious behavior in aqueous solution. On the

basis of viscosity data Dieu (75) assigned a theta tempera-

ture1 of 97 0 C to the PVA-H 20 system and negative values for

Flory's thermodynamic solution parameters K1 and $ (26).

Upon heating from room temperature the intramolecular expansion

factor a decreases toward unity and the osmotic second virial

coefficient toward zero. These results were confirmed by the

work of Matsuo (77).

In the recent literature Tager et al. (78) have claimed

the existence of both a LCMT and a UCMT. Their data indicate

1. This is a lower critical mixing temperature (LCMT).
Phase separation occurs when the temperature is increased to
the LCMT. The term "theta temperature" as defined in Flory
(76) is usually applied to a system with an upper critical
mixing temperature (UCMT), i.e., phase separation occurs as
the solution is cooled to the UCMT. See reference (82).
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that the LCMT is approximately 240*C in contradiction with

Dieu's value of 97*C, but their identification of a UCMT at

higher PVA concentrations appears to be a misinterpretation of

the onset of gelation due to the formation of a semicrystal-

line structure (79). It is interesting to note that their

data on the variation of intrinsic viscosity and second virial

coefficient with temperature do indicate the same trends as

Dieu (5) and Matsuo (77).

The recent paper of Klenina et al. (80) clearly demon-

strates the complexity of the PVA-H2 0 system and possibly in-

dicates the source of some of the discrepancies in the litera-

ture. Klenina presents a diagram showing the change in super-

molecular order in PVA-H2 0 solutions (Figure 3-2). He identi-

fies four regions:

1. A region where visual solution of the PVA does

not occur;

2. A region where visual solution occurs, supermole-

cular order at a colloidal degree of dispersion

being present in the system, the level of this

order progressively increasing as the temperature

increases. The upper boundary of region 2 is found

from the point corresponding to the start of the

melting process in the main part of the supermole-

cular formations; as a rule, the start of the melt-

ing corresponds to the maximum value of turbidity

at each concentration of the solution;

3. Supermolecular order in region 3 breaks down to
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Figure 3-2. Diagram Showing the Change in Supermolecular Order
in Aqueous Solutions of Polyvinyl Alcohol. From
Reference (80).
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its minimum level characteristic of each concentra-

tion which corresponds approximately to the line

T = 125*C;

4. The region above 125*C. No data was taken in this

region.

Fuji (81) has suggested that many of the properties of

PVA, both as a solid and in solution, are highly dependent on

the stereoregularity of the polymer chains. These are deter-

mined by the conditions of polymerization and the starting

monomer. In addition, small variations in the amount of resi-

dual acetate on the PVA chain could significantly affect the

behavior.

It appears that any interpretation of the PVA-H2 0 phase

behavior must contend with several competing phenomena. Clas-

sical polymer characterization techniques such as light scat-

tering, osmometry, and intrinsic viscosity are dilute solution
1

measurements, and these are the basis of the data of Dieu,

Matsuo, and Tager. For a polymer (PVA) that can hydrogen bond

with a solvent (H2 0) it is expected that lower temperatures

will favor more interaction and hence an expanded coil. As

temperature rises, the interaction is less favorable and the

coil in dilute solution shrinks, which is what the data of

1. A dilute polymer solution is one in which the expanded
polymer coils are separated from one another by solvent. The
upper limit of a dilute solution is the concentration where the
coils just touch, and above this limit the solution is termed
concentrated. Since the size of a polymer coil in solution is
a function of its molecular weight, one can only approximately
estimate this limit. The result is in the range of 0.6% PVA
in water. See Appendix C.
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Dieu, Matsuo and Tager indicate.

For concentrated PVA solutions the existence of super-

molecular order in the solution is well documented (8O,83,84).

Concentrated PVA-H2 0 systems appear to be metastable below

T 125*C and with sufficient time will form gel particles

(Klenina's supermolecular order) of equal refractive index in

the mixture. It has been suggested that these gel particles

are of a paracrystalline nature (86). As temperature is in-

creased, the crystalline regions slowly melt which permits a

swelling of the particle in the mixture, hence the increase in

the size of particles noted by Klenina (U).

Further clarification of the PVA-H2 0 phase behavior is

needed. The importance of PVA-H2 0 phase behavior to this work

can be stated in two general categories.

1. Determination of the Molecular Weight of Polyvinyl
Alcohol

PVA is soluble in only a limited number of solvents,

and water is the only one for which data using the classical

methods of polymer characterization are reported in the litera-

ture. Klenina's data indicate that method of preparing the

aqueous PVA solution could influence the results. In addition,

differences in residual acetate content and in stereoregularity

could affect the data. Even dilute solutions of PVA will show

some phase separation upon aging at room temperature (87).

Indeed, the discordant results given by five different Mark-

1. "Solution" is used loosely here since the supermolecular
order could really be a separate phase (85).
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Houwink relationships for PVA in water at 25*C (75,88,89,90,91)

demonstrate the problems cited above. For this work the corre-

lation by Beresniewicz (90) gave results that were most in

line with data supplied by the manufacturer.

2. Interpretation of Experimental Results on Various
Hydrogels Synthesized for Study

The preferred composition for hydrogels described

earlier resulted from experimental efforts to prepare a homo-

geneous, heparinized hydrogel with adequate physical proper-

ties for in vivo blood compatibility evaluation. Since the

composition had shown reasonable blood compatibility, it is

the most feasible point to begin the work of this thesis.

However, it is clear that any component in the reaction could

have several effects.

a. It is directly involved in the chemical

reactions;

b. It has affected the equilibrium of the reactions;

c. It has affected the complex phase behavior of

the PVA-H2 0 system.

These various factors must be considered in analyzing

experimental results.
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CHAPTER 3

THEORETICAL BACKGROUND

SECTION II. RUBBER ELASTICITY THEORY

A. DEFINITION OF NETWORK PARAMETERS

It will be helpful at this point to define the parameters

normally used in the discussion of a polymer network.

M Mc

Polymer Chain Subchain

Polymer Chain with

Crosslinks

Figure 3-3. Idealized Network.

The polymer network is comprised of N polymer chains of molecu-

lar weight M before cross-linking. Although illustrated here

as rather extended chains, the real polymer coils follow a

very tortuous and winding path throughout the bulk material.

In the cross-linked network there are v/2 cross-linked points

or a total of v cross-linked subunits of molecular weight Mc'

if each cross-link is taken as a tetrafunctional crossover.

Since the theories are developed in terms of the number of sub-

units cross-linked, rather than in the number of cross-link-
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ages, the terms chosen are immediately applicable to networks

of other functionalities. Because the network is formed from

chains of finite molecular weight, it is clear that the net-

work will contain some number of subunits cross-linked at only

one end. These subunits are inactive in deformations of the

network and appropriate network corrections are employed to

relate v e, the effective number of subunits determined by an

appropriate experiment, to v, the total number of subunits.

B. STUDY OF HYDROGEL NETWORKS

In the study of the hydrogel networks there are princi-

pally two questions to be answered.

1. What are the physical properties of the material as

a function of the various components in the reaction

mixture?

2. Are the various components contributing to cross-

linking of the network, to modification of the

polymer backbone, or are they affecting the course

of the reaction in some other manner?

These questions can be studied by direct experiment and by

appropriate theoretical analysis of experimental data to give

v e and the analogous parameter Mc as a function of reaction

conditions.

Neilson (92) has discussed the various methods used in

the study of cross-linked polymer networks. For highly swol-

len materials such as the hydrogels, the applicable methods

are the swelling experiment and the tensile experiment.



72

1. Swelling Theory

When a cross-linked polymer is immersed in a liquid,

which in the absence of cross-links would be a solvent, the gel

swells until the osmotic forces tending to swell the network

are just balanced by the elastic forces of the network. The

free energy change AF involved in the mixing of pure solvent

with the initially pure, amorphous, unstrained network is con-

veniently considered to consist of two parts: the ordinary

free energy of mixing AFM, and the elastic free energy AFel

consequential to the expansion of the network structure, which

may be written:

AF = AFM + AF (3-7)

A- suitable expression for AF, may be obtained from the Flory-

Huggins theory of polymer solutions (76), bearing in mind that

the number of polymer molecules is taken as zero, since no

individual polymer molecules exist in the structure. The rub-

ber elasticity theory, based on an assumption of no internal

energy change on swelling except as accounted for in AFM'

provides the substitution for AFel (76) . The final equation

is:

- [ln(l-v2) + v2 + X v] V 1 ( N) (vl/3 - (3-8)
0

where v2 represents the equilibrium volume fraction of polymer,

V is solvent molar volume, and (v /V ) is the number of effec-

tive subchains per unit unswollen volume.

Unfortunately, the calculation of (ve/Vo) from the swel-

ling experiment is rather sensitive to the value of Flory's
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Chi Factor, X1 , which is a parameter characterizing the inter-

action of a given polymer and solvent at a given temperature.

It can be calculated from values of the second virial coeffi-

cient as measured by osmometry or light scattering in dilute

solution. Equilibrium vapor pressures of polymer-solvent

solutions can also be used to determine values of Xl.

For a system with the complex phase behavior of PVA, any

experimental technique to measure X, will be plagued with the

difficulties discussed earlier (Section 3-I-E). Extrapolation

of a X, value from dilute solution measurements to a concen-

trated PVA-H 20 mixture are dubious. The tacticity of the PVA

molecule could be expected to affect the value of X1 . Liter-

ature values of X, for PVA-H2 0 solutions (93,94) are in dis-

agreement, probably for the reasons cited above.

There is an additional problem in the application of swel-

ling theory to analysis of the hydrogel material, again asso-

ciated with the X, factor. During the course of the reaction

both acetal cross-linking and acetalization of the polymer

backbone are occurring. What was initially PVA will be a modi-

fied polymer with vinyl alcohol units, formal units, and some

grafted heparin. The X-factor would thus vary with each reac-

tion composition, making analysis of the hydrogels by this

technique a hopeless quandary.

2. Tensile Experiments

Fortunately, calculation of v /V and M from elastice o c

modulus theory does not require a knowledge of thermodynamic

parameters for the system. Since the network hydrogels do
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exhibit characteristic rubber-like elasticity, the application

of elastic modulus theory is a viable alternative. In the fol-

lowing sections the modulus theory for application to a swol-

len hydrogel system will be developed.

C. RUBBER ELASTICITY THEORY

To study a cross-linked elastomer by means of its rubber-

like elastic behavior, one performs a standard tensile experi-

ment. A sample of the material is cut, usually in a dumbbell

shape, and the force-elongation behavior is measured on appro-

priate apparatus, such as an Instron Universal Test Machine.

The parameters (v /V) and Mc can be determined from the force-

elongation curve at low extensions.

The first theory giving a direct and logical explanation

of the behavior of cross-linked elastomers in terms of molecu-

lar structure was suggested in 1932 (95). Further refinements

of this theory (96-102) have produced quantitative relation-

ships among the elastic properties of cross-linked high poly-

mers for any kind of deformation. Experimental results on

various polymer systems have indicated that, as a result of

recent refinements (102), the theory represents the experimen-

tal behavior to a satisfactory degree.

Appendix A presents the derivation of the theory of rubber

elasticity for isothermal deformations of the sample. The fol-

lowing assumptions are important in the development of the

theory:

1. The cross-links are introduced into an amorphous

polymer unswollen by any diluents.
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2. The v subunits of the network are long enough, the

cross-linking degree not excessive, and volume

effects negligible in order to assure the validity

of the Gaussian equation for the conformations

of the subunits.

3. The deformation of the chains must be affine to

the deformation of the sample.

4. The deformation of the sample occurs at constant

volume.

5. The contributions made by the effective subunits

to the total retractive force must be additive.

6. The deformation of the sample is a completely

reversible process in the thermodynamic sense.

A corollary of assumption 2 is that the theory is restricted

to low deformations (i.e., a = L/L < 3). Gaussian statistics

do not apply if stress crystallization occurs during deforma-

tion nor do they describe the subunit conformations at large

deformations. Langevin statistics can be used to predict elas-

tic behavior at larger deformations (103).

With these assumptions and restrictions the following

equation for unidirectional elongation of the sample at constant

temperature may be derived (Appendix A):

T = = RT (e*) ($) (a - ) (3-9)
o 2 

rt

Stress T in force per unit initial cross-sectional area is a
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2function of (a - 1/a2 ) with a = L/L , the elongation in the

x-direction relative to a gauge length L0 . (V /V) is the num-

ber of effective subunits expressed in moles per unit sample

volume.

The parameter (r /r ) enters the derivation in the devel-
1 0

opment of the expression (eqn. A-21) for the Helmholtz free

energy of deformation from the statistics of a single chain

and is frequently called the "front factor." The term r. is

the mean square end-to-end distance for the network subunits1

in the undeformed isotropic state, and r2 is the corresponding

mean-square end-to-end distance for the undeformed subunits

in the absence of cross-links. In general, the two quantities

will not be equal. In fact, r. depends upon the volume of the
1

network while r2, which is characteristic of the polymer, de-

pends upon bond lengths, bond angles, potential hindering rota-

tions, and, accordingly, upon temperature. Earlier theories

such as those of Kuhn (96), Wall (97), Flory and Rehner (99),

Treloar (100), and Hermans (101) utilized the constant internal

energy assumption (i.e., (DE/DL)TV = 0) and differ from the

result presented in equation (3-9) only by the absence of the

front factor, which was considered equal to one.

D. NETWORK STRUCTURE AND DEFECTS

In the literature experimental results are frequently re-

ported in terms of Mc, the molecular weight of a subunit,

rather than as the analogous parameter (v /V). These parameters

1. The network contains (ve/V) effective subunits per unit
sample volume and each subunit has a characteristic molecular
weight Mc. Refer to Figure 3-3.
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may be related by the following definitions. With reference

to Figure 3-3 let M be the number average molecular weight of

.1 1/p be the specific
the subchains between cross-links and v

volume of the polymer (amorphous density p). The total number

of subchains expressed in moles is

V 7(3-10)
vMc

where V is the sample volume.

As was discussed in Section 3-II-A and in Appendix A, it

is necessary to distinguish between ve , the number of subchains

cross-linked at two points and hence actively contributing to

the retractive force, and v, the total number of subchains as

defined above. Suppose that the material consisted originally

of N individual polymer chains of molecular weight M (Mn, num-

ber average molecular weight, for a polydisperse polymer).

The minimum number of cross-links which would be required to

convert this material into a continuous network is N, i.e.,

one cross-link per molecule. The chemical reactions which link

the pairs of chains in the unstrained and entangled mass occur

at random. Thus the cross-links are not shared in any regular

way between the chains and, when N cross-links have been intro-

duced, many chains will remain unconnected to the network.

Generally, cross-linking in excess of 3N (104) is sufficient to

assure that nearly all of the original macromolecules are tied

to the network.

Two ways in which sections of chains can be connected to

1. Subchains of the network are equivalent to subunits in
the statistical theory.
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the network at only a single point are shown in Figure 3-4.

The existence of loose ends (designated (c)) remaining from

the original polymer molecules is an inevitable feature of all

networks formed from polymers of finite molecular weight.

There are 2N such loose ends, and a quantitative allowance can

be made for their presence (105). Short loops such as (b) are

wasted except insofar as the loop may be involved in entangle-

ments not otherwise operative. The proportion of these short

path cross-linkages cannot be quantitatively discounted, but

their number should be small unless the cross-linking is carried

out in a dilute polymer solution, a case of no practical

interest.

Entanglements such as (d) become permanent only in the

presence of definite cross-linkages. Linear polymer chains of

high molecular weight normally are almost hopelessly entangled

with their neighbors. This type of entanglement restricts the

movement of the chains to a lesser extent than the introduction

of an extra cross-link, but a number of entanglements must in-

crease the effective number of junction points and hence the

tension for a particular value of the extension. Bueche (106)

has suggested an empirical correction for entanglements involv-

ing an extrapolation of the modulus to zero cross-links, but

no one has presented a theoretical treatment of the problem.

If it is assumed that there will be no completely uncon-

nected chains in the final network, then at least one cross-

link will occur somewhere along the length of the original

molecules. Thus the first (N-l) cross-links may be imagined
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(a) (a)

(c)

e cross-links

o chain ends

(a) active subchains

(b) inactive loops

(c) inactive loose ends

(d) entanglements

FIGURE 3-4. Network Structures (from reference 103).
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to be introduced at the rate of one per chain so that the N

molecules are just connected into a continuous system. It will

not, however, be a network and it may dissipate all orienta-

tions imposed by a deformation if given sufficient time for

rearrangement of the system. The remaining [v/2 - (N-l)]

cross-links can now be introduced at random, each additional

one imparting one closed circuit and hence two active sub-

chains to the structure.

Hence taking N >> 1,

v = v - 2N (3-11)

Now N may be expressed in moles as

N = -- (3-12)
vM

Combining Equations (3-10), (3-11), and (3-12) gives the net-

work correction

2M
Ve = v(1 -1 ) (3-13)

or

V e - (1 - ) 
(3-14)

VMvM
c

Substitution into Equation (3-9) gives the following relation

for stress T as a function of (a - 1/a 2

S r. 2M

T =(-1) ( - --c) (a - 2 (3-15)
vM 2

c r

E. EXPERIMENTAL VERIFICATION OF THE THEORY OF RUBBER
ELASTICITY

Considerable research activity has been centered on the

problem of the dependence of the force on elongation at con-
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stant temperature. Certain experimentally observed deviations

from the theoretical predictions were unexplained and cast

serious doubt on the correctness of the theory (107). Cifferi

and Flory (108) indicate that the deviations arise from the

difficulty of performing the force-elongation measurements

under true equilibrium conditions, which is a principal assump-

tion in the development of the theory (Appendix A).

From Equation (3-15) for a given extent of cross-linking

(Mc ) the value of [T/(a - 1/a2 )] should be constant. Gumbrell,

Mullins, and Rivlin (109) illustrate the kind of deviations

observed in their experimental results on samples of natural

rubber. Instead of [T/(a - 1/a2 )] equal to a constant, they

found that their data fit an equation, originally proposed by

Mooney (110), having the form:

2
[T/(a - l/a )] = 2C1 + 2C2 (1/a) (3-16)

where C 1 and C2 are constants. The constant C1 was shown to

increase with the degree of cross-linking, as predicted by the

rubber elasticity theory, while the constant C2 was shown to

decrease when the sample was swollen with solvent. On this

basis it was suggested that the theory was valid for highly

plasticized elastomers.

Performing experiments on natural rubber and polydimethyl-

siloxane similar to those of Gumbrell et al. (109), Ciferri

and Flory (108) found that the curves of [T/(a - 1/a2 )] versus

1/a obtained during elongation differed from those obtained

during retraction from the maximum elongation for the same

sample. Furthermore, the slope of the curves obtained during
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the elongation, identified with the parameter 2C 2 , decreases

with the hysteresis for various polymers all having the same

degree of cross-linking. A similar and even more striking

decrease of C2 with the decrease of the hysteresis was observed

when the same sample was plasticized with a solvent, or when the

temperature or the time during which the sample was maintained

at each elongation was increased. Dynamic experiments reported

by Ferry (111) also support the view that the C2 term is asso-

ciated with time-dependent effects arising from the failure to

obtain true mechanical equilibrium. These results are inter-

preted to mean that under ideal conditions, i.e., equilibrium

between the tensile and retractive force at each elongation,

the relationship between force and elongation is correctly

represented by the theoretical equation (112,103).

F. EXPERIMENTAL STUDIES ON THE EFFECT OF MOLECULAR WEIGHT

There are two aspects of molecular weight which enter into

the stress-strain equation (3-15). The first of these is con-

cerned with the network imperfections which are taken into

account by the correction factor (1-2M c/M) as discussed in

Section 3-II-D). Flory (104) has studied the problem by pre-

paring a set of samples with constant Mc but varying M. This

was accomplished by copolymerizing isobutylene with small but

variable amounts of isoprene, which gave copolymers containing

different amounts of isoprene units distributed randomly along

the chains and available for vulcanization. After fractiona-

tion of the polydisperse copolymers, their molecular weight was

determined. Samples were then vulcanized and the elastic
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retractive force measured.

Theory (eqn. 3-15) predicts that at constant T, a, and Mc

a plot of stress against l/M should be linear. Flory's data

(104) showed that for each degree of unsaturation in the uncross-

linked polymer, and hence for constant Mc, the stresses gave

good straight lines when plotted as a function of (1/M). In

addition, the values of Mc for each group of samples, obtained

from the slope of the plot of stress versus (1/M), agreed well

with values of Mc predicted from the theory of gelation. In

view of the many experimental difficulties involved the results

are not sufficiently precise to allow a clear differentiation

between Flory's form of the correction factor (l-2Mc/M) and

other modifications such as the one proposed by Scanlan (113).

The second important effect of molecular weight is the

dependence of the modulus on Mc or on the equivalent parameter

Ve . In order to verify experimentally the theory's prediction

of the dependence of the modulus on the degree of cross-linking,

the number of effective cross-links must be known with preci-

sion and, as discussed in Section (3-II-E), the modulus must

be determined under equilibrium conditions.

Flory, Rabjohn, and Schaffer (114) have taken advantage

of the quantitative nature of the cross-linking reaction of

disazodicarboxylates to prepare a series of samples of natural

rubber and GR-S (butadiene-styrene) rubber with known values of

M from linear polymers of constant M. Their results showedc

that the observed and predicted tensions were only in rough

agreement as to magnitude. At high degrees of cross-linking
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the stress was less than predicted, while at lower extents of

cross-linking the stress was higher than predicted. In addi-

tion, the stress did not extrapolate to zero at zero degree of

cross-linking.

Mullins (115) performed a similar series of experiments

using dii-tertbutyl peroxide to cross-link samples of natural

rubber. As a result of stress-strain measurements on these

samples, swollen to assist the attainment of equilibrium, it

appeared that a plot of stress against 1/Mc was linear, some-

what steeper than predicted by theory (eqn. 3-15), and extra-

polated to a finite value at zero cross-linking. Moore and

Watson (116) compared the experimental value of the modulus

determined by Mullins (115) with that calculated on the basis of

an independent chemical estimation of the number of cross-links.

Their results also indicated that the measured modulus was con-

sistently greater than the one calculated according to the the-

ory. The discrepancy with the theory has been attributed to

the effect of chain entanglements which, by restricting the

chain motions, function as additional cross-links.

Yet a different result was found by Bueche (106) who

studied polydimethylsiloxane crossed by high energy electrons.

Estimating the degree of cross-linking in his samples by a

calibration of the effect which the radiation induced on low

molecular weight silicones, Bueche found that the modulus from

stress-strain measurements was only one-half of that predicted

by Equation (3-15). This result agrees with the prediction of

the theory of James and Guth (117).
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Certainly, an exact chemical estimation of the number of

active cross-links is extremely difficult when one considers

the myriad of possible reactions occurring. Also, the complex-

ity involved in the detailed theoretical treatment of a real

network with entanglements, closed loops, and other structures

further complicates a quantitative interpretation of these ex-

perimental results. Apart from the problem of experimentally

verifying this quantitative dependence of modulus on the degree

of cross-linking, the theory has met with considerable success

in predicting the behavior of elastic networks for isothermal

deformations.

G. MODIFICATIONS OF RUBBER ELASTICITY THEORY FOR APPLICATION
TO PVA HYDROGELS

To apply the theory of rubber elasticity to a study of the

polyvinyl alcohol hydrogel system, there are two important

modifications which must be made. For one, the parameter v,

the total number of subchains in the network defined by Equa-

tion (3-10), and the parameter N, the number of polymer chains

present before cross-linking (eqn. 3-12), are defined in the

conventional theory, assuming that the cross-linking is carried

out in bulk amorphous polymer. Clearly, this is not the case

for the hydrogels synthesized from reaction mixtures containing

from 6-10% PVA by weight. The definitions are appropriately

modified by the inclusion of the term v2 ,i, representing the

volume fraction of polymer (cc polymer/cc solution) at the

cross-linking volume denoted by subscript i. Hence,

Vi
v=--- v (3-17)

vM
c
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V.
N = - V 2 . (3-18)

By use of the expression from Flory (76)

v 2  = 7 C 2 . (3-19)

the definitions may be written in terms of C2,i' the concentra-

tion of polymer (g/cc) in the reaction volume:

V.
v = -C (3-20)

M 2,i

V.
N =- C (3-21)

M 2,1i

The meaning of the reaction volume denoted V deserves

some comment. During the course of a hydrogel synthesis

both cross-linking and chain modification are occurring. As

might be predicted from the fact that the polymer polyvinyl

formal is completely insoluble in water, the conversion of a

small portion of the PVA backbone to cyclic formal makes it

less hydrophilic and hence the structure tends to contract

during the synthesis reaction. Since the acetal reaction is

reversible in acid media, it is assumed in this work that the

system volume at the end of the reaction time (usually one hour)

represents the relaxed state of the sample. An equivalent

statement is that the cross-links are unstressed at volume V .

Another important consideration is the validity of the

statistical treatment for cross-linking in a system swollen

with solvent. From literature values of unperturbed polymer

coil dimensions (118), it is possible to estimate the concen-

tration of polymer at which the polymer coils just touch one

another (C 2,critical). As shown in Appendix C, this value for



87

PVA in water is 0.006 g/cc, or approximately 0.6 wt %. Since

the concentrations of interest in this work are tenfold greater

than C2,critical' an equal segment density distribution, as dis-

cussed in Flory (76), may be safely assumed. This means there

is an equal probability of finding polymer segments in all vol-

ume elements of the system, and thus the assumption of uniform

random cross-linking should be valid.

In this work the network correction factor proposed by

Flory (l05) will be employed (eqn. 3-11). Combining Equations

(3-20), (3-21), and (3-11), it can be seen that the form of the

network correction is identical to the bulk polymer case.

V C . 2M
_ = (1 - M (3-21)

V M c

Comparison of Equation (3-21) above with Equation (3-14) for

the bulk polymer shows that they differ only by the replacement

of 1 /7(=P2) with C2 ,i'

While the possibility exists for more network imperfections

of the type not discounted by the theory (as discussed in Sec-

tion (3-II-D)) when the cross-linking is carried out in the

presence of solvent, no theoretical basis exists for their

evaluation. Consistent application of the Flory correction

factor should permit valid comparisons among various hydrogel

compositions, though the absolute values of Mc may be somewhat

in error.

Figure 3-5 illustrates the need for the second important

modification of the rubber elasticity theory for application to

the PVA hydrogel system. Buffered saline (Appendix D) is used
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CROSS-LINKS FORM SAMPLE EQUILIBRATES
AT 70 0 C IN VOLUME AV IN BUFFERED SALINE

Vi AND THE REAC- AT 70C; VOLUME V
TION ENVIRONMENT

AV
2

SAMPLE EQUILIBRATES
IN BUFFERED SALINE
AT 25*C; VOLUME V

s

FIGURE 3-5. Volume Changes of Hydrogel Sample

for all equilibrations because of its physiological signifi-

cance (3) and because of the inherent stability of the acetal

bond in neutral or basic media. At the end of the reaction

time the cross-links are in a relaxed state at volume V , the

reaction temperature (70*C), and the reaction environment

characterized by the presence of aldehydes, acids, and water

more or less as specified in the synthesis composition (Section

3-I-C). Volume change AV1 corresponds to a change of volume of

the hydrogel sample on equilibration with buffered saline at

70*C, and AV 2 represents the volume change of the sample asso-

ciated with equilibration in buffered saline at room tempera-

ture where the force-elongation data is taken.

Experimentally it is not possible to determine the exact

value of AVI, but in the work of Lee (119) it was demonstrated

to be at most 10% relative to V j, which is insignificant com-

pared to AV 2 as will be shown in the results. For all intents

and purposes a negligible approximation is involved in letting
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V. = V!. However, the isotropic deformation introduced into
1 1

the network by the volume change AV 2 associated with equilibra-

tion of the sample in room temperature buffered saline must be

taken into account to correctly evaluate stress-strain data for

M or (v /V.).c e 1

Appendix B presents the derivation of the correction for

swelling. The earlier analysis (Appendix A) must be modified

since the sample is now deformed by both isotropic swelling

and unidirectional elongation. By introduction of a swelling

factor 6 = V./V , where V. is the reaction volume and V is the

swollen volume, the final expression can be used to analyze

force-elongation data obtained on the swollen samples for Mc

and (v /V). In terms of (v /V.), moles of effective subchainse e1

per unit reaction volume, the equation for stress expressed as

force per unit area of the swollen, unstretched sample reads:

v 1/3 r.2

A RT (a)- (3-22)
o1's i r

o0o

The parameter a = Ls/Lo, both lengths being measured in the

swollen condition. Similarly, the moles of effective subchains

per unit swollen volume can be calculated as:

"v -2/3 r.
T = RT( (a - 2 (3-23)

Vs Ota
r

Finally, by use of Equation (3-21) the results can be expressed

in terms of Mc as:
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C .j 1/3 r. 2M
T= RT i 61 (1- -. )(a - (3-24)

co o

The subscript o on the parameter (r /r )o denotes the value

of the parameter at the temperature of interest in the absence

of additional diluent. For loosely cross-linked networks,

which is the case in this study, the parameter may be taken

equal to one with negligible error (120).

H. EXPERIMENTAL CONSIDERATIONS IN APPLICATION OF THE THEORY

In the application of this theory to the study of a swollen

cross-linked network, one must remain cognizant of those fac-

tors which would cause non-Gaussian behavior of the subchains

and thus violate one of the basic assumptions of the theoreti-

cal development. Among these are finite extensibility of the

chains, stress crystallization, and the presence of microcrys-

talline regions or inhomogeneities in the network structure.

Meares (103) has presented a good discussion of these phenomena

and attempts at theoretical treatment of the problems.

Mullins (121) has pointed out that swollen samples tend to

reach the limit of finite extensibility at lower elongations

then dry samples. In this work only small deformations are

considered (a < 1.5) so this should present no problem. This

restriction to low elongations also benefits the constant vol-

ume deformation assumption. Stress crystallization normally

occurs only at higher extensions and is unlikely in a highly

swollen network.

Earlier work by Wong (69) has shown that reaction at higher



91

levels of acid and temperature produces grossly microporous

material. Electron microscopy revealed "vacuoles" connected

by dense material, presumed to be cyclic acetal. Such hydro-

gels cannot be studied by the theory presented, and in this

work extreme reaction conditions such as would lead to inhomo-

geneous structures were avoided. Indeed, hydrogels of this type

would have little value for application as hemodialysis

membranes.

Microcrystallization of the PVA component of the gel as

suggested in Section 3-I-E cannot be completely ruled out.

Solutions of PVA and water containing 6 wt % have been observed

to become turbid upon standing, suggesting a phase separation

(possibly crystallization), but hydrogels of the same polymer

content will maintain their clarity indefinitely on storage in

buffered saline. It is to be supposed that the presence of

cyclic acetals along the backbone of the polymer as well as

grafted heparin in some compositions should reduce the level of

crystallization, if any, as compared to a PVA solution of equal

concentration.
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CHAPTER 3

THEORETICAL BACKGROUND

SECTION III. MEMBRANE PERMEABILITY MEASUREMENT

Measurement of the transport properties of hemodialysis

membranes has been the subject of an extensive theoretical

and experimental study by Smith, Colton, Merrill, and others

(9,122). In this work the interest is in the measurement of

the permeabilities of hydrogel membranes for comparison with

conventional cellulosic membranes for which an excellent data

base exists (123,124). The objective in this section is to

summarize the appropriate equations, principally from refer-

ence 9 that will be used in this work.

A. ANALYSIS OF EXPERIMENTAL DATA

Similar to the situation existing in a hemodialyzer, the

experiment to measure the transport properties of a membrane

may be visualized, as shown in Figure 3-6. In the absence of

a hydrostatic pressure gradient, the transport of a solute

from the side of high concentration 1 to the side of low

concentration 2 occurs by a diffusive mechanism through the

membrane of thickness Ax. Transport through the liquid bound-

ary layers adjacent to the membrane is characterized by the

transport coefficient kfo, and transport through the membrane

is described by the membrane permeability Pm. Any accompany-

ing volume flow or osmotic flow is assumed negligible, which

appears justified for the condition of constant chamber vol-

umes V1 and V 2 and dilute solutions (9).

In terms of solute concentrations at the membrane surface
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Figure 3-6. The Dialysis Experiment.

C and C2 ,s, the membrane permeability is defined as

N= Pm A (C1  - C2 ,s) (3-25)

where A represents the membrane surface area and N the mass

transfer rate. Experimentally the overall mass transfer coef-

ficient K is measured, and this is given by:

N = K0A (C - C2) (3-26)

where C1 and C 2 are taken to be the well-mixed bulk concentra-

tion. A material balance may be written for each chamber of

the dialysis cell:



94

- d(V.C.)

N = dt (3-27)

Combining Equations (3-26) and (3-27) and integrating from

t = 0 to t = t gives the following expression which may be used

to analyze experimental data for K0:

(C1 - C2)t 1 1
ln ( - C = -K At (- +-) (3-28)

1 2o 0 V1  V2

With an appropriate correlation to estimate kf , the true mem-

brane permeability is obtained by the following relation:

1 = 1 - 2 
(3-29)

m o f

in which k is assumed equal on both sides of the membrane.

For the case of larger solutes the liquid phase resistance is

negligible relative to the membrane resistance, and the approxi-

mation P ~ K is used.m o

Experimentally, it is most accurate to follow concentra-

tion as a function of time and to evaluate K from the slope

of plot of ln[(C 1 -C 2)t/(C 1 -C 2) o] as a function of t. For the

lower molecular weight solutes studied on a batch dialyzer, dis-

crete samples were withdrawn from one chamber of the dialyzer

and were simultaneously replaced with isotonic saline. It is

necessary to correct for this effect, and Equation (3-30) may

be modified as shown in reference 9:

m=n (C 1 - C2)tm+ _ 1

m n C 1-C') -K At (- + (3-30)
m=0 V 1 2 C t onV1 V2

m

V
where C' = C -- C

2,m 2,m V2  2,m
V 2Cl,m+1 = Cl + y-- (C~ - C2 ,m+1
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C2,m = concentration of mth sample from chamber 2

V r = volume of sample removed and replaced;

solute concentration in V r taken as zero

The mass transfer correlation used to estimate kf was developed

by Smith et al. (122).

B. SOLUTES FOR MEMBRANE EVALUATION

At the present time the total family of solutes requiring

removal by an artificial kidney is not defined. A listing of

possible test solutes for in vitro membrane evaluation appears

in reference 29.

The solutes selected for study in this work are given in

Table 3-3. Urea, creatinine, and uric acid are relatively low

molecular weight compounds that are known to be of importance

in the chronic uremia state. While the remaining solutes repre-

sent somewhat of an arbitrary set, they were chosen to span the

middle molecular weight range of current interest and to study

the "cut-off" point of the membranes to higher molecular weight

species. Data on the permeability of these solutes with Cupro-

phane PT-150 (R-Bemberg), the commonly used hemodialysis mem-

brane, is available in the literature and will be presented

for comparison purposes in the results section.

Table 3-3 also lists estimates of the characteristic

radius of each solute for permeation and the values of the

diffusivity in water at 37*C for each solute. These values

are taken from reference 9, and the reader is referred there

for a complete discussion of the correlations used in their

estimation.
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TABLE 3-3. SOLUTES FOR MEMBRANE EVALUATION

Molecular
Weight

(g/gmole)

Solute Radius
for Permeation

(l)

Diffusivity*
in Water
at 370 C

(cm2/sec)x105

Urea 60

Creatinine

Uric acid

Sucrose

Inulin

Dextran

PEG

Myoglobin

Albumin

113

168

342

O 5,200

- 16,000

O\ 4,000

o 17,000

o 66,000

*Where applicable, values refer to infinite dilution.

Solute

2.5

3.1

3.3

4.7

6.7

10.1

16.3

17.5

22.5

1.81

1.29

1.16

0.697

0.215

0.130

0.210

0.171

0.0909
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CHAPTER 4

EXPERIMENTAL WORK

A. OVERVIEW

One approach to the development of a hemodialysis membrane

from the hydrogel materials would be to synthesize a particular

composition, measure the permeability characteristics, and

then to speculate on possible improvements as required. In

addition to being a very time-consuming and frequently frustra-

ting process, little or no fundamental understanding of the

reaction chemistry could be gained from such an approach. In-

deed, the problems of reproducing a pinhole-free membrane suffi-

ciently thin (i.e., 0.001-0.005 mils) to be a possible candi-

date for hemodialysis applications could well obscure the inter-

pretation of any permeability data as a function of the reaction

conditions for the membrane. It was for these reasons that this

work concentrated on evaluating the hydrogels by means of the

rubber elasticity theory. With these results in hand, the de-

velopment of a hydrogel membrane for hemodialysis could be

undertaken in a more fundamental manner than the trial-and-

error technique of casting various hydrogel compositions for

permeability evaluation.

Because of the complexity of the hydrogel reaction, the

decision was made in this work to begin with the standard hydro-

gel composition (Table 3-1) and to synthesize various composi-

tions, varying one variable at a time. While this is not the

most efficient approach from the point of view of statistical

design, it is the only way to proceed in a system where the re-
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sponse as a function of the variables is unknown. Subsequent

sections will present the various experimental procedures used

in this work.

B. REAGENTS

All compositions studied in this work were prepared by

careful weighing or dilution from more concentrated stock solu-

tions. Typical stock solutions and their preparation are de-

scribed below.

1. Sulfuric Acid

Stock sulfuric acid solutions of 2.00 N and 4.00 N

were prepared by diluting commercially available standards.

The stock bottles were checked by titration with 1.00 N NaOH

using phenolphthalein as an indicator and were found to be accu-

rate to +0.1%.

2. Acetic Acid

The acetic acid stock was reagent grade glacial

acetic acid (17.4 N) obtained from Mallinkrodt Chemical.

3. Formaldehyde

Reagent grade formalin solution (Merck and Co., Inc.)

containing 36-38 wt % HCHO and about 12 wt % methanol as a

stabilizer was used as the stock formaldehyde solution. For

each stock bottle the actual formaldehyde concentration was de-

termined by titration using the sodium sulfite procedure (Appen-

dix F) and these results (generally 36.2-36.4 wt %) were used

in calculating the necessary dilutions for the preparation of

a particular reaction composition.

4. Glutaraldehyde

Biological grade glutaraldehyde (pentanedial) was
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obtained as a 50.0 wt % aqueous concentrate from Fisher Scien-

tific. Since the concentrated solution must be refrigerated

to prevent polymerization, small quantities of 2-3 wt % aque-

ous solutions, which are stable at room temperature, were pre-

pared as reagent stock by careful weighing of the concentrate

into a volumetric flask followed by dilution with distilled

water. The concentration of glutaraldehyde in the concentrated

solution was verified by titration using the hydroxylamine

hydrochloride procedure (Appendix F).

5. Heparin

Sodium heparin (B grade) with a biological activity

of 160 USP units/mg was obtained from Calbiochem, Los Angeles.

It was found to have a Mv = 13,800 (69) and was analyzed to

contain 11.3% Na and 0.25% Fe (125). Using a hepar'in tetramer

molecular weight without counter ions of 1069 g/gmole, this

indicates six sodium ions per tetramer. Referring to the dia-

gram of the heparin tetramer (Figure 2-4), it would appear that

on the average one of the two carboxylic acid groups per tetra-

mer must be in the sodium form.

6. Polyvinyl Alcohol

Polyvinyl alcohol is derived from polyvinyl acetate:

fC - C+
x

C=0

CH3

by hydrolysis that results in removal of the acetate groups and

creation of secondary hydroxyl groups on the main polymer chain.



100

Since the number of network imperfections in the synthesized

hydrogel at any given degree of cross-linking varies inversely

with the molecular weight of the original polymer, the highest

molecular weight grade commercially available--Du Pont Elvanol

(R) 73-125G--was used in most of this work. A few hydrogels

were also synthesized using a lower molecular weight material--

Du Pont Elvanol (R) 71-30.

Qualitative spectrographic analysis of the Elvanol (R)

73-125G indicated that the only ion present in any significant

amount was sodium (0.01-0.1 wt % dry basis) (125), probably from

the surfactant used in the emulsion polymerization of the ori-

ginal polyvinyl acetate. Infrared spectrographic analysis of

the polymer showed no indication of acetal, peroxide, or car-

boxylic acid and only a small amount (less than 0.1 wt % dry

basis) of carbonyl (126). The degree of hydrolysis in mole

percent is reported by the manufacturer to be 99.3-100% for

Elvanol (R) 73-125G and 99.0-99.8% for Elvanol (R) 71-30.

The characterization of PVA in aqueous solution is indeed

complicated by the phase behavior of the PVA-water system (Sec-

tion 3-I-E). Working with only freshly-prepared, filtered

solutions of PVA in water, Burke (87) obtained intrinsic vis-

cosities at 254C of [n] = 1.27 dl/g for Elvanol (R) 73-125G

and [n] = 0.857 dl/g for Elvanol (R) 71-30. By use of the

Mark-Houwink relation:

[n] = K' Rav

with the constants being K' = 5.95 x 10~ and a = 0.63 as re-

ported by Beresniewicz (90), the viscosity average molecular
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weight Mv is estimated to be 193,000 for Elvanol (R) 73-125G

and v = 103,000 for Elvanol (R) 71-30. For the purpose of

estimating n as required in elastic network theory, the value

of 100,000 for Elvanol (R) 73-125G and 60,000 for Elvanol (R)

71-30 will be used in this work. These estimates are based on

the assumption of a Gaussian distribution of molecular weights

in the polymer sample, which seems justified by the value

Mn = 2.0 reported by Wu (127) .

Stock solutions of PVA in water were prepared in 1500g

batches containing anywhere from 9-17 wt % PVA as desired.

Generally, it was found most convenient to work with as low a

polymer content in the stock as was feasible to prepare the

desired reaction compositions. Approximate quantities of PVA

and distilled water were weighed into a large volumetric flask

and were heated overnight in a circulating air oven at 90-95 0 C,

as suggested by the manufacturer to achieve complete solution.

The material was then centrifuged at 1100 rpm for about 40 min-

utes in a Servall Refrigerated Centrifuge to separate out par-

ticulate contamination. After centrifugation the purified

polymer solution was heated to reduce its viscosity and was

well mixed with a mechanical stirrer to assure a homogeneous

solution. This stock solution was then analyzed for the exact

polymer content by a solids determination (Appendix G), and the

results of the analysis were used in calculating the desired

reaction compositions.

1. See reference (76), p. 313.



C. PREPARATION OF THE CASTING SOLUTION

With the stock reagents described in Section 4-B, the

exact amounts of each required to prepare a casting solution of

a given composition could be calculated. Usually 50 grams of

casting solution were used in the preparation of hydrogel sam-

ples for modulus evaluation and 75 grams were used in the

preparation of dialysis membranes. The various compositions

studied are summarized in Table 4-1. As emphasized earlier,

one reactant was varied at a time and Table 4-1 records that

variable, all others fixed at their control values. Five

membranes of the control composition were prepared to test

the reproducibility of the casting and evaluation techniques.

Needless to say, quite a few samples were prepared while

developing the experimental procedures.

The necessary amount of the PVA stock and heparin, when

used, were weighed into a beaker and all other reagents were

pipetted. As soon as the aldehydes are added to the acidified

PVA solution, they begin to form hemiacetals with the secondary

hydroxyls on the polymer backbone. With formaldehyde this pre-

sents no problem, since a formaldehyde hemiacetal is not a

cross-link. Acidified PVA-formaldehyde solutions will stay

fluid for hours at room temperature. However, with glutaral-

dehyde the formation of two hemiacetals represents a cross-link.

Depending upon the concentrations of PVA and glutaraldehyde in

the solution, gelation of the casting solution would occur at

room temperature in a matter of five to twenty minutes after



Elvanol (R) 7
Formaldehyde
Methanol
Glutaraldehyd
Sulfuric acid
Acetic acid

TABLE 4-1. COMPOSITIONS STUDIED

Control Composition

Concentration Mole

3-125G 6.0 wt %
6.0 wt %

ca. 2.0 wt % ca.
e + 0.076 wt %
(H ) 0.06 N

1.0 N

Variable

Control

Glutaraldehyde

Formaldehyded

Sulfuric acid

Acetic acid

Heparin

Reaction Time

Elvanol (R) 73-125G

Elvanol(R)7 1 -3 0e

Elvanol 73-125G

+ Heparin J

Concentration a

(5)c

0, 0.04%, 0.08%,
0.12%, 0.16%

0(2), 2.0%, 4.0%

0.04N(2), 0.09N(2),
0.12K_(2), 0.15N(2)

0

1.0%(3)

90 min, 120 min

8.0%, 10.0%

6.0%, 13.0%

10.0% PVA, 1.0%

heparin

Mole Ratio

(5)

0.00293, 0.00587,
0.00880, 0.0117

0(2), 0.490, 0.980

0.0293(2), 0.0660(2),
0.0880(2), 0.1100(2)

0

0.0303

0 0 - -

a. Concentrations in wt % except as noted.

b. Gmole Reactant/Gmole PVA mer.

c. Number in parentheses denotes number of specimens

prepared if other than one.

d. Methanol concentration varied with formaldehyde concentra-
tion as determined by stock formalin (i.e., 3:1 formalde-
hyde to methanol weight ratio).

e. Used in place of Elvanol (R) 73-125G.

f. Mole ratio heparin hydroxyls to PVA mer.

103

Ratiob

1.00
1.47
0.50
0.00557
0.0440
0.73
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addition of the glutaraldehyde. To allow adequate time for

mixing the reactants and casting the sample, glutaraldehyde

was not added until the other reagents had been homogeneously

mixed.

For casting solutions containing 6 wt % PVA mixing could

be done with a magnetic stirring apparatus. Higher polymer

content solutions required the use of a motor-driven impeller.

In all cases, care was taken to introduce as small an amount

of air into the mixtures as possible, since this prolonged

the degassing procedure.

After the addition and mixing of the glutaraldehyde into

the casting solution, the beaker was quickly transferred to a

glass dessicator and put under vacuum to remove the air bubbles.

By carefully controlling the vacuum, the suspended air bubbles

could be removed in a few minutes without causing the mixture

to "boil over." A check on the weight of the contents of the

beaker indicated a weight loss of less than 0.5% from this pro-

cedure, which was probably a small amount of water, methanol,

or formaldehyde. This degassed solution was then ready to be

cast.

D. MEMBRANE SYNTHESIS APPARATUS

Earlier work in the production of hydrogel samples in a

flat configuration that would be suitable to provide test spec-

imens for modulus evaluation or for permeability studies at-

tempted to react the materials on glass plates in covered alu-

minum pans placed in a circulating air oven at the temperature

of interest. This approach was undesirable in this work for
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several reasons. Temperature control with the air oven was

inaccurate (+34C). Poor heat transfer to the reaction mixture

resulted in a transient warm-up period of as long as 25 minutes,

which was 40% of the total reaction time. Unavoidable evapora-

tion of the reactants (probably formaldehyde, methanol, and

water) during the reaction resulted in a concentrating of both

the polymer and the acid catalyst. Hence the actual reaction

conditions were controlled not by the initial reaction composi-

tion, but rather by the unpredictable evaporation process. A

closed reaction system with better temperature control was

clearly desirable.

Figure 4-1 illustrates the apparatus used in this work for

the production of samples for both modulus evaluation and per-

meability studies. Outer aluminum plates of dimension 8" x 8"

x 1/8" were used to tightly clamp two glass plates of 6" x 6"

x 1/4". In the preparation of samples for modulus evaluation an

aluminum shim of 6" x 6" x (0.040" + 0.001") with an open center

portion of 4-1/2" x 4-1/2" was placed between the glass plates

and determined the dimensions of the hydrogel sample. For mem-

brane casting, either no shim or else a stainless steel shim of

(0.005" + 0.0002") in thickness and the same square dimensions

was used.

The outer sponge rubber gasket prevented leakage of excess

reactants into the water bath. "Windows" cut in the aluminum

clamping plates were of the same size as the inside dimensions

of the shims, i.e., 4-1/2" x 4-1/2". Rubber shims placed at

the glass plate-aluminum clamp interface served the dual pur-



FIGURE 4-1 MEMBRANE SYNTHESIS

APPARATUS
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pose of allowing for expansion of the two materials during

heating and insulating the glass plate from the aluminum clamp.

Heat transfer to the hydrogel sample being synthesized was

essentially one-dimensional through the glass plates exposed

to the external environment.

With an interest in minimizing the transient warm-up

period, a number of metal materials, including ferrotype plate,

aluminum plate and nickel plate, were evaluated for use in

place of the glass. In all cases, the combined mixture of di-

lute sulfuric acid and acetic acid was sufficient to attack the

metal surface. This was noted both as visible corrosion on the

metal plate and, more dramatically, by discoloration of the

hydrogel sample, most likely from the formation of colored com-

plexes by the ionized metal species and phosphate from the

quenching bath.

Rather than risk contamination of the hydrogel sample by

adventitious metal ions, polished plate glass was chosen to

contain the reacting hydrogel material. While thinner glass

sheets would seem desirable, they are not readily available

with the tolerances (+0.0002") and heat stability of the 1/4"

polished plate glass. For the case of 1/4" glass plate, an

approximate transient heat transfer analysis indicated that the

warm-up periQd would be around three minutes, and this was

verified by following the temperature between the glass plates

with a thermocouple during a typical run.

E. CASTING OF A HYDROGEL SAMPLE FOR TENSILE EVALUATION

The glass plates were carefully cleaned in acid-chromate
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cleaning solution, washed in distilled water, and air-dried.

One plate was placed on a flat surface, usually a 12" x 24" x

1/4" piece of polished plate glass, and a thin (0.001") sheet

of water-swollen cellophane was placed on top of the glass

plate to serve as a liner. The cellophane permitted easy re-

moval of one glass plate after reaction, and was found not to

affect the reaction in any way except by a very minor dilution

of the reactants. The aluminum shim was placed on top of the

cellophane liner, and the degassed reaction mixture was slowly

poured into the space without entraining air bubbles. After

covering the reaction mixture with the second glass plate and

forcing out the excess material, the glass plates were clamped

with the aluminum device described earlier (Figure 4-1).

For the reaction, the whole device was suspended in a cir-

culating water bath at 70*C, and the reaction time was followed

by means of a stop watch. The water bath was a Precision Sci-

entific (Model No. 66648) with approximate inside dimensions

of 10-1/2" x 12-1/2" x 8". Circulation was provided with two

impellers driven by standard laboratory motors, and precise

temperature control (70.0 + 0.1*C) was achieved by use of a

Bronwill Scientific mercury contact thermoregulator (sensiti-

vity +0.005*C) and a Precision Scientific Electronic Relay

(Model No. 62690). The 1000-watt heating element of the Pre-

cision Scientific water bath was only used in heating the bath

from room temperature. The relay controlled the heat input

from two 450-watt immersion heaters. A probe of the bath with

a thermocouple on the most sensitive potentiometer scale

(+0.05*C) revealed no measurable temperature variations or
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gradients.

At the end of the reaction time the casting device was

removed from the water bath, and the glass plates containing

the sample were placed in a large container of buffered saline

(composition given in Appendix D). Usually the glass plate on

the side with the cellophane liner was removed first and the

sample was allowed to soak before removing it from the second

glass plate. Except in the case of samples that had a high

cyclic acetal content, removal of the sample was fairly easy.

The sample was then placed in a fresh container of buffered

saline and was allowed to equilibrate for at least 24 hours

before further study. Longer equilibration times did not

affect the experimental results, and shorter times were not

considered due to the scheduling of the experimental work.

F. CASTING OF A HYDROGEL MEMBRANE FOR PERMEABILITY STUDIES

There were two key problems that had to be overcome in

this phase of the work. Because of their high water content,

the hydrogels lack sufficient physical strength to be cast in

thin sheets (of order 0.005 inches) that could be feasible

hemodialysis membranes. Hence, a suitable support material

had to be found. Secondly, there was the ever-present problem

of casting a uniform, pinhole-free membrane for study.

1. Materials for Membrane Support

In the early stages of this work hydrogel membranes

were cast using a high wet-strength paper of 1.5 mils dry thick-

ness supplied by the P. J. Schweitzer Division of the Kimberly-

Clark Corporation. While the backing was adequate to permit
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evaluation of the material on the batch dialyzer, there were

several drawbacks to this support material.

a. The paper tended to swell when wet, making it

difficult to keep the backing flat while knife-

coating a layer of the hydrogel reaction

mixture.

b. Qualitative observation revealed that the paper

support lacked sufficient strength and tear-

resistance to be fabricated into an existing

dialysis device.

c. It was practically impossible by any coating

technique to assure that no paper fibers (cellu-

lose) protruded through the hydrogel layer.

Since cellulose is inherently thrombogenic, the

fibers could serve as sites for thrombogenesis

when in contact with blood, thereby hampering

the performance of the hydrogels as nonthrombo-

genic dialysis membranes. In addition, the pro-

truding fibers could cause membrane pinholes

permitting the leakage of blood plasma proteins.

d. Efforts to coat a hydrogel layer on the paper

material were always hampered by de-wetting of

small areas of the paper. Attributed to higher

concentrations of the wet-strength resin, this

phenomenon made reproducibility of the membranes

difficult.

A spun-bound nylon fabric called Cerex (R-Monsanto Co.)
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proved to be a far superior material for membrane support pur-

poses. In the commercial production of the material molten

nylon filaments are dribbled onto a continuously moving belt.

The randomly-oriented fibers are then calendered and briefly

exposed to an acid vapor, which is believed to cause strong

hydrogen bonding between the filaments at each random cross-

over point (_2,129).

Because of the continuous nature of the nylon filaments,

there is no problem of fibers protruding through a hydrogel

coating. According to information supplied by the manufacturer

(13_0), Cerex (R-Monsanto) fabric is made from 100% nylon 6-6

polymer and has no added binders, finishes, or surface coatings.

However, very small amounts (PPM range) of heat and light stabi-

lizers are added. While these stabilizers presented no problem

in this work, the manufacturer has available an unstabilized

fabric which should be used for materials that will be tested

in in vivo or ex vivo situations. This fabric did not swell

when exposed to the casting solution. In addition, the casting

solution wet the nylon filaments, permitting uniform coating of

the web with hydrogel.

2. Evaluation of Nylon Fabric as a Membrane Support

There were two criteria considered in the evaluation

of the support fabric. Since the thickness of the finished

membrane can be no less than the backing thickness, only fab-

rics in the 1.0-5.0 mil range were considered. This limited

consideration to fabrics of weight 0.3 oz/yd 2, 0.4 oz/yd 2, and

20.5 oz/yd .With an interest in producing a uniform membrane,
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the more important consideration was not the actual fabric

thickness but rather the thickness variations. Secondly, the

tensile properties of Cuprophane (R-Bemberg) as reported by

Colton (9) were taken as an approximate guideline for the nec-

essary strength of the support material. Since the principal

problem with Cuprophane (R-Bemberg) is not its tensile proper-

ties but rather its poor resistance to tear propagations, using

these data as a guideline represents a conservative estimate.

Cerex (R-Monsanto) is far superior in tear resistance because

the random web is inherently resistant to the propagation of

a tear.

Samples of the fabric of weight 0.3, 0.4, and 0.5 oz/yd 2

were supplied by the manufacturer. Since the commercially

available materials proved to have wide variations in thickness,

eg, 2-5 mils for 0.3 oz/yd2 material, the manufacturer also

provided samples of the same initial fabric weights calendered

to 1.3 mils + 0.3 mils.

In this work the tensile properties were determined by

experiment for calendered and noncalendered samples of 0.3 oz/

yd2 fabric weight and for calendered samples of 0.4 and

2
0.5 oz/yd2. To evaluate the effect of the hydrogel reaction

conditions.on the material, samples of the calendered 0.3 oz/

yd2 were placed in a solution of composition 0.2 N H2 so4 ,

1.3 N acetic acid, and 6.0 wt % formaldehyde (including

2.0 wt % CH 3OH) at 70
0C for two hours, which represented more

stringent reaction conditions than would be employed in mem-

brane production. After washing in a bicarbonate buffered



113

solution, the tensile properties were determined.

Although Cerex (R-Monsanto) is a uniform material, in the

lighter fabric weights considered in this work a somewhat pre-

ferred alignment of the nylon fibers could be noted and this

direction is called the machine direction (M.D.), the cross

direction being the transverse direction (T.D.). For each fab-

ric sample three tensile samples were cut in both the machine

direction and the transverse direction, using a die of standard

dumbbell shape with a neck width of 0.250". The thickness of

the fabric samples was measured, using an Ames Dial Comparator

(Model 412) on which readings may be made directly to 0.1 mil

with the next decimal place estimated to +0.01 mil.

3. Casting Procedure

Hydrogel membranes for study were prepared using cal-

endered fabrics of 0.3 oz/yd2 and 0.4 oz/yd2 in weight. The

nylon backing was carefully cut in a square shape of 6-1/2" x

6-1/2", the exact dimensions being recorded, and the weight

and thickness were measured. These data, along with the density

of nylon, were used to calculate approximate values for the

open area of the membrane. Casting solutions were prepared as

described in Section 4-C, and the casting procedure was the

same as in the preparation of tensile specimens, except as will

be noted.

Both the cellophane liner and the nylon backing were pre-

soaked in a solution of identical composition with the casting

solution, except that it contained no PVA. This was done to

prevent any dilution of the reactants by the water contained
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in the cellophane and to condition the support material. The

cellophane liner was placed on top of the glass plate as before,

and a 5-mil layer of casting solution was spread on top using

a Gardner casting knife. Nylon fabric was laid on top of the

knife-coated layer by starting at one end of the glass and

slowly allowing the fabric to progressively contact the viscous

layer. This procedure was found best to minimize entrapment of

air bubbles.

The fabric was pulled taut by the edges and the shim, if

used, was put in place. A second 5-mil layer of casting solu-

tion was knife-coated on top of the support, the cover glass

was put in place forcing out excess solution, and the glass

plates were clamped in the aluminum holder. By carefully tight-

ening the wing nuts on the aluminum clamping device, a reason-

ably uniform membrane (+0.001 inch) could be made. Remaining

bubbles could sometimes be forced out while tightening the

clamps. If a visual observation revealed no bubbles inside

the reaction space, the membrane was reacted and quenched in

the same manner as the tensile specimens. About 50% of the

time a few bubbles would remain and the effort had to be aban-

doned, since these would be pinholes in the structure.

G. EXPERIMENTAL LIMITATIONS OF THE CASTING PROCEDURES

These limitations were imposed by the problems of assuring

homogeneous mixing of reagents, of degassing the reaction mix-

tures, and by too rapid gelation of the casting solution. Both

higher polymer content and particularly higher levels of glutar-

aldehyde tended to gel rapidly. Mixtures containing 0.2 wt %
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and higher of glutaraldehyde gelled before they could be de-

gassed and cast. In addition to a more rapid gelation at

higher polymer contents (e.q., 10% Elvanol (R) 73-125G, 13%

Elvanol (R) 71-30), the solution viscosities hampered mixing

of the reagents. In fact, the reaction compositions containing

10% Elvanol (R) 73-125G could only be prepared by mixing the

stock PVA and formalin in the correct proportions at higher

temperature, cooling to room temperature, and then adding the

other reagents. Higher polymer content solutions tended to form

stable foams under vacuum and hence could not be degassed. By

minimizing the air introduced in the mixing process, satisfac-

tory tensile specimens could be produced without degassing.

However, pinhole-free dialysis membranes could not be prepared

at these concentrations.

H. VOLUME FRACTION DETERMINATION

The volume fraction of polymer in a swollen specimen,

represented by v2 where the subscript 2 denotes polymer fol-

lowing Flory's notation (76), is defined as:

v2= V/V (4-1)

with Vp being the volume of polymer present and Vs the total

volume of the swollen specimen. In this work the volume frac-

tion of polymer in hydrogel specimens was measured in equili-

brium with buffered saline (Appendix D) at 25*C, 37*C, and 70*C

for all compositions synthesized. Volume fraction results at

25*C (v2 ,2 5 *C) and at 70*C (v2 ;7 0 *C) are used in computing

values of Mc from the stress-strain data using the rubber elas-

ticity theory (eqn. 3-24), specifically to evaluate the concen-
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tration of polymer C2,i and the swelling factor 6. The volume

fraction at 37*C was determined because of its relevance to

the biomedical application of the material.

To determine the swollen volume of a hydrogel sample, the

sample (about 0.3-0.5 grams) is placed in a covered aluminum

weighing pan and its weight (denoted W air) determined on a pre-

cision balance (Sartorius Model No. 2662). A fine stainless

steel wire (0.020") is attached to the balance arm and the tare

is adjusted to zero with the end of the wire suspended in a

beaker of buffered saline. The same sample is then hooked on

the end of the wire such that it is completely immersed in the

buffered saline, and the weight (W saline) is recorded. Using

a density for the buffered saline at 25*C of 1.004 g/cc, the

volume of the sample V is calculated from the simple expres-

sion:

W . - W
V = air saline (4-2)

s psaline

After washing of the sample for about one hour in two

large volumes of distilled water to remove the buffered saline

solution, the sample is placed in an aluminum weighing pan and

dried to constant weight in a circulating air oven at 90*C.

The dry weight of polymer (W ) is recorded and the volume of

polymer (V p) calculated using the amorphous density of poly-

vinyl alcohol, p = 1.27 g/cc (l_31). Since the polymer is

highly solvated in the original hydrogel specimen, the amor-

phous density should apply. The volume fraction is then calcu-

lated according to Equation (4-1).
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Usually the swollen volume was measured at 25*C for four

samples of each composition. The samples were then put in

covered jars of buffered saline, and two were equilibrated at

37*C and two at 70*C. Temperatures were maintained at 70*C

using the same water bath described in Section 4-E, and tem-

perature control at 37*C was achieved with an identical experi-

mental setup. In the work of Lee (119) it was found that four

hours at the temperature of interest was adequate to assure

equilibrium. Since it was found impossible to maintain a con-

stant tare value for the wire in saline at 37*C and 70C, prob-

ably because of thermal gradients or evaporation, all Wsaline

readings were taken in 25*C saline. With samples equilibrated

at 37 0 C and 70 0 C, constant Wsaline readings could be obtained

up to ten minutes after immersing the sample in room tempera-

ture saline. This procedure does not introduce any approxima-

tion into the volume fraction determination. For samples from

one hydrogel specimen the results would vary +5%, and the same

variation was found in comparing results for different speci-

mens of the same composition.

I. DETERMINATION OF THE ELASTIC BEHAVIOR OF THE HYDROGELS

To determine the elastic modulus of a hydrogel specimen,

an Instron Universal Testing Machine (Table Model TM) was used

with a 0-50-gram load cell (load cell A). Usually three sam-

ples of each hydrogel were cut for study using a standard dumb-

bell-shaped die (neck width 0.250 inches). To prevent loss of

fluid from the sample during the experiment either by evapora-

tion or by exudation, all runs were carried out with the sam-
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ple immersed in a room temperature bath of buffered saline.

The exact bath temperature was recorded for calculation of Mc

from the data.

The standard Instron manual sample jaw was used to clamp

the bottom of the hydrogel sample. In order to run with the

saline bath a special holder was fabricated to clamp the sample

on the top. A 17-gauge stainless steel tube with electrical

eyelets soldered on the ends (overall length about 19 inches)

was used to suspend a small lucite clamp from the load cell.

The lucite clamp was made from two pieces of lucite (1/8" x

1-1/2" x 1-1/4") covered on the inside face with a fine nylon

mesh. Two brass wing nuts were used to tighten the clamp and

a rigid steel wire was used to attach the clamp to the stain-

less steel tube. The device was light enough to permit zeroing

of the weight with the Instron controls.

After calibration of the Instron, the two jaws were ad-

justed so that they just touched, and the gauge length dial was

set to zero at this point. The sample was then carefully

clamped at the neck with pieces of damp filter paper between

the hydrogel and the jaws to prevent tearing of the sample,

and the inital length L0 was read from the gauge length indica-

tor on the Instron. The buffered saline bath was raised with

a laboratory jack so that the water level was just below the

bottom edge of the lucite clamp which remained stationary

during the run.

To minimize viscoelastic contributions to the measured

force, the lowest rate of extension (0.2 inches/minute) was
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used. Force as a function of elongation was recorded on a con-

tinuous strip chart recorder with a chart speed of 2.00 inches

per minute. By stopping the crosshead during a run and observ-

ing the force at a fixed elongation with time, Lee (119) demon-

strated that there was no measurable viscoelastic relaxation,

and therefore that at the extension rate used true equilibrium

forces were being measured.

The 50-gram load cell was sufficiently sensitive so that

the sample weight registered on the strip chart recorder.

Rather than complicate the zero adjustment procedure, this zero

force was taken as a constant correction, which it was, and

was subtracted from the total force in the data analysis.

Since the sample was not completely stressed at the start of

the experiment, the value of L0 from the gauge length indicator

was corrected by adding the small incremental extension Ax as

determined on the chart from the point where the elongation

was begun (corresponding to L0 gauge) to the point where the

force clearly rose from the zero force value. Prior to the

elongation experiment, the thickness of the hydrogel sample

was measured in the neck portion using the Ames Dial Comparator

described earlier (Section 4-F).

J. SOLUTE PERMEATION STUDIES WITH THE BATCH DIALYZER

The batch dialyzer used in this work was previously used

in the thesis work of Colton (9), and a detailed description of

the apparatus and procedures may be found there. Briefly, the

membrane was securely clamped between two identical cylindrical

lucite chambers of diameter 2.482 inches and length 3.0 inches,
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and an axially-mounted, four-blade impeller, 2.235 inches in

diameter, 1/4 inch wide, and 1/16 inch thick, was positioned

1/8 inch from each face of the membrane. The lucite chambers

and the seal and bearing housings were water-jacketed for tem-

perature control (37.0 + 0.1*C). Both impeller shafts were

connected by timing belts to a common drive shaft, and their

speed was controlled by a tachometer-feedback, variable speed

motor coupled to a step function speed reducer. A calibration

curve from the work of Colton (9) was used to set the impeller

speed at 200 rpm for runs with low molecular weight solutes

and at 150 rpm or 100 rpm for larger solutes.

Permeabilities of all solutes listed in Table 3-3, except

for myoglobin and albumin, were measured on the batch dialyzer

for hydrogel membranes of the standard composition with heparin

(Table 3-2). All these solutes were obtained with a C 14-label

(Appendix H), and the concentrations of test samples were mea-

sured by liquid scintillation-counting techniques, as described

by Colton (9).

In a typical experimental run a solution of buffered

saline with a tracer amount of the radioactive labeled solute

was charged to chamber one of the batch dialyzer (V1 = 231.4cc)

and buffered saline was charged to chamber two (V2 = 234.2cc).

The solutions preheated to 37*C, and they were charged simul-

taneously to prevent bowing of the membrane and to prevent any

flow through the membrane due to a hydrostatic pressure gradi-

ent. The impellers were started, and as soon as thermistor

1. About 10-20 u curies/liter.
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readings indicated that the temperatures were stabilized,

samples (2.5 ml) were withdrawn from both chambers and the

timer started. Additional samples (2.5 ml) were withdrawn as

a function of time from chamber two (low concentration side)

and the volume was simultaneously replaced with fresh buffered

saline.

Since the equilibrium volume fraction of polymer in hydro-

gel membranes varies with temperature, the membrane was equi-

librated in 37*C buffered saline before clamping it in the dia-

lyzer. To prevent damage to the membrane, membrane thicknesses

were measured after the pe.rmeation studies, using the Ames

Dial Comparator.

In his work Colton noted a problem of adsorption of some

of the larger solutes (inulin, heparin, dextran) on the lucite

walls of the batch dialyzer. He recommended that 10 grams/

liter of unlabeled solute be used in the solutions to swamp

out adsorptive effects, and the suggestion was followed in

this work for inulin, dextran, and polyethylene glycol (PEG).

K. STAGNANT DIFFUSION STUDIES

The permeability of the proteins myoglobin and albumin

(Appendix H) through several hydrogel membranes of different

composition were studied. Three stagnant diffusion cells made

of lucite were obtained from the Cole Parmer Instrument Com-

pany. Designated A, B, and C by etching into the lucite, the

precise cross-sectional areas and approximate total volumes

are listed in Table 4-2.

The accuracy of the stagnant diffusion experiment is
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TABLE 4-2

STAGNANT DIFFUSION CELLS

Cell Cross Section

Approximate Transport
Cell Total Volume (ml) Area (cm2)

A 10 10.31
B 10 11.28
C 20 11.13

compromised by two factors. Since radiolabeled proteins tend

to fragment in solution, the experiment is done with unlabeled

solutes and the assay technique measures the total protein

present. Therefore, a finite concentration difference exists

across the membrane and a small flux (ca. 0.5 ml) of saline

into the concentrated side in response to the osmotic gradient

cannot be prevented. Because the diffusivities of the protein

species are low, long times (ca. 24 hours) are required to per-

form the experiment and small chamber volumes are used. Con-

centration measurements are performed at only one time, which

permits experimental error to enter the result, but using

larger volumes would extend the time required and the stability

of the proteins would be questionable.

In this work the hydrogel membrane was pre-equilibrated at

37*C in buffered saline and was then clamped in the stagnant

diffusion cell. Using a syringe, the concentrated side was
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charged with the protein in a buffered saline solution (ca. 4%

albumin or ca. 1% myoglobin), the precise volume being noted.

Then the dilute side was charged with a measured volume of buf-

fered saline and the dialysis cell was incubated in an air

oven at 37*C for periods of 12 to 36 hours. At the end of the

experiment the contents of each chamber of the cell were re-

moved, the volumes noted, and the protein concentrations deter-

mined, using the Micro-Biuret technique (Appendix I). The re-

mainder of the original stock solution, which was stored under

refrigeration, was also analyzed at this time. As a bacterio-

stat, 5 x 10 4 M KCN was used in all solutions. Membrane thick-

nesses were measured with the Ames Dial Comparator after the

diffusion experiment.



124

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter the results of the volume fraction deter-

minations and the elastic modulus studies will be presented

together to permit a unified discussion of the effect of the

various reaction variables. Again, it should be emphasized

that one component in the reaction mixture was varied at a

time, all others being held constant at their control values

(Table 3-1). Table 4-1 presented a complete summary of the

compositions studied. Data from the evaluation of the Cerex

(R-Monsanto) fabric as a membrane support material and the re-

sults from permeability studies on hydrogel membranes will fol-

low in separate sections.

Throughout this discussion the term "elastic modulus"

will be used and this refers to the slope of a plot of T as a

function of (a - 1/a2 ), according to Equation (3-24). Elastic

modulus in this work is DT/3(a - 1/a2 ), and should not be con-

fused with Young's Modulus E which is defined as 3T/3(a - 1).

In the limit as a goes to 1.0, the elastic modulus as defined

in the work is equal to E/3.

A. RESULTS ON THE CONTROL COMPOSITIONS

Figure 5-1 presents a plot of the tensile stress in force

per unit swollen cross section as a function of the extension

parameter (a - 1/a2 ) for one sample of the control composition

(Table 3-1) measured in buffered saline at 25*C (Section 4-I).

Except for slight deviations at very low values of the exten-

sion parameter, which are caused by experimental error in mea-
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suring small values of force and extension, the points fall

almost perfectly on a straight line, as predicted by the theory

of rubber elasticity (eqn. 3-22). These data are representa-

tive of all modulus determinations performed in this work and

should be contrasted with the substantial variation observed

in much of the reported work on bulk elastomers (76,LO7).

Table 5-1 presents a summary of the data for five hydrogel

specimens, all prepared according to the control composition

(Table 3-1). Elastic modulus as reported is the slope of the

2
plot of stress T as a function of (a - 1/a ), iLe., DT/

2
3(a - 1/a2 ), and Mc is calculated according to Equation (3-24).

The values of modulus and M reported are the average of three

determinations on each specimen. Volume fraction data as shown

are the average of all determinations on the five specimens, or

a total of eighteen at 25*C, nine at 37*C, and nine at 70*C.

Inasmuch as deviations of the same percentage (+5%) are noted

in the results for each specimen as well as in the results for

the five specimens, it is felt that the reproducibility of

the synthesis technique is within the limits of experimental

error on the characterization techniques.

B. EFFECT OF GLUTARALDEHYDE

Figures 5-2 and 5-3 present results from the studies on

hydrogels with glutaraldehyde as the independent variable. In

both figures the concentration axis (G/PVA) is expressed in

moles of glutaraldehyde per mole of PVA mer. For Figure 5-2,

the units of Mc are g/gmole, and elastic modulus (E.M.), as de-

fined in Section 5-A, is expressed in dynes per square centi-
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TABLE 5-1. SUMMARY OF DATA FOR SPECIMENS OF THE CONTROL
COMPOSITION

Elastic Modulus
Specimen (dynes/cm2 ) x 10-5 Mc

A 0.628

B 0.654

C 0.637

D 0.697

E 0.670

Average 0.657 (+5%)

Volume Fraction Determinations

250 C 370 C

0.0503(+5%) 0.0733(+5%)

24,640

23,470

24,000

23,250

23,610

23,820 (+5%)

700C

0.1316(+5%)

meter. Volume fraction of polymer (v2) is a dimensionless

quantity.

Specimens at five levels of glutaraldehyde were synthe-

sized, but the sample containing zero glutaraldehyde proved to

be a viscous mass insoluble in water but impossible to study.

This suggests that the formaldehyde in the absence of glutaral-

dehyde contributes on the average about one cross-link per

weight average polymer chain, which is essentially the point of

gelation.

As the experimentally measured modulus (E.M.) increases,

the value of Mc drops (Figure 5-2), as one would predict from

the theory of rubber elasticity. Yet, given that for a four-

fold increase in glutaraldehyde concentration the modulus in-
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creases by a factor of 2.6 while the value of Mc drops by a

factor of 1.5, these results might appear to be in contra-

diction.

In fact, they are not. The experimentally measured modulus

(E.M.) is a function both of the amount of cross-linking in the

specimen and of the amount of polymer in the swollen specimen

(v2. Consider Equation 3-24 and ignore for the moment the

swelling parameter 6. If there are two swollen samples desig-

nated A and B in which the elastic modulus of B is twice that

of A, sample B could have an Mc one half that of A (i.e., twice

as many cross-links per chain), or sample B could simply have

twice as much polymer present (C2 ,i). Since all hydrogel sam-

ples are studied at their swollen equilibrium polymer contents

(v2) in buffered saline, the two parameters Mc and v2 do not

necessarily vary independently of one another. Volume fraction

data at 25*C in Figure 5-3 illustrate the increase of v2 with

higher amounts of cross-linking, as should be expected from

network swelling theory (Section 3-II-B).

The point of this discussion is that a consideration of

elastic modulus (E.M.) values without proper attention to the

factors involved could lead to erroneous conclusions. Since

the derivation of the rubber elasticity theory for swollen sys-

tems accounts for the variations in polymer content and for iso-

tropic swelling, Mc, as calculated according to Equation 3-24,

is the valid parameter to indicate the effect of the reaction

variable under study in the hydrogel synthesis. While a pre-

cise measure of the cross-linking should not be expected from

the theory (Section 3-F), the changes in Mc do reflect the
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characteristics of the synthesized network.

In this context, the data in Figure 5-2 indicate that,

while the number of cross-links per chain (proportional to

l/M c) does increase with higher concentrations of glutaralde-

hyde, the increase is not proportional. Indeed, the values of

Mc appear to approach an asymptote, though additional data at

higher levels of glutaraldehyde would be required to confirm

this point. What this suggests is that some equilibrium lim-

itation exists in the chemical cross-linking of the PVA. While

such an equilibrium undoubtably depends on the water present in

the system, certainly the other components such as formaldehyde,

methanol, and possibly PVA hydroxyls also affect it. This con-

sideration will be discussed in later sections.

C. EFFECT OF ACID CONCENTRATION

Figures 5-4 and 5-5 present an interesting aspect of the

hydrogel chemistry, namely, the effect of increasing the concen-

tration of sulfuric acid in the reaction mixture. As before,

Mc is given in g/gmole, elastic modulus (E.M.) in dynes/sq cm,

2 +
and the abscissae are expressed in gmoles of hydrogen ion (H)

5

per gmole of PVA mer. Note in Figure 5-4 that the E.M. axis

is discontinuous to permit plotting of both curves on the figure.

In this series sulfuric acid concentration was varied from

0.04 N to 0.15 N, all other reactants fixed at their control

values (Table 3-1). Since the acid serves as a catalyst for

1. It was noted in Section 4-G that reaction mixtures of
these compositions gelled too rapidly to be cast.

2. From sulfuric acid only. The acetic acid is not disso-
ciated at reaction pH.
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the conversion of the hemiacetal to the final acetal form, it

might be expected for fixed reaction time (60 minutes) that

higher levels of acid should promote further cross-linking

of the PVA.

The results are most interesting. As the concentration

of acid increases, the value of E.M. rises but Mc also in-

creases (Figure 5-4), indicating fewer cross-links per initial

PVA macromolecule. Referring to Figure 5-5, it is seen that

the increase in the elastic modulus is due to the higher vol-

ume fraction of polymer in the test specimen. Particularly

impressive is the drastic effect on the thermal response of

the hydrogels as acid concentration is increased (Figure 5-5),

indicating increasing numbers of cyclic formal groups on the

polymer chains in the hydrogel matrix.

These data indicate the importance of the two processes

occurring during the hydrogel reaction, cross-linking and chain

modification. Since higher levels of acid increase both the

elastic modulus and the volume fraction of polymer, particu-

larly as observed 'in the thermal response, but contribute less

cross-linking (higher M c), it appears that the principal effect

is the introduction of cyclic formals. Furthermore, since the

lowest Mc corresponds to the lowest acid level, these data in-

dicate a competitive reaction between formaldehyde and glutaral-

dehyde.

Cross-linking of the PVA chains by glutaraldehyde appears

to be a rapid process relative to cyclic formalization of the

PVA by formaldehyde. Since the rate-limiting step in the
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acetal reaction is the conversion of the hemiacetal to the ace-

tal (Section 3-I-A), each glutaraldehyde quickly forms two hemi-

acetals which then either react with a PVA hydroxyl or a hydro-

xyl from methanol, the so-called "capping reaction." However,

the cyclic formals, while forming at a slower rate, have a

more favorable equilibrium. During the course of reaction,

cross-links formed by glutaraldehyde back down (the reactions

are completely reversible) in favor of cyclic formals.

D. EFFECT OF FORMALDEHYDE

Results for studies in which the formaldehyde was reduced

from the control value of 6.0 wt % to lower levels are pre-

sented in Figures 5-6 and 5-7. Units on the ordinates are the

same as in the previous figures and the abscissae are given in

gmoles formaldehyde per gmole PVA mer. Since the formaldehyde

was added from stock formalin solution containing methanol as a

stabilizer (1:3 weight ratio of methanol to formaldehyde),

methanol also varies as shown in Table 5-2.

TABLE 5-2. VARIATION OF METHANOL WITH FORMALDEHYDE IN THE
MIXTURES

F/PVA CH 3OH/PVA (approx.)

0 0
0.490 0.17
0.980 0.33
1.47 0.50

units: (moles reactant/mole PVA mer)

The data indicate trends similar to those seen when sul-

furic acid concentration was varied (Section 5-C), though the

variations are nowhere near as pronounced. As the concentra-
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tion of formaldehyde in the reaction mixture is increased, the

elastic modulus (E.M.) rises but the amount of cross-linking

(proportional to l/M c) drops. Volume fraction data in Figure

5-7, particularly the variations with temperature, further sup-

port the view that increasing amounts of cyclic formal enter

the network structure at the expense of glutaraldehyde cross-

links.

The volume fraction data for the first composition pre-

sented in Figure 5-7 deserve some comment. Since this specimen

was prepared with only glutaraldehyde (control value 0.076 wt %)

and no formaldehyde or methanol present, the data should repre-

sent the maximum volume change with temperature that could be

ascribed to the hydrogel containing only intact PVA subchains

and the cyclic acetals or other network structures resulting

from the reaction with glutaraldehyde. The data are presented

for comparison with the control composition in Table 5-3.

TABLE 5-3. EFFECT OF CYCLIC FORMALS ON THE EQUILIBRIUM POLYMER
CONTENT OF THE HYDROGEL NETWORKS

Values of v2*

Temperature G only Control

25 0 C 0.041 0.050

370 C 0.049 0.073

700 C 0.058 0.132

*All values of v2 measured in equilibrium with
buffered saline (Appendix D).

Two conclusions can be drawn from these data. First, at any

temperature of interest the presence of formaldehyde in the

reaction mixture increases the volume fraction of polymer
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present in the finished hydrogel. Since the basic chemistry

involved (Section 3-I-A), the data for the glutaraldehyde

series (especially at 0.0 wt % glutaraldehyde), and the data

presented in this section all lend support for the idea that

formaldehyde contributes little or nothing to the cross-linking

of the network, this observation can only be attributed to the

hydrophobic character of the cyclic formals. Secondly, the

pronounced thermal response of all hydrogels prepared with for-

maldehyde present is due to the formation of cyclic formals on

the network chains during the hydrogel synthesis.

E. EFFECT OF REACTION TIME

Reaction times were increased to study the effect on the

cross-linking of the network. If the hypothesis of a competi-

tive reaction between glutaraldehyde cross-linking and formal-

dehyde cyclicization is correct, then presumably longer reac-

tion times should indicate similar trends to those observed

with higher levels of sulfuric acid. The data are presented in

Figures 5-8 and 5-9 with the reaction time axis (t) given in

hours. Note that the axis is discontinuous, since times less

than one hour were not considered. Elastic modulus (E.M.) and

polymer content (v2 ) both increase with longer reaction times

but the amount of cross-linking decreases. These data do sup-

port the competitive reaction hypothesis. Volume fraction data

again prove to be a sensitive indicator of increased cyclic

formal content. Because of the problems of heparin deactiva-

tion (Section 3-I-D), longer reactions would not normally be

considered in the production of a hydrogel for biomaterial

applications.
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F. EFFECT OF ACETIC ACID

In the earlier research that led to the control composi-

tion presented in Table 3-1, hydrogels prepared without acetic

acid were observed to contain a faint cloudiness when in equi-

librium with buffered saline at room temperature. This was

taken as an indication of some sort of phase separation result-

ing during the course of the hydrogel synthesis. Addition of

acetic acid to the casting solution was found to produce a

completely transparent hydrogel, which presumably was more

homogeneous.

Data taken in this work on a hydrogel specimen prepared

without acetic acid present are reported in Table 5-4. The

exact effect of the acetic acid is not clear from these data.

Values of Mc are slightly higher, indicating less cross-linking,

but the difference is barely significant for typical experimen-

tal errors. Although volume fraction data as a function of

temperature have proven to be a sensitive indicator of cyclic

formal content, the data here indicate only slightly less cyc-

lic formal. However, since acetic acid is not dissociated at

TABLE 5-4. COMPARISON OF HYDROGELS SYNTHESIZED WITH AND
WITHOUT ACETIC ACID

Control
Control without Acetic

Composition Acid

Elastic Modulus 0.657 0.587
(dynes/cm2 ) x 10-5

Mc (g/gmole) 23,820 24,638

Volume Fraction (v2 )

250 C 0.050 0.050
370 C 0.073 0.068
700 C 0.132 0.123



143

the pH of the reaction mixture (pH = 1.2), which is determined

by the sulfuric acid, it is unlikely that it functions as a

catalyst. In any case these facts could not explain the effect

acetic acid has on the visual homogeneity of the gel.

Normally, the presence of a separate phase in a tensile

specimen would be expected to appear as a lower Mc (higher

cross-linking), inasmuch as the precipitated phase contributes

multifunctional junctions to the network structure. The data

in Table 5-4 contradict this idea. Since network junctions

contributed by a precipitated phase need not be permanent in

the sense of covalently-bonded cross-links, it is possible that

at the low extension rates used, the chains involved in the

separate phase could relax in response to the deformation.

The most plausible explanantion for the effect of acetic

acid is that it acts as a common solvent during the reaction

for both PVA and for the PVA chains modified by cyclic formal.

Earlier data presented in this work (especially Section 5-C)

have documented the marked shrinkage of the hydrogel specimens

in response to temperature, particularly at higher levels of

cyclic formal, indicating less favorable solvent (water)--poly-

mer (poly(vinyl alcohol-co-formal)) interaction. In the reac-

tion environment of the hydrogel synthesis cyclic formals that

form tend to aggregate, essentially forming a dispersed phase.

The acetic acid apparently affects the solvent character in

some manner to prevent the buildup of these aggregates.

That this phenomenon is associated with the cyclic for-

mals is qualitatively supported by the author's observation in
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earlier work that the cloudiness of a hydrogel specimen was

more pronounced when higher levels of sulfuric acid were used.

It should be stressed here that, except for the results cited

in this section, all other hydrogel specimens studied in this

work were prepared with acetic acid and were not observed to

have any evidence of a phase separation.

G. EFFECT OF POLYMER CONCENTRATION AND MOLECULAR WEIGHT

Both the effect of increasing polymer concentration and

the effect of polymer molecular weight were studied in this

work. The two PVA grades used had molecular weights (M ) ofn

100,000 (Du Pont Elvanol 73-125G) and 60,000 (Du Pont Elvanol

71-30). Their characterization was discussed in Section 4-A.

Elastic modulus (3T/3(a - 1/a2 )) data are presented in

Figure 5-10 for hydrogels synthesized from the two materials,

the units being dynes/cm2 as before. The abscissa gives the

weight fraction of polymer in the casting solution (w2 ,0 , and

the axis is discontinuous since only w2, 0 values in the range

of 0.06 to 0.13 were studied. Experimental difficulties that

precluded casting of specimens with higher amounts of polymer

were discussed in Section 4-G.

In Figure 5-10 it can be seen that at a given value of

w2,0, the elastic modulus (E.M.) of specimens prepared with

the higher molecular weight PVA is greater than that of the

lower molecular weight material. This is the effect of the

higher number of chain ends (network imperfections) in the sam-

ple prepared with the lower molecular weight PVA.

Volume fraction data for hydrogels prepared from the two
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grades of PVA with the same amount of polymer in the casting

solution (w2,0 = 0.06) are compared in Table 5-5. It is inter-

esting to note for the data at 25*C that, in spite of the larger

number of network imperfections in the Mn = 60,000 specimen,

the volume fractions differ only slightly. Furthermore, the

thermal response of the Mn = 60,000 specimen is more pronounced.

Since there is no reason to expect the molecular weight of the

PVA to affect the acetalization reaction, these data would

appear to reflect some difference in the two PVA grades, pos-

sibly in the amount of residual acetate.

TABLE 5-5. VOLUME FRACTION DATA FOR HYDROGELS OF THE CONTROL
COMPOSITION WITH DIFFERENT MOLECULAR WEIGHT PVA

Volume Fraction (v2)

Temperature . = 100,000 N = 60,000
n n

25*C 0.050 0.046

37*C 0.073 0.076

70 0C 0.132 0.157

w2,0 = 0.06

Values of M (g/gmole) calculated from the modulus datac

according to Equation 3-24 are presented in Figure 5-11 as a

function of w 2 ,0. The near superposition of the curves for

the different PVA starting materials offers encouragement that

the network correction factor used is valid and, indirectly,

that the values of Mn used for the two samples are reasonable

estimates (see Section 4-B).

In Figure 5-11 it can be seen that, as the weight frac-

tion of PVA in the reaction mixture (w2,0) is increased, the
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value of Mc for the finished hydrogel drops. Since there is

no a priori reason to expect more cross-linking per PVA macro-

molecule, this merits discussion.

Certainly one possibility is that at higher PVA contents

the polymer chains are more completely entangled with one an-

other and the probability of forming intrachain cross-links

is reduced. However, since even the control PVA concentration

(w2 ,0 = 0.06) is a factor of ten greater than the critical

polymer concentration (Appendix C), this explanation does not

seem plausible. In addition, it should be noted that intra-

chain cross-links are not necessarily wasted in the sense that

they do not contribute to the elastic retractive force of the

network. Except for ineffective short loops (see Section

3-II-D), which should only result for cross-linking in dilute

solution (76), intrachain cross-links will contribute to the

elastic modulus, providing that they occur on the average with

subchains of length Mc and that the original PVA macromolecule

is connected to the network structure.

A more plausible explanation and one that is consistent

with the hypothesis in this work that the cross-links form at

an equilibrium reaction volume V .(characterized by v2,i) can

be put forth as follows. Table 5-6 summarizes the volume frac-

tion data for three hydrogel specimens prepared at different

values of w2 0 with PVA of Mn = 100,000. The important point

is that within experimental error (+5%) the volume fractions

at 70*C, which represent the reaction volume V., are approxi-

mately equal. These volume fractions (v2 ,i) represent the
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shrinkage of the system that has occurred during reaction in

response to the introduction of cyclic formal along the poly-

mer backbone.

Recall that the introduction of cyclic formal to the net-

work structure is a relatively slow kinetic process and is

affected principally by the concentration of acid catalyst

(H2 so 4 ) as shown in Section 5-C. In the present series acid

concentration was fixed at the control value (0.06N), so pre-

sumably the same amount of cyclic formal was introduced along

the polymer chains in each specimen. The network contracted

to a volume essentially determined by the thermodynamics of

the polymer-solvent interaction, and the data in Table 5-6

support this concept.

TABLE 5-6. SUMMARY OF RESULTS FOR HYDROGELS PREPARED WITH
DIFFERENT INITIAL PVA CONTENTS

Volume Fraction Data
Weight
Fraction
PVA* (w2 ,0) Mc (g/gmole) 25 0 C 370 C 700 C

0.06 23,820 0.050 0.073 0.132

0.08 20,690 0.063 0.082 0.144

0.10 18,570 0.062 0.086 0.139

*PVA (Mn = 100,000)
n

While it is likely that only a small portion (110%) of the

PVA "backbone" has been converted to cyclic formal during the

reaction, it should be recalled that the rate-limiting step is

the conversion of the unstable hemiacetal to the finished ace-

tal form. The formation of the hemiacetal does not require
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the acid catalyst nor does the concentration of water present

limit the reaction. It is probable at the molal ratio of for-

maldehyde present in the control reaction mixture that a signi-

ficant amount of the PVA hydroxyls exist in a hemiacetal form.

Data presented in reference 62 on the equilibrium amounts of

hemiacetal present in alcoholic solutions would seem to support

this view.

Since all variables including formaldehyde were held

constant at their control values (Table 3-1) while the PVA

content was varied (w2,0 ) , the molal ratio of formaldehyde to

PVA (F/PVA) changed with the PVA content as shown in Table 5-7.

TABLE 5-7. VARIATION OF F/PVA WITH PVA CONCENTRATION

Weight Fraction Molal Ratio
PVA* (w2 ,0 ) F/PVA

0.06 1.47

0.08 1.10

0.10 0.88

*PVA (M = 100,000)
n

The competitive reaction between formaldehyde (cyclic formali-

zation) and glutaraldehyde (cross-linking by formation of two

cyclic acetals) was demonstrated in Sections 5-B, 5-C, and 5-D.

In this context the increased cross-linking (lower M c) observed

with higher amounts of PVA can be interpreted as the effect of

the lower molal ratio of formaldehyde essentially permitting

the formation of more glutaraldehyde cross-links.

When the hydrogel specimen is quenched in buffered saline

at 25*C following synthesis, it swells to an equilibrium volume
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fraction (v2,250C) which depends on:

1. The network-solvent interaction characterized

by the thermodynamic parameter X (76). This para-

meter is affected primarily by the amount of

cyclic formal present.

2. The amount of cross-linking, characterized by Mc'

3. The relaxed volume of the specimen, character-

ized by v2,i'

These factors are important and can be used to explain many of

the phenomena observed in this work.

For example, referring to Figure 5-3 which presents the

volume fraction data for the glutaraldehyde series, it can be

seen that the volume fraction data at 70*C vary slightly but

are approximately equal, as would be predicted for the same

amounts of cyclic formal (i.e., formaldehyde fixed, H+ fixed).
5

The amount of cross-linking should not affect the relaxed state

of the sample (70*C), but when the samples are equilibrated

in 250 C buffered saline they swell to different volume frac-

tions, indicative of the amounts of cross-linking introduced.

In the sulfuric acid (H ) series the volume fraction trends

are controlled principally by the amounts of cyclic formal

introduced (effect on X factor).

H. EFFECT OF HEPARIN

A total of three hydrogel specimens containing heparin

(0.01 wt fraction sodium heparin) were prepared according to

the composition given in Table 3-2, and two specimens were

prepared with higher polymer content (0.10 wt fraction PVA)
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and heparin as above. The results are summarized in Table

5-8 along with data for unheparinized hydrogels of the same

composition. Average values are reported where applicable.

At both levels of PVA the samples containing heparin have a

slightly reduced elastic modulus, lower values of Mc (indi-

cating more cross-linking per initial PVA chain), and a notably

less pronounced thermal response as shown in the volume frac-

tion data.

Precise interpretation of the results is difficult because

of the various effects heparin could have on the network.

Heparin is, after all, a biological polymer (M = 13,800) and,
_v

if grafted to the network in at least two points per heparin

macromolecule, would contribute effective cross-links to the

network. However, Merrill et al. (61) have reported the grafted

heparin content for a hydrogel prepared according to the com-

position in Table 3-2 at 0.7 milligram per gram of network

polymer (i.e., dry basis). Inasmuch as the initial ratio in

the reaction mixture is 170 mg/g PVA, the efficiency of graft-

ing is poor.

If the value of Mc is taken as a quantitative measure of

the amount of cross-linking per PVA chain, then the glutaral-

dehyde contributes an average of four cross-links per number

average chain.1 If each heparin macromolecule is tied to the

network at two points, which may be an optimistic estimate in

1. If Mc be taken as 20,000, then the original PVA macromole-
cule of R = 100,000 is divided into five subchains of
M = 20,00, which requires four cross-link points.c



PVA Content

w =

Controlb (5 )a

0.06

HeparinC (3) Controld

w2.0 =

(1)

0.10

Heparin

Elastic Modulus
(dynes/sq. cm.) x 10-

(g/g-mole)

Volume Fraction (v2)

250C

370C

700C

0.657

23,820

0.050

0.073

0.132

0.623

19,630

0.042

0.053

0.080

1.12

18,570

0.062

0.086

0.139

1.10

15,039

0.053

0.067

0.092

a Number in parentheses indicates number of specimens.

b Composition in Table 3-1.

c Composition in Table 3-2.

d 0.10 weight fraction PVA; all other variables fixed at control values (Table 3-1).

e Same as (d) and containing in addition 0.01 weight fraction sodium heparin.

Table 5-8. Summary of Results for Hydrogels Prepared with Heparin.
Hn
U,

(2)
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view of the poor grafting efficiency, then it would contribute

two cross-link points to the network. On the basis of the re-

ported heparin content (61), this indicates a maximum contribu-

tion of 0.01 cross-links per PVA chain, which is negligible.

Since heparin is a polyelectrolyte, it undoubtedly func-

tions to increase the equilibrium volume fraction of the network

at any temperature. Also, it opposes the shrinkage of the net-

work structure as temperature is increased. However, the low

residual heparin content of the hydrogel would cast a doubt as

to the significance of this effect.

The most plausible explanation of the data is obtained

from consideration of the buffering effect heparin can exert on

the reaction mixture. In Section 4-B the results of a quanti-

tative analysis on the heparin material used indicated six

sodium ions (Na+) per heparin tetramer. With reference to the

diagram of the heparin tetramer (Figure 2-4) this indicated

that, on the average, one of two carboxylic acid groups on the

tetramer must be in the sodium form. Undoubtedly this group

would accept a hydrogen ion in the reaction mixture. In addi-

tion, the two sulfamate groups per heparin tetramer might exert

a buffering effect.

If the buffering effect of heparin is computed on the

basis of 1, 2, and 3 gmole of hydrogen ion (H ) consumed per

tetramer for a reaction mixture containing 0.01 weight frac-

tion sodium heparin, the results in gmoles of H+ per liter are

0.0083, 0.017, and 0.025, respectively. Although this is in a

less sensitive range on the pH meter, measurements on a control
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(0.06 N H+) and on a heparin-containing solution (0.06 N H ,

0.01 wt fraction heparin) indicated that the results are in

the correct range. The final hydrogen ion concentration of

the reaction mixture is in the range of 0.035 to 0.590 N H

Data for the specimen prepared at the lowest level of

sulfuric acid as reported in Section 5-C are presented in

Table 5-9 for comparison with the heparinized hydrogel synthe-

sized according to the composition in Table 3-2. Both samples

had 0.06 weight fraction PVA in the initial reaction mixture.

With the assumptions made in comparing these two speci-

mens, the excellent agreement for the results in Table 5-9 may

be more good fortune than experimental fact. However, the

data certainly appear to support the proposed explanation and

this explanation is definitely more feasible than one based on

the low residual heparin content of the heparinized hydrogel.

TABLE 5-9. COMPARISON OF RESULTS FOR HEPARINIZED HYDROGEL

AND CONTROL PREPARED AT 0.04 N ACID

Heparinized Control with
Hydrogel 0.04 N H+

Elastic Modulus 5 0.623 0.669
(dynes/sq cm) x 10

Mc (g/gmole) 19,630 19,380

Volume Fraction (v2 )

250 C 0.042 0.043
370C 0.053 0.059
700C 0.080 0.085

aFrom Section 5-C.

Average values for two specimens.

While the effect of the residual heparin content on the

thermal response of the hydrogel cannot be ruled out, it seems
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that the properties of the heparinized hydrogels are due to the

reduced acid concentration in the reaction mixture. As shown

in Section 5-C, lower acid levels introduce less cyclic formal

to the network structure in a fixed reaction time and also per-

mit more cross-linking by the glutaraldehyde. For the higher

PVA content material, both the buffering effect of heparin and

the reduced molal ratio of formaldehyde to PVA mer promote the

lowest value of Mc (highest amount of cross-linking per chain)

achieved by the reaction conditions studied in this work.

I. EVALUATION OF THE MEMBRANE SUPPORT MATERIAL

Table 5-10 summarizes the tensile data from the evaluation

of the Cerex (R-Monsanto) material as a membrane support.

Data of Colton (9) for Cuprophane (R-Bemberg) PT-150, the most

commonly used hemodialysis membrane, are presented for compari-

son. Since the Cerex (R-Monsanto) fabric does not exhibit a

true tensile break, the point where the material began to tear

was recorded as the ultimate tensile strength and ultimate

break elongation ((AL/L )%). Young's modulus E is defined in

the usual manner, i.e., T = E(AL/L ). Data for the uncalen-

dered support material considered are not presented because the

wide variations in fabric thickness made it unsuitable for use

as a membrane support. The calendered samples are 1.3 + 0.3

mils in thickness.

For the calendered fabrics studied, examination of the

data in Table 5-10 indicates that the 0.4 oz/yd2 material has

the best tensile properties and is superior to Cuprophane

(R-Bemberg) in its ultimate properties. Since "a chain is no



Summary of Tensile Data for Membrane Support Material.

Material and
Test Direction

aCuprophane PT-150
M.D.
T.D.

bCalendered Cerex
(0.3 oz/yd2 )

M.D.
T.D.

Calendered Cerex
(0.3 oz/yd 2 ) after
exposurec

M.D.
T.D.

Calendered Cerex
(0.4 oz/yd2 )

M.D.
T.D.

Calendered Cerex
(0.5 oz/yd 2 )

M.D.
T.D.

Ultimate Tensile
Strength (psixlo-3)

3.28 ± 0.47
0.73 ± 0.23

1.31 ± 0.46
0.22 ± 0.04

(14%)
(31%)

(35%)
(20%)

2.26 ± 0.12 (5%)
0.49 ± 0.10 (21%)

4.75 ± 0.34 (7%)
1.36 ± 0,03 (2%)

2.47 ± 0.15
0.68 ± 0.13

(6%)
(19%)

Young's Modulus
(psixl- 3 )

18.2 ± 1.9 (11%)
3.8 0.60 (15%)

5.74 ± 2.0 (34%)
0.85 ± 0.17 (20%)

9.17 1.8 (20%)
1.33-± 0.13 (10%)

12.6 ± 0.70 (6%)
3.5 ± 0.04 (1%)

4.90 ± 0.12 (3%)
1.65 ± 0.56 (30%)

Ultimate Break
Elongation (%)

17.3 ± 3.2 (18%)
48.2 ± 14.3 (30%)

23.0 3.0
27.0 7.0

(13%)
(26%)

26.0 5.0 (19%)
35.0 7.0 (20%)

39.0 1.0 (3%)
39.0 1.0 (3%)

52.0 ± 4.0 (8%)
45.0 ± 7.0 (16%)

Machine Direction
Transverse Direction (Perpendicular to M.D.)
Cuprophane (R-Bemberg). Data of Colton (9).
Cerex (R-Monsanto).
Samples soaked for 2 hours at 700C in 0.2 N H2S04, 1.3 N acetic acid, 6.0 wt. %
formaldehyde (Section 4-F).

M.D.
T.D.
a
b
c H

L1

Table 5-10.
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stronger than its weakest link," properties determined in the

transverse direction, being generally poorer than in the mach-

ine direction, must be taken as the minimal criteria. The

0.4 oz/yd2 fabric compares favorably with the Cuprophane

(R-Bemberg).

Data for the 0.3 oz/yd2 fabric indicate poorer properties

than the 0.4 oz/yd2 material, as should be expected. The infe-

rior properties of the 0.5 oz/yd2 fabric relative to the

0.4 oz/yd2 material are most likely the result of the higher

denier fiber used in the manufacture of the 0.5 oz/yd2 fabric.

Calendered 0.3 oz/yd2 fabric was soaked in a solution of

acids and aldehyde representing the most stringent reaction

conditions to be employed in membrane synthesis (Section 4-F).

While the purpose of the experiment was to determine if any

deterioration of the fabric would occur, in fact the proper-

ties improved considerably (Table 5-10), a most gratifying re-

sult. If it is recalled that the spun-bonded fabric is held

together by hydrogen bonding at the random crossover points,

the data suggest that the acid media caused a slight swelling

of the nylon fiber and further fusion of the fibers at the

crossover points.

Cerex (R-Monsanto) fabric of weight 0.4 oz/yd2 is ideally

suited for use as a hydrogel membrane support material. Addi-

tional advantages of the fabric were discussed in Section 4-F.

J. PERMEABILITY STUDIES ON HYDROGEL MEMBRANES

A total of twenty-one hydrogel membranes for permeation

studies were cast on calendered Cerex (R-Monsanto) during the
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course of this work. Careful examination of the finished mem-

branes revealed that six of these contained bubbles ("pin-

holes") and could not be tested. This group unfortunately in-

cluded all attempts to cast membranes with higher PVA contents.

Of the remainder seven were prepared with heparin according to

the composition in Table 3-2, six were prepared at the control

composition (Table 3-1), and two were prepared with higher

levels of acid (0.15 N H+, other reactants as given in Table

3-1).

A complete set of permeability measurements were performed

only on the heparin containing hydrogel membranes. The remain-

ing membranes were used in stagnant diffusion studies and in

developing the experimental techniques. All measurements were

performed at 37*C.

The calendered support fabric used in the membrane produc-

tion had a fabric weight of 0.4 oz/yd2 (1.36 x 10 3g/sq cm)

and varied from piece to piece by +3%. Fabric thickness was

1.3 + 0.3 mils, and the open area of the fabric is estimated

at 65%.

Microscopic examination of the hydrogel membranes used

revealed minor surface imperfections but no structures that

appeared to penetrate into the hydrogel coating. The membranes

appeared to have a continuous, uniform coating tightly adherent

to the nylon fibers embedded within the hydrogel material.

Table 5-11 presents the results for studies on the heparin

containing hydrogels (Table 3-2). Solute permeabilities from

urea through polyethylene glycol (PEG) were measured using the



Table 5-11. Summary of Permeability Measurements.

Membrane Resistance (min/cm) at 370C

Cuprophane a

PT-150 (1.10 mil)

17.0

Avisco Wet b

Gel (2.59 mil)

18.2

Heparinized Hydrogel

R (min/cm)

22.4

Ax (mils)

5.60

Creatinine

Uric Acid

Sucrose

Inulin
(10 g/I unlabelled)

Dextran
(10 g/L unlabelled)

Peg
(10 g/t unlabelled)

Myoglobin

Albumin

30.8

32.8

98.7

522.

30.6

33.6

56.8

194.

288.843,

7310.

1. 9x10 5

4.2xl0 5

c

c

1020.

3.3x103 c

1.2x105 c

32.6

39.6

79.3

324.

427.

956.

3.3x10
3

1. 5x10 4

a R-Bemberg. Data from reference (9).

b R-FMC Corporation. Data from (9).

0
c Data from reference (9j corr c~eU LU

Solutes

Urea

6.17

7.60

37 C.
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batch dialyzer (Section 4-J), and the overall mass transfer

coefficient was corrected for liquid phase resistance as dis-

cussed in Section 3-III-A using the correlation of Smith et al.

(122). Values reported in the table are membrane resistance

(R m (min/cm)).

Data from the work of Colton (9) for Cuprophane PT-150

(R-Bemberg) are presented for comparison. Colton's data on

the commercial cellulosis membrane showed a standard deviation

in the range of +5%, but the variation in the hydrogel permea-

bility data of this work is estimated on limited data to be

+10%. This is most likely caused by the less uniform membrane

(+0.9 mil) and the inherent reproducibility of the synthesis

technique.

The data reported in Table 5-11 for myoglobin and albumin

were taken using the stagnant diffusion cells (Section 4-K).

On the basis of multiple determinations on both the control

membrane (Table 3-1) and the high cyclic acetal membrane

(0.15 N H+) the accuracy of these data is in the range of +40%.

Colton reported similar deviations in his permeability data

with the protein solutes. Additional permeability data taken

with the stagnant diffusion cells is reported in Table 5-12.

Since it was found impossible to exactly reproduce the

membrane thickness or to perform all measurements on one mem-

brane specimen, the data are reported with the measured mem-

brane thickness. A more relevant comparison of the data can

be made by calculating the effective diffusivity of the solute

in the membrane by

D = P Ax (5-1)eff m



Summary of Protein Permeability Studies at 370C.

Myoglobin Albumin

Membrane

aCuprophane PT-150
(1.10 mil)

aAvisco Wet Gel
(2.59 mil)

Heparinized
Hydrogel (7.60 mil)

Control Hydrogel
7.0 mil
7.8 mil
8.2 mil

High Cyclic
Acetal Hydrogel

5.1 mil
6.4 mil
4.0 mil
4.8 mil

Rm (min/cm)

1.9 x 105

3.33 x

3.3 x 10

3

4.3 x 10
3.3 x 103

3.0 x 103
7.6 x 103

Deff (cm2/sec)

2.5 x 10 0

3.3 x 10~

9.8 x 108

7.7 x
11. x

5.5 x
2,6 x

R (min/cm)

4.2 x 10

1. 2 x 10O5

1.5 x 10 4

1.8 x 10

2.5 x 10

2.4 x 10
3.2 x 104

Deff (cm2/sec)

1.1 x 10

9.2 x 1010

2.1 x 108

1.6 x 108

1.4 x 10~8

9.0 x 10 9
8.3 x 10-

108
10-8

a Data for Cuprophane (R-Bemberg) and
Values of Rm corrected to 370 C.

Avisco Wet Gel (R-FMC) from reference (9).

H0'~

Table 5-12.
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where Ax is the membrane thickness. Values of Deff are reported

along with membrane resistances in Table 5-12 for the protein

studies.

Referring to Table 5-11 it can be seen that the permeabi-

lities measured for the heparinized hydrogel membranes are

nearly equivalent to Cuprophane (R-Bemberg) in the low molecu-

lar weight range and are significantly superior in the middle

molecular weight range in spite of a fivefold difference in

membrane thickness. The hydrogel membrane is also superior to

Avisco Wet Gel (R-FMC) when compared on the basis of equivalent

thickness. However, the wet gel cellophane is not widely used

in hemodialysis because of its poor physical properties.

In Figure 5-12 the effective diffusivities for all sol-

utes calculated according to Equation 5-1 are plotted as a

ratio to the solute diffusivity in water (DH 0, Table 3-3),

both values being at 37*C. This diffusivity reduction (D ef/

D H20 is plotted as a function of the solute radius for permea-

tion (Table 3-3). Curve A is for the heparinized hydrogel

and curves C and B are for Cuprophane (R-Bemberg) and Avisco

Wet Gel (R-FMC), respectively, from reference().

Figure 5-12 illustrates in graphical form the improved

permeabilities of hydrogel membranes relative to the commercial

cellulosic membranes. For all three membranes no clear "cutoff"

exists, but rather a continuous decrease of the effective dif-

fusivity as solute radius increases. This should be expected

for any polymeric membrane with randomly oriented polymer

chains and randomly distributed "tie points" (i.e., cross-links

or crystallites).
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It has been demonstrated in studies of the permeability

characteristics of cellulosic membranes (123,132) that improved

performance of a dialysis membrane can be attributed to a high-

er water content (i.e., lower volume fraction of polymer) in

the membrane. The improved permeability characteristics of

the heparinized hydrogel membranes relative to the commercial

cellulosic membranes are undoubtedly due to their high water

content. In volume fraction of water the values for the three

membranes compared in Figure 5-12 and Table 5-11 are 0.645 for

Cuprophane PT-150 (R-Bemberg), 0.818 for Avisco wet gel (R-FMC),

and 0.947 (370 C) for the hydrogel phase of the fabric supported

membrane.

The principal drawback to the application of the heparin-

ized hydrogel membrane in hemodialysis is the inadequate "cut-

off" of albumin, as shown in the data in Tables 5-11 and 5-12.

For the standard criterion of a maximum protein loss per dia-

lysis of one gram, which is about 1% of the patient's albumin,

a treatment time of eight hours, and an effective membrane area

of 0.5 square-meters, the maximum allowable albumin permeabi-

lity is in the range of 10-5 cm/min. This is approximately

an order of magnitude less than the values found for the hydro-

gel membranes.

Data in Table 5-12 shows that the effective diffusivity

of albumin in the control hydrogel membrane is slightly less

than in the heparinized material, which can be attributed to a

slightly lower volume fraction of water (vH20 = 0.927 for

hydrogel at 370 C). If the sole criterion to improve the albu-
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min "cutoff" be a higher volume fraction of polymer, then the

best way might be to increase the amount of cyclic acetal by

using higher levels of acid catalyst. However, the data for

the high cyclic acetal membrane (vH 20 = 0.773 for hydrogel at

37*C) indicate only slight improvement. This observation sug-

gests that at 37*C some association of the cyclic formals not

detected in the modulus determinations has occurred to cause

a nonhomogeneous material. It should be noted that this mem-

brane was prepared at the highest level of acid used in any

synthesis in this work. The point of the discussion is that

a satisfactory hydrogel membrane must have a higher polymer

content and must be homogeneous on a molecular level, i.e., no

microphase separations.

K. IMPLICATIONS FOR FURTHER WORK

There are two important criteria to be met in further im-

provement of the supported heparinized hydrogels for applica-

tion in hemodialysis.

1. The equilibrium polymer content of the membrane

must be increased.

2. The hydrogel phase of the supported membrane must

be homogeneous on a molecular level.

Unfortunately, many logical approaches to achieve one of

the criteria tend to thwart the other. In this work the con-

cept of the network shrinking during reaction to a relaxed

state V. at which the cross-links are unstressed was put forth.

In general, the higher the polymer fraction at V., the higher

will be the equilibrium polymer content of the finished mem-



167

brane, but the effect is compounded by the chain modification

that occurs.

Variables that were found best to achieve this, namely,

longer reaction times, higher formaldehyde concentrations, and

most notably higher acid concentrations, accomplish the con-

centrating of the network by introduction of cyclic formals.

It was demonstrated in this work that at least at the highest

acid levels the cyclic formalization of network chains results

in a nonhomogeneous structure on the molecular level. While

it should be possible to optimize the two effects, one is still

faced with the unappealing aspect of a material whose permea-

tion properties would depend on temperature and which would

undergo dimensional changes with temperature within a hemodia-

lysis unit.

The alternative is to take advantage of those factors

which will preserve network homogeneity and still increase

equilibrium polymer content. Lower levels of acid and formal-

dehyde and higher concentration of glutaraldehyde and PVA

could be used. While simply removing formaldehyde from the

reaction mixture might appear as the ultimate solution, this

is probably not feasible. By competing with glutaraldehyde

in the formation of hemiacetals on the PVA in the room temper-

ature reaction mixture, formaldehyde undoubtedly serves as a

moderator in the reaction, preventing rapid gelation during

the casting process. A rapid gelation could both introduce

nonhomogeneities into the finished material and would tend to

entrap air bubbles in the membrane structure.
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CHAPTER 6

CONCLUSIONS

A. RUBBER ELASTICITY THEORY

1. The theory of rubber elasticity proposed in this work

for application to networks formed in a solvated state proved

to be a viable experimental method to study the effect of reac-

tion variables on the hydrogel networks. Experimental tensile

measurements showed excellent agreement with the theory at low

sample extensions.

2. The concept of the relaxed state of the network repre-

sented by the system volume at the end of the reaction time was

justified by the experimental data.

B. STUDY OF THE HYDROGEL CHEMISTRY

1. The importance of the two processes occurring during

the hydrogel synthesis--cross-linking and chain modification--

was demonstrated. Glutaraldehyde functions as the cross-link-

ing agent by forming two cyclic acetals with PVA hydroxyls.

While contributing little to the cross-linking of the PVA, for-

maldehyde modifies the network chains by formation of cyclic

formals.

2. Higher amounts of cyclic formal in the network tend

to increase the equilibrium volume fraction of polymer at any

temperature. The thermal response of the hydrogels becomes

more pronounced as cyclic formal content increases.

3. Glutaraldehyde cross-linking is a fast process rela-

tive to cyclic formalization by formaldehyde, but cyclic for-

malization has a more favorable equilibrium. Conditions which
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favor the introduction of more cyclic formal--higher acid con-

centration, longer reaction time, higher molal ratios of formal-

dehyde to PVA--tend to decrease the amount of glutaraldehyde

cross-linking per PVA chain.

4. Acetic acid serves as a solvent in the reaction mix-

ture for cyclic formals, preventing association and possible

phase separation.

5. Higher elastic modulus values achieved with higher

PVA concentrations in the reaction mixture were explained on

the basis of reduced molal ratios of formaldehyde to PVA, which

permitted more glutaraldehyde cross-linking per PVA chain.

6. Heparin exerts a buffering effect on the reaction mix-

ture, and this accounts for the properties observed with hep-

arinized hydrogels. The residual heparin content may slightly

affect the thermal shrinkage of the hydrogels.

C. MEMBRANE SUPPORT EVALUATION

Calendered nonwoven nylon fabric (0.4 oz/yd 2) was found to

have superior tensile and tear-resistant properties relative to

commercial cellulosic hemodialysis membranes. The material is

stable in the conditions of the hydrogel synthesis and can be

satisfactorily coated with hydrogel to serve as a potential

hemodialysis membrane.

D. PERMEATION STUDIES

1. Heparinized hydrogel membranes cast with a nylon fab-

ric support are equivalent to the standard cellulose hemodialy-

sis membrane in the transport of low molecular weight solutes

and superior in the transport of middle molecular weight
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solutes.

2. The improved permeability characteristics of heparin-

ized hydrogel membranes is attributed to their high water

content.

3. The albumin "cutoff" of heparinized hydrogel mem-

branes is insufficient to permit immediate application in hemo-

dialysis therapy.
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CHAPTER 7

RECOMMENDATIONS

1. The validity of the theory of rubber elasticity for appli-

cation to networks formed in the presence of diluent proposed

in this work should be tested over a wider range of polymer-

solvent mixtures and amounts of cross-linking. Preferably a

well-characterized polymer-solvent system should be chosen, as

opposed to one with the complicated phase behavior of PVA-water.

2. Further study of the hydrogel system with the methods pre-

sented in this thesis should be pursued for various combina-

tions of the reaction variables. Of particular interest are

higher PVA concentrations, higher glutaraldehyde concentrations,

and lower concentrations of acid.

3. Other acids such as p-toulene sulfonic acid should be sub-

stituted for the sulfuric acid. Being a more efficient cata-

lyst for the acetal reaction, equivalent hydrogel properties

might be achieved at higher pH and therefore with less heparin

deactivation.

4. Studies such as proposed in (2) above should lead to an

optimum composition for a hydrogel hemodialysis membrane with

adequate retention of the plasma proteins.

5. The nonwoven nylon fabric evaluated in this work merits

further consideration as a membrane support and in other bio-

material applications. Fabric prepared with nylon fiber con-

taining no heat and light stabilizers should be used for in

vivo applications.
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APPENDIX A

DERIVATION OF THE THEORY OF RUBBER ELASTICITY

FOR ISOTHERMAL DEFORMATIONS

The derivation presented in this section is based primarily

on the discussion by Meares (103), the review paper by Ciferri

(112), and the text of Flory (76). Specific references are

cited in the text.

A. THERMODYNAMICS OF STRESS AND STRAIN FOR CROSS-LINKED

ELASTOMERS

When a cross-linked elastomer is subjected to a sudden

stress, it reaches a state of equilibrium strain almost in-

stantaneously and, similarly, the stress remains constant for

an indefinite time in a sample maintained in a state of con-

stant strain. Such equilibrium situations naturally lend them-

selves to a thermodynamic treatment and this has provided an

invaluable basis for the study of highly elastic behavior.

Actually, the experimental attainment of a true state of equi-

librium is not quite as simple as was at one time supposed.

Practical difficulties, however, once recognized, can usually

be overcome and in the best studies of the deformation of rub-

ber and synthetic elastomers it may confidently be accepted

that reversible processes have been examined.

For a reversible process the first and second laws of

thermodynamics may be combined to give the following relation-

ship among internal energy E, entropy S, absolute temperature T,

and the work W done by the system:

dE = TdS - dW (A-1)

If a linear force f acts upon a sample of length L, the work
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done by the system during a small extension dL is -fdL. If the

volume of the system increases by dV as a result of this strain,

then

dW = -fdL + PdV (A-2)

where P is the external pressure.

The Helmholtz free energy A is defined by:

A = E - TS (A-3)

Differentiating and combining with Equations (A-1) and (A-2)

gives:

dA = -PdV + fdL - SdT (A-4)

from which it follows that

f= (LA) (A-5)
DL TV

For an amorphous polymer deformed by an external force f, the

accompanying volume change is extremely small, which results

in the PdV term being negligible at ordinary pressures (107).

B. STATISTICS OF A SINGLE CHAIN

The first step in the theory of rubber-like elasticity

is the derivation of the statistical properties of a single

chain. It is necessary to know quantitatively the free energy

of the molecule as a function of its end-to-end distance r and

a quantitative relation between this distance and the force

necessary to maintain it. Because of Brownian motion of the

chain, the distance r must be considered an average value of

the end-to-end distances during the period of application of

the force f.

For real chains with hindered rotations, the configura-

tions which are consistent with normal bond lengths and angles,
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and which give rise to a particular chain-end displacement vec-

tor r, do not all have the same internal energy and hence do

not have equal probabilities. A configurational integral Z(r,T)

may be set down (133) for a chain of n bonds which are repre-

sented by the vectors k', 2''''&n, where

n

r = (A-6)

If c(k) is the internal energy associated with a particular set

of values of k , then

Z(r,T) = f---/ exp[-E(k)/] d9, d9 --- dn (A-7)
-kT :-l -2 -n

where the integration is taken over all possible values of the

bond vectors . which are consistent with the constant dis-

placement vector r.

The Helmholtz free energy A of the chain with displacement

vector r (134) is

A = -kT ln Z(r,T) + constant (A-8)

where the constant involves all the nonconfigurational degrees

of freedom of the chain which are unaltered by changes of con-

figuration. Replacing L by r in the relation between A and

tension (Section A) gives

f = () = -kT ( in Z((r,t)-9)
Dr T,V kr T,V

in which only the magnitude of r and not its direction is

important.

For a chain without constraints, the probability that r

lies between r and (r + dr) is given by
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W(r)dr = Z (r,T) dr (A-10)
fZ (r,T)dr
0

Multiplying by 4Tr2 removes the directional restriction on r,

hence

W(r)dr Z(r, T) dr 4Trr2  (A-li)
f Z (r,T)dr
0

Rearranging the equation and taking logarithms gives

ln Z(r,T) = ln W(r) + ln f"Z(r,T)dr -ln 4f - ln r2 A-12)
0

and on differentiation

D ln Z(r,T) _ ln W(r) (A-13)
Dr T Dr T r

since fo Z(r,T)dr is independent of r.
0

The distribution function W(r) can be approximated by the

Gaussian function (102)

3 2 2 2
W (r) dr = (S/r)3 exp {- 2 r } 47r dr (A-14)

Hence ln Z (rT) = _22r (A-15)
Dr T

where for real chains S is a parameter of the equivalent random

chain. -Using the concept of the equivalent chain

(96,135) permits expression of 5 in terms of r2, the mean square

displacement length of the equivalent random chain.

2 3 (A-16)

2
2r 20

Substituting Equation (A-15) and Equation (A-16) into Equation

(A-9) gives the equation of state

f = (A-17)
~2

r
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which is valid over the range for which the Gaussian distribu-

tion is valid for the equivalent random chain. Since it has

not been assumed that all chain configurations have the same

internal energy or a priori probability, the derivation of this

equation of state is general in the statistical thermodynamic

sense.

C. ELASTICITY OF THE NETWORK

The second step in the theory consists in calculating the

free energy Ael of the network as a function of the macroscopic

parameters which characterize the deformation. Since the net-

work is formed by connecting single polymeric chains through

the cross-links, the derivation ought to begin from the expres-

sion for the elastic retractive force f of a single chain

(eqn. A-17). Moreover, the presence of these links eliminates

any distinction among the initial macromolecules; consequently,

the network can be considered an ensemble of subunits, each sub-

unit being that portion of an original macromolecule extending

from one cross-link to the next. It has to be assumed that the

degree of cross-linking of the network is sufficiently low for

the mean lengths of these subunits between cross-links to be

long in the sense that a statistical treatment can be applied

to enumerate their configurations. Treloar (136) has shown

that twenty-five or more freely-jointed links or their equiva-

lent between cross-links is sufficient to justify the statisti-

cal treatment.

Only those subunits which extend between cross-links will

be effective in determining the retractive forces of the cross-
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linked sample, and these will be denoted as v . In an actual

elastomer inactive material is also present, such as loose ends

of chains, rings which are connected to the active network at

only one point, and some macromolecules not joined to the net-

work at all. This inactive material is effective only in deter-

mining the volume occupied by the system. The configurations

of these inactive subunits are not altered when the fixed

points move relative to one another when the network is

strained. Hence they do not contribute to the entropy of defor-

mation. In the theory it is assumed that the behavior of the

system is the sum of the contributions of the v e subunits.

To develop the theory, it is necessary to assume some cor-

relation between macroscopic dimensions of the sample and the

set of r values. Since the material is initially isotropic,

the simplest assumption is that the components of the vectorial

length of each subunit are changed by the deformation in the

same ratio as the corresponding dimensions of the sample. This

is the so-called "affine" deformation (107 ,76). Consider a

subunit having one end at the origin of a rectangular coordi-

nate system and the other end at a distance r away, with coor-

dinates (x.,y.,z.). A deformation modifies the conformation of

the subunit in such a way that the distance between the two

ends is r, with one end having coordinates (x,y,z) while the

other remains fixed at the origin. The initial macroscopic

sample, assumed to be a unit cube, is changed by the deformation

(at constant volume) into a parallelepiped having edges

a , a," a in the directions of the x, y, and z axes respec-
x y z
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tively. That deformation for which x = x a, y = y. at , and

z = z. a is considered affine.

If the network consists of v active subunits of mean

square length r. in the isotropic unstrained state and of mean
1

length r in the unstrained state, then for such an affine deforma-

tion,

r 2= (a 2+ a 2 + a 2)r 2  (A-18)
3 x y z i

Recalling that for an isothermal process

AA = -W (A-19)

the total work done by the subunits is given by (using Equation

A-16)

72 1/2
-W = 3v Jf() r dr = AA (A-20)

r-2 - 1/2
oI (r )

AA is the change in the Helmholtz free energy of the network

due to the deformation. Hence,

kT r i -(a2 + 2 +t2
AAel V e2 x a y+z 3) (A-21)

.ro

Consider a unidirectional elongation in which the sample,

originally of length L , is elongated to L. Let a = L/L0 = a x.

For this deformation at constant volume a a ax 1; conse-
x y z

-l/2quently a y = a = a . Therefore,

yr z

AA e ve 2 -a 3) (A-22)el e 2 3)
2

r o
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= - ( - - T V
(A-23) *

Differentiating Equation (A-22) gives the retractive force for

the case of simple elongation:

v kT r.
f 2 ()

Lo 0 a2)
-ro

(A-24)

The force can be converted to stress by dividing by the initial

cross-sectional area V/L where V is the volume of the sample.

- T = R T (V) (a- )
02

ro

(A-25)

Replacing Boltzmann's constant k by the gas constant R

simply means the number of effective subunits v e will be ex-

pressed in moles.

*An approximation, which actually is quite negligible, is in-
volved in letting(3A/3L)T V = (3A/3a)TV/Lo, since a is
defined as L/L where botl'i lengths are measured at the same
temperature and pressure (L37).
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APPENDIX B

RUBBER ELASTICITY THEORY APPLIED TO SWOLLEN HYDROGEL SAMPLES

The derivation presented here parallels the one presented

by Flory (76), but has been modified by the author for swelling

of a sample initially cross-linked in the presence of solvent.

Assume that the network formed at volume V. and volume frac-

tion polymer v 2 ,i is subsequently swollen isotropically be a

diluent to a volume Vs.

V.

v 2, s v2,i ( ) (B-1)

For deformation due to elongation the constant volume assump-

tion is used, i.e.,

V = constant (B-2)
S

during deformation. Let a , ay, and a z represent the changes

in dimensions x, y, and z resulting from the combination of

swelling and deformation. Therefore,

a a a = 1(B-3)
x y z (Vi/V s

which is constant during deformation due to elongation. Define

a swelling factor

6 = (V /V ) (B-4)

hence a a a (B-5)
x y z 6

Considering the case of a simple elongation in the direction

of the x-axis, let a represent the length in this direction

relative to the swollen, unstretched length L0 ,s i.e.,

a = Lfs (B-6)
L

OrS
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Since swelling is isotropic,

L
os

= (V /V.)l/3
s5i

L
0

(B-7)

where L0 represents the unswollen, unstretched gauge length.

a = a(V )l/3 _ /61/3,x 5

and, since a a a = 6
xy z

a - az ( )1/2
x

1
-1/2 1l/3

Recall equation (A-21) which gives the change in the Helmholtz

free energy of the network due to the deformation:

vkT r
AA -e

el 2 -
r2

(a2 + a 2 + a 2 - 3)
x y z

The subscript o denotes the value of(r /ro) at the tempera-

ture of interest in the absence of diluent. Introducing re-

lations (B-8) and (B-9) into equation (A-21) gives

kTv ri
AA e e

el 262/3 -
ro

(a2 + 362/3) (B-10)

The elastic retractive force for the swollen network is

(B-ll)f = - (-
os aTV

Differentiating equation (B-10) gives

kTv r.

62/3Lo,s r
00OJ

(B-12)

since 6 is constant during elongation. The initial swollen,

unstretched cross-sectional area is Aos = V s/L os. The stress

Then (B-8)

(B-9)

(A-21)
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T expressed as force per unit area of the swollen, unstretched

sample is:

f V 2/3 r
= T = RT( ) (a- (B-13)

o,s s r2 a

where (v /V s)is moles of effective chains per unit swollen vol-

ume. Similarly the equation can be written for v /V. , moles

of effective chains per unit of initial volume:

T = RT (V) 1 - (B-14)
12 a

r~
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APPENDIX C

CALCULATION OF THE CRITICAL CONCENTRATION

FOR POLYVINYL ALCOHOL IN WATER

The quantity C2, critical is defined as the concentration

at which the polymer coils in solution just touch one another.

k (2 ) 1/2A

Brandrup and Immergut (118) report the following value for the

parameter (r /M)l for PVA in water at 30*C with ( 1/2 in
00

A and M in g/gmole.

(r /M)l/2 = 0.95
0

For a molecular weight M n 100,000,

(r )l/2 = 300A

This value may be used as approximation for the edge of a cube

of solvent that would just contain the coil as diagramed above.

Hence, C2,critical may be calculated:

Sn/Navagadro
C2,crit -- 3/2

(r )

(10 5 g/gmole) / (6 .02x10 23 molecules/gmole)
0 3 3 24 03(300A)3 ''m10 A

C2,crit = 0.006 g/cm 3
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or approximately 0.6% weight if density is taken as p = 1.0.
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APPENDIX D

COMPOSITION OF BUFFERED SALINE

0.08 M NaCl

0.03 M Na 2 HPO 4

0.01 M KH2 P4

200 PPM formaldehyde added as a bacteriostat

pH ~ 7.3

For permeation studies with proteins 5 x 10~ M KCN was

used as a bacteriostat in place of the formaldehyde.
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APPENDIX E

LOCATION OF ORIGINAL DATA

The data and calculations of this thesis are contained

in laboratory notebooks and computer printout on file with

Professor E. W. Merrill, Room 12-108, Massachusetts Institute

of Technology, Cambridge, Massachusetts 02139.
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APPENDIX F

ANALYSIS OF STOCK ALDEHYDES

Some amount of time was spent in finding suitable analytic

techniques to use on the stock solutions of formaldehyde and

glutaraldehyde. The general reviews of Mitchell (138) and

Reynolds and Irwin (139) were helpful in the pursuit, but un-

fortunately both the reviews and the original papers on speci-

fic techniques did not contain sufficient detail to clearly

assess the reliability of one technique relative to another.

The sodium sulfite procedure (140) was found best for formalde-

hyde and the hydroxylamine hydrochloride technique (140) proved

most satisfactory for glutaraldehyde.

A. SODIUM SULFITE PROCEDURE FOR FORMALDEHYDE

Because of its accuracy, simplicity, and rapidity, the

sodium sulfite procedure is probably the best procedure for the

determination of formaldehyde in commercial formalin solutions.

The method is based on the quantitative liberation of sodium

hydroxide when formaldehyde reacts with sodium sulfite to form

the formaldehyde-bisulfite addition product:

CH 20 + Na 2SO3 + H 20 + NaOH + CH 2 (Na 2SO 3 )OH

Procedure

From a fresh stock bottle of formalin three samples of

5-6 grams each were precisely weighed into 100 ml volumetric

flasks and diluted to the mark with distilled water. After

careful mixing on a magnetic stirrer, the following procedure

was followed for each volumetric flask (designated I, II, III).

1. Neutralize the 100 ml to pH = 7.0 using pH meter
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and a few drops of acid or base as required.

2. Three titrations of each sample flask. For each:

a. 50 ml of 1 M Na 2 SO 3 plus 4 drops thymolphthalein

indicator neutralized with acid (one or two

drops) to colorless.

b. Add exactly 25.0 ml of sample from the volumetric

flask.

c. Stir ten minutes, then add distilled water ice to

cool the solution.

d. Titrate with 1.00 N H2so4.

3. Computation

(net ml) (1 gmole/liter) x (30.03g CH 2O/gmole)

wt % CH 2  (10 3ml/liter) (g sample) (sample aliquot x 100%

Ten minutes was found sufficient to assure equilibrium in the

formation of the formaldehyde-bisulfite addition product.

Longer mixing times did not affect the results. For nine titra-

tions performed on samples from one stock formalin bottle

(three volumetric sample flasks times three titrations on each)

the results were found to have a percentage error of +0.2%,

e.g., (36.44 + 0.09)% error +0.2%.

B. HYDROXYLAMINE HYDROCHLORIDE METHOD FOR GLUTARALDEHYDE

Hydroxylamine hydrochloride reacts with the carbonyl

groups of aldehydes and ketones forming an oxime and liberating

hydrochloride acid. With glutaraldehyde the reaction may be

written:

OHC-(CH2) 3 CHO + 2NH 2OH-HCl

HON:HC.(CH 2 ) 3CH:NOH + 2H 20 + 2HCl
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Procedure

1. Ten milliliters of a 10 wt % aqueous solution of

NH 2OH-HCl are added to two 125 ml Erlenmeyer flasks.

One is a blank and the other will be the sample

flask.

2. Into the sample flask precisely weigh one gram of

the concentrated glutaraldehyde solution to be

analyzed.

3. Stir both flasks for 20 minutes and then titrate

with 1.00 N NaOH with three drops bromophenol blue

as indicator. The end-point is marked by a color

change from yellow to light purple.

4. Computation

net ml = (sample ml) - (blank ml)

(net ml) (1.00 lite NaOH) ( ) x 100%
wt % G 3 -~-rgmole

(103ml/liter) (sample wt) (2 aldehydes/G)

For three samples from one bottle of the concentrated

glutaraldehyde solution, the results were found to have an error

of +0.04%, e.g.,

(50.40 + 0.02)% error + 0.04%
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APPENDIX G

SOLIDS DETERMINATION

Approximately lOg of the PVA-water solution to be analyzed

was precisely weighed into an aluminum weighing pan of known tare

weight. Usually three samples were run on a given 1500g batch

of PVA stock solution. The weighing pans containing the poly-

mer solution were placed in a thermostatted vacuum dessicator

at 100*C and dried to constant weight (usually 24 hours was

sufficient). Final weights were recorded and the percent sol-

ids calculated in a straightforward manner:

% solids = final wt - tare wt-] x 100%
initial wt - tare wt

Percent polymer was assumed equal to the percent solid, which

should be justified in light of the analytic chemistry results

cited in Section (4-B-6). Typical results on three samples

were:

(8.80 + 0.02)% error + 0.2%
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APPENDIX H

SOLUTES USED IN PERMEATION STUDIES

SOLUTE SUPPLIER

Urea-C 1 4

Creatinine-4-C 14

Uric acid-2-C 1 4

Sucrose-C 1 4

Inulin-carboxyl-C 1 4

Dextran-carboxyl-C1 4

Polyethylene-
1, 2-C1 -glycol

Myoglobin

NEN

ICN

ICN

NEN

NEN

NEN

NEN

S/M

CBCAlbumin

CATALOGUE NO.

NEC-108

17126

13057

NEC-100

NEC-16 4P

NEC-218A

NEC-473

1155, horse heart,
2X crystallized

126658, human, crys-
tallized, electro-
phoretically pure

NEN New England Nuclear, Boston, Massachusetts.
ICN International Chemical and Nuclear Corporation,

Irvine, California.
S/M Schwarz/Mann, Orangeburg, New York.
CBC Calbiochem, Los Angeles, California
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APPENDIX I

MICRO-BIURET ANALYSIS FOR PROTEINS

The micro-Biuret technique described here is based on the

paper of Itzhaki and Gill (141) as modified by Bellantoni

(142).

The micro-Biuret reagent was prepared by adding one part

of a 1.05 wt % solution of (CuSO4-10H20) in saline 1 to four

parts of a 30 wt % solution of NaOH in saline. This solution

was designated working solution A, and working solution B was

30 wt % NaOH in saline.

Reference solutions were prepared for each analytic run

as follows:

A 2.0 ml saline + 1.0 ml working solution A.

B 2.0 ml saline + 1.0 ml working solution B.

In the analysis of albumin the sample should contain be-

tween 0.05 to 0.10 wt % of albumin, and for myoglobin the

sample concentration should be in the range of 0.005-0.05 wt %.

Dilutions, if necessary, are done with saline.

With the concentrations in the ranges specified above,

sample solutions for analysis were prepared as follows:

A2 2.0 ml sample + 1.0 ml working solution A.

B2 2.0 ml sample + 1.0 ml working solution B.

Absorbence was measured on a Coleman Junior II Spectro-

photometer (Model 6/35) at 325 my as follows:

1. Saline refers to physiological saline which is an aqueous
solution of 0.85 wt % NaCl.
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Read A2 standardized against A .

Read B2 standardized against B .

Optical density (O.D.) = A2 - B2, and was found linearly

proportional to the wt % protein present in the ranges speci-

fied. If the B2 reading was greater than 0.05, ultraviolet

absorbers other than protein were present in the sample, and

the results were considered invalid.

Standard working curves were prepared for both the albumin

and the myoglobin and were linear in the ranges specified.

Since they are not of general utility, being a function of the

spectrophotometer used, they will not be included here.
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APPENDIX J

NOMENCLATURE

This appendix lists the more important variables in the

body of this thesis. Additional variables which were used only

in specific derivations are defined in the text.

A transport area (cm )

A 0 initial cross-sectional area (cm 2

A initial cross-sectional area (sq cm), swollen

specimen

C2 ,i concentration of polymer (g/cc) in reaction volume

C 1 , C2  concentration of solute in permeability studies for

the side of high concentration 1 and the side of low

concentration 2

D solute diffusivity in water (cm 2/sec)

Deff effective diffusivity

E Young's Modulus

f elastic retractive force (dynes)

AF Gibbs free energy change

kf liquid phase mass transfer coefficient

K overall mass transfer coefficient

L length (cm)



L
0

M

M
c

n

N

Pm

R

Rm
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gauge length (cm)

molecular weight (g/g-mole)

molecular weight of network subchain

number average molecular weight

number of primary polymer chains of molecular

weight M in the network

mass transport rate

membrane permeability

gas constant

membrane resistance (P -)m

"front factor"; ratio of the mean square end-to-end

distance for the network subchains in the undeformed,
2

isotropic state (r 2) to the corresponding mean

square end-to-end distance for the undeformed sub-
2

chains in the absence of cross-links (r0 ).

time

temperature (*K)

specific volume of polymer (cc/g)

volume fraction of polymer in swollen network

(cc polymer/cc hydrogel)

specimen volume (cc)

hydrogel reaction volume; relaxed volume of network

(r /r
1 0

t

T

:7

v 2

V

V.
1
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Vr

V
p

V 
1

W

Ax

x,yz

Greek Symb

a .

6

V

v e

p

T

volume of replacement solution (permeability studies)

volume of polymer (unswollen)

solvent molar volume

chamber volumes for batch dialyzer

weight fraction of polymer in initial reaction

mixture

weight

membrane thickness

axial coordinates

ols

extension parameter (=L/L0 )

swelling factor (=V./V )

number of cross-linked subchains of molecular weight

M in the network
C

number of effective subchains

density

stress (dynes/sq cm)

polymer-solvent interaction parameterX1
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