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ABSTRACT

Energy management is of vital concern in the automotive industry and many components
need to satisfy stringent 'impact-safe' requirements. These energy absorption
requirements conflict with the design demands for more compliant, thinner materials
leading to a conflict ofstiffness problem. A 'novel' energy absorbing material that adapts
to environmental conditions and user specifications has been conceptualized, designed,
modeled and tested in the present work. This adaptive energy absorbing material consists
of an elastomeric foam impregnated with a field-responsive fluid such as a
magnetorheological fluid or a shear-thickening fluid.

Stable and inexpensive magnetorheological (MR) fluids based on carbonyl iron powder
have been synthesized in the laboratory. The rheological properties, including the field-
dependent yield-stress, of the fluid have been measured at magnetic fields varying from
0.0 to 0.4 Tesla using a custom-built fixture for the AR 2000/ 1000N rheometers. Steady
shear rheological experiments and transient creep tests have also been performed on a
shear-thickening fluid consisting of 56% w/w corn-starch in water.

The large, reversible changes in the rheological behavior of field-responsive fluids have
been utilized for controlling the stress-strain behavior and energy absorption
characteristics of cellular solids. The mechanical properties of 'dry' and field-responsive
fluid-impregnated cellular solids have been determined using Texture Analyzer modified
with a custom-built attachment. Foams impregnated with MR fluids have shown a
tremendous improvement in the energy-absorption capacity. The energy absorbed per
unit volume at moderate magnetic fields (B ~ 0.2 T) has been found to increase by 30 to
50 times as compared to the energy absorbed at zero-field.

A 'two-layer' scaling model has been proposed to explain the increase in the foam
plateau stress based on an assumption that the MR fluid forms a secondary layer on the
solid edges of the foam and determines the composite elastic modulus. Experiments have
been carried out to determine the effect of control parameters such as the magnetic field,
volume fraction of the fluid impregnating the foam and the strain rate on the mechanical
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behavior of the composite. The magnetic field has been varied from 0.0 to 0.2 T, the
volume fraction from 0% to 60% and the strain rate from 0.02 to 2.0 s-1. All the
experimental data has been found to collapse onto a single master curve using appropriate
shift factors based on the proposed theoretical model.

Impact testing using a 'drop-ball' test apparatus, built in-house, has been performed for a
scaled down headrest model. Designs for an adaptive headrest and various automotive
components have also been described in detail. The present work has thus presented a
'novel' class of conformable field-responsive fluid based composites that can be used for
rapidly switching energy absorbing applications.

Thesis Supervisor: Gareth H. McKinley

Title: Professor of Mechanical Engineering
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CHAPTER 1

Introduction and Motivation

"Advanced materials are moving out of the lab and into the commercial world. Once

regarded as laboratory curiosities, smart materials are beginning to make their mark on some high

profile commercial applications" (Quoted from 'Feature Focus' in Mechanical Engineering

(2002)).

1.1 Background: Energy Absorbing Materials

Energy absorbing materials and structures are used in a number of applications ranging

from vehicles, ballistic armor to helmets, sporting equipment and clothing. Such materials will

shunt (divert and distribute the impact energy to sturdier areas), convert or dissipate energy via

viscosity, friction, visco-elasticity or plasticity. Open or closed-cell foams, fibrous materials,

springs or piston-cylinder arrangements are generally used as energy-absorbing structures.

Automobiles require a wide array of energy absorbing structures and a few of them are

illustrated in figure 1.1. The seat backrest and headrest provide comfort to the passenger by

absorbing small shock energies under normal driving conditions. The knee bolster located below

the steering wheel absorbs impact from the passenger's knee during a frontal crash. The A/B/C

pillar trims (shown in green color in the figure) cushion the shock to the passenger head in a

frontal or side car impact. Also, crumple zones or deliberate weak spots in strategic locations that

collapse in a controlled manner during a crash to dissipate energy are shown in the figure.
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Figure 1.1 Examples of vehicle energy absorption structures like A/B/C pillar trims,

headrest, seat backrest, knee bolsters, dampers, bumpers etc.

Thus, energy management in occupant protection components for vehicle and passenger

safety is an important concern. As an example, NHTSA estimated that there were 805,851

occupants with whiplash injuries alone, annually between 1988 and 1996 in the United States

resulting in a total annual cost of $5.2 billion. Whiplash associated disorders are influenced

mainly by seat and head-restraint properties and their positions with respect to the head and torso

(Jakobsson et al., 2000). The number and extent of injuries can be reduced by maximizing the

amount of energy absorption, by minimizing the occupant acceleration or by reducing the relative

movement between the head and the torso. Similarly, in side crashes, NHTSA simulation studies'

have shown that structural stiffness and energy management through padding in doors or pillar

trims can significantly reduce chest, head or pelvic injuries.

1 http://www.nhtsa.dot.gov/cars/rules/CrashWorthy/status9.html#13
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1.2 Motivation: 'Conflict of Stiffness' Problem

The energy absorption capacity of the material is its defining characteristic and if it is too

low the material "bottoms out" providing no additional protection or if it is too high, the force

exerted exceeds the critical value beyond which it causes damage or injury. Thus, a more

compliant material generates low forces and is comfortable but absorbs very little energy and vice

versa indicating a trade-off in the optimal stiffness property of a given material. This is

commonly referred to as the conflict of stiffness problem. Also bulkier, thicker materials will

absorb more energy but this conflicts with design demands for slim, narrow structures. Further in

accordance with new incoming legislations, due to European Experimental Vehicles Committee

Working Group (EEVC WG 17) and European New Car Assessment Program (EURO NCAP),

vehicle designs (exterior parts) need to minimize pedestrian injuries due to impact. The

coincidence of the adult upper leg impact zone with the child head impact zone indicates again a

"conflict of stiffness" problem (Courtney and Oyadiji 2001). Energy absorbing materials

implemented previously usually meet either the child passenger impact criteria or the adult

passenger impact criteria but not both sets of criteria (figure 1.2).

The Federal Motor Vehicle Safety Standard (FMVSS 201/202) further specifies special

requirements for the interior parts of the vehicle such as A/B/C pillar trims, head-liners, knee and

side impact foam parts. These impact parts are required to satisfy a number of energy absorption

criteria under different impact conditions and constraints of interior/exterior space and design

(Ullrich, 2003).
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Figure 1.2 'Conflict of stiffness' problem arising due to coincidence of the adult leg and

the child head impact zone requiring varying degrees of energy absorption

(http://www.euroncap.com).

A "conflict of stiffness" problem is evident in all the above cases and an adaptive

structure that can be controlled to absorb varying amounts of energy depending on the impact

conditions is required. Development of such a "smart" (externally adjustable or user-controllable)

energy absorbing material has been the motivation behind this work.

Numerous studies and patents earlier have been concerned with the development of

materials for energy management systems. As an example, U.S. Pat. Nos. 5,915,819, 5,564,535,

3,672,657 disclose a structure made of series of fluid-filled cells or reservoirs, wherein energy

absorption is achieved through restriction to fluid-flow through orifices or in-between cells and

reservoirs. A number of other devices disclose an energy absorbing pad or bladder with fluid-

filled envelopes or compartments, for example, U.S. Pat. No. 5,545,128 utilizes a shear-

thickening fluid-filled garment for bone fracture prevention. The major drawback in these devices

is that there is no external adjustment to the amount of energy absorbed and the impact energy is

simply shunted to another region due to incompressibility of fluid in compartments. Some

attempts have been made to make an adaptive structure, like World Patent No. 09949236 that

describes an energy absorbing material with permeable fluid-filled cells. The structure described

in U.S. Pat. Nos. 5,915,819 is adaptive to a small extent as it has two states; either open or closed

11
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cell state. This is realized by the use of pressure responsive seals, which convert the material from

open to closed cell structure to absorb high levels of energy. However, none of these materials

can be user-controlled to give desired energy management.

( 12d
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1.3 Adaptive Energy-absorbing Material: Concept and

Challenges

A fluid-solid composite as a possible solution to this problem has been envisaged,

developed and studied extensively in this thesis. This energy absorbing material consists of a

porous interconnected network of solid material forming edges and faces of cells such as an open-

cell reticulated or closed-cell foam. The network structure can alternatively be formed from fibres

or other cellular solids. The matrix is impregnated with a field responsive fluid such as a

magneto- or electro- rheological fluid (Larson, 1999). Controlling and adjusting the external field

in the vicinity of the material can then vary the energy absorbing properties of the fluid-solid

composite.

A number of issues need to be resolved before commercial use of the material would be

possible and many of them have been tackled in the present work, as shown in figure 1.4. The

properties of the fluid as a function of the field determine the adaptive properties of the energy

absorbing material. Hence, a review of earlier theories and experiments related to field-responsive

fluids is presented in chapter2. Results in rheology and testing of commercial and laboratory-

synthesized fluids on a modified rheometer are reported and discussed in chapter 4.

A major limitation has been the cost of the commercially available fluid ($600/ liter).

Further, this fluid is prone to settling and has proprietary formulation techniques. A field-

responsive fluid hence has been developed in the laboratory and is discussed in detail in chapter4.

Alternative field-responsive fluids like shear-thickening fluids could have a definite advantage for

certain applications and conditions and hence, prior studies are reviewed in chapter 2 and results

are reported in chapter 4.

Cellular solids form the base of the energy absorbing material and prior theory and

mechanical properties of these materials are reviewed in chapter 3. Chapter 5 describes the

development and characterization of the adaptive energy absorbing material. The energy
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absorption capacity and other mechanical properties of the fluid-solid composite are a function of

a number of control variables and experimental results illustrating their dependence are reported

and discussed in chapter 5. The functional dependence of all these parameters can only be fully

understood with a suitable model. Hence, a scaling model is also proposed and described in

chapter 5. Finally, chapter 5 deals with the comparison of theoretical predictions and

experimental results in the form of master plots using scaled or 'reduced' variables, which can be

used for tuning the material according to the application requirements.

15



CHAPTER 2

Field - Responsive Fluids: Introduction and

Literature Review

Field-responsive fluids (FRFs) may be characterized as materials that undergo large

changes in their rheological (i.e. flow) properties such as viscosity, elasticity or plasticity in

response to changes in magnetic, electric or stress fields.

2.1 Magneto- and Electro - Rheological Fluids

2.1.1 Introduction

Magnetorheological fluids ('MR fluids') belong to the class of so-called "smart" or

controllable materials. They can reversibly change between a free-flowing liquid and semi-solid

state within few tens of milliseconds in the presence of a magnetic field. These fluids have been

the focus of many studies since they can provide a simple, rapid-response interface between

electronic controls and mechanical systems. They were first discovered and developed by Jacob

Rabinow (1948) at the US National Bureau of Standards. Electorheological fluids ('ER' fluids)

are electric field analogs of MR fluids and show rapid and large changes in their rheological

behavior in response to an applied electric field. W. M. Winslow (1949) is credited with the

initial development of ER fluids.

2.1.2 Composition

These field controllable fluids are typically 20-50 % by volume, suspensions of colloidal

particles, usually 1-10 microns in size, in a carrier fluid like mineral oil, silicone oil, water,

16



Wi-

glycerol etc. The colloidal particles are soft magnetic in case of MR fluids while in case of ER

fluids they have a high dielectric constant and a suitable conductivity (e.g. alumina).

B

Figure 2.1 MR suspensions (2 vol%, 50 gm dia. iron particles in silicone oil) before and

after applying a magnetic field (Klingenberg 2001).

Mostly, carbonyl iron particles have been used in preparation of MR suspensions though

other formulations using ferromagnetic or ferrimagnetic particles, like magnetite (Fe3 04),

Fe - Co alloy and Ni - Zn ferrites have also been described. Ferromagnetic materials exhibit a

long-range ordering phenomenon at the atomic level, which causes the unpaired electron spins to

line up parallel with each other in a region called a domain. Kormann et aL. (1996) have studied

magnetorheological fluids made of nanosized ferrite particles, which usually comprise a

ferrofluid. MR fluids have also been made from superparamagnetic particles (e.g. polystyrene

particles studded with nanometer size iron oxide inclusions) dispersed in a solvent (Fermigier and
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Gast, 1992). . Superparamagnetic particles are soft ferromagnetic or antiferromagnetic particles

that do not possess any residual magnetization. A number of proprietary additives such as

surfactants and thixotropic agents are added to promote stabilization of particles and enhance

lubrication. Chin et al. (2001) have used nanosized ferromagnetic particles ( Co - y - Fe20 3 ) and

CrO2 particles to enhance dispersion stability. Nanostructured silica and surfactants like oleates,

stearates have been added in earlier works for improving redispersibility (Phule and Ginder 1999,

U.S. Patent No. 5,985,168). For improved stabilization of MR fluids against gravity, a

viscoelastic medium having a low yield stress like grease has also been used as the continuous

phase (Park et al. 2001). LORD Corp commercially produces numerous formulations of MR

fluids using different types of carrier fluids'.

2.1.3 Properties

Normally, MR fluids are in the liquid state with the consistency (viscosity ~ 0.1-1 Pa.s)

of motor oil but when a magnetic field is applied, the soft magnetic particles acquire a dipole

moment. The induced dipolar particles then align with the external field relative to the non-

magnetized dispersed phase to form fibrous columns or aggregates as shown in figure 2.1. The

columns need to be broken for the suspension to flow which gives rise to a yield stress (i.e. the

magnitude of stress at which appreciable deformation takes place without any appreciable change

in the stress (Barnes, 1999)) as a function of the magnetic flux density.

The Herschel -Bulkley viscoplastic model is often used to describe this yield stress and

the non-newtonian behavior observed in FRFs, after yield, due to the presence of many additives

18
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r = ro (B)+r -r > zr

where ro is the yield stress of the material, q; is the viscosity, f is the shear rate, B is

the magnetic field strength, k is the 'consistency index' and n is the power-law exponent.

Shear thkenuing (n > 1)

Bingham fluids (n = 1)

Shear Stress
Shear thinning (n < 1)

to
Newtonian fluid

Strain rate

Figure 2.2 Herschel Bulkley viscoplastic model for Field-Responsive fluids where 1, is

the yield stress at which the fluid starts flowing and the exponent n describes the non-

Newtonian behavior observed after yield.

At small field strengths the field-induced yield stress is proportional to the square of

magnetic flux density but becomes sub-quadratic with increasing field strength, as the particles

tend to reach their saturation magnetization and is shown in figure 2.3.

The saturation magnetization is the maximum induced magnetic moment that can be

obtained in a magnetic field. The magnetic properties of any material are represented by B-H

curves and are described by the equation
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B = pop,.H

where B is the magnetic induction, H is the magnetic field, p. is the permeability of

free space and p, is the relative permeability of the material.

60

50

40

2 30

20

10

0
0 50 100 150 200 250 300 350 400

H (kAmplm)

Figure 2.3 Graph showing the sub-quadratic dependence of yield stress on the magnetic

field strength for Lord Corp.'s commercially available MR fluid, MRF - 336AG2 .

Below the yield stress, the fluid shows viscoelastic behavior characterized by the linear

viscoelastic properties G' and G". Measurements show that at low frequencies the shear

modulus G becomes constant. A more detailed discussion of the rheological properties of these

externally controllable fluids is presented in section 2.1.5. The response time of these fluids, as

determined by the response time for the changes in rheological properties to occur, is of the order

of a few milliseconds. The field-responsive fluids (FRFs) are thus some of the fastest responding

smart materials.

20
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2.1.4 Polarization Model for Electrorheology / Magnetorheology

The chaining of particles, brought about by their polarization in the presence of a field, is

responsible for the 'smart' properties of these fluids. This chaining occurs if there is a dielectric

or a magnetization mismatch between the particles and the carrier liquid. The polarization model

can, in principle, predict the aggregation dynamics and the associated yield stress. Electrostatic/

magneto static, hydrodynamics, steric and Brownian forces are together used to compute the

aggregation dynamics of these particles, which are themselves typically modeled as hard spheres

(Larson, 1999).

The electrostatic force (Fj) acting on a particle is obtained from the interaction

potential (W,!) between two particles i and j assuming a point-dipole approximation. This

approximation is valid for widely separated particles and enables considerable simplifications

We= 4 2 3cos u2o -1)
Y 3 \

(1.3)

Fij

where F is the force on particle i produced by particle j, u is the dipole moment of

an isolated particle, .60 is the permittivity of the space, s is the permittivity of the suspending

medium and 90. is the angle between the field and the line joining the centers of mass of particles

i andj.

The dipole moment Ui of an isolated particle is given by the Clausius-Mossotti

relationship as

21



U=#8a 3E 8=
+E +2)(14

where # is the effective polarizability of the particle, Cr is the relative permittivity of

the particle, a is the particle radius and i{ is a unit vector oriented parallel to the line joining the

centers of the two spheres.

Magneto static forces in the case of MR fluids are determined in a similar manner from a

magnetic interaction potential given by

W,"' =-r j(3 cos2U -1)
4 IOr (1.5)

3

where Mi is the magnetic dipole moment acquired by an isolated magnetizable particle of

radius a in the presence of a magnetic field H, X is the magnetic susceptibility of the particles

and po is the permeability of free space.

The particle evolution equation also considers a number of other important forces such as

hydrodynamic forces, short-range repulsive forces (arising from phenomena such as Born

repulsion, solvation forces or steric interactions), Brownian forces and colloidal forces (van der

Waals' attraction, DLVO type electrostatic repulsion) (Parthasarthy and Klingenberg 1996).

Aggregation phenomena of the particles can then be studied using simulation of this evolution

equation. The structure and rheology of the field-responsive fluid is determined by the

competition between all these forces and can be conveniently represented in the form of

dimensionless groups as
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Mn= hydrodynamic forces

electro/ magnetostatic forces

Mnf = U7s Mn = 97J
erf 2efi2 E2 mrf 2 2

hydrodynamic forces - Pe67a3Pe= Pee~ et 16
brownian forces kBT

Pe _ electro/ magnetostatic forces

Mn brownian forces

=4pOX2a H 2

3kBT

where Mn is the Mason number, Pe is the Peclet number, 7, is the solvent viscosity

and f is the shear rate .

Mason number (Mn), which is the ratio of viscous to magnetic forces, governs the

aggregation phenomena and the dynamics of field-induced dipolar chains. Peclet number (Pe),

which describes the relative importance of advection to diffusion, determines how fast the

structure or the field induced chains form and if thermal motion causes them to deform or

collapse. The parameter A is independent of the shear rate (i ) and takes into account the change

in the yield stress coming from magnetostatic forces due to Brownian motion. Brownian motion

will not only prevent the particles from settling but also from forming aggregates and chains,

hence reducing the yield stress. An increase in yield stress with particle size is thus evident at the

cost of decreased stability of the suspensions (Lemaire et al. 1995). Magnetorheological fluids

based on nanometer-sized particles have been proposed and studied, because of their increased

stability, but with an order of magnitude smaller yield stress (Rosenfeld et al. 2002). An estimate

of the yield stress for ER and MR fluids can be obtained from a balance of the hydrodynamic,

Brownian and magnetostatic forces and is given as

23



,erf ~18f,#6.sjp2E2
(1.7)

,r r #pOM * H0.5

where c- is the yield stress, fm is a dimensionless force equal to 0.057 in the point-

dipole approximation and M, is the saturation magnetization for the particles (Larson, 1999).

2.1.5 Testing Apparatus for 'Smart' Fluids: Shear Rheometer

Field-responsive fluids are characterized by their steady-shear and linear viscoelastic

properties which can be determined using rheological and optical techniques. A number of

instruments such as capillary viscometer, Couette viscometer, parallel-plate type rheometer or a

cone and plate type rheometer are used to measure these desired material functions.

h R R

Fluid

=r (r R) = (r R)
h 0

Figure 2.4 'Parallel-disk' and a 'Cone and Plate' type arrangements used for determining

material properties of complex fluids.

The two most widely used configurations are shown in figure 2.4, in which small

volumes of fluid sample are tested between two coaxial circular parallel plates or between a small

angle cone and plate, under shear, oscillatory or creep flows. A more detailed discussion relating

the mechanical, or the measured quantities, with the desired material functions can be found in

the treatise by Bird et al. (1987).
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Rheological properties of MR fluids are also dependent on the magnetic field and

custom-made or commercial attachments to standard rheometers have been used for this purpose.

Li et aL. (1999, 2002) have used a commercially available MR cell for the UDS 200 rheometer

with parallel-plate geometry, which generates a magnetic field perpendicular to the shear

direction. Rankin et at. (1999) used a Bohlin VOR rheometer modified by inserting the rheometer

plate shafts through holes drilled into an electromagnetic iron yoke (figure 2.5). Helmholtz coils

have been used by Cutillas et at. (1998) to generate a uniform but low strength magnetic field in

the fluid sample space. Chin et at. (2001) have designed a solenoidal coil for creating a

homogenous but weak magnetic field between the two plates of the rheometer. A MR fluid

fixture has been custom-built in our laboratory for TA instruments' AR 2000/ 1000N rheometers

in order to test fluids under high magnetic fields and is described in detail in section 4.1.1.

D.C. Power Supply Gaussmeter

To Torque
Traneduoer

Inaulated Wire

CMI
K cEIdmagnwc i= -iSuspension

Figure 2.5 Schematic diagram of a Bohlin VOR rheometer modified using a iron yoke

electromagnet (Randn et aL. 1999).

2.1.6 Rheology of Field Responsive Fluids

MR fluids in their 'off-state' (i.e. zero magnetic field) appear similar to oils or paint in

consistency (0.1-1.0 Pa.s) and develop a yield stress in the presence of a magnetic field as
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discussed in earlier sections. The yield stress is a function of the applied magnetic field and can

be increased up to ~120 kPa for micron size particles. Tang et al. (2000) have observed a yield

stress of 800 kPa under enhanced structures obtained by compressing the MR fluid along the field

direction. Compression of field-induced dipolar chains pushes them together to form thick

columns that yield at stresses as high as 800 kPa. MR fluids have been studied extensively under

steady shear flow and representative data is shown in figure 2.6. The dynamic yield stresses can

be determined from such measurements by extrapolating to zero shear-rate (Genc and Phule

2002).
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Figure 2.6 Steady shear flow data for, Fe30 4 in silicone oil MR fluid, showing

dependence of yield stress on the magnetic field strength a) # = 20 % b) 4= 40 % (Chin et

al. 2001).
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The effect of particle volume fraction on the dynamic yield stress is also evident from

figure 2.6 and is observed to increase almost linearly with volume fraction at a constant magnetic

field (Chin et al. 2001). Experiments have also been carried out for various dispersing mediums,

notably the use of a viscoplastic medium, like grease, to prevent sedimentation of the constituent

particles (Rankin et al. 1999).
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Figure 2.7 Dependence of the linear viscoelastic moduli (G',G") on the magnetic field

strength (represented by current flowing through the electromagnet in amperes) and the

frequency of the oscillatory flow for 10% suspensions of iron powders (Li et A. 1999).
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Since ER and MR fluids exhibit a yield stress, they are considered viscoplastic materials

and small-amplitude oscillatory shear experiments in which the upper plate or cone undergoes

small-amplitude sinusoidal oscillations in its own plane with a frequency (co) and displacement

(y <<1) so that the instantaneous velocity is almost linear, are often used to obtain characteristic

material functions. Representative measurements of linear viscoelastic properties, G' (storage

modulus) and G" (loss modulus) obtained for MR fluids from such experiments are shown in

figure 2.7. In the linear viscoelastic region, both G' and G" increase with magnetic field and

volume fraction of particles (Li et al. 1999). A very limited number of investigations have also

looked at a number of other unsteady shear-flow material functions obtained from creep, recovery

or step-strain experiments (Li et al. 2002). We pursue similar studies that are described in

chapter4.

2.1.7 Applications of Field-Responsive Fluids

Field responsive materials whose properties can be continuously, rapidly and reversibly

varied are used in a number of applications. In the last few years, MR fluids have enjoyed

considerable commercial success and Lord Corporation has brought a number of products in the

market'.

d splac ant 
forcc
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a. Valve Mode b. Direct Shear Mode c. Squeeze Mode

Figure 2.8 The 3 basic operation modes a) valve mode b) direct shear mode c) squeeze

mode for field-responsive fluids (Carlson and Jolly, 2000).
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All the devices utilizing these fluids operate in one of three modes, as shown in figure

2.8, a) valve mode in which the flow rate decreases with magnetic field for the same pressure

drop due to resistance to flow provided by chain formation b) shear mode in which the field-

induced dipolar chains are sheared to obtain a magnetic field dependent force c) squeeze mode in

which the displacement compresses the dipolar chains to obtain a variable damping force.

notic

Thermp
Expansion

Accuml or 3-Stage Pisten---'
MR Fluid .tto

CaOWSr HIP - High intelligence Prosthesis

Figure 2.9 a) Lord Corporation's 20 ton seismic damper MRD-9000 utilizing a 3-stage

piston and 6 litres of MR fluid (Dyke et al. 1998) b) A prosthetic knee utilizing a MR fluid

based damper for active motion control r.
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Many applications utilize these variable flow rate or force characteristics in either

damping or torque transfer scenarios and proposed applications include shock absorbers, clutches,

brakes, actuators and artificial joints (Klingenberg 2001). A MR fluid damper or shock absorber

utilizes the viscous dissipation of energy of vibration due to the forced flow of the fluid in one or

more channels as shown in figure 2.9. The damping force can be regulated using a varying

magnetic field and semi-active suspension systems have been developed using this controllable

phenomenon as a basis (Yang et al. 2002, Li et al. 2000, Kelso 2001).

MR fluid damping devices have also been used in space applications, prosthetic knees,

industrial engine mounts, exercise equipment and even washing machines (Chrzan and Carlson

2001). In washing machines, MR fluid, filled inside an absorbent matrix such as a sponge or foam

has been used in shear mode as shown in figure 2.10. This decreases the moving parts and also

the active fluid required in the device, which makes it an excellent cost-cutting solution.

Furthermore, the absorbent matrix holds the fluid in place due to capillary forces and thus

prevents the particles from settling.

Force m
150 2.
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Figure 2.10 Force versus velocity curves with varying magnetic field for a semi-active

MR foam damping system developed by LORD Corp. for washing machine applications

(Carlson and Jolly 2000).
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Clutches and brakes and a number of other applications utilize the nonlinear and

switchable torque transfer capabilities of these materials. The torque is transferred between two

members by utilizing the variable viscosity of these fluids and can be varied from 0% to almost

100% using a varying magnetic field. This provides for a smoother transmission, improved heat-

transfer capabilities and reduced power-train transients with no intermediate moving parts.

Pneumatic actuators can be improved or completely replaced using MR fluid technology, by

controlling the flow of fluid with a large magnetic field, making the use of valves unnecessary.

FRFs have also been used in the polishing industry wherein the mechanical force exerted on the

workpiece is actively controlled using a magnetic field (Klingenberg 2000).

Magnetorheological elastomers, comprising of natural or synthetic rubber filled with

micron-sized iron particles, cured in the presence of a magnetic field, have also been formulated

and studied. Davis (1999) predicts the change in the modulus of typical elastomers to be

approximately 50% in the presence of high magnetic fields. This variable stiffness property of

elastomers, controlled by a magnetic field, can be used in various applications like automotive

bushings, variable impedance surfaces, tuned vibration absorbers and engine mounts (Ginder

1996).

2.1.8 Comparison of MR and ER fluids

The ultimate strength of MR fluids depends on the saturation magnetization of the

dispersed particles and hence pure iron (saturation magnetization 2.15 T), or iron/cobalt alloy

(saturation magnetization 2.4 T) particles are chosen. The maximum energy density in ER fluids,

on the other hand, is determined by the dielectric breakdown (i.e. critical electric field when

conduction paths within the fluid lead to destructive breakdown) for the particles and is about 2

orders of magnitude less than the MR fluids. The yield strength of ER fluids is hence around 2-5
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kPa as compared to nearly 100 kPa obtained for MR fluids'. The active fluid needed for MR

devices is thus much less as compared to ER devices resulting in much smaller devices.

Also, the constituent particles are stabilized in the medium by the use of surfactants and

other additives. ER fluids are sensitive to these additives and other impurities, while these do not

affect the polarization mechanism in MR fluids leading to enhanced stability, lubricity etc.

Further, temperature variations do not have a strong effect on magnetic polarization so that MR

fluids can operate over a much larger temperature range (-40 0C to 150 0C) as compared to ER

fluids. Hence, though MR fluids have appeared in number of commercial applications, ER fluid

based applications have remained elusive.

However, since iron particles comprise most of the MR fluids, the fluids tend to be much

heavier as compared to ER fluids and particle settling becomes an important concern.

2.1.9 Challenges for Field - Responsive Fluids

ER fluids have been plagued by a number of problems and their inferior rheological

properties and poor long-time stability as compared to MR fluids have prevented their use in

commercial products. MR fluids on the other hand have a huge cost limitation and many more

applications would quickly become commercial if the material cost could be reduced

(Klingenberg 2001).

The saturation magnetization of MR particles, which is a material property attained when

all the magnetic moments in the sample are aligned, is the limiting factor for determining the

strength of MR fluids and a higher strength would clearly make many new applications viable.

Since iron particles usually comprise an MR fluid, particle settling is an important concern

though a viscoplastic medium or an absorbent matrix has been used to overcome these problems

to a certain extent. In-use-thickening (IUT) or increase in the off-state force with time, as

particles undergo wear and tear, is a significant challenge for the use of these fluids (Carlson
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2001). Some recent patents (U.S. Patent No. 0045540) have claimed the development of durable

MR fluids, which reduce the agglomeration of particles with time, by use of mechanically hard

magnetic particles and some anti-wear additives. However, much research effort is needed in

understanding field-responsive fluid rheology before these limitations and challenges can be

overcome and commercialization of new applications can be facilitated.

2.2 Shear-Thickening Fluids

2.2.1 Description and Composition

Shear-thickening is defined as the increase in viscosity, sometimes discontinuous, with

increase in shear rate. It is related, but not the same as 'dialatancy', which is the increase of

volume (hence viscosity) with deformation, or 'rheopexy', which means increase in viscosity

with time at a fixed shear-rate. A number of colloidal dispersions, almost all concentrated

suspensions of nonaggregating solid particles show shear thickening under certain conditions.

Besides suspensions, concentrated dispersions of polymer particles, wormlike micelles and

associative polymers also show the shear-thickening phenomenon. The general behavior of a

shear-thickening fluid, wherein viscosity normally decreasing with shear-rate starts increasing at

a critical shear rate je is shown in figure 2.11. The viscosity after reaching a maximum (at a

shear rate im) usually decreases again or levels out to a plateau region.
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Figure 2.11 Schematic representation of viscosity versus shear rate for shear-thickening

systems, with approximate phase volume as parameter (Barnes 1989).

2.2.2 Parameters Controlling Shear - Thickening

A number of parameters are crucial to shear-thickening especially the onset point (i.e. the

critical shear rate fe) and these have been well summarized in the review article by Barnes

(1989). The critical shear-rate has been found to vary with changes in volume fraction, though the

dependence becomes small near around 50% as shown in figure 2.11. Below 50% volume

fraction of the particles, the critical shear rate increases dramatically, while it reaches a near zero

shear-rate value as the volume fraction approaches the maximum.

The critical shear rate also goes up higher with a reduction in particle size, as shown in

figure 2.12 and a quadratic dependence has also been proposed when the phase volume is near

50%. The severity of shear - thickening is highly dependent on the monodispersity of the

particles. A broad particle size distribution decreases the severity of the jump in viscosity, besides
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increasing the critical shear-rate, and is a common industrial practice used to reduce shear

thickening or 'jamming' of pipelines (Boersma et al. 1990).
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Figure 2.12 Critical shear-rate as a function of the average particle size (Barnes 1989).
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Figure 2.13 Effect of particle size distribution on the critical shear rate and the severity of

the jump in shear-thickening (Hoffman 1972, Boersma et al. 1990).
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Figure 2.14 Particle shape effects on shear thickening for 20% suspensions of inorganic

mineral crystals (Barnes, 1989).

Particle shape effects are complicated by various other factors and hence are not well

documented, though, as figure 2.14 shows clearly, more anisotropic particles tend to increase the

severity of shear thickening even at comparatively lower particle volume fractions (Barnes,

1989). Also, only suspensions stabilized with electrostatic or steric repulsions between the

particles show pronounced shear-thickening and in this sense interactions between particles

becomes an important consideration for shear-thickening. Deflocculated suspensions are found to

be shear thickening while flocculation causes the suspensions to become shear thinning. A

number of other factors including continuous phase viscosity, time and type of deformation

applied also affect shear-thickening and have been well documented (Barnes 1989).
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2.2.3 Mechanisms responsible for Shear - Thickening

Shear thickening has been a well-observed phenomenon for a century now but little

progress has been made in understanding the microstructural origins behind the phenomenon or

developing models for predicting the onset of shear thickening. There are two schools of thought;

one believing that an order to disorder transition (ODT) is responsible while the other believes

that a 'hydrocluster' mechanism is responsible for shear thickening. Both, however, suggest

changes in suspension microstructure are driven by the interplay of hydrodynamic, Brownian and

interparticle forces as the cause behind shear thickening. Egmond (1998) has suggested that

formation of hydrodynamic clusters is relevant in hard sphere suspensions while a shear -

induced order disorder transition (ODT) precedes the cluster formation in electrostatically

stabilized suspensions.

Dispersion A
T. 23C

a WRO Constant sh9ur rt
& WRE cas-tent shear stress

1 a U SR S constw t sO ar stru m

she rate ts-

Figure 2.15 Viscosity versus shear rate curve showing the discontinuous jump in viscosity

at a critical shear rate when the order in particles is disrupted (Laun et al. 1991).
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The general model based on ODT, proposed by Hoffman (1972, 1974, 1982), supposes

that particles are ordered into sliding layers parallel to surfaces of constant shear at low shear

rates and at a critical shear rate pairs of particles rotate out of the shear plane forming eddies and

disrupting the order. The extra energy required in this disorder transition manifests itself as a

jump in the apparent viscosity leading to the phenomena of shear thickening, as depicted in figure

2.15.

Hoffman (1972) provides evidence of this ordering from diffraction patterns and

Boersma et al. (1990) have developed a model based on interplay of shear and interparticle forces

to support this hypothesis. A critical shear rate is predicted from the balance of these forces, as

described below and compares well with the experimental results.

i c 2 g ve ry/- 2 ( 1 .8 )C 61sv7a 2,

where y is the surface potential, r70 is the medium viscosity and a is the particle

radius.

The ODT theory however predicts the presence of an ordered phase as a necessary

condition for shear thickening and Laun et al. (1994) found suspensions exhibiting shear

thickening in absence of ordered structures. Stokesian dynamics simulations (Brady and Bossis,

1988) and later on SANS and rheological experiments by Bender and Wagner (1996) suggested

the formation of transient 'hydrodynamic' clusters i.e. stress bearing clusters formed by shear

induced self-organization of particles. The hydrocluster mechanism predicts that shear thickening

occurs when hydrodynamic shear forces overcome Brownian repulsive interactions (Maranzano

and Wagner 2003) and the onset of shear thickening is determined by a critical stress (Ocr)

obtained by the balance of these forces
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(1.9)

where a is the particle radius, h is the separation distance between the particles, po is

the solvent viscosity and g (r) represents the equilibrium radial distribution function.

The scaling laws based on this mechanism predict the dependence on various parameters

like phase volume and particle size in well accordance with experimental results as shown in

figure 2.16.
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Figure 2.16 (a) Viscosity versus stress plotted for monodisperse hard-sphere shear

thickening suspensions. (b) Reduced viscosity (suspension viscosity reduced by the
plo
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for depicting the critical stress as

defined by the hydrocluster mechanism (Bender and Wagner 1996).
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2.2.4 Rheology and Viscoelasticity of Shear - Thickening Fluids

Steady shear rheology of shear thickening fluids, as shown in figures 2.11, 2.15 and 2.16

earlier, shows a large increase in viscosity with increasing shear rate and the onset is defined by a

critical shear rate or a shear stress.

The increase in viscosity, especially for monodisperse polymer dispersions, is almost

discontinuous and is associated with a strong increase in normal forces (Laun, 1994). Transient

shear rheology shows strong time effects accompanying shear thickening and a number of authors

have reported the presence of flow instabilities in these dispersions (Boersma et al., 1991, Head et

al., 2002). These effects are usually complicated by the presence of 'dialatancy' besides wall slip

and cluster formation. Chow and Zukoski (1995) have extracted the effect of wall slip in shear

thickening suspensions through careful experiments at varying gap sizes as shown in figure 2.17.
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Figure 2.17 Viscosity as a function of shear rate with increasing shear rate in the tapered

plug geometry with gaps of 20, 15, 10, 7.5, 4.8 microns (Chow and Zukoski, 1995).
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Figure 2.18 Storage G' and loss G" moduli as functions of strain amplitude and frequency

for 10% fumed silica suspension in PPG (Raghavan and Khan, 1997).

Linear viscoelastic properties of shear thickening fluids reflect the behavior observed in

steady shear data. G' (elastic modulus) lags G " (viscous modulus) in magnitude indicating that

the suspensions are largely viscous in nature. Also, deflocculated suspensions show strain
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thickening at high deformations or high frequencies when both G' and G " increase almost

abruptly (Boersma et al., 1992) as shown in figure 2.18.

The dynamic shear rate in these oscillatory flows marking the transition to strain

thickening matches well with the critical shear rate denoting the onset of shear thickening in

steady shear flow, as given by the modified Cox-Merz rule (Raghavan and Khan, 1997; Lee and

Wagner, 2003).

7*(70CO)= q (1.10)

where yo is the strain amplitude, co is the frequency, q* is the complex viscosity and

7 is the steady shear viscosity.
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Figure 2.19 Comparison of steady and oscillatory shear data for 10% fumed silica

suspensions in PPG in accordance with the modified Cox-Merz rule (Raghavan and Khan

1997).
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2.2.5 Applications of Shear - Thickening Fluids

Shear thickening is known to cause many problems in industrial processes, especially

'jamming' of pipelines at higher flow rates and most efforts are directed towards minimizing this

phenomenon. However, Laun et al. (1991) has described mechanical elements such as speed

controllers and non-linear dampers utilizing extremely shear thickening monodisperse polymer

dispersions. A recent U.S. Patent (5545128) describes a bone fracture prevention garment,

utilizing compartments filled with a shear thickening fluid, which shunts the energy of a fall or an

impact. These fluid formulations have also been used in sports shoe cushioning materials, shock

absorber fillings and renewed efforts are being made to make a stable, storable shear thickening

fluid (Maranzano and Wagner 2003).

Shear thickening fluids are cheap and much easier to formulate but stability is an

important issue since, particles tend to flocculate with use and time. Also, properties are

dependent on the deformation history and much research effort is required to make these fluids

viable for repeated use in commercial applications.
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CHAPTER 3

Cellular Solids: Review

A cellular solid is an interconnected network of solid struts or plates that form the edges

and faces of cells (Gibson and Ashby, 1997). 'Honeycombs' are two-dimensional cellular

materials while three-dimensional materials are known as 'foams'.

3.1 Structure and Properties of Foams

3.1.1 Introduction and Cell Structure

A 'cellular solid' or an assembly of cells can have two types of cell structure, open-cell or

closed-cell. An open-celled foam has open faces and all the solid material is contained in the cell

edges while closed cell foam has solid in cell faces isolating cells from each other (figure 3.1).

The cells are polyhedra of different shapes and the cell shape, cell edge length and the edge

thickness, characterize the cellular material and define its properties.

Figure 3.1 a) Open cell foam b) Closed cell foam (Gibson and Ashby, 1997)
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A number of materials, polymers, metals, ceramics and composites, can be 'foamed'. The

foaming process involves introducing a gas or a blowing agent throughout the fluid (constituent

material) phase and stabilizing, cooling the resultant foam. These may also be prepared by

leaching of a fugitive phase, such as a water-soluble salt, from a polymer; by sintering small

particles dispersed in a heat stable matrix; by fusing initially discrete polymer particles or by

forming a polymer matrix around hollow spheres. Reticulated foams are very low density, high

porosity open cell foams formed from closed cell foams by breaking the cell walls by secondary

processing. Microcellular foams, with cell sizes on the order of 10 microns, are made by heating a

polymer supersaturated with inert gas to its glass transition temperature to cause cell nucleation

and growth (Klempner and Frisch, 1991). Besides man-made materials, natural substances like

wood, cancellous bone, sponge and cork are also cellular solids.

3.1.2 Properties of Cellular Solids

Cellular solids have physical, mechanical and thermal properties dependent on the

intrinsic properties of the solid material and the geometrical parameters. The relative density

(p*/ps ) is the most defining characteristic of a cellular solid, where p * is the density of the

cellular material and ps is the density of the solid. The porosity of the cellular solid is

determined simply from its relative density as 1-(p */ps ). True cellular solids have porosity

greater than 0.7 and can have porosities as high as 0.97 for ultra-low density foams. They have

low stiffhess, strength and can absorb large compressive strains, as compared to true solids,

making them ideal for a wide variety of applications. The porosity or the relative density is

determined by the cell dimensions, namely the cell edge length 1 and the cell wall thickness t as

given by the following equation
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(3.1)
(Ps 1

where the constant n is equal to 2 for open cell foams, 1 for closed cell foams and

honeycombs and the constant C depends on the cell shape.

Unit cells in cellular solids are of different shapes and sizes but follow certain topological

laws to fill the complete space. Figure 3.2 shows a packing of tetrakaidecahedra cells usually

observed in open cell polyurethane foams. The properties of the cellular solids depend on these

cell structures and the geometric features have been well documented by Weaire (2000).

Figure 3.2 The packing of tetrakaidecahedra cells in foam with the cell edge length and

the wall thickness shown (Gibson and Ashby, 1997).

The characteristic properties of the solid material forming the cell such as density ps,

Young's modulus Es , plastic yield strength ays, thermal expansion coefficient a and the

specific heat CPS also define properties of the cellular material such as the thermal conductivity,

modulus and strength. Foams have exceptionally low thermal conductivity due to the low volume

fraction of the solid phase and also a low specific heat per unit mass making them a popular
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choice for thermal insulations. These materials also have a high electrical resistivity, which

increases with decreasing relative density and a very low dielectric constant.

3.2 Mechanics of Foams

Foams are widely used as energy absorbing materials and hence understanding of their

mechanical properties under various deformations becomes vital. Foams can be subject to either

compression or tension and show varied stress-strain data under the two deformation

mechanisms.

3.2.1 Foams in Compression

The typical stress-strain behavior for elastomeric foams under compression is shown in

figure 3.3.
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COMPRESSION
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0 STRAIN, E ED

Figure 3.3 Schematic compressive stress - strain curve for elastomeric foam showing the

three regions of linear elasticity, collapse and densification (Gibson and Ashby, 1997).

The figure shows three distinct regions: an elastic region where the curve is linear due to

bending of cell walls and the slope is given by the Young's modulus of the foam ( E *), a plateau
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region where the cells start collapsing and the stress remains at a constant value (a- *) and a

densification region when the opposing cell walls touch and the solid itself is compressed. The

elastic buckling in case of elastomeric foams is responsible for a nearly constant stress plateau

region while the stress rises up rapidly in the densification region due to solid incompressibility

effects. The limiting strain when the opposing walls are crushed together so that the stress-strain

curve rises steeply is known as the densification strain (,D). Flexible foams have a low plateau

stress ( - *) because of elastic buckling but regain their original form when the stress is removed.

Rigid foams, on the other hand, usually have a high plateau stress because of a longer linear

elastic region but the plateau region involves plastic yielding of cells and the original shape is

permanently lost.

The mechanical properties are thus determined by the moduli in the linear elastic region

and the plateau stress. These are obtained by a scaling approach assuming the cell edges to be

beams under a compressive load undergoing bending or fracture and the equations obtained for

open-cell foams are given by (Gibson and Ashby, 1997).

E* p* 2 G* 3 p** 2 1
ES (ps Es 8 ps V 3

(3.2)
__ ~o3" 2 (r " O.5 '2

0.03 1+Es xPs ) LPsi J
where E * is the elastic modulus, G * is the shear modulus and v * is the Poisson's

ratio of a open-cell foam. The prefactors, 0.03 and 3/8, have been obtained by approximately

fitting the experimental data. The plateau modulus a- * is proportional to the relative density

squared and the final correction factor only considers the extra complications of geometry arising

when the density is not small.
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In closed cell foams, the solid fraction q in the cell faces also determines its stiffness.

Thus, besides cell edge bending, the contribution due to compression of the cell fluid and

membrane stresses in the cell faces is also considered.

E* 2p* P* PO (1 -2v*
~# 2 +(1-#)-+-

E, Ep E(1-P
A (3.3)

G* 3 0 p* p* 1
E, 8 p p, 3

where po is the initial gas pressure, usually atmospheric pressure and # is the solid

fraction in cell edges.

The densification region is reached when the cell material is itself compressed and occurs

at a limiting strain (6D) that is slightly higher than its porosity, since in reality, at this strain

itself the cell walls jam together

6D =11.4rP (3.4)

3.2.2 Fluid-filled foams in compression

Many types of foam, natural and man-made, are filled partially or are completely

saturated with fluids. The expulsion of cell fluids adds to the peak stress of the foam, as energy is

required to force fluids with viscosity through channels and this effect is more pronounced at

higher strain rates as shown in figure 3.4.

49



111
FLEXIBLE POLYURETHANE
PORE FLUID:WATER+ GLYCERINE

=012 N s/m P/ 0,035
E z 0.6 1E=0,6

A E 0.3 TYLER AND ASHBY(1986)
E 0 0-051 0.3
z 10 - U/

PREDICTED CONTRIBUTION
FROM VISCOUS LOSSFS 0.05
DUE TO PORE FLUID

-10 __

*7

10-3 1 10 102
STRAIN-RATE (s')

Figure 3.4 Plateau stress as a function of strain rate for a flexible polyurethane foam

saturated with a water-glycerin mixture. The broken lines are theoretical predictions for

Newtonian fluids (Gibson and Ashby, 1997).

Gibson and Ashby (1997) treat foam as a porous medium and apply Darcy's law and a

scaling approach to obtain the contribution of pore fluid as

UK dp
p dx

2 (3.5)

crf = -

f _1-e 1

where u is the fluid velocity, K is the absolute permeability, p is the viscosity of the

fluid, p is the pressure, * is the fluid contribution to plateau stress, ' is the strain rate and L

is the characteristic length of the material.

Warner and Edwards (1988) and later Warner et al. (2000) extended this approach to

closed cell cellular solids, wherein the incompressibility of the cell fluid results in stretching of

walls, explaining the elasticity and failure of many foodstuffs like carrots. Micromechanical

50



models for filled foams have been developed to explain coupling of rheological and poroelastic

effects using Biot - Frenkel theory (Lopatnikov, 1998, Lopatnikov and Cheng, 1998, Dunger et

al., 1999).

Non-Newtonian fluid effects, however, have not been considered in these

micromechanical foam models. Pearson and Tardy (2002) have reviewed the flow of non-

Newtonian fluids in porous media, modeling them as a bundle of capillaries of varying diameter

and length and have developed equations for the pressure drop and flow rates.

3.2.3 Energy absorption in Foams

Foams are widely used in the packaging industry due to their superior energy absorption

capabilities as compared to true solids. The plateau region during compression of foams, as

shown in figure 3.5, is responsible for higher energy absorption even at low stress levels. The

kinetic energy of impact is dissipated, absorbed by foams while keeping the peak stress on the

object below the injury or failure limit.

The mechanisms responsible for this large energy absorption (W) include the elastic,

plastic or brittle deformations of the cell walls and the flow of fluid within cells or through

channels. These contributions for open cell elastomeric foam can be written as functions of the

mechanical properties of the foam and is found to be largely dependent on the relative density,

plateau stress and the fluid viscosity.

S2

W ~* =CE (Pj
dry f 1 s P

s s '(3.6)

1f * (L )2 1
W =i f 07 ds =C 2p, -

fluid f 2 1 1.4 p* p0 s

where ef is the strain at peak stress and W , Wfluid are the contributions to the amount

of energy absorbed (W) by the elastic buckling and the fluid flow respectively.
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Figure 3.5 Comparison of energy absorbed, as the area under the stress - strain curve,

between a true solid and a foam for the same levels of stress (Gibson and Ashby, 1997).
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Figure 3.6 Energy absorbed, given as area under the stress - strain curve, normalized and

plotted against the stress for varying relative densities to obtain an optimum energy

envelope for a given strain rate (Maiti et al., 1984).
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Energy absorption characteristics of foams can be represented by various approaches

such as plotting the Janssen factor, the cushion factor, the Rusch curve or an energy absorption

diagram (Gibson and Ashby, 1997). The energy absorption diagram, as shown in figure 3.6, is a

representation of a series of curves, obtained by varying parameters like strain rate or relative

density, of normalized energy absorbed versus peak stress as an envelope of optimum energy

(Maiti et al. 1984). These diagrams are especially useful in selecting the best foam for a given

peak stress, since the envelope represents the optimum density and maximum energy absorption

for a given peak stress and strain rate.

Energy is absorbed in closed cell foams also as cell walls bend, buckle and stretch but the

contribution due to incompressibility of the cell fluid as it is compressed is relatively much higher

and may even dominate for low density foams. The cell fluid contribution is much less for a

plastic or rigid foam and energy absorption is largely due to the fracture and collapse of the cell

walls in the plateau region.

3.2.4 Testing Apparatus for foams

Foam properties, namely moduli and energy absorption capacity, are functions of strain

rate and also temperature to some extent. At very high strain rates, dynamic (inertial) effects such

as localization of deformation and micro-inertia drive up the peak stress and the compressive

strength of foams (Gibson and Ashby, 1997). Laboratory compression testing equipments provide

'low' strain rates (108 to 10-2 s') while higher strain rate testing (102 to 40 s') can be done using

high-speed servo hydraulic and dynamic loading devices.
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Figure 3.7 The Texture Analyzer, a low strain rate testing equipment for material and

mechanical characterization of foams and semi-solid materials with interchangeable

fixtures'.

The Texture Analyzer, a programmable low strain rate testing equipment has been widely

used for solid foam and solid-fluid composite characterization. The instrument, manufactured by

Stable Microsystems Inc., has a force range of up to 50 kg with a resolution of 1 0 4 kg and hence

provides accurate, repeatable information on mechanical properties of semi - solid substances.

Figure 3.7 shows a picture of the instrument, with interchangeable fixtures that allow for a range

of mechanical and rheological tests to be carried out. The velocity range of 0.01-40 mm/sec

allows 'low strain rate' measurements with a high resolution in velocity (0.1%) and displacement

(10-3 mm).
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3.3 Applications of Cellular Solids

Natural cellular solids such as wood, bone, honeycomb and many foodstuffs have been

put to a variety of uses for centuries. Man-made foams like polymer or metallic foams are also

widely used, and their application potential is huge (Gibson and Ashby, 1997). The largest

application of polymeric and glass foams is in thermal insulation because of their exceptionally

low thermal conductivity and low thermal mass.

Cellular solids have high impact energy absorption capacities, because of large

compressive strains and low relative densities, and hence are used widely in the packaging

industry. The strength of the foams can further be varied, to fulfill the application requirements,

by controlling the relative density. Improvement of structural crashworthiness is a critical

consideration for automobiles and hence metallic foams or honeycomb structures are used in

ultralight impact absorbing components (Gotoh et al., 1996). Also, sandwich panels made from

cellular solids have excellent specific bending stiffness and strength and are used to provide a

lightweight but strong structure in aircrafts, space vehicles and yachts (Goldsmith and Sackman,

1992).

Foams have an exceptionally low dielectric constant and this makes them critically

important for microwave transmitting devices. Also, a high electrical resistivity makes them

suitable for use in electrical components as insulators. Foams have high sound absorption

coefficient at high frequencies (Gibson and Ashby, 1997) and are used for noise mitigation in

sound absorbing panels.

The unique properties of cellular solids make them suitable for a number of applications

and continued research in this field is expected to make many new applications viable. The large

reversible changes in the rheological properties of field-responsive fluids, discussed earlier in

chapter 2, have been used to modulate the energy absorption capacity and mechanical properties

of elastomeric foams and discussed in detail in chapter 5.
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CHAPTER 4

Field-Responsive Fluids: Rheology and

Characterization

A number of commercially available and research-stage applications utilize the large,

reversible changes in the rheological properties of field-responsive fluids. Understanding the

rheological behavior of these fluids is vital to these applications and a number of previous studies

have been reviewed in chapter 2. Fluid characterization and testing is again necessary for

optimizing and designing the applications based on FRF impregnated cellular solid, the focus of

this work.

4.1 Magnetorheological Fluid Rheology

4.1.1 Experimental setup

Two stress-controlled shear rheometers (TA instruments' AR 1000N and AR 2000) have

been used to determine the steady-state rheological and linear viscoelastic properties of MR

fluids. In general, a parallel plate (2cm diameter stainless steel plate with a gap height of 0.5 mm)

arrangement and occasionally a cone-and-plate (2cm diameter 40 stainless steel cone)

arrangement have been used for the experiments. Since the fluid properties are a strong function

of the magnetic field, a custom-made fixture has been designed and built as a removable

attachment to the rheometers for control and generation of a uniform magnetic field in the fluid

sample space. The magnetic field generated is orthogonal to the direction in which the sample is

sheared so that the MR fluid particle chains need to collapse before the sample starts flowing,

thus allowing the measurement of magnetic field-dependent yield stress.
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To AR2000
rheometer spindle

Top Cover (Mild
Steel)

0.9144cm ID,
12.065cm OD,
0.635cm Thickness

Cone/ plate
arrangement for
the rheometer

300 turns, AWG
#21 magnetic coil
4.52cm ID, 8.255cm
OD, 5.08cm Height

Steel Housing (Mild
steel, CRS 1080)
10.16cm ID, 12.065cm
OD, 5.715cm Height

To Peltier Plate

Figure 4.1 SOLIDWORKS model of the custom-built MR fluid fixture for the TA

instruments' AR series rheometers.

An exploded view of the custom-built MR fluid rheometer fixture is shown in figure 4.1.

The fixture is designed to allow a maximum gap of 1000 microns for the fluid sample between

the top and the bottom plate. The bottom plate (4.52cm diameter) is formed from CRS (Cold Roll

Steel)-1080 (McMaster Carr), which is a soft-magnetic (does not retain residual magnetism when

the applied magnetic field is removed) but mechanically hard material. The outer and inner

housing of the magnetic coil have been machined out of mild steel to concentrate the magnetic

field lines through the sample. The fixture can also be made to snugly fit onto the Peltier plate of

the rheometer, which allows for external temperature control. 1300 turns of wound AWG #21

(0.7329mm diameter) copper wire (RODON Products Inc.) form the base field-generating coil.
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FEMM3.2 software has been used to determine the coil parameters such that a high magnetic

field of up to 0.4 Tesla can be obtained in the fluid sample space'. Depending on the area of

cross-section (A,) available, the current density (J) is determined as follows

Itota = JAcs (4.1)

where I,,, is the total current that is required for the high magnetic field. The copper

wire diameter and the number of turns (N) is then chosen such that the current per turn (I,)

doesn't exceed its current carrying capacity as follows

,r =total
N

(4.2)

d. 1.1 52
N

where dwi,,, is the copper wire diameter.

0.4

0.3

0.2

0.1

0.0
0.0 0.5 1.0 1.5

Current [Amperes]

Figure 4.2 Magnetic field strength (B) in Tesla, obtained in the fluid sample space using

the custom-built MR fluid rheometer fixture, as a function of the DC current flowing

through it.

1http://mgc314.home.comcast.net/magnetics.htm
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This designed coil without the use of a cooling water system can then support a

maximum current of 3.OA. A DC power supply (BK Precision Model 1670) provides a variable

current from 0-2.5A and figure 4.2 shows the corresponding magnetic field obtained in the

sample space.

7.650e-001 >8.000e-001
7.300e-001 7.6!50e-001
6.950e-001 7.300e-001
6.600e-001 6.950e-001

MR fluid 6.250e-001 6.600e-001
5.900e-001 6.250e-001

sample space 5.550e-001 5.900e-001
5.200e-001 5.50e-001
4.850e-001 5.200e-001
4.500e-001 4.650e-001CRS-1080 4.150e-001 :4.500e-O01

forming the 3.800e-001 :4.150e-001
3450e-001 :3.800e-001

bottom plate 3.100e-001 3.450e-001
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Figure 4.3 Magnetic field lines and gradients illustrated using a color-coded longitudinal

section and fields against radial distance plot for the MR fluid AR 1000N/ 2000 rheometer

fixture.
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Reference: Rheometer Fixture type and Maximum

Type of geometry dimensions magnetic

field (B)

Paar Physica Co. UDS 200 Solenoidal coil 0.34 T

Parallel plate geometry Diameter = 20 mm

N = 495 turns

Chin et al. (2001) ARES (Rheometric Scientific Solenoidal Coil -0.33 T

Co.) Diameter = 0.75 mm

Parallel plate geometry N = 2500 turns

Cutillas et al. (1998) Shear rheometer Helmholtz coil 0.025 T

Parallel plate geometry

Rankin et al. (1999) Bohlin VOR rheometer Electromagnet wound 0.355 T

Parallel plate geometry with a coil

N = 1000 turns

Deshmukh and AR 2000/ 1000N rheometer (TA Solenoidal Coil 0.4 T

McKinley (2003) Instruments Co.) Diameter = 20 mm

Parallel plate and cone and plate N = 1300 turns

arrangement

Table 4.1 Comparison of fixtures, commercially available or custom-built, for determining

the rheological properties of MR fluids with respect to various fixture parameters.

A gaussmeter (F.W. Bell Model 5060) with a transverse probe has been used to calibrate

the magnetic field versus the input current. FEM analysis has been used to validate gaussmeter

based experimental measurements and also to test the uniformity of the magnetic field. The

magnetic field strength obtained from FEM analysis shows a maximum variation of 8% over the

fluid sample space. Helmholtz coils could have been used to get a more uniform magnetic field

but the field strengths obtained are typically very small and not suitable for complete

characterization of fluid properties. Figure 4.3 depicts the magnetic field lines and flux gradient
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for the rheometer fixture generated using FEMM 3.2 software. The axisymmetric planar view is

color-coded, for example, the shades of yellow in the fluid sample space observed in the figure

depict the magnetic field variation there. A comparison of the our in-house built MR fluid fixture

for determining rheological properties with other commercial or custom-built fixtures from

literature is presented in Table 4.1.

4.1.2 Steady shear rheology

Magnetorheological fluids, commercial and laboratory synthesized, have been

characterized on the above described custom rheometer setup and compared with results from

earlier studies (Genc and Phule 2002).

4.1.2.1 Commercial MR fluids

MRF-336AG, a silicone oil based magnetorheological fluid supplied by LORD Corp. and

commonly used in the industry has been characterized under steady shear. It is composed of 36%

v/v carbonyl iron particles (-1 gm) in a silicone oil carrier fluid and a number of proprietary

additives. The rheological properties of the fluid under steady shear flow for different magnetic

field strengths are shown in figure 4.4. The fluid has a weak yield stress (- 150 Pa) even in the

absence of a magnetic field indicating the presence of a thixotropic additive. As the magnetic

field is increased, the shear stress at which the fluid starts flowing also increases as can be

observed from figure 4.4. The yield stress results are reproducible to within ± 5% and two

different runs at each magnetic field are shown in the figure.

The experiments have been performed using a 2 cm diameter roughened plate

arrangement. The top and bottom plates of the rheometer have been roughened by coating them

with a very thin layer of carbonyl iron particles with a low viscosity glue (Permabond 910

cyanoacrylate) such that the roughness was of the order of the particle size. Roughening of plates

was necessary to prevent slippage of MR fluid at higher shear rates. However, at higher shear
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rates there is still migration of the sample out of the plates, which is commonly observed in

samples with a yield stress (Citerne et al. 2001). A steady state viscosity after the yield point is

thus not always observed in the samples and erroneous results are obtained at higher shear rates.

Magnetorheological Fluid (MRF-336AG) -
Steady State Flow (Controlled Shear Rate)
2 cm roughened plate

104  -- B = 0.0 T
-- B = 0.025 T
-- B = 0.05 T

S-- B = 0.09 T
3 -- B = 0.13 T10

B B=O0.17 T
(D ~B=O0.25 T

-. -- B = 0.33 T
C,)

102

10~4  10-2  100 102 104

Shear rate [s 1 ]

Figure 4.4 Steady shear rheology of MRF-336AG fluid using a 2cm roughened plate at a

gap height of 0.5 mm for different magnetic field strengths.

A research-stage fluid formulated in Ossur with proprietary formulation technique has

also been tested under steady shear. It is to be commercially used in prosthetic knees and is stable

under much more stringent temperature and pressure conditions than LORD's MR fluid. Figure

4.5 shows its rheological properties plotted as viscosity against shear stress in steady shearing

flow when the shear rate is controlled by the rheometer. The characteristics are similar to those

exhibited by LORD's fluid with a sharp drop in viscosity at the yield point and loss of material at
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higher shear rates is also observed. A discussion on yield stress calculation

these fluids with a in-house synthesized fluid is included in the next section.

107

10 6

10i

104

103

10

10

100

10-1

10

+ - -. ' . ' ' ' ' - - -I ' ' ' ' ' ' I - -I I I
MRF (HQ10-32)
Steady flow, 2 cm roughened plate
T = 298 K

--- B = 0 T
SB= 0.025 T

-A- B = 0.048 T
_-- B = 0.091 T

-
2 3 4 5 6 2 3 4 5 6

100

Shear stress [Pa]

and comparison of

1000

Figure 4.5 Rheological properties of the Ossur MR fluid measured in steady shear flow

plotted as viscosity against shear stress for various magnetic field strengths.

4.1.2.2 Laboratory synthesis of MR fluid

A severe limitation of commercially available MR fluids for industrial applications is

their high cost ($600/ litre). Also, these fluids are found to be plagued by stability issues as the

particles settled over a period of time leaving a clear supernatant liquid. Hence, a highly stable

magnetorheological fluid has been synthesized using in-house technology at a fraction of this cost

and the rheological properties of the fluid compared with the commercial MR fluids.

Carbonyl iron particles (saturation magnetization ~ 2.03T), 1.1 pLm in size (BASF Corp.)

at a volume fraction of 36% comprise the magnetizable matter in the synthesized MR fluid.

Carbonyl iron powder (CIP) is obtained by thermal decomposition of iron pentacarbonyl
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(Fe(CO)5 ) when spherical particles form on a nucleus thereby forming a shell structure2 . The

decomposition conditions decide the properties of the particles including the particle size

distribution. Polydimethyl siloxane, trimethylsiloxy terminated (PDMS) with a viscosity of 0.1

Pa.s (Gelest Inc., DMS-T21) formed the carrier base of the MR fluid. Silicone oil has been used

because of its low volatility, low viscosity dependence on temperature and inert nature towards

other solid and liquid constituents. A surfactant, silanol terminated polydimethylsiloxane (Gelest

Inc., DMS-S21), stabilizes the particles against agglomeration. This surfactant has a -OH

terminal group which provides an affinity towards the carbonyl iron particles, while the PDMS

part has an affinity towards the carrier fluid. A PDMS surfactant with an amine terminal group

(Gelest Inc., AMS-132) has also been found to stabilize the particles in the fluid. A viscoplastic

base, Dow Coming high vacuum grease, which blends well with the carrier fluid has also been

utilized to provide a low off-state yield stress to the MR fluid and prevents the particles from

settling under gravitational forces. Force balance gives the yield stress required in order to

prevent the particles from settling

3,cri 2 p, - 4 rr g (4.3)

where act is the critical yield stress to prevent settling, r is the radius of particle and

p is the density of the particles. The critical yield stress works out to be nearly 0.5Pa for

carbonyl iron particles with 1.1 um diameter (pp of 7800 kg/m3).

A step-by-step flowchart of the synthesis process is shown in figure 4.6. A conditioning

mixer (Thinky Corp., AR-100) has been used for both mixing and degassing purposes. The

mixing cycle of three minutes includes a one-minute combined rotation (160 rpm) and revolution

(400 rpm) followed by a two-minute defoaming phase at a revolution speed of 2200 rpm. The
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blend of 15wt% grease in silicone oil has a low field-off yield stress of approximately 1 Pa, which

is sufficient to prevent the particles from settling.

Silicone Oil

(Gelest Inc.)

2 Mixing Cycles 40 min. blMxd

High Vacuum 15% w/W 1 Mixing Cycle
Grease (Dow Co rhing)

1 Mixing Cycle (Gelest Inc.)

Carbonyl Iron .36% v/v

Particles (1.1 microns) 'i2 Mixing Cycles

(BASF)

6Magnetorheological

Fluid

1 Mixing Cycle is 3 min. Mixing + Degassing in Conditioning mixer

Figure 4.6 Magnetorheological fluid synthesis flowchart showing all the components and

mixing steps.

The MR fluid thus formulated is observed to have a gel-like consistency and excellent

long-term stability. The yield stress of the MR fluid at a particular magnetic field strength is

expected to increase as the particle size increases (refer to section 2.1.4) but stability becomes a

major concern then (Lemaire et al., 1995). Using a carrier fluid with higher off-state yield stress,

for example 25wt% blended grease in silicone oil which has a yield stress, a-, ~ 5Pa , instead of

15wt% blended grease, as shown in figure 4.7, can possibly eliminate this problem and will be

studied in the future.
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Figure 4.7 Steady shear data for silicone oil blended with grease at different weight

fractions illustrating the low but finite yield stress in the field-off state.

The rheology of these laboratory-synthesized fluids in steady shear flow is shown in

figure 4.8.

MR fluid (36% v/v 1.1 pm CIP) ' M
Steady State flow, 2 cm roughened plate

-- B = 0.0 T

-- B = 0.09 T
-A-- B = 0.17 T

--B =0. 17 T
-+- B =0.25 T
-- B =0.33 T

-I 1 1 1.an 1 1 mn il I . I I 1 1 1 1..1 1 1 1 .1 1W

0.001 0.01 0.1 1 10 100

Shear rate [s ]

Figure 4.8 MR fluid (36% v/v, 1.1 pim CIP) rheological properties under steady shear

flow for different magnetic field strengths.
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The experiments have been carried out using 2cm diameter roughened plates and the

magnetic field is varied from 0 to 0.33 Tesla. The test protocol used on the AR2000 rheometer is

a steady state flow step with the shear rate being controlled and varied from 0.001 to 2000 s-1.

Five points are measured in a decade range of shear rate with the sample being sheared for 20

seconds before an average value of the torque is recorded. Steady state behavior similar to

commercial fluids is seen with the yield stress increasing monotonically with the magnetic field.

The shear stress has a constant value for a large shear rate range, which implies a 4-5 orders of

magnitude drop in viscosity and also marks the yield stress for the fluid.

4.1.2.3 Yield stress comparison of different MR fluids

The magnitude of the yield stress of the MR fluid (r, (B)) is its defining characteristic

for most applications and it can be extracted from the steady shear data as illustrated in figure 4.9.

At the yielding point there is a sharp drop in the viscosity due to collapse of particle chains in MR

fluids and this stress can be read from the viscosity versus shear stress plots (Barnes, 1999), as

depicted below. MR fluids are observed to have a very sharp yield point at which the viscosity

drops by 5-7 orders of magnitude. As an example, dotted lines in the figure mark the yield stress

values for magnetic fields of 0.09 and 0.17 Tesla. The roughening of plates decreases but does

not eliminate slip and at higher shear rates, the material starts apparent violation of the no-slip

boundary condition causing the curves to bend over. A lower state viscosity after the yield point

thus cannot be measured from these experiments.
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Figure 4.9 Yield stress determination from steady shear rheological properties for MR

fluids. The dotted line marks the yield point.
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Figure 4.10 Yield stress comparison for the three fluids, two from industrial sources and

one synthesized in our laboratory.
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The variation in the yield stress calculated for the three fluids is thus found to be

comparable (figure 4.10) and slight differences can be attributed to different particle sizes and

volume fractions. Yield stress plotted against the magnetic field strength provides valuable

information about forces, energy absorption capacity and flow properties of MR fluids and its

composites (Klingenberg, 2001; Carlson, 2000; Jolly et al., 1999).

4.1.3 Time-dependent rheology: Creep

Viscoelastic properties of a material are dependent on the structure formation (and

collapse) of chains of induced dipoles in the case of MR fluids. The creep test is a very useful

method of studying them (Li et al., 2002). In a creep experiment, strain is recorded with time at a

constant applied shear stress. A yield stress material will creep below the yield point implying

that even though for all practical purposes the material does not flow (see Barnes 1999 for further

discussion on material flow at the yield stress), the sample shows irreversible plastic deformation

in response to the applied stress and the strain increases with time. A part of this time-dependent

deformation is recovered when the applied stress is removed which provides a measure of the

elastic properties of the material. The most vital information derived from a creep test however is

the 'time-response' of the material or the time required for structure formation and deformation in

the material. Applications involving impact require a very-fast (millisecond) time response,

which makes MR fluids a viable option (Gast and Zukoski, 1989; Parthasarthy and Klingenberg,

1996).

Creep behavior of a MR fluid at an applied shear stress (-) below the yield stress (o)

is shown in figure 4.11. The strain increases as the applied stress increases and approaches the

yield stress, which is held constant by maintaining field strength of 0.17 Tesla. The magnetic field

is applied and maintained at the constant value before the start of the creep test so that the time

response for structure deformation and collapse is measured from the creep test. The response

time of the material can be obtained from the plot as the time required for the total strain the
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reach a steady value. The response time varies from 3-15 milliseconds as the applied stress

increases approaching the yield stress.

*.i...'1 '..',' Lord'sMRF-336AG
Creep test, 2cm 40 cone
B = 0.17 T (ay ~ 7.5 kPa)

c 0.1 -____-_

+ =1 kPa
U)-- 3 kPa

L.j0.01 -- a=5kaW-e m-*

0.001

10 20 30 40 50x10-3

time [s]

Figure 4.11 Creep behavior of MRF-336AG sample at different applied stresses below the

yield stress.

Since, MR fluids have a magnetic field dependent yield stress, a creep experiment

wherein the applied stress is held constant but the magnetic field strength is varied such that

-y > c- has also been carried out and is shown in figure 4.12. The short time response of the

material when the strain climbs to its steady value is shown in the first section of the figure. The

total strain decreases as the magnetic field strength or effectively the yield stress is increased.

This suggests a collapse of data with a model considering the total strain as a function of a scaled

stress s = ( , and would be interesting to study in the future. The recovery phase of the

fluid after the removal of the applied stress is also shown and is found to be minimal suggesting

that the viscoplastic response of fluid is dominant.
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Figure 4.12 Creep experiment for different magnetic field strengths at an applied shear

stress showing both the creep and recovery phase.

4.2 Shear-Thickening Fluids

The term 'shear-thickening' typically refers to the increase in shear stress or apparent

viscosity when the applied shear-rate is increased and these deformation-rate responsive fluids

could provide a cheap alternative to magnetorheological fluids for adaptive energy absorption.

During impact, shear-thickening fluids can spontaneously (without the presence of an external

field) change and show solid-like behavior. Study of rheological properties of shear-thickening

fluids is essential for elucidating the subsequent behavior in a composite material.

4.2.1 Experimental Methods and Materials

Corn starch has been used for analysis since it shows extreme shear thickening and forms

one of the few dispersions that have been reported to show a sharp discontinuity (Hoffiman,
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1972). Corn starch is used as purchased from Fisher Scientific and deionised water forms the

continuous phase in the dispersions.

All rheological measurements have been carried out on TA Instruments' AR 1000N

rheometer. A cone and plate arrangement with 4 cm diameter and 2 degree cone angle and 2 cm

diameter and 4 degree cone angle has been used for the measurements. The sample was freshly

prepared for every run to minimize effects of solvent evaporation, bio-degradation and each

sample was pre-sheared to eliminate any time effects. A very high volume fraction of solids in the

suspension, an essential condition for shear thickening, has been used.

4.2.2 Steady Shear Rheology

Corn starch in water at 53 % and 56 % weight fractions has been analyzed under steady

shear flow as extreme shear thickening had been observed earlier at these fractions (Hoffman,

1972). A stepped ramp shear flow procedure with a 4cm parallel plate arrangement at a gap of

1mm has been used. The steady shear response (figure 4.13) shows extreme shear thickening with

2-3 orders of magnitude increase in viscosity at a critical shear rate. The jump in viscosity is

observed to increase while the critical shear rate decreases as the volume fraction of corn-starch

in water is increased. The sharp discontinuity makes data reproducibility in the critical shear rate

regime difficult. A number of investigators have reported in the past of marked time-dependence

and hysteresis as well as the effects of instrument geometry (Laun et al, 1991, Boersma et al,

1991).
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Figure 4.13 Steady shear data for corn starch and water dispersions plotted as viscosity

versus shear rate for two different volume fractions.
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Figure 4.14 Viscosity and normal stress plotted as a function of the shear stress for steady

shear flow with a cone-plate arrangement.
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Measurements obtained in steady shear flow using a cone-plate arrangement for 56%

w/w corn-starch suspension have been plotted as apparent viscosity against shear stress in figure

4.14. The experimental measurements are for a controlled stress ramp with the data being

averaged for 20s before recording. The critical shear stress, r, -1.5 Pa is clearly seen in the figure

when the viscosity starts climbing up and is reproducible to within 10% error as can be seen from

the figure. The first normal stress difference, which has not been reported earlier in literature, also

shows a clear trend with an instability, as detected by fluctuations in the stress difference, setting

in at the critical shear stress before it starts monotonically increasing.

4.2.3 Time-dependent rheology: Creep

Creep tests, recording strain while keeping the applied shear stress constant, have also

been carried out to elucidate any time effects in the suspension behavior as shown in figure 4.14.

These tests have been carried out with a 2cm 40 cone arrangement and freshly prepared samples.

4000 C ' ' Corn starch in water suspension (56% w/w) . .
Creep experiment, 2cm 40 cone C00

3000-
300 a = 50 Pa COOG

LI a =100 Pa
Sa = 300 Pa

s! 2000C

1000 -

0
0 50 100 150 200

time [s]

Figure 4.15 Creep experiments for corn starch in water suspensions (56% w/w)

illustrating increase in viscosity and decreasing strain with increasing applied shear stress.
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Creep results show an increase in viscosity and hence a decrease in the total strain with

increase in applied stress. The shear rate d= can be approximated as the slope of the
dt)

curve and is observed to be decreasing with time at the same applied stress. This indicates an

increase in viscosity in the corn-starch/ water suspension over long times also known as

'rheopexy'.

4.3 Summary

Steady shear flow and creep experiments have been carried out on commercial and

laboratory-based MR fluids to measure the rheological properties of these field-responsive fluids.

Inexpensive MR fluids with excellent stability and yield stress comparable to commercially

available fluids have been synthesized in the laboratory and these can now be used as the fluid

phase for impregnating open-cell foams for energy absorption studies.

Corn-starch and water suspensions show extreme shear thickening and are easily and

cheaply formulated. However, issues of stability and time dependence plague these fluids with

'rheopexy' complicating the shear-thickening effect. A synthetic shear-thickening fluid showing

extreme shear-thickening, for example fluid based on monodisperse colloidal silica spheres in

glycols (Bender and Wagner, 1996), could possibly eliminate these concerns and prove beneficial

for energy absorbing applications.
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CHAPTER 5

Fluid-Filled Cellular Solids: Mechanical

Properties and Theoretical Modeling

Open-celled foams impregnated with viscous fluids have different mechanical and

thermal properties depending on the viscosity and filling fraction of the fluid. The expulsion of

these fluids, as the foam is compressed, increases the stress and the energy dissipated. A novel

application of using field responsive fluids to control the energy absorbed by foams is explored

and experimental results are discussed in this chapter.

5.1 Experimental Setup: Mechanical Properties

The Texture Analyzer (TA.XT2i), a programmable 'low' strain-rate testing instrument,

has been used to characterize dry and fluid-filled foams. 'Low' strain rates roughly range from

10-8 to 10-2 /s and are obtained using laboratory tensile or compression-testing instruments.

Impact velocities for auto design or 'intermediate' strain rates (up to 40 /s) are obtained using

'Drop-ball', Izod impact or servo-hydraulic testing equipment and are discussed in detail in

chapter 6.

A fixture for the Texture Analyzer has been designed, as shown in figure 5.1, so that

compression studies of foams can be carried out in presence of a pre-set magnetic field. The

fixture has been built from cast acrylic for easy visualization and video imaging purposes. The

foam is confined in a piston-cylinder type of arrangement, so as to allow fluid flow only in one

direction i.e. along the direction of compression and to prevent spontaneous deformation of the

material on application of high magnetic field gradients. The Texture Analyzer controls the piston

type compression probe and executes user-specified test protocols (constant velocity or constant
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strain rate compression protocols) while measuring accurately the force, displacement and other

dynamic quantities. A horseshoe type permanent magnet provides the desired magnetic field and

can be moved along the vertical direction to obtain magnetic field gradients of varying magnitude

along the direction of deformation.

Compression probe (threaded
at top) that connects to the
TA.XT plus instrument

Foam sample (Dry or fluid-filled)

Cylinder housing for sample and

Magnetic field base (acrylic)

Figure 5.1 TA.XT plus instrument fixture (exploded view) for compression of samples to

measure stress, strain and other mechanical properties under different test protocols.

A gaussmeter, F. W. Bell Model 5060, with an axial and transverse probe and a

resolution of 1 mT (10 Gauss) has been used to accurately measure the applied magnetic field and

its variation with sample height. Representative field gradient profiles used during experiments

have been shown in figure 5.2. Figure 5.2a) illustrates a profile that arises as a result of

positioning the centerline of magnet, represented by a Y distance of 0.0 cm on the plots, along the

top surface of the foam sample giving a high field gradient while figure 5.2b) is obtained when

the centerline of the magnet lies exactly in between the top and the bottom surfaces of the sample

and is more uniform.
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Figure 5.2 Illustrative examples of magnetic field gradients used in experiments,

obtained using different arrangements of the magnetic field source a) high field gradient

profile b) parabolic but nearly uniform magnetic field profile.

5.2 Mechanical Properties: Dry and Impregnated Foams

Cellular solids have widespread use as energy absorbing materials and their mechanical

characterization when subjected to deformations is important. Many in depth studies discussing

the mechanical properties of 'dry' foams (not impregnated with any field responsive fluids and

only air fills the porous spaces) exist and these have been reviewed in chapter 3.

5.2.1 Dry foams under compression

Stress-strain behavior of 'dry' foams has been determined which forms the standard for

comparison of fluid-impregnated foam properties. Further, its comparison with literature results

has helped validate measurements from this modified instrument setup.
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Figure 5.3 Stress-strain curves for a dry reticulated polyurethane foam sample illustrating

the dependence on strain rate.

Stress-strain curves for low-density reticulated polyurethane foams in dry condition

shown in figure 5.3 are in excellent agreement with the schematic compression curves for

elastomeric foams reported earlier in figure 3.3. The foams are flexible and hence have a low

compressive strength and a small linear elastic region as can be observed from the figure. The

plateau stress is approximately 7 kPa and weakly increases to nearly 10 kPa, with two orders of

magnitude increase in strain rate, due to dynamic (inertial) effects discussed in detail earlier in

chapter 3.

5.2.2 Foams Impregnated with Newtonian Fluids

Newtonian fluids (in general terms, fluids whose viscosity remains constant with shear

rate) have been used as reference fluids to characterize the effect of partially impregnating fluids

inside a cellular solid. Air, a Newtonian fluid, fills the cellular solid under ordinary conditions but

because of its low viscosity has little effect on the stress-strain characteristics of the foam.

Glycerol is used as the test fluid, since glycerol-water systems provide access to a large viscosity
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range and furthermore glycerol has been studied previously in order to characterize strain-rate

dependence of the plateau modulus (figure 3.4).

The cellular solid is impregnated with glycerol by applying suction. Subsequently the

fluid is held in place by capillary effects. Squeezing out and sucking in the excess fluid using a

compression device repeatedly ensures a homogenous distribution of the fluid impregnating the

foam. Since a few non-uniformities are still present, the measured value of stress when the foam

is compressed should be considered an average value.

As shown in figure 5.4, glycerol impregnating a cellular solid, at low to medium strain

rates, only slightly increases the plateau stress and provides little or no advantage for energy

absorption. Also, due to fluid-solid incompressibility effects, the densification region is

encountered at much lower strains with increasing volume fraction of glycerol. The reduced

densification strain (se,) for impregnated foams can be approximated as a function of the volume

fraction of the impregnating fluid as follows

-0,. ~ sD) 0 f (5.1)

where 6 D is the densification strain for a 'dry' foam which is derived from classical

theory (equation 3.4) and #f is the fluid volume fraction. The scaling is based on the expression

for free volume that determines the densification strain when incompressibility effects set in. The

scaled densification strains thus calculated are illustrated in the figure with dotted arrow lines and

are within reasonable accuracy of the experimental values.

However, at higher strain rates, the plateau stress is expected to slightly increase due to

dynamic crushing and inertial effects of the solid foam structure and thus possibly glycerol-filled

foams could provide better energy management or cushioning for a larger dynamic range as

compared to commercially available dry foams.

80



40

Strain [%]

0.12

0.10

0.08

0.06

0.04

0.02

0.00
80
) .r (12%)

Figure 5.4 Characteristic stress-strain curves for glycerol-filled reticulated foams at

varying volume-fractions of the fluid at low strain rates.
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Figure 5.5 Comparison of stress-strain response for low-density reticulated dry and wet

foam subjected to a constant strain rate test protocol.
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Solid cellular edges of reticulated polyurethane foams, when in contact with small

amounts of fluid get softened and are expected to have a lower solid modulus of elasticity (Es ).

This phenomenon of 'wetting' of the solid material present in cell edges leads to a decrease in the

plateau stress and hence the 'wet' foam has a lower stress-strain curve as shown in figure 5.5.

Also, it is observed that the compression apparatus fixture type (whether with or without lateral

constraints on the sample side) determines the direction of the fluid flow, either along or normal

to the compression direction. Hence all experimental data that follows has been compared to

'wet' foam compressed with fluid flow along the same direction.

5.2.3 Shear-thickening Fluid Impregnated Foam

Shear-thickening fluids show an increase in viscosity with shear rate as described in

detail earlier in section 2.2. The shear-thickening fluid effect showing the sharp jump in viscosity

at a critical shear rate is illustrated in figure 5.6.

The internal shear rate (f ) is expected to be a function of the volume fraction (#) of the

fluid, the external deformation rate (ii) of the foam and the geometry of the foam cells. An

approximate analysis by considering the cellular solid to be a bundle of capillaries of diameter

(d ) gives the average velocity as

Uavg = (1 - - O (5.2)

where c is the strain in the foam sample and LO is the initial height of the sample.

The shear rate of the fluid inside the capillary can then be expressed as

. v, 2u, '40., (1-,6) LO
= C2 ]= (5.3)ar d/ l d

where d is the characteristic diameter of a cellular solid pore.
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Figure 5.6 Illustrative example of viscosity versus shear rate data for a shear-thickening

fluid (Laun et aL., 1991).

The energy absorbed by foams impregnated with these fluids under compression will

vary as the shear rate of the fluid flowing inside the foam cell changes since it can be expressed

per unit volume as

_1: = (f)f2 (5.4)

where r is the stress tensor, f is the rate tensor and (f) is the shear-rate dependent

viscosity (Bird et aL., 1987).

If a non-Newtonian fluid is utilized in which viscosity is a function of this shear-rate then

we may expect from equations 5.2 and 5.4 that the dissipation rate will increase as the

deformation rate of the sample or the volume fraction of the fluid is increased or the cell pore size

is decreased.

The stress-strain behavior for shear-thickening fluid impregnated foam as the volume

fraction of the fluid increases is shown in figure 5.7. The increase in plateau stress and the energy

absorption due to the shear-thickening effect is limited and the densification region is attained at
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smaller strains due to fluid incompressibility effects. This is because the critical shear rate (fe)

for shear-thickening effect to be observed is attained only at very high strains (-95%) as is

illustrated below for the 15% v/v STF impregnated foam

-Ted 10(0.0003)
(5).5)

where qe is the critical strain for shear-thickening to occur, d = 300 microns is the pore

diameter, = 0.2 s-1 is the strain rate and Lo = 2 inches is the foam sample height.
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Figure 5.7 Stress-strain behavior of reticulated open-cell foam impregnated with shear-

thickening fluid (52% com-starch/ water solution) at varying volume fractions.

5.2.4 Magnetorheological Fluid Impregnated Foam

Magnetorheological fluids are 'smart fluids' with controllable yield stress, and these were

impregnated in a cellular solid to obtain user-controllable foam characteristics, in particular

stress-strain behavior and the energy absorption capacity. The experimental setup, as described in
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the section 5.1, allows instrumented studies while varying different control parameters such as

strain rate and magnetic field in order to control the mechanical behavior of these foams. Fluid, in

the required volume fraction, is impregnated inside the foam by suction and is spatially

homogenized by repeated compression and relaxation of the filled foam. The fluid forms a

secondary layer covering the solid edges of the foam where it is held in place, owing to its yield

stress, as shown in the optical micrograph (figure 5.8). The yield stress of the fluid phase is a

function of the magnetic field and hence, the elastic modulus of the composite cell edges can be

modulated by changing the magnetic field strength.

R

preg

500 pmI

Figure 5.8 Optical micrograph (Olympus SZX9 microscope) of a dry low-density

reticulated foam before and after impregnation with a commercially available MR fluid

(LORD's MRF-336AG).

The stress-strain behavior of MRF impregnated foam in the presence of a very low

magnetic field is compared with the no-field case in figure 5.9 a). The solid cellular edges of the

foam stiffen as the yield stress of the MR fluid increases in presence of a magnetic field and the

stress-strain curve shifts upward. The reduced densification strain (er) for fluid impregnated

foams can be expressed similar to equation 5.1 earlier and is shown in the figure for 12% v/v with
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a dotted arrow line. The densification strain (.6) for 0% v/v fluid in an open cell polyurethane

foam works out to be -98% strain due to a very low solid fraction (-2%) in the cell edges.
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Figure 5.9 MRF impregnated open-cell foam at 12% volume fraction and 0.05 T

magnetic field a) stress-strain behavior b) energy absorption curve.
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The energy absorbed by this cellular solid is given by the area under the stress-strain

curve and is shown in figure 5.9 b). The energy absorbed, even at low volume fractions and

magnetic fields, is seen to increase by 40-50% (as compared with the no-field case) well before

the densification region is reached.

In the case of glycerol or shear-thickening fluids impregnating the cellular solid, the

plateau modulus (a *) hardly changes and only the shift in the densification region is observed.

The energy absorption is only due to the viscosity of the flowing fluid (fluid being squeezed out

at higher strains) and is thus a strong function of the shear rate. In the case of MR fluid

impregnated foams, because of the fluids' yield stress, the cell edges stiffen and the plateau

modulus itself increases leading to a dramatic increase in the energy absorption besides the

enhancement due to fluid flowing at higher strains. We now proceed to characterize the material

response in detail.

5.3 'Novel' Energy-Absorbing Material: MRF Impregnated Foam

A 'smart' energy-absorbing material has thus been conceptualized by using field-

responsive fluids such as MR fluids to control the foam characteristics. The important control

variables for this novel material are the magnetic field strength (B ), volume fraction of the fluid

(#), deformation rate (i) and the geometrical parameters of the cellular solid. Experiments to

determine the material properties under compression have been carried out while varying the

different control variables one at a time. Open-cell reticulated polyurethane foam (solid elastic

modulus (E,) equal to 45 MPa, density of solid (p, ) equal to 1200 kg/m3 , relative density

(p*/p, ) equal to 0.0155, tetrakaidecahedron cells of ~ 300 ptm pore size) has been used in all

experiments as the control matrix for impregnation by LORD's MRF-336AG to study the effect

of parameters.
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5.3.1 Effect of Magnetic field strength

The magnetic field strength determines the yield stress of the MRF, which in turn

controls the plateau modulus (u-*) of the composite cellular solid and its energy absorption

capacity. Hence, as the magnetic field is increased to moderate levels of -0.2 Tesla, while

keeping the volume fraction, strain rate and other parameters constant, the yield stress of the

MRF increases sub-quadratically and a progressive shift in the plateau stress is observed. Figure

5.10 depicts this jump and compares it with the stress-strain behavior observed at lower and zero

magnetic fields.

0 10 20 30

Strain

40

[%]

50 60 70

Figure 5.10 Stress-strain curves for varying magnetic field at 16% volume fraction of MR

fluid impregnated in open-cell foam.

The energy absorbed by this impregnated foam material even at moderate magnetic fields

and low volume fractions of the fluid increases tremendously and can go up by nearly 30-50

times the energy absorbed at zero-field. The energy absorbed by the MRF impregnated foam can
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thus be modulated by controlling the magnetic field and figure 5.11 demonstrates this controlled

energy absorption for three magnetic field strengths.

MRF impregnated reticulated foam

E 102 -16% v/v MRF

101 0.2 s strain rate

10 0 .............. ..

S10-1
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Figure 5.11 Variation of energy absorption capacity by modulating the magnetic field

strength for 16% v/v MR fluid-filled open cell foam.

All the experimental results shown above as well as those below have been recorded

when a high magnetic field gradient was imposed on the foam sample (as illustrated in figure 5.2

a)) and only the average magnetic field strength is indicated in the plots. The magnetic field

gradient is observed to be an important factor determining the stress-strain behavior of the MR

fluid-filled foam sample. As the sample is compressed either against or along the magnetic field

gradient, an additional force is experienced called the ponderomotive magnetic force. The energy

absorption thus varies with strain as the magnetic field profile is changed and figure 5.12

illustrates this difference for an average magnetic field of 0.23 Tesla. Although, the total energy

absorption is nearly the same, in case of the uniform magnetic field shown by the blue dotted

curve in the figure (profile according to conditions illustrated in figure 5.2 (b)), the plateau region
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is absent and the continuously increasing stress is generally not desirable unless a higher dynamic

range is required by the application.

2.5 T I

Effect of Magnetic field gradient
.5 Bav = 0.23 T
, 2.0- 16 vvavM 16% v/V MRF impregnating foam ,

- High magnetic field gradient
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Figure 5.12 Effect of the magnetic field profile (in accordance with the conditions

illustrated in figure 5.2 (a) for high magnetic field gradient and figure 5.2 (b) for nearly

uniform field) on the amount of energy absorbed by an impregnated foam sample.

Despite the heterogeneity in the MR fluid impregnating the cellular solid, the results are

reproducible to a high degree. The Texture Analyzer instrument has a high resolution of 10-6 MPa

and introduces little error into the result. However, it is highly impractical to have control on the

volume fraction of the fluid impregnating the foam as it undergoes compression-relaxation

cycles. The fluid is repeatedly squeezed out and sucked in during these cycles and a variation of

±2% v/v MRF is observed under test conditions. The nature of the stress-strain curve for the

material is robust under these conditions and is illustrated for five compression-relaxation cycles

in figure 5.13.
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Figure 5.13 Robustness of the mechanical behavior observed for an impregnated foam

sample undergoing compression-relaxation and field off-on cycles.

5.3.2 Effect of volume fraction of the MR fluid

Varying the volume fraction of the MR fluid impregnating the foam affects the

mechanical properties of impregnated foam in two ways. Firstly, it increases the thickness of the

secondary layer of MR fluid on the foam edges and hence the plateau stress. Secondly, more fluid

needs to be squeezed out as the sample undergoes compression and hence the stress increases at

lower densification strains, as illustrated in figure 5.14 for a few volume fractions with dotted

arrow lines. These reduced densification strains (,.) are approximated by scaling the

densification strain for 'dry' foams by the free volume as described earlier in section 5.2.2.
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Figure 5.15 Energy absorbed as a function of volume fraction of the MR fluid

impregnating the open-cell foam.
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Figure 5.14 Stress-strain curves for MR fluid impregnated foam at 0. 18 Tesla (average)

depicting increase in the plateau stress ( o-* ) and shift in the densification region as the

volume fraction of the fluid is varied from 15 to 60%.
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The plateau stress increases almost linearly at low volume fractions and the slope of the

line is a function of the magnetic field as shown with the model fit later in figure 5.18. The

energy absorbed by the material is strongly dependent on the volume fraction as can be observed

from figure 5.15. This composite material can be optimized for the volume fraction and magnetic

field and its energy absorption capacity can be user-specified using these two control parameters.

5.3.3 Effects of strain-rate on mechanical properties

Varying the imposed compressive strain rate (g) has minimal effect on the mechanical

properties of elastomeric foams (dry or impregnated) at 'low' to 'intermediate' strain rates, as

shown in figure 5.16.

0.14 MRF impregnated reticulated foam

0.12 Bavg = 0.18 T
-16% v/v MRF

0. 0.10 -- = 0.02 s- -
- t = 0.2 s

0.08 -- 1  ,I
-- t =2s ,

0.06 --
CD,

0.04 -'

0.02 ....--.--------

0 20 40 60 80

Strain [%]

Figure 5.16 Effect of strain rate ('low' strain rates) on the stress-strain behavior of MR

fluid impregnated reticulated foam.

At higher strain-rates, for example under impact conditions, dynamic (inertial) effects

cause the stress-strain curve to shift upwards. This is due to 'localization' of stress into a thin

band close to the impact face and 'micro-inertia' associated with rotation and lateral motion of

cell walls when they buckle (Gibson and Ashby, 1997). 'Drop-ball' test is a convenient test-
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method to realize these auto impact design ('intermediate) strain rates and is discussed in detail in

the next chapter.

5.4 Theoretical Modeling: Proposed Scaling Model

The energy absorption capacity of MR fluid impregnated foam is a complex function of

the control variables, B, 0, , and foam-cell parameters. A model in the spirit of the classic

scaling model developed by Gibson and Ashby (1997) for dry elastomeric foams is proposed to

determine the plateau modulus as a function of the different control parameters. The model,

coined the 'two-layer' model, is based on the assumption that a fraction of the MR fluid filling

the cellular solid covers its cell edges to form a uniform secondary fluid layer as was also

observed in the optical micrographs (figure 5.8). The portion of the impregnated MR fluid

volume not forming the secondary layer has little effect on the plateau stress and only shifts the

densification region similar to a Newtonian fluid case. The fraction (f ) is a single fitting

parameter that depends on the type and geometry of cellular solid. The model takes into account

the changes in the elastic properties and also the geometric parameters, namely t, thickness and

1, length of the cell edge. The schematic of a typical tetrakaidecahedron cell of impregnated

open-cell foam is shown in figure 5.17. The thickness of the cell edge changes from tdy to

tcomposite due to fluid impregnation while there is negligible change in length of the cell edge (1).
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Figure 5.17 Schematic of a single tetrakaidecahedron cell of the MR fluid-foam composite

showing a secondary layer of MRF on the solid foam cell edges.

The plateau modulus of open-cell elastomeric dry foam is given by equation 3.2 as

2
P*

d-*r, 0C Es ( )
pAI

0.5- 2

F+ ( p,
(5.6)

The elastic modulus E, of the solid changes as the amount of MR fluid forming the

secondary layer on the cell edges varies with Of . This can be determined by the 'rule of

mixtures' for composites as follows

Ecomposite = s +# , (5.7)

Em, ~ 3Gm, (B) Of = f#,,,,f

where #, is the solid volume fraction in cell edges, Of is the fluid volume fraction in the

cell edges, #,f is the total volume fraction of the MRF impregnating the solid, f is the fraction

of MR fluid located on cell edges, Em, is the elastic modulus of the MR fluid and G,,, is the

shear modulus of the MR fluid.
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The elastic modulus of the MR fluid E,,, in the secondary layer can be computed from

its shear modulus G,,,, which is experimentally determined on a rheometer as a function of the

magnetic field strength.

Although the elastic modulus of the mixture decreases since E., <E,, there is an

effective increase in the plateau modulus as the relative density of the composite (p */p)

increases according to the following relation

P >I tf,, 2 P* composite , C2 (5.8)

where tdy is the thickness of the dry foam cell and teomposite is the thickness of the

impregnated foam cell which can be computed from the volume fraction of the MR fluid #,,, as

follows

r c(tomposite 2

tdry,)2] #

tcomposite f s

tr Fo#O
(5.9)

The plateau stress o * can thus be determined as a function of the magnetic field

strength B, volume fraction of the MR fluid covering the cell edges of and the plateau stress of

the dry cellular solid o *dry *
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Ecomposite P*composite

Es o) p*edry r
Ecomposite

Es

1+ 3Gmrf
__(Os )( Es )

1+ 'f)

2

+ composite P dry

+

(5.10)

P *composite

P dry

=1+
Os

where the dry values depend on the open-cell structure and solid material.

At low volume fractions of the MR fluid, this plateau stress 7-* can be shown to vary

almost linearly with the volume fraction (#f) as is also observed in figure 5.18 below. For

collapse of data onto a single curve a shift factor (af ) is thus defined as follows

af =1 = [1
a dry)

1+

1 +NC
(5.11)

where =i+ L, C is a function of B and Es and C2 depends on the foam

structure.

A ponderomotive magnetic force is exerted on the foam sample due to the presence of a

magnetic field gradient. This also shifts the plateau stress according to the following expression:

f P dz (5.12)

where f, is the force exerted per unit volume, X is the magnetic susceptibility of the

composite material, po is the magnetic permeability of free space and (dB/dz) is the magnetic

field gradient experienced by the sample.

The plateau stress can thus be expressed as a sum of these two effects as follows
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U observed - *+ Cv (AV))
where~~~~~~~a = * is th obevd aeuresyaua stesitfco rmeuto

(5.13)

where cT-*observed is the observed plateau stress value, af is the shift factor from equation

5.11, f, is the ponderomotive magnetic force per unit volume obtain from equation 5.12, V is

the total volume of MR fluid in the sample and A is the cross-sectional area of the foam. The

stress part due to the ponderomotive force can be expressed in terms of volume fraction of MR

fluid (#,, ) and the magnetic field as follows

(5.14)Ifv VJ=@( ;' ) (B.,dB) (,,Ho)

where H is the height of the foam sample, X = 5 for a MR fluid and po = 4r x10-7 is

the permeability of free space. Model fit to experimentally observed plateau stress values based

on calculations shown above for different volume fractions and magnetic fields are shown in

figure 5.18.
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Figure 5.18 'Two-layer' model fit to observed values of the plateau stress

filled open-cell foam samples.
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Since, the plateau region is much larger than the linear elastic region in reticulated

polyurethane foam samples, it is possible to shift all the stress-strain curves to a single volume

fraction. All the data has been collapsed onto a single curve using expressions for shift factor

(af) and ponderomotive magnetic force (f,) and figure 5.19 illustrates this stress shifting for

different volume fractions and two magnetic fields. A single plateau stress curve is observed until

the densification region thus validating the model propositions.
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Figure 5.19 'Two-layer' model based stress shift to dry foam plateau stress (c-ary ) for

0% to 60% v/v MR fluid impregnated foam.

The shift in plateau stress, however, does not take into account the densification region,

which is also a function of the volume fraction of the MR fluid. As the amount of fluid

impregnating the cellular solid changes the strain can be scaled in accordance with the free

volume available for compression as follows
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Er =

where cr is the scaled or 'reduced' strain, #, is the solid volume fraction and #f is the

MR fluid volume fraction in the composite. The reduced strain against the shifted stress for

different volume fractions of MR fluid impregnating the foam at a field strength of 0.18 Tesla is

illustrated in figure 5.20.
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Figure 5.20 Master curve for all control variables using the 'two-layer' model.

Thus a master curve has been obtained as a consequence of the 'two-layer' model which

shows excellent agreement between the experimental data and the theoretical. It can be used to

determine the mechanical properties of MR fluid impregnated foams for different parameter

values, like B, #,j, etc. and also provides an effective tool for optimizing the energy absorption

capacity in tune with any application requirements. As a case example in order to explain the
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procedure, the observed plateau stress value (a *observed) for a reticulated polyurethane foam

impregnated with MR fluid at a volume fraction (# ,rf ) of 31% when an average magnetic field

(Bvg) of 0.10 Tesla has been applied will be determined from this master curve. First the shift

factor (af) is calculated from equation 5.10 as follows

P *composite _ _+f 1  =1+ 0.1(0.31) = 2.78
P *dry Os Os 0.0145

I1+((1)( ' 1+1.783(.)

Ecomposite Er 45- .=1 0.458
Es J2.78

-2

2 1+ composte dry

_ f _ Ecomposite P composite 1 P dry Ps (5.16)
dry E dr d) J P* 1+

af = 0.458(2.78)2 j =4.076
1 +-A. 015 5

C*= af (o *dr,) = 4.076(0.00225) = 0.009172 MPa

where f = 0.1 is the fitting parameter assuming about 10% of the total volume fraction

of MR fluid coats the cell edges, qs = 0.0145 is the solids volume fraction in a reticulated

polyurethane foam sample, Gm = 2.3 MPa is the shear modulus of MR fluid at 0.1 Tesla field,

E, = 45 MPa is the solid elastic modulus of flexible polyurethane and a *dry = 0.00225 MPa is

the plateau modulus for 0% volume fraction of MR fluid impregnating the foam. Hence, the first

part of the plateau stress has been calculated from the shift factor and material properties and the

second part, the ponderomotive magnetic force based on equation 5.14 is calculated as follows

101



f = dB) #,,H.)

f, -= 0.1 (0.31(0.0254))x10-6 MPa (5.17)
SA 4/T x1- 0.0254

fv - = 0.003368 MPa
A)

where x = 5 is the magnetic susceptibility of MR fluid, po is the magnetic permeability

dB
of free space, - is the magnetic field gradient observed over 1.0 inch height of the sample and

dz

HO = 0.0254 m is the initial height of the foam sample. Thus, the observed plateau stress can be

calculated to be

*b,,ed =0.009172+0.003368 = 0.01254 MPa (5.18)

The experimental value for this particular case from figure 5.18 is 0.0136 MPa. Hence,

the plateau stress value for a given volume fraction and magnetic field has been obtained from the

master curve and the scaling model within 8% error which is a good engineering estimate.

5.5 Summary

Texture Analyzer with a custom-built fixture has been used for dry and fluid-filled

cellular solid characterization at low strain rates. Magnetorheological fluid-filled foams have

magnetic field dependent controllable stiffhess and energy absorption. Volume fraction of the

fluid impregnating the foam controls the densification region and to a small extent the plateau

stress while the strain rate has insignificant effects on energy absorption. A scaling model has

been proposed for the plateau stress, which assumes on the basis of micrographs and comparison

of data on glycerol and shear-thickening fluid impregnated foams that MR fluid, due to its field-

dependent yield stress, forms a secondary layer on the foam edges. The magnetic field gradient is

also important as a negative gradient induces a ponderomotive magnetic force, which adds to the

amount of energy absorption. Excellent collapse of experimental data onto a single master curve
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is observed using these theoretical propositions. Thus, a novel adaptive energy absorbing material

has been conceptualized, tested and modeled successfully for use in automotive applications.
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CHAPTER 6

Applications: Concept and Design

'Smart' materials can be controlled through associated electronics and control algorithms

to change their rheological properties in response to the environment. A 'smart' energy-absorbing

material consisting of a cellular solid impregnated with a field-responsive fluid impregnated

cellular solid has been conceptualized and tested in the previous chapter. The present chapter

deals with potential applications in design and concept, which utilize the controllable stiffness

and energy-absorbing properties of such a 'smart' material, especially automotive components

and ballistic armor.

6.1 Application Potential

New incoming Federal and European community legislations (FMVSS 201/202, EURO

NCAP, EEVC WG 17) introduce stringent impact protection requirements and this is a major

concern in the automotive industry (Ullrich 2001). The automobile parts need to provide

protection for two distinctly different sizes (adult and child) of pedestrian and passenger, which

presents many 'conflict areas' with different stiffness requirements under different conditions

(Courtney and Oyadiji 2001). This 'conflict of stiffness' problem is also evident in other

components due to varying design, utility and impact absorption requirements (Ullrich 2001).

The 'smart' material conceptualized in the present work because of its adaptive properties

could prove beneficial in overcoming the energy absorption conflicts and challenges in the

automobile. Various automotive components have been designed using this 'novel' material and

are discussed in the following sections.
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6.2 Impact absorbing Headrest

Whiplash injuries to a passenger in a rear-end crash result in a total annual cost of $5.2

billion to the automotive industry'. Many of these associated disorders could be mitigated if the

occupant head acceleration and motion is reduced. The neck injury criterion (NIC) is

hypothesized to be

NIC=(are * 0.2)+(vre,) 2 >15 m 2 /s2

where arel and vrel are the relative TI-Cl vertebrae acceleration and velocity (Bostrom

et al., 2000). '

Seat-back and head-restraint properties influence the head-neck relative movement and

acceleration and the forward rebound into the seat belt during rear impacts (Svensson et al.,

1996). A soft compliant headrest though comfortable would imply a high risk for injury because

of large relative motion between the occupant head and leading to a NIC value greater than 15. A

field-responsive fluid-impregnated headrest would allow the same headrest to be soft under

normal driving conditions but a high impact energy absorbing stiff material during a crash.

The impact-absorbing headrest with the supporting electronics is depicted in figure

6.1(a). As an example of the concept, referring to figure 6.1(b), a zero field under ordinary

conditions would ensure the headrest is compliant and follows the dotted curve but a crash,

through associated electronics, would trigger a high field of -0.2 Tesla for 150-200 milliseconds

in the headrest area so that the solid red curve is followed and headrest drastically reduces

occupant acceleration and movement.

1 http://www.nhtsa.dot.gov/cars/rules/CrashWorthy/status9.html#13
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Figure 6.1 (a) Illustration of a MR fluid impregnated headrest in an automobile to satisfy

the NIC requirement and prevent whiplash-associated disorders (WAD). (b) Energy

absorbed per unit volume by MR fluid impregnated foam at different magnetic fields.

An important consideration for this or any other application is the rapid generation of a

strong magnetic field for active energy absorption. The field can be created normal to or along the

direction of the impact. An inexpensive, simple but highly effective way of realizing this is by the

use of a permanent magnet. It can be used in circuit with magnetically permeable parts so that the

field lines are concentrated and directed through the energy absorbing material during an impact.

The magnetic field decays inversely to the square of the distance which implies that the magnet in
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a facing-away orientation would have a negligible field and can simply be rotated or oriented so

as to concentrate field lines in the material during impact conditions as shown in figure 6.2.

Field-responsive fluid-filled
cellular or fibrous matrix

impact

direction

field
direction

move in position
on impact permanent magnet

Figure 6.2 An embodiment for inexpensive generation of magnetic field near a headrest

using a permanent magnet.

Field-responsive fluid-filled
cellular or fibrous matrix

field generating coil

field & impact

direction

Figure 6.3 An embodiment of a variable field-generating device, using a coil and

associated circuitry that are aligned in the direction of the impact.
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A magnet coil can also be used to generate a varying magnetic field, and hence resulting

variable energy absorption in a MR fluid-filled matrix as shown in figure 6.3. Preferably, the coil

is placed such that the line of action of impact is along the decreasing magnetic field direction,

since work done against the ponderomotive force, discussed earlier in chapter 5 (equation 5.10)

enhances the amount of energy absorption. The ponderomotive force and the associated energy

absorption increase as the magnetic field strength (B) or the magnetic field gradient (dB/dz)

increases. A transistor or a SCR (semiconductor-diode capacitor resistor) circuit can be used to

send a high current pulse through the coil for short times, which is particularly useful in case of a

vehicle crash, since the time of the event is 150-200 milliseconds but a high amount of energy

absorption is required in this small time.

6.3 Impact Testing: Drop Ball Test Apparatus

Experimentation using 'low' strain rate (10-8 to 10-2 /s) testing equipment such as the

Texture Analyzer, has been discussed in chapter 5 with an accompanying scaling model.

However, real-time testing at 'intermediate' strain rates (10-2 to 40 /s) that are usually seen in

automobile impacts is essential. These strain rates are simulated in the laboratory using drop-

hammer, drop ball, izod impact or high-speed servo-hydraulic tests (Gibson and Ashby, 1997;

Robinovitch et al., 1995; Larson et al., 1996).

A 'drop-ball' test apparatus has been custom-built in the laboratory for simulating auto

design impacts and is shown in figure 6.4. The experimental technique consists of dropping a

guided ball from a variable height through a guide rail onto the middle of a specimen and

measuring the velocity, acceleration and the amount of energy absorbed. A clear acrylic tube has

been used as the guide rail and sleeve for the sample in order to allow easy visualization. A high-

speed video camera (Phantom v5.0, Vision Research Inc.) connected to a computer has been used

to record the impact of the ball on the sample at 1900 frames per second.
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Figure 6.4 Custom-built 'Drop ball' test apparatus with an associated high-speed camera

for real-time impact testing.

Experiments using the 'drop-ball' test apparatus have been carried out for a scaled down

headrest. The energy absorbed by the impregnated headrest (W) is a function of a number of

parameters depending on the initial impact energy, foam structural and mechanical properties and

dimensions of the head model.

W = f" E,,d~t,#O, B , 9

where Ej is the kinetic energy of the head model before impact, d is the characteristic

diameter of the head model, t is the thickness of the foam, Of is the volume fraction of the fluid
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impregnating the foam, B avg is the magnetic field applied and p */p, is the relative density of

foam. The MR fluid-impregnated foam parameters are however interdependent and can be

expressed in terms of the plateau stress (a *) as described in equation 5.8. Dimensional analysis

for the amount of energy absorbed then gives

- = f " ) , 
( 1 .3 )

Ej t a-*dr

where (W/E) is the fraction of impact energy absorbed or in related terms the

coefficient of restitution e which gives a feel of the unabsorbed fraction of impact energy and

(a */- *d,) characterizes the impregnated foam parameters.

The adult head impact on a car headrest during a rear-end crash has been scaled down

while maintaining geometric and kinematic similarity. Thus, an average human head that weighs

around 4.5-5.0 kg with a characteristic diameter of 165 mm (Jacobsson et al., 2000) has been

scaled down to a 0.5 inches Aluminum ball with a weight of 3.0 grams. The dimensions of the

magnetorheological fluid-filled cylindrical sample used, 1.5 inches diameter and 0.75 inches

height, is a scale down from a car headrest such that the initial impact energy per unit volume is

the same for dynamic similarity.

W 1 m 2

2 At

1 4.5V2 619v2  (1.4)
2 7rc(0.0825) 2 0.17

1 0.003v 2  621v2

2 r (0.00635) 2 0.01905

where W"' is the impact energy per unit volume, m is the mass of the head, v is the

impact velocity, A is the area of contact between the head and the headrest and t is the thickness

of the foam.

110



C)

a) Guided
ball dropped c) Recoil

from a height

80 'Drop Ball' test for a scale down headrest
mpact of 3 gm Al ball at speed of 5.6 m/s a.

60 -&- MR fluid
-Out of filled foamE field of Dyfa

SEA 40 -- view -- 'r'fa

20--

-20 -Line of impact

6 2 4 6 2 6 0120.0.05060708
0.001 .01 . . . . .070.

tim [s]

b) b

b) Maximum
deflection of the
foam sample due

to impact

Figure 6.5 Real-time impact testing of a geometrically scaled adult headform onto a car

headrest using a 'Drop ball' test apparatus.
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The ball is dropped from an average height of 1.5 m and impacts at an average velocity of

5.3 m/s (-20 kmph) which is the maximum velocity used in automobile rear-end crash design. An

average magnetic field strength (Bvg) of 0.15 Tesla is applied to the foam sample that is

impregnated with MR fluid at 35% volume fraction. The ball motion against time is plotted in

figure 6.5 with corresponding image captures at maximum deflection and recoil positions. The

figure shows the initial 300 ms in log scale to bring out the features on impact and is presented on

a linear scale for later times. The origin (represented as the line of impact in the figure) is taken to

be the top of the foam sample so that the maximum deflection of the scaled headrests can be

compared. The maximum compression of the foam would correspond to the relative movement

between the neck and the head in an actual crash and needs to be minimized. While the MR fluid-

filled foam shows only 30% compression, the 'dry' foam sample 'bottoms out' with ~ 100%

compression on impact. The rebound velocity is 1.72 m/s for the unfilled foam sample as

compared to 0.5 m/s for the MR fluid filled foam sample. The rebound velocity corresponds to

the forward rebound of the passenger into the seat belt in an actual rear-end crash which is a vital

consideration for whiplash injury minimization (Jakobsson et al., 2000). The coefficient of

restitution e is 0.1 for the MR fluid filled foam as compared to 0.32 for the unfilled foam even at

more than three times the maximum deflection. Also, the time when the ball finally comes to rest

is 800 ms for the 'dry' foam sample as compared to 150 ms for the MR fluid filled foam sample.

All these comparisons prove in principle the effectiveness of using a field-responsive fluid

impregnated headrest for protection of passengers in a rear-end impact

6.4 Automotive energy management structures

A number of automotive components, such as the A/B/C pillar trims, knee bolster,

bumpers, head-liners and side-impact parts, are also required by the new legislations to absorb

energy 'smartly' so as to cause minimum injury to adult and child occupants and passengers

alike. Similar to the adaptive headrest to protect from whiplash, these structures can be
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impregnated with field-responsive fluids and controlled to have desired energy management. As

an example, a knee bolster is required to absorb varying amounts of energy ranging from 100 to

1000 J depending on the occupant and structures similar to those shown earlier in figures 6.2 and

6.3 can be suitably packaged to give required energy absorption capacities.

A piston-cylinder arrangement can also be used to house the field-responsive fluid-filled

matrix, wherein energy is absorbed as the impact pushes the piston compressing the composite

material. Further for MR fluids, the magnetic field-generating device, can be housed within the

piston or the cylinder so that the field lines travel through the fluid-filled matrix. Various energy

absorbing structure designs using a piston-cylinder type arrangement and magnetic coils or

permanent magnets are shown in figure 6.6. The viscous dissipation due to flow of the fluid

through orifices or holes in the piston-cylinder arrangement adds to the energy absorption due to

the fluid flow inside the solid or fibrous network as shown in figure 6.6 b). In figure 6.6 c)

permanent magnets are placed in the cylinder housing such that compression of the material

would give enhanced energy absorption due to an increasing field as the magnets are pushed

closer. Also, if the arrangement of magnets is such that a repulsive force is exerted on bringing

the magnets closer, the impactor would experience an additional stress thus giving a large

dynamic range of energy absorption. As shown in figure 6.6 d) a series of coils can be used in

place of the permanent magnets so that compression would decrease the distance between the

coils leading to enhanced energy absorption from the increased field strength and higher repulsive

force. Thus, a variety of field generating devices can be designed depending on the application

structure and requirements.
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Figure 6.6 Various embodiments of a piston-cylinder arrangement used for controllable

energy absorption.
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6.5 Summary

New incoming legislations present a 'conflict of stiffness' problem in a number of

automotive components that can possibly be dealt with by use of a field-responsive fluid

impregnated cellular solid. An exemplary application of this composite is the car headrest that

can be converted from a soft, compliant foam into a rigid, energy absorbing material during a

rear-end crash so as to protect the occupant from whiplash injuries. A 'Drop ball test' apparatus

has been built and material testing at realistic impact conditions has been carried out.

Dimensional analysis of impact energy absorbed forms the basis for scaling down the head and

the headrest while maintaining geometric and dynamic similarity. The maximum deflection of the

foam has been found to decrease to a third (30%) while the coefficient of restitution decreases to

0.1 for the scaled down headrest when impregnated with a MR fluid. Finally, various

embodiments of energy management structures using permanent magnets or field coils depending

on the application constraints have been discussed in the chapter.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

Energy management is a vital concern for automobiles and a number of components are

required to be occupant and pedestrian 'safe' according to new standards and legislations

(FMVSS 201/202, EEVC WG 17). These requirements usually conflict with passenger and

design demands of thin, more compliant and comfortable materials. Also, energy absorption

criteria vary depending on whether the occupant is an adult or a child. A 'novel' energy absorbing

material which provides the automotive industry with a solution to this 'conflict of stiffness'

problem has been conceptualized, designed and tested in this work. The material consists of a

cellular solid or a fibrous matrix impregnated with a field-responsive fluid like a

magnetorheological (MR) fluid. This fluid-solid composite has magnetic-field-dependent energy

absorption and stiffness and can be user-controlled in tune with the application requirements.

Field-responsive fluids undergo large changes in rheological properties in the presence of

a field. In particular, magnetorheological fluids have a magnetic-field-dependent yield stress

(stress at which appreciable deformation takes place without any appreciable change in stress).

Rheological properties, models and applications of field-responsive fluids' (FRFs) have been

reviewed in chapter 2. MR fluids have had a lot of commercial success in damping applications

and these have also been studied extensively (refer to sections 2.1.3 to 2.1.7). In spite of

commercial usage these fluids have limitations in terms of cost and stability against gravitational

forces. Hence, a cheap MR fluid with excellent stability w.r.t. sedimentation has been synthesized

in our laboratory (figure 4.6). A viscoplastic grease-like base has been added to the fluid to
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provide a low yield stress in the field off-state and to prevent the particles from settling (equation

4.3).

Steady shear rheological experiments and transient creep tests have been performed on

both the laboratory synthesized and other commercially available fluids using the TA

Instruments' AR 1000/ 2000 rheometers with a custom-built fixture. The fixture has been

designed and built to generate a magnetic field of 0.0 to 0.4 Tesla in the fluid sample space

between the top and the bottom plates (figure 4.2). It consists of a magnetic coil with 1300 turns

and a steel housing and can support a maximum current of 3.0 Amperes without the use of a

cooling water system (figure 4.1). The in-house formulated MR fluid has been found to have a

field-dependent yield stress (as an example, -2 kPa at 0.09 Tesla and ~20 kPa at 0.33 Tesla),

which is comparable to other commercial and research stage fluids (figure 4.10). Creep tests have

provided us with useful information on the time response of the fluids, which varies from 3-15 ms

depending on the magnetic field and the applied stress (figure 4.11). Also, experimental data

suggests a dependence of the total strain on the scaled stress (/- ). These large, reversible and

fast changes in the rheological properties have been utilized to modulate the energy-absorbing

properties of a cellular solid.

Shear-thickening fluids (STF), a class of field-responsive fluids with a shear-rate

dependent viscosity, have also been reviewed extensively in chapter 2 with emphasis on

parameters controlling this critical point behavior and also challenges foreseen in using these

STFs as a cheap alternative to MR fluids filling the cellular solid. An inexpensive shear-

thickening fluid consisting of corn-starch in water suspension (56% w/w) has been studied under

steady shear and creep flow. The fluid shows a 2-3 orders of magnitude jump in viscosity at a

critical shear rate or stress, which can possibly be controlled by varying different parameters like

particle size, phase volume and particle size distribution (figure 4.13). Normal stress difference

measurements also show instability at the critical stress after which it monotonically increases
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(figure 4.14). However, 'rheopexy' or increasing viscosity over long periods of time undermine

the utility of this particular system as a spontaneously responding, cheap substitute to MR fluids

filling the cellular solids.

Cellular solids, i.e. porous interconnected networks of solid material forming edges and

faces of cells, have a variety of uses, high impact energy absorption being one of them. The cell

structure, mechanical properties, energy absorption curves and applications of cellular solids have

been reviewed in chapter 3. The properties of 'dry' foam in which only air fills the pores serve as

a standard for characterization of field-responsive fluid impregnated cellular solids. The

mechanical properties of reticulated (open-cell) foams have also been tested in our laboratory

using the Texture Analyzer (TA.XT2i), a programmable 'low' strain rate (108 to 102) testing

instrument and compared with data from the literature. A piston-cylinder rig has been built for the

Texture Analyzer in order to test fluid-filled foams (figure 5.1). The fixture spatially constrains

the sample in space and directs the flow of fluid along the impact direction.

The foams are impregnated with the field-responsive fluid by repeated compression and

relaxation to ensure spatial homogenization of the fluid. Foams filled with glycerol, a Newtonian

fluid, show no appreciable change in the plateau region of the stress-strain curve (figure 5.4). The

densification strain however depends on the volume fraction of the fluid impregnating the foam

and shifts to a lower value as the volume fraction increases. The densification strain has been

found to be a function of the total free volume available for compression, i.e. total volume minus

the solid and fluid volume. Magnetorheological (MR) fluid-impregnated foams, on the other

hand, show a strong dependence of the plateau stress on the magnetic field. It is proposed that a

fraction of the MR fluid forms a secondary layer covering the solid edges of the foam due to the

presence of a yield-stress. This proposition has been corroborated by optical micrographs of fluid

impregnated foams (figure 5.8). The elastic modulus of the composite cell edge is thus a function

of the magnetic field dependent yield stress. The plateau stress hence increases dramatically as

the yield stress increases with the magnetic field and energy absorbed per unit volume (calculated
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as the area under the stress-strain curve) has been found to increase, at moderate magnetic fields

(B ~~ 0.2 T), by 30-50 times compared to the energy absorbed at zero-field (figure 5.11). The

energy absorption capacity of this fluid-solid composite can thus be modulated from 1 to 50 times

by varying the magnetic field from 0 to 0.2 Tesla. Magnetic field gradients have been observed to

play an important role in controlling the extent of energy absorption: an additional force known

as the ponderomotive magnetic force is exerted when the fluid-filled composite is compressed in

the direction of decreasing magnetic field. The volume fraction of MR fluid impregnating the

foam determines the densification strain, which scales with the free volume available for

compression (figure 5.14). Experiments to characterize the mechanical properties of fluid-filled

foams as a function of these control parameters have been carried out by varying the magnetic

field strength from 0.0 to 0.25 Tesla and varying the volume fraction from 0 to 60% at each of

these field strengths. Also, the strain rate imposed in experiments has been varied from 0.02 to 2

s-1 to study its effect on the properties of fluid-filled foams (figure 5.16). The strain rate-

dependence has been found to be minimal though at impact strain rates these properties could

appreciably change.

A scaling model, in the spirit of the model developed by Gibson and Ashby (1997) for

'dry' foams has been proposed (equation 5.10). The model is based on the assumption that the

elastic modulus of the solid cell edge changes depending on the magnetic field strength and the

fraction of MR fluid forming a secondary layer on it (equation 5.7). The cell structural

parameters, mainly the thickness of the cell edge and hence the relative density, change with the

volume fraction, which in turn affect the plateau modulus (equation 5.8). All experimental data

for different control parameters, magnetic field strength and gradient, volume fraction and strain

rate can be collapsed onto a single master curve (figure 5.20) using appropriate shift factors. The

design curve can be used to optimize the energy absorption needed to satisfy the application

requirements.
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A 'Drop Ball' test apparatus has been custom-built for real-time impact testing. A high-

speed video camera records the impact event and testing up to speeds of ~20 kmph has been

carried out. Designs for various automotive components such as the headrest, pillar trims, knee

bolsters, side impact parts have been presented. An impact-absorbing headrest that is soft and

comfortable to use under normal driving conditions but becomes rigid enough to absorb large

amounts of kinetic energy during a crash has been described in detail (figure 6.1). Magnetic field

generation presents many challenges for the headrest and other applications due to additional

cost, bulk and design issues and various designs using permanent magnets or field coils to obtain

high fields for impact times (milliseconds) have been discussed to overcome these problems

(figure 6.2; figure 6.3). A scaled down field-responsive fluid-filled headrest, based on geometric

and kinematic similarity, has been proved in principle to be more effective than the present

headrest for minimization of crash injuries.

7.2 Future Work

Stable and inexpensive magnetorheological fluids have been synthesized but improving

the yield stress response would go a long way in improving the feasibility of many other

applications. MR fluids with larger constituent particles are expected to improve this response

and stable fluids need to be formulated and characterized as discussed in detail in section 4.1.2.2.

An in-depth study of the MR fluid response in creep and oscillatory flow could further our

understanding of the field-induced dipolar chain-structure formation and convolution in field-

responsive fluids. Synthetic shear-thickening fluids with good stability and extreme viscosity

changes could provide a cheap alternative to MR fluids in impact absorbing applications and

more research work is required in this direction.

Field-responsive fluid-filled cellular solids have adaptive stiffness, energy absorption and

a number of applications that need to be conformable but respond to environmental conditions,

for example ballistic armor, could be made feasible with future research. In-depth studies to
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examine the effects of the cellular structure by use of different open and closed-cell foams could

also be performed in the future. Auxetic foams i.e. foams that have a negative Poisson's ratio and

expand in all directions on compression, can possibly enhance the energy absorption gain

obtained from fluid impregnation and require an in-depth study. Magnetic field generation

presents many challenges and improvements in design and magnetic field strength would prove

beneficial. Future research initiatives in actual prototype development and testing in simulated car

crashes would prove advantageous in commercialization of prospective designs.
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