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Abstract

It is now clear that RNA is more than a messenger and performs vast and diverse functions.
These functional RNAs include the ribosomal, transfer, and splicing-associated RNAs along with
a cast of tiny RNAs, including microRNAs and other families. In addition to these classic
examples, there were a handful of known functional large ncRNAs that play important biological
roles.

To identify additional functional large ncRNAs we exploited a chromatin signature of actively
transcribed genes to define discrete transcriptional units that do not overlap any known protein-
coding genes. Using this approach we identified -3,500 transcriptional units in the human and
mouse genomes that produce multi-exonic RNAs that lack any coding potential. We termed
these large intergenic non-coding RNAs (lincRNAs). Importantly, these lincRNAs exhibit strong
purifying selection across various mammalian genomes.

To determine whether the lincRNA transcripts themselves have biological functions, we
undertook systematic loss-of-function experiments on most lincRNAs defined in mouse
embryonic stem cells (ESCs). We showed that knockdown of the vast majority of ESC-expressed
lincRNAs has a strong effect on gene expression patterns in ESCs, of comparable magnitude to
that seen for the well-known ESC regulatory proteins. We identify dozens of lincRNAs that upon
loss-of-function cause an exit from the pluripotent state and dozens of additional lincRNAs that,
while not essential for the maintenance of pluripotency, act to repress lineage-specific gene
expression programs in ESCs.

Despite their important functional roles, how lincRNAs exert their influence was unknown. We
showed that many lincRNAs physically interact with the Polycomb Repressive Complex. We
systematically analyzed chromatin-modifying proteins that have been shown to play critical roles
in ESCs and identified 11 additional chromatin complexes that physically interact with the ESC
lincRNAs. Altogether, we found that -30% of the ESC lincRNAs are associated with multiple
chromatin complexes. These interactions are important for proper regulation of gene expression
programs in ES cells.

Our data suggests a model whereby a distinct set of lincRNAs is transcribed in a cell type and
interacts with ubiquitous regulatory protein complexes to give rise to cell-type-specific RNA-
protein complexes that coordinate cell-type specific gene expression programs.

Thesis Supervisor: Eric S. Lander
Title: Professor of Biology
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Introduction

Parts of this chapter was first published as:

Guttman M and Rinn JL. (2012). Modular regulatory principles of large non-coding RNAs.
Nature 482(7385):339-46
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Overview

More than half a century after being placed as the intermediate in the central dogma it is

now clear that RNA is more than a mere messenger and can perform diverse functional roles.

Shortly after the discovery of messenger RNA (mRNA), a large class of heteronuclear RNAs

(hnRNA)1 was described much of which did not consist of mRNA nor were they associated with

2polyribosomes . After years of sifting through these hnRNAs, the first RNA subfamilies emerged

including the small nuclear RNAs involved in splicing3 , small nucleolar RNAs involved in

ribosome biogenesis4 , and the 7SL RNA of the signal recognition particle involved in protein

5~6-8transports adding to the ribosomal RNAs and transfer RNAs involved in translation -. More

than a decade later, genetic studies identified a few tiny RNAs that act to silence mRNAs 9 -11

12-14 15-18leading to the discovery of a class of microRNAs2- and other small RNA regulators

The world of RNA genes became even more complex with the discovery of RNAs that

resembled mRNA in length and splicing structure yet did not code for proteins. The first

example, termed H19, was identified as an RNA induced during liver development in the

19mouse . The mouse H19 transcript contained no large open reading frames (ORFs), but only

small sporadic ORFs that were not evolutionarily conserved, could not template translation in

vivo, and did not produce an identifiable protein product20. Shortly after, another ncRNA,

termed XIST, was found to be expressed exclusively from the inactive X chromosome21 and later

shown to be required for X inactivation in mammals . Over the next two decades a few

additional large ncRNA genes were discovered including Air 23, Tug 24, NRON 25, and

26HOTAIR
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Following the sequencing of the human genome, the next major hurdle was to define the

genes it encoded. Studies probing global transcriptional activity yielded a surprising result: the

mammalian genome is pervasively transcribed with nearly the entire genome being transcribed

into RNA under some circumstance 27-30 . As the numbers of non-coding transcripts increased, so

too did concerns that many of the transcripts were simply 'transcriptional noise' without a

31,32biological function . The reasons for concern included the observation that many of the

transcripts are expressed at extremely low levels and exhibit no evolutionary conservation. It was

unclear whether the few functional examples represented quirky exceptions, or exemplified a

major class of functional large ncRNAs. Distinguishing between these possibilities required

additional biological information.

In this thesis, I present our contributions to the identification and functional

characterization of a class of functional large intergenic non-coding RNA (lincRNA) genes in the

mammalian genome. First, I describe the identification of thousands of well conserved lincRNAs

in the human and mouse genomes by exploiting a chromatin signature of actively transcribed

genes. Second, I describe the development of a statistical method for de novo reconstruction of a

mammalian transcriptome from RNA-Seq data and its application to define the transcript

structures of lincRNAs. Third, I describe systematic loss-of-function studies, which

demonstrated that lincRNAs play a clear functional role in the cell and that many lincRNAs play

an essential role in maintaining the pluripotent cell and repressing differentiation programs.

Finally, I describe our work demonstrating that many lincRNAs act through their physical

interaction with multiple chromatin protein complexes to regulate gene expression programs.
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To provide context, I begin by briefly reviewing the key classes of regulatory RNAs that

have emerged in the past 50 years. Next, I describe the identification of the first large ncRNAs

and describe the few well characterized examples. I highlight the key regulatory principles and

themes learned from these examples and explore parallel studies linking chromatin regulation

and RNA. Finally, I review genome-wide efforts to annotate the mammalian transcriptome and

describe the plethora of transcripts both small and large that have been identified from these

efforts. I summarize the specific contributions of this thesis toward identifying and functionally

characterizing large ncRNAs in mammals.
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Figure 1: A timeline of major discoveries in RNA biology.

Credit: Sigrid Knemeyer, Mitchell Guttman, and John Rinn
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RNA from messenger to regulator

Little more than a half a century ago, the importance of RNA was easily missed33 . It was

clear for several decades that proteins were functional actors3 4 and it had recently been

discovered that DNA was the genetic material35,36. Understanding how DNA encoded the genetic

material and how this information was translated into protein products was a critical challenge.

Pioneering genetic studies by Jacob and Monod suggested the importance of a "messenger" in

bridging the genetic (DNA) to the functional (protein)37 . Shortly after this suggestion, the elusive

messenger was identified as an unstable RNA species that was quickly turned over in cells38. The

identification of this messenger RNA (mRNA) led to the notion of a central dogma in the flow of

39
genetic information; DNA gives rise to RNA which gives rise to protein

With the discovery of mRNA, it was important to define precisely how the cell translated

this information into proteins. Central to this entire process was Crick's "adaptor hypothesis",

40the notion that another molecule was responsible for bridging mRNA and amino acids . A key

component of this adaptor proposal was the thought that RNA would be uniquely able to

function as this adaptor because of its ability to base pair with the mRNA4 4. With the discovery

of the tRNAs8 that match the sequence on an mRNA with the corresponding amino acids 41' 42 it

became clear that RNA itself was in fact this adaptor molecule. Beyond the adaptor tRNAs, it

was already clear that the site of translation itself, the ribosome, was composed of RNA 43. The

centrality of RNA in the process of transcription and translation was now clear.

It did not take long before the notion that DNA-RNA-Protein was challenged. The

first challenge was the discovery of viruses that encoded their genetic material as RNA, rather
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than DNA44 . Soon after, an enzyme was identified that could convert the RNA genome into

45,46DNA using an encoded reverse transcriptase enzyme . Not only did this establish that RNA

could act as the genetic material but that the path from DNA to RNA was a reversible course.

The second challenge was the identification of RNA enzymes, termed ribozymes that

demonstrated that RNA alone, in the complete absence of protein, contains catalytic activity.

This discovery initially identified RNaseP in bacteria4 7 and RNA self-splicing in

Tetrahymena 4849demonstrated the role of RNA as a functional molecule. More recently it has

become clear that the ribosome itself is made up of catalytic RNA where the RNA itself is

critical for the peptidyl transferase reaction rather than the proteins within the ribosome 0 52

Over the ensuing decades, the numbers of known catalytic RNAs have expanded and their roles

broadened to include roles in diverse processes including splicing49, translation51, metabolite

53 54sensing , and gene regulation . Taken together, these observations supported the notion of an

ancient "RNA world", where RNA -- rather than DNA or protein -- was the original molecule

55-57
given its ability to both encode genetic information and catalyze reactions

Discovery of abundant small RNA species

The importance of RNA was becoming clearer with the continued discovery of an ever

expanding collection of functional RNA molecules. Shortly after the discovery of mRNA, a large

class of heteronuclear RNAs (hnRNA)l was described. While much of the hnRNAs would soon

be explained by the discovery of splicing 58, there were still many hnRNAs that did not associate

with mRNA 59. These non-mRNA associated hnRNAs contained many of the same features as

mRNA, including the 5' cap structure and in some cases a 3' poly-A tail2,59. Yet, most of these
16



transcripts did not enter polyribosomes 2. After years of sifting through these hnRNAs, the first

RNA subfamilies emerged including the small nuclear RNAs involved in splicing3 , small

nucleolar RNAs involved in ribosome biogenesis4 , and the 7SL RNA of the signal recognition

particle (SRP) involved in protein transport5 , adding to the ribosomal RNAs and transfer RNAs

involved in translation6 7

The small nucleolar RNAs (snoRNAs) and small nuclear RNAs (snRNAs) were

originally discovered based on their abundance in the nuclei of mammalian cells 3 . These RNAs

ranging in size from 90-300nts were distributed both in the nucleus, the site of transcription and

splicing, as well as the nucleolus, the site of ribosomal RNA transcription, processing, and

assembly4 ; some were even primarily cytoplasmic 5. Importantly, these different small RNA

3,60species were shown to be conserved across different eukaryotes from yeast to mammals

The first class of small RNAs in this population was the snoRNAs, identified in the

nucleolus. Because the snoRNAs were identified in the nucleolus, it was immediately suspected

3,60
that they would play a role in processing of the ribosomal RNAs' . This was confirmed with the

identification that several of the snoRNAs base pair with the ribosomal RNA, providing the first

clue as to how they may act4,6 1. Several of the snoRNAs were subsequently shown to play a

direct role in rRNA processing, as depletion of snoRNAs in mouse extracts resulted in impaired

cleavage of the ribosomal RNA 60 . Beyond their role in rRNA processing, other snoRNAs are

60
important for guiding various modifications of the rRNA

The second class was the snRNAs. Unlike the snoRNAs, at the time of their discovery,

the function of these RNAs were unclear '. The first clues to their possible function required the

discovery of mRNA splicings8 62. Initial clues to the function of snRNAs came from the
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discovery of sequence complementary between the dominant U1 snRNA and the canonical 5'

63-65
splice site . Beyond the U 1 snRNA, other snRNAs interact with different splice sites

including the branchpoint site, 3' splice site, and non-canonical splice sites6 s,66 . These snRNAs

interact with protein cofactors to give rise to the spliceosome, which interacts with mRNA

65,67,68
precursors and is responsible for the splicing reaction . Interestingly, the snRNAs are

transcribed in the nucleus and immediately exported to the cytoplasm where they are processed

and assembled into snRNPs, which are then reimported into the nucleus to function in the

66splicesome . While the snRNAs themselves are not sufficient to catalyze the splicing reaction, it

appears likely that the RNA may play some role, in conjunction with other protein cofactors, in

68the catalysis of the splicing reaction

Initial discovery of the snRNA and snoRNAs also revealed another extremely abundant

RNA, the 7SL RNA3', which was later shown to be a component of the SRP5 . The SRP is a

large RNA-protein complex consisting of the 7SL RNA and as many as 6 different proteins 69.

The SRP is required for transport of nascent proteins from the ribosome to the endoplasmic

reticulum, based on recognition of signal sequence in the nascent peptide5 . The 7SL RNA itself

is essential for the function of the SRP complex 5 and is important for stabilizing the structure of

the SRP proteins69 and kinetically enhances the interaction between the SRP and SRP-

6970receptor ' . The 7SL RNA promotes catalysis by acting as a transient tether between the SRP

and associated receptor, thereby stabilizing the transition state and enhancing the interaction

between the two complexes70'71.

At the time, characterizing each RNA within a complex population was quite

challenging. Accordingly, much of the RNA species within the hnRNA mix remained
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uncharacterized. A commonality across these few identified RNA species was their abundant

expression and ubiquity across all cell types3 4 60

A class of tiny RNAs that regulate mRNA

Beyond the role of ncRNAs in constitutive cellular processes, we now know that there

are many ncRNAs that are expressed in more cell-type specific ways and play a role in cell-type

specific regulation. One of the first such classes identified were the microRNA genes -14 . The

first miRNA was identified in a genetic screen in C. elegans for mutations that affect timing of

development10 . This screen turned up a mutation in the lin-4 gene; subsequent characterization

showed that this gene lacked an open reading frame (ORF) and instead encoded a 21-nucleotide

RNA product processed from a larger 61-nucleotide precursor10 . This tiny RNA product had

strong sequence complementarity to the 3' untranslated regions (UTRs) in the lin-14 protein-

coding gene, which genetic experiments had previously shown it to repress' 10 . A few years later,

another example of a tiny RNA, termed let-7, was identified in C. elegans that seemed to work in

a comparable way 1 . Homology mapping on the let- 7 RNA showed that it was conserved in all

bilaterally symmetric animals from worms to humans 72. Genomic strategies used to sequence

tiny RNAs of similar size and sharing the chemical modifications of the previous RNAs revealed

that these were not the exception and in fact there were hundreds of tiny RNAs, termed

1214,73microRNAs2-1'

The last decade has seen an explosion in our understanding of miRNAs, which have now

been demonstrated to play critical roles in diverse biological processes and diseases all through a

shared mechanism 3 '"4. The mature miRNA associates with the Argonaute proteins to form the
19



RNA-induced silencing complex (RISC). The miRNA within RISC acts to provide target

specificity through the six nucleotide miRNA seed region, which base pairs with an mRNA,

usually in the 3' untranslated regions 4 . The complex primarily leads to mRNA destabalization 5 ,

likely through mRNA de-adenylation76 78

Beyond miRNAs, there are several other classes of small RNA species that similarly

associate with argonaute proteins and act as 'guides' to target genes. Another class of small

RNAs, highly expressed in the testis, are the piwi-interacting RNA (piRNAs), so named because

they interact with the Piwi-family of Argonaute proteins5' 79 . The piRNAs localize these

complexes to active transposons in the germ line and silence them8 0 through changes in

chromatin and DNA8 1.

A handful of functional large ncRNAs in mammals

The world of RNA genes became even more complex with the discovery of RNAs that

resembled mRNA in length and splicing structure yet did not code for proteins. The first

example, termed H19, was identified as an RNA induced during liver development in the

19mouse . The mouse H19 transcript contained no large open reading frames (ORFs), but only

small sporadic ORFs that were not evolutionarily conserved, could not template translation in

vivo, and did not produce an identifiable protein product20. H19 opened up the possibility that

many more messenger-like RNAs may in fact be non-coding RNAs. Shortly after, another

ncRNA, termed XIST, was found to be expressed exclusively from the inactive X chromosome2 1

22and later shown to be required for X inactivation in mammals . Over the next two decades a
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few additional large ncRNA genes were discovered including Air2 3 , Tug124, NRON25 , and

HOTAIR26

Individual ncRNAs involved in specific processes have been functionally characterized

(reviewed in reference 81). For example, XIST is critical for random inactivation of the X-

chromosome , Air is critical for imprinting control at the Igf2r locus 2 3 , HOTAIR affects

expression of the HoxD gene cluster 26 as well as multiple genes throughout the genome8 2-84

HOTTIP affects expression of the HoxA gene cluster85, lincRNA-RoR affects reprogramming

efficiency 6, NRON affects NFAT transcription factor activity 2, and Tug 1 affects retina

development through regulation of the cell cycle24 . While there are now many examples of large

ncRNAs that are required for proper regulation of gene expression, this is just one function for

large ncRNAs, which play critical roles in telomere replication87 and translation 8.

In parallel to the discovery of the first large ncRNAs, the relationship between RNA and

chromatin was beginning to emerge89'90. A growing body of literature from yeast to mammals

suggested that RNA plays an important role in chromatin-state formation90. I

Schizosaccharomyces pombe, a process known as RNA Induced Transcriptional Silencing

(RITS) has been shown to play an important role in heterochromatin formation over centromeric

repeats91. Similarly, short RNAs have been shown to play an important role in the establishment

of heterochromatic silencing in plants90 . In C. elegans, genetic screens have identified Polycomb

homologs to be required for proper gene silencing in an RNA-dependent manner90. In mammals,

there is evidence that RNA plays a key role in shaping mammalian epigenetic landscapes. For

example, depletion of single-stranded RNA (ssRNA) in mouse fibroblasts inhibits global

heterochromatin formation by delocalizing the HPI complex from genomic sites92 . Similarly,

ssRNA but not ssDNA is required for the maintenance of the histone modifications H3K27me3
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and H3K9me3 through proper localization of proteins in the polycomb family93 . Taken together,

these studies suggested a role for RNA in maintenance and localization of chromatin regulatory

complexes to genomic DNA targets. Yet, what these RNAs were remained uncharacterized.

The discovery of the XIST ncRNA made clear that an RNA can play a direct role in

silencing large genomic regions. To determine how the XIST ncRNA works, several groups

looked at the sequence of events follows induction of the XIST ncRNA as it nucleates the X-

chromosome 94 . This led to the observation that alongside XIST accumulation on the

chromosome, several histone modifications such as the H3K27me3 modification and the

polycomb complex localize to the chromosome, suggesting that the XIST ncRNA may

physically interact with the polycomb complex 95. Recently, direct RNA-protein interaction

mapping has demonstrated that the XIST ncRNA can in fact physically interact with the

polycomb complex 96, leading to the condensation of chromatin and transcriptional repression of

an entire X chromosome and deletion of the domain of interaction allows proper localization to

97DNA but prevents X-chromosome silencing

Similar to XIST, several other large ncRNAs have been identified that physically

associate with chromatin regulatory complexes and 'guide' the associated complexes to specific

genomic DNA region. These include the antisense transcript AIR 23 ,98 ,9 9 which is associated with

the chromatin-modifying complex G9a, an H3K9me2 methyltransferase100 ; and the Kcnqlotl

transcript99 that binds both G9a and PRC2101. More recently, HOTAIR has been shown to

contain distinct protein-interaction domains that can associate with PRC2 26 and the

CoREST/LSD1 complex83 , which together enable its proper function 3
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In addition to their role in chromatin regulation, large ncRNAs can also modulate the

regulatory activity of other protein complexes. As an example, a ncRNA upstream of cyclin D1

102
can bind to the TLS RNA binding protein, changing it from an inactive to active state'o2

Similarly, the NRON ncRNA can bind to the NFAT transcription factor rendering it inactive by

preventing nuclear accumulation2. ncRNAs can also act as molecular 'decoys' by preventing

proper regulation through competitive binding. For example, the GAS5 ncRNA binds to the

glucocorticoid receptor and prevents the receptor from binding to its proper regulatory

103 104elementso and the PANDA ncRNA can prevent NF-Y localization leading to apoptosis.

Similarly, several recent studies report that large ncRNAs can act as 'decoys' to other RNA

species, such as miRNAs, to control their levelsis'10 6
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ba cis tether (e.g., XIST) trans regulation (e.g., HOTAIR)

C Allosteric modification (e.g., CCNDI ncRNAs)

d Decoy (e.g., GASS, PANDA)

Figure 2: Examples of large ncRNA regulatory mechanisms. (a) A model of ncRNAs that act
in cis while remaining tethered to their site of transcription. In this model, RNA polymerase
(green) transcribes an RNA which can associate with regulatory proteins (blue) to affect it

21,10neighboring regions as proposed for XIST 07. (b) One model for ncRNA regulation in trans. In
this model a ncRNA can associate with DNA binding proteins (gray) and regulatory proteins to

83
localize and affect expression of targets, as proposed for HOTAIR . (c) A model for ncRNAs
that bind regulatory proteins and change their activity in this case leading to change in
modification state and expression of the target gene, as proposed for the CCND1 ncRNAs that
interact with the TLS protein1 0 2.(d) A model for ncRNAs that act as 'decoys'. In this model,
ncRNAs bind protein complexes and prevent them from binding to their proper regulatory

103targets as proposed for GAS5
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Extensive transcription in the mammalian genome

While the human genome has now been sequenced108 the functional elements encoded

within it remain largely uncharted. More than 5% of the genome has clearly been under purifying

selection over the past 100 million years and thus must be functional' 09, but only ~1.2% encodes

protein 108,109110. Within the remainder, an important and growing category consists of genes

encoding functional RNA molecules. These include: classical examples such as ribosomal,

transfer and splicing-associated RNAs; a recently discovered cast of tiny RNAs, including

microRNAs and other families' 111 .

When we began this work, there were about a dozen well-characterized examples in

mammals, with transcript size ranging from 2.3 to 17.2 kb 20, 21. They each play distinctive

biological roles through diverse molecular mechanisms, including functioning in X-chromosome

inactivation (XIST, TSIX) 21,112, imprinting (H19, AIR) 20,98 , trans-acting gene regulation

(HOTAIR)26 and regulation of nuclear import (NRON)25. It was unclear whether these few cases

represented quirky exceptions, or whether they heralded an entire world of functional large

intergenic non-coding RNAs.

Over the past decade, there have been extensive efforts to characterize the mammalian

transcriptome. Following the sequencing of the human genome, several groups created tiling

microarray spanning human chromosome 22, which probed the transcriptional activity across

many tissues'3'3 14. This led to the observation of widespread transcriptional activity across the

chromosome with an estimate of -10:1 non-coding to protein-coding transcription. This result

was soon generalized to all human chromosomes with the creation of genome-wide tiling

arrays 2 9 ,1 15 . In parallel, high-throughput sequencing of mouse cDNAs reported the identification
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of tens of thousands of transcripts of which only a small fraction were accounted for by protein-

coding genes27,116. These studies, while limited to specific tissues and cell types, made clear that

the mammalian genome is pervasively transcribed, giving rise to many thousands of non-coding

transcripts. This culminated in the publication of the pilot Encyclopedia of DNA Elements

(ENCODE) project which suggested that -100% of the human genome is transcribed into RNA

in some cell type28

As the numbers of discovered non-coding transcripts increased, so did the uncertainty

about their functional role. It was unclear whether the majority of these transcripts have

biological function or merely reflect "transcriptional noise" 31,3231,3231,3231,3231,3231,3231,32

spurious transcription due to random initiation by RNA polymerase 31,32, or incidental by-

products of transcription from enhancer regions1 '118 . In support of these concerns, many of the

reported transcripts occur at extremely low levels - orders of magnitude below the levels for

protein-coding genes1 19 . While some of the transcripts show tissue-specific expression, such

expression patterns may simply reflect transcription from randomly-occurring RNA polymerase

binding sites in open chromatin in a given cell type1 2 0 , or possibly transcription whose purpose

121is to modify local chromatin structure

Importantly, not all non-coding transcripts act as functional RNA molecules. Several

examples of intergenic transcription have been identified where the act of transcription alone

changes the chromatin and transcription factor binding landscape allowing activation and

repression of neighboring genes224 An analogous mechanism has been suggested for the H 19

ncRNA which through its transcription may affect allelic imprinting by competing for enhancer

125,126
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The only way to prove that an RNA is functional is to show that its disruption has a

deleterious consequence. In principle, this can be done in two ways: (i) by demonstrating clear

evolutionary conservation (that is, purifying selection) or (ii) by perturbing the gene in a

laboratory experiment. The first approach is vastly more efficient, because it involves

computational analysis that can be applied to an entire collection of RNAs, and more general

because it does not require prior knowledge of the biological context in which the gene

functions.

Attempts to prove the functionality of the observed non-coding RNAs through

evolutionary conservation were discouraging. Initial studies found that non-coding transcripts

show no better conservation than random intergenic sequence12 7. A more recent study reported

that the conservation levels are slightly better than random - but still extremely low"2. Some

authors proposed that most non-coding RNAs are functional, but show little conservation

because they are evolving rapidly12 0 . Few, non-coding transcripts were identified to have a

phenotypic effect in a large-scale screen performed with these sets25 . A reasonable hypothesis is

that amongst this pervasive transcription there are some bonafide functional non-coding RNAs

hidden in a much larger background of transcriptional noise.

While some of these transcripts may indeed represent 'transcriptional noise'31, within the

remainder, we now know there are many distinct subclasses including processed small

RNAs 30,129,130, promoter associated RNAs 0'131, transcripts from enhancer regions 117118, and

functional large ncRNAs 26,132 each of which vary in their expression and conservation

properties 128,133. Distinguishing between these classes of RNA transcripts required additional
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biological information including coding potential of the RNA and chromatin modifications of the

corresponding genomic region (Figure 3).
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Figure 3: Genomic layers define subclasses of non-coding transcription. (a) Genomic regions
are color coded by the presence of different genomic annotations. RNA transcription of a locus
(black), K4-K36 chromatin signature (red), K4mel and P300 modifications (green), and protein
coding potential (blue). Overlaying this information reveals distinct transcripts including
ncRNAs (red), protein-coding genes (purple), and transcripts from enhancer regions (green).
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Contributions of this thesis

At the beginning of my graduate work, we reasoned that among a background of

'transcriptional noise', there were likely to be at least some bona fide functional large ncRNAs

hidden. The challenge was how to systematically identify them. Taking a cue from protein-

coding genes, we looked at a chromatin signature of active transcription.

Genomic DNA is wrapped around histone proteins and packaged into higher order

structures termed chromatin 134. These histones can be modified in different ways indicating the

functional state of the underlying DNA region. Recent advances in sequencing technologies have

enabled a comprehensive characterization of the chromatin modification landscape of

135-138mammalian genomes-1 . These studies revealed combinations of histone modifications,

termed chromatin signatures, that correspond to various gene properties, including a signature of

active transcription' 35,138. This signature consists of a short stretch of trimethylation of histone

protein H3 at the lysine in position 4 (H3K4me3) corresponding to promoter regions followed by

a longer stretch of trimethylation of histone protein H3 at the lysine in position 36 (H3K36me3)

covering the entire transcribed region 35' 138

Chromatin maps revealed that, like protein-coding genes, many ncRNA genes also

contain a 'K4-K36' signature138. We reasoned that by identifying K4-K36 domains that lay

outside known protein-coding gene loci, we would be able to systematically discover functional

large ncRNAs. To do this, we developed a computational algorithm that identifies K4-K36

domains from genome-wide chromatin datasets and excluded those that overlapped any

annotated gene. This analysis yielded a set of -1600 and -2,500 unannotated intergenic K4-K36

domains in the mouse and human genomes. Using tiling microarrays, we demonstrated that the
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vast majority of the intergenic K4-K36 domains produced multi-exonic RNAs with many

canonical features of RNA Polymerase I transcription. These transcripts had little capacity to

encode a functional protein of any significant size. We termed the RNAs expressed from these

'K4-K36'domains large intergenic ncRNAs (lincRNAs) because identification by this chromatin

signature required that they be contained within intergenic regions. Importantly, these lincRNAs

demonstrated clear evolutionary conservation across mammalian genomes, providing strong

evidence that the lincRNAs are biologically functional. This work demonstrated that the

mammalian genome encodes thousands of functional lincRNAs.

Transcriptome reconstruction

Having identified a class of conserved lincRNAs, we next sought to determine the

function of these lincRNAs. A critical pre-requisite for comprehensive experimental studies of

lincRNA function is defining their precise sequences. While hybridization to tiling microarrays

provided initial insights, it did not allow the precise identification of lincRNA sequences.

Advances in massively-parallel cDNA sequencing, termed RNA-Seq, were allowing for the

sequencing of cDNA at an unprecedented scale providing an unbiased way to collect data from a

transcriptome, including both coding and non-coding genes. Yet, at the time there were only a

few RNA-Seq studies which were limited to studying the expression and refining the splicing

patterns of known genes. There were no studies to determine novel genes from RNA-Seq data.

Discovering lincRNA gene structures required reconstructing a mammalian transcriptome

from scratch, a significant computational challenge as read lengths are significantly shorter than

the size of the original RNA. To address this challenge, we developed a statistical method, called
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Scripture, which was the first method to accurately reconstruct a mammalian transcriptome

without prior gene models. We performed RNA-Seq on mouse ES cells, mouse lung fibroblasts,

and mouse neural progenitor cells. Applying Scripture, we successfully recovered the gene

structure of virtually all expressed protein-coding genes demonstrating the accuracy of the

method. Importantly, Scripture identified the full-length gene structure of the vast majority of

expressed lincRNA genes. This allowed us to pinpoint specific regions within each lincRNA that

are under purifying selection demonstrating clear 'patches' of strong evolutionary constraint

within the lincRNAs.

'Guilt-by-association' associates lincRNAs with diverse biological processes

Despite the identification of thousands of large ncRNAs it remained to be determined

how these RNAs function. Determining the functional role of ncRNAs requires direct

perturbation experiments such as loss of function and gain of function yet without a clear

hypothesis of what phenotype to look for proved difficult in characterizing the functions of most

25ncRNAs . To more globally classify putative functional roles of lincRNAs we developed a

'guilt-by-association' method to systematically associate functions based on correlation of gene

139expression . This method associates ncRNAs with biological processes based on common

expression patterns across cell types and tissues, and identifies groups of ncRNAs associated

with specific cellular processes. Utilizing this approach allowed us to classify hundreds of

ncRNAs across diverse biological processes such as stem cell pluripotency, immune response,

neural processes, and cell cycle regulation139 .

While such correlations do not prove that ncRNAs function in these processes, they
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provide hypotheses for targeted loss-of-function experiments. To test these predictions, we

performed targeted perturbations to determine the role of specific ncRNAs in the associated

classes. As an example, we predicted 39 ncRNAs involved in the p53-mediated DNA damage

response and showed that one of these candidates, termed lincRNA-p21, is a direct target of

140p513 . Perturbation of this ncRNA affected the apoptosis response upon exposure to DNA

damage. Another lincRNA, lincEncll 39, was predicted to have a roll in cell-cycle regulation in

ESCs and shown in a distinct study to affect proliferation in ESCs141. Overall, our 'guilt-by-

association' approach implicated lincRNAs in diverse biological processes86 04 139 140 142

lincRNAs regulate cell states in an embryonic stem cell

Using the lincRNA sequences, we set out to determine the functional role of lincRNAs

using loss-of-function experiments. Unlike correlation analysis, these perturbation-based

experiments provide evidence for the functional role of a ncRNA. We focused on mouse ES cells

because the signalling, transcriptional, and chromatin regulatory networks controlling

pluripotency have been well characterized providing an ideal system to determine how lincRNAs

integrate into the molecular circuitry of the cell. We designed, cloned, and validated shRNAs

targeting all lincRNAs expressed in mouse ES cells. To determine whether lincRNAs play an

important function in the cell, we studied the effects of knocking down each lincRNA on global

transcription. Upon knockdown, virtually all of the lincRNAs showed a significant impact on

gene expression demonstrating that the lincRNAs are functionally important in the cell.

Next, we sought to determine if lincRNAs play a role in regulating the ESC state. We

studied the effects of lincRNA knockdown on the expression of Nanog, a key transcription factor
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that is required to establish and uniquely marks the pluripotent state. We identified 26 lincRNAs

that had major effects on endogenous Nanog levels along with other markers of the pluripotent

state. To determine if lincRNAs play a role in repressing differentiation programs, we compared

the overall gene expression patterns resulting from knockdown of the lincRNAs to gene

expression patterns resulting from induced differentiation of ESCs. We identified 30 lincRNAs

whose knockdown produced expression patterns similar to differentiation into specific lineages.

This work demonstrated that many lincRNAs play important roles in regulating the ESC state.

Many lincRNAs interact with multiple chromatin regulatory proteins

Having demonstrated the functional importance of lincRNAs in the cell, we wanted to

determine how lincRNAs affect gene expression. Motivated by the XIST and HOTAIR ncRNAs,

which interact with the polycomb complex, we tested whether lincRNAs more generally

associate with the polycomb complex. We found that -20% of expressed human lincRNAs and

~10% of the ESC lincRNAs physically associate with the polycomb complex. Next, we

systematically analyzed chromatin-modifying proteins that have been shown to play critical roles

in ESCs. We screened antibodies against 28 chromatin complexes and identified 11 additional

chromatin complexes that are strongly and reproducibly associated with the ESC lincRNAs.

These chromatin complexes are involved in 'reading',. 'writing', and 'erasing' histone

modifications. Altogether, we found that -30% of the ESC lincRNAs are associated with at least

one of these chromatin complexes. Interestingly, many of the lincRNAs physically interacted

with multiple chromatin complexes.
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Next, we sought to determine if the identified interactions are important for lincRNA

mediated regulation. To do this, we examined the effects on gene expression resulting from

knockdown of individual lincRNAs that are physically associated with particular chromatin

complexes and from knockdown of the associated complex itself. For most of these lincRNA-

protein interactions, we identified a significant overlap in affected gene expression programs.

Together, these data demonstrate that many of the ESC lincRNAs physically associate with

multiple different chromatin regulatory proteins to affect gene expression programs.

Outlook

Our data suggests a model whereby a distinct set of lincRNAs is transcribed in a cell type

and interacts with ubiquitous regulatory protein complexes to give rise to cell-type-specific

RNA-protein complexes that coordinate cell-type specific gene expression programs. Because

many of the lincRNAs studied here interact with multiple different protein complexes, one

hypothesis is that they act as cell-type specific 'flexible scaffolds' 87 to bring together protein

complexes into larger functional units. This model has been previously demonstrated for the

yeast telomerase RNA87 and suggested for the XIST97 and HOTAIR83 lincRNAs. The hypothesis

that lincRNAs serve as flexible scaffolds could explain the uneven patterns of evolutionary

conservation seen across the length of lincRNA genes1 33 : the more highly conserved patches

could correspond to regions of interaction with protein complexes.

While a model of lincRNAs acting as 'flexible scaffolds' is attractive, it is far from

proven. Testing the hypothesis for lincRNAs will require systematic studies, including defining

all protein-complexes with which lincRNAs interact, determining where these protein
35



interactions assemble on RNA, and ascertaining whether they bind simultaneously or

alternatively. Moreover, understanding how lincRNA-protein interactions give rise to specific

patterns of gene expression will require determination of the functional contribution of each

interaction and possible localization of the complex to its genomic targets.
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Chapter 1: Chromatin signature reveals more than a thousand well

conserved, large non-coding RNAs in mammals

In this chapter, we describe the identification of a class of thousands of well conserved lincRNAs in the

human and mouse genomes by exploiting a chromatin signature of actively transcribed genes.
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noncoding RNAs associate with chromatin-modifying complexes and affect gene expression.
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Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. (2009). Identifying Novel Constrained
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The role of large intergenic non-coding RNAs (lincRNAs) in mammals remains highly

controversial. There is evidence of extensive transcription across the mammalian genome,

based on large-scale cDNA sequencing and hybridization to DNA microarrays. However,

the functional significance of most of these transcripts has been unclear because their

expression levels are often very low and their sequence shows little evolutionary

conservation. At present, only about a dozen functional lincRNAs have been well-

characterized, with roles in diverse processes such as X-inactivation, HOX gene regulation

and repression of nuclear import. Here, we report a new approach to identifying lincRNAs

by using chromatin-state maps to define discrete transcriptional units that do not overlap

any known protein-coding genes. By examining four mouse cell types and six human cell

types, we identify -3500 such transcriptional units. The majority produce large multi-

exonic RNAs that show strong purifying selection in their genomic loci, exonic sequences,

and promoter regions, but lack protein-coding potential. These lincRNAs are regulated by

the canonical general transcriptional machinery and by specific transcription factors

including Oct4, Sox2, and Nanog in ES cells. Together, these results demonstrate that

functional lincRNAs are abundant in the mammalian genome.

Introduction

Although the human genome has now been sequenced' the functional elements encoded

within it remain largely uncharted. More than 5% of the genome has clearly been under purifying

selection over the past 100 million years and thus must be functional 2,but only ~1.2% encodes

1-3protein -3. Within the remainder, an important and growing category consists of genes encoding

functional RNA molecules. These include: classical examples such as ribosomal, transfer and
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splicing-associated RNAs; and a recently discovered cast of tiny RNAs, including microRNAs

and other families4- .

There are tantalizing signs of another class of functional RNAs, which we will refer to as

large intergenic non-coding RNAs (lincRNAs). There are currently about a dozen well-

characterized examples in mammals, with transcript size ranging from 2.3 to 17.2 kb1 3' 14 . They

each play distinctive biological roles through diverse molecular mechanisms, including

14,15 13,16,17functioning in X-chromosome inactivation (XIST, TSIX) '', imprinting (H19, AIR) 31

trans-acting gene regulation (HOTAIR)l8 and regulation of nuclear import (NRON)' 9.

Importantly, these well-characterized lincRNAs show clear evolutionary conservation

confirming that they are functional. It has been unclear whether these few cases represent quirky

exceptions, or whether they herald an entire world of functional large intergenic non-coding

RNAs.

Over the past decade, there have been extensive efforts to characterize mammalian RNAs,

both by massive shotgun sequencing of cDNAs2 0 and by hybridization of RNA to 'tiling arrays'

representing genomic sequence2 '-25. These studies have identified evidence of widespread

transcription, leading to the recent suggestion that nearly the entire genome is transcribed into

RNA under some circumstances3.

It has been unclear, however, whether the majority of these transcripts are biologically

functional or merely reflect "transcriptional noise"3 ,2629. Many of the reported transcripts occur

at extremely low levels - orders of magnitude below the levels for protein-coding genes. While

some of the transcripts show tissue-specific expression, it has been argued that such expression

patterns may simply reflect transcription from randomly-occurring RNA polymerase binding
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sites in open chromatin in a given cell type, or possibly transcription whose purpose is to modify

local chromatin structure 30-32. Given the ubiquity of RNA transcription, it has been hard to

discern which of these transcripts, if any, are functional.

The only way to prove that an RNA is functional is to show that its disruption has a

deleterious consequence. In principle, this can be done in two ways: (i) by demonstrating clear

evolutionary conservation (that is, purifying selection) or (ii) by knocking out the gene in a

laboratory experiment. The first approach is vastly more efficient, because it involves

computational analysis that can be applied to an entire collection of RNAs, and more general

because it does not require prior knowledge of the biological context in which the gene

functions.

Attempts to prove the functionality of non-coding RNAs through evolutionary

conservation have been discouraging. Initial studies found that non-coding transcripts show no

better conservation than random intergenic sequence 33 . A recent study reported that the

conservation levels are slightly better than random - but still extremely low29 . Some authors

have proposed that most non-coding RNAs are functional, but show little conservation because

they are evolving rapidly 28. A reasonable hypothesis is that the current transcript collections

contain some bonafide functional non-coding RNAs hidden in a much larger background of

transcriptional noise. But, there has been no systematic way to extract wheat from chaff.

We therefore decided to take an entirely different approach to discovering functional non-

coding RNAs, which relies on exploiting chromatin structure. We recently developed an efficient

technique to create genome-wide chromatin-state maps, using chromatin immunoprecipitation

(ChIP) followed by massively parallel sequencing. We observed that genes actively transcribed

49



by RNA polymerase II are marked by Histone 3-Lysine 4 trimethylation (H3K4me3) at their

promoter and Histone 3-Lysine 36 trimethylation (H3K36me3) along the length of the

transcribed region34,35 . This distinctive structure, which we will refer to as a 'K4-K36 domain', is

found both at known protein-coding genes as well as well-known ncRNAs, including miRNAs34

We hypothesized that, by identifying K4-K36 structures that lay outside known protein-coding

gene loci, we could systematically discover large intergenic non-coding RNAs.

Here, we report the identification of -3500 large non-coding RNAs in the mouse and

human genomes using our chromatin-based approach in four cell types. These RNAs share many

of the same features as protein coding transcripts but lack the evolutionary signature of protein

coding potential. The ncRNAs are typically poly-adenylated, 5'-capped, and spliced. We

characterize the conservation properties of the ncRNAs and find that the genomic locus, exons,

and promoters of these regions are highly conserved. These ncRNAs are regulated in cell-type

specific manners by key transcription factors. It is likely that many additional lincRNAs exist

and can be identified by studying additional cell types.

Results

Discovery of novel large RNAs based on chromatin structure

We searched for K4-K36 domains in genome-wide chromatin-state maps of four cell types

-- mouse embryonic stem cells (mES), mouse embryonic fibroblasts (mEF), mouse lung

fibroblasts (mLF), and neural precursor cells (NPC) - created by chromatin

immunoprecipitation-sequencing (ChIP-Seq)3 4. For this purpose, we developed a computational
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algorithm that identifies K4-K36 domains of at least 5Kb in size (Methods). Using this approach

we identified 10,623 K4-K36 domains. We then excluded all regions that overlap a protein-

coding gene annotated in the mouse genome, as well as those that are syntenic to protein-coding

genes annotated in the human, rat or dog genomes. We also excluded all microRNA genes

36annotated in the MIRBASE database

The analysis yielded a set of 1684 unannotated intergenic K4-K36 domains (Figure la).

To exclude the possibility that any of the domains might represent extensions of known protein-

coding genes, we then applied a stringent criterion to define a 'conservative' subset. Specifically,

we excluded any K4-K36 domains that lie within any reported cDNA that extends into a region

containing a protein-coding gene (even if the cDNA does not encode a protein-coding gene).

This conservative subset contains 1109 K4-K36 domains. In our analysis below, we refer to the

conservative set, but similar conclusions hold for the full set of 1,684 domains.

We tested whether the intergenic loci with K4-K36 domains produce RNA transcripts. We

designed DNA microarrays containing oligonucleotides that tile across a random sample of 350

of the regions (50 base probes spaced every 10 bases) and various control regions, and we

hybridized poly(A)*-selected RNA from each of the four cell types to the arrays. We developed

an algorithm (methods) to identify regions of significant hybridization and used it to define

putative exons of transcripts detected at the loci. For -70% of the intergenic loci with K4-K36

domains present in a cell type, we found clear evidence of RNA transcription in that cell type

(Figure lb,c). The proportion is similar to what we see for protein-coding genes: -72% of K4-

K36 domains corresponding to known protein-coding genes in these cell-types show similarly

strong evidence of RNA transcription. For intergenic loci with K4-K36 domains present in

multiple cell types, we typically observed corresponding patterns of hybridization in the various

cell types, consistent with the presence of a reproducible transcript.
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To independently validate the putative exons detected on tiling arrays, we employed RT-

PCR. We confirmed the presence of 93 of 107 (87%) randomly selected exons, representing at

least one exon from 19 of 20 K4-K36 domains tested. We also confirmed the connectivity of

consecutive exons in 52 of 67 (78%) of cases, including one from each of 16 K4-K36 domains

tested (Figure ic). We further validated the presence of discrete transcripts by hybridization to

RNA northern blots. We found that 15 of 17 tested loci show detectable distinct bands (Figure

1b). The cases that were not confirmed may reflect imperfect definition of the exons based on

the tiling array data.
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Figure 1: Intergenic K4-K36 domains produce multi-exonic RNAs. (A) Representative
example of an intergenic K4-K36 domain and the K4-K36 domains of two flanking protein
coding genes. This illustrates that novel K4-K36 domains have similar chromatin structures, at
similar enrichment levels, as annotated K4-K36 protein coding domains. Each histone
modification is plotted as the number of DNA fragments obtained by ChIP-Seq at each position
divided by the average number for each position across the genome. Black boxes indicate known
protein coding regions and gray boxes are intergenic K4-K36 domains. Arrowheads indicate the
orientation of transcription, inferred from the position of the promoter (K4 domain) (B)
Intergenic K4-K36 domains were interrogated for presence of transcription by hybridizing RNA
to high-resolution DNA tiling arrays (10bp resolution). Each RNA track is plotted as a
normalized hybridization intensity. RNA peaks were determined (Methods) and are represented
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by gray boxes. The presence of a 4.5Kb spliced transcript, approximately the same size as
predicted from the tiling array, was validated by hybridization to a Northern blot (right). (C)
Connectivity between the inferred exons was validated by RT-PCR, indicating that intergenic
K4-K36 domains produce spliced multi-exonic RNA molecules. Right top shows RT-PCR
validation of each exon. Right bottom validates by RT-PCR the connectivity of each consecutive
exon at the predicted sizes.
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RNAs encoded by intergenic K4-K36 structures are not protein-coding

Determining whether a transcript is non-coding is challenging because a long non-coding

transcript is likely to contain an ORF purely by chance37 . Accordingly, the case for the absence

of coding potential for the XIST and H19 genes rested on the lack of evolutionary conservation

of the identified ORFs, the lack of homology to known protein domains, and the inability to

template significant protein production 3'38 . We generalized these conservation properties to

classify coding potential across thousands of transcripts by scoring conserved ORFs across

dozens of species using the 'codon substitution frequency' (CSF) algorithm39 40

Computational methods such as CSF 39'40 leverage evolutionary information to determine

whether an ORF is conserved across species and provides a general strategy for determining

coding potential (Figure 2a). Due to the large number of available genome sequences, these

methods have the ability to accurately determine conserved coding potential in regions as small

as 5 amino acids*1 making them extremely sensitive to potential small peptides, such as the 11

amino acid peptide encoded by the tarsal-less (tal) gene 42 ,4 3 (Figure 2b).

In principle, the transcripts encoded by the intergenic loci with K4-K36 domains could

either be novel protein-coding genes or non-coding RNAs. To explore this issue, we tested

whether the genomic loci and the exons show the characteristic evolutionary signatures of

protein coding genes. The CSF metric can accurately distinguish between a protein-coding exon

(CSF > 0) and neighboring UTR or intronic sequence (CSF <0) (Figure 2b). It has been shown

to accurately distinguish between protein-coding and non-coding genes in mammalian

genomes44 . While the method was developed for assessing a specific candidate sequence, it can

be adapted to scan regions by computing the CSF score in sliding windows and taking the
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maximum value (max-CSF score). To study evolutionary conservation, we analyzed aligned

45
genomic sequence from 29 mammalian species

Applying the approach to the genomic regions defined by the K4-K36 domains, 95% of

protein-coding genes have a high score (max-CSF > 20) whereas 97.5% of untranslated regions

(UTRs) and 100% of the known lincRNAs fall below this threshold. We found that 90% of the

intergenic loci fall below this threshold as well, with a distribution that is similar to the set of

known lincRNAs. We conclude that at least 90% of the intergenic loci with K4-K36 domains

lack any significant protein-coding potential across the entire genomic region (Figure 2c).

We similarly applied the approach to the putative exons detected by hybridization to the

tiling micorarrays (Methods). Whereas all protein-coding exons on our tiling array show a

normalized CSF scores greater than 0, approximately 95% of the exons of the intergenic K4-K36

domains have negative scores, inconsistent with the evolutionary signatures of protein-coding

genes. Consistent with this, fewer than 2.5% of the exons show any similarity to known protein-

coding genes, using the BLASTX program (methods). The other 5% may encode protein-coding

genes and are excluded in the analysis below.

Despite their sensitivity, conservation-based methods will fail to detect newly evolved

proteins since they will not contain a conserved ORF 39,40 . However, three lines of evidence

suggest that this is unlikely for the novel intergenic K4-K36 domains. First, a recent study44

provides strong evidence that very few new protein-coding genes have appeared in mammals.

Second, we show below that, while the intergenic K4-K36 loci lack evolutionary signatures of

protein-coding genes, they do show strong evolutionary conservation at the nucleotide level

across mammals - indicating that they do not represent recently arising functions. Finally, these

domains do not contain conserved ORFs even within the rodent lineage and single nucleotide

polymorphisms (SNPs) within mice do not retain the coding region (Figure 2d).
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Because the majority of the intergenic loci with K4-K36 domains appear to encode large

RNAs that lack significant coding potential and do not overlap known annotations, we will

hereafter refer to the loci that lack protein-coding conservation as encoding large intergenic

ncRNAs (lincRNAs).

It is important to note that a recent paper claims that the majority of lincRNAs are in fact

translated 46. This conclusion is drawn from experimental methods, such as ribosome profiling,

which provides a strategy for identifying ribosome occupancy on RNA and has been proposed as

a method to distinguish between coding and non-coding transcripts46. While this method can

clearly distinguish between coding regions and untranslated regions occurring after the ribosome

encounters a stop codon and ribosomes are released47 , it has yet to be demonstrated to accurately

distinguish between coding and non-coding transcripts46,48. Demonstrating this will require

identification of the predicted protein products at significant abundances in vivo. Importantly,

the mere association of an RNA with the ribosome cannot be taken as evidence of protein-coding

potential as both the RNase P ribozyme and telomerase RNA can be detected in the ribosome46'49

50,51despite clear mechanistic roles as ncRNAs

An alternative explanation for these observed associations is "translational noise", spurious

association that may lead to non-functional translation products. Consistent with this, virtually

all of the transcripts suggested to encode small peptides by ribosome profiling46 lack

evolutionary conservation of their proposed coding regions4 1'52 even across different mice which

is in striking contrast to almost all known protein-coding genes44 including the few well-

characterized functional small peptides42,43,53 54 (Figure 2b). Accordingly, identification of any

novel protein-coding gene requires a clear demonstration of the functionality of the protein

product in vivo42,43
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species, aligns sequences in all frames and scores mutations that maintain coding potential (blue

boxes) relative to mutations that break coding potential (ie non-synonymous mutations, stop

codons, and frame shifting insertion/deletions) (red boxes). (b) CSF score in sliding windows

across the entire K4-K36 domains of known protein coding gene, Sirtl (top panel). CSF values

in each window that are greater than 0 are represented by black bars, CSF scores below 0 and

likely non-coding RNA are shown in grey. The CSF score across the K4-K36 domain of a

known ncRNA, XIST (middle panel). The CSF score of a novel lincRNA, linc-ZFAT 1, across

the K4-K36 domain (bottom panel). The CSF score of a known gene encoding four discrete

small peptides of 11 and 32 amino acids (tarsal-less), contains positive scores over all known

small peptides. Gene annotations are indicated below, showing that high CSF scores occur at the

location of protein-coding regions, but not in the two lincRNAs. (c) Density plot of the

maximum CSF score (Methods) across intergenic K4-K36 domains (grey) and a random sample

of 1000 known protein-coding genes (black). The max-CSF scores for the handful of well

characterized lincRNAs are indicated as points at the bottom of the figure. (d) A cumulative

distribution of the CSF scores within the rodent lineage for introns (red), protein-coding exons

(green), and lincRNAs (blue). (e) A cumulative distribution of the coding potential measured by

the dN/dS ratio across 17 mouse strains for introns (red), protein-coding exons (green), and

lincRNAs (blue).
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Conservation properties of lincRNAs

To assess whether the lincRNA genes are likely functional, we studied their conservation

properties. While the genes do not show the evolutionary signatures of protein-coding genes,

they show striking and consistent evolutionary conservation in all other ways, and also have

additional properties of bonafide genes.

(i) lincRNA transcripts show high levels of sequence conservation across mammals.

The lincRNA genes show clear conservation by several methods both across the genomic loci

and specifically in their exons. Using a method to assess evolutionary constraint on sequences

that explicitly models the underlying substitution rate5 5 (7r, see methods), we found that the

lincRNA loci show clear conservation across their transcribed region (defined as the region of

K36me3 enrichment) when compared to other intergenic regions (Figure 3A). Using another

approach based on conserved elements defined by the PhastCons program 5, we also found that

the transcribed regions are highly enriched for conserved elements compared to other intergenic

regions (p<.0001, permutation test).

The exons of lincRNAs show even stronger conservation (Figure 3B). The extent of

exonic conservation is much higher than seen for random intergenic regions and is similar to that

seen for known lincRNAs - although it is lower than that seen for protein-coding exons, likely

reflecting a lower degree of constraint on RNA structures than on amino acid codons. We also

note that lincRNA exons are significantly more conserved than the UTRs of protein coding genes

(Supplemental Figure 4). The presence of strong purifying selection provides strong evidence

that the vast majority of the lincRNAs are biologically functional in mammals.

(ii) lincRNA promoters show high levels of sequence conservation across mammals.

We defined the promoter-proximal regions of the lincRNAs to be the peaks of K4me3
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enrichment nearest to the transcribed unit (median size = 1.1 kb). Applying the conservation

scoring methods used above to analyze the transcribed regions, the promoter regions show strong

conservation relative to random intergenic regions (p<.001, permutation test). Moreover, the

distribution of conservation scores is essentially indistinguishable from that seen for the

promoters of known protein-coding genes (Figure 3C).

(iii) lincRNA loci show conserved chromatin structure in human. We constructed

chromatin-state maps in human lung fibroblasts (hLF) and compared them to the chromatin

structure seen in mouse lung fibroblasts (mLFs), to study the occurrence of K4-K36 domains in

the two species. Interestingly, -70% of the human K4-K36 domains also exhibited a K4-K36

domain in the syntenic region of the mouse genome. The proportion is similar to that seen for

protein-coding genes (-80%). The lack of complete correspondence may simply reflect

thresholds of detection.

lincRNAs promoters exhibit canonical features of general transcriptional initiation.

The lincRNA promoters show a striking enrichment of 'CAGE tags' that mark transcriptional

start sites (TSS) 57 (Figure 3D). CAGE tags are obtained by shotgun sequencing of cDNAs

prepared from RNA molecules captured on the basis of containing the 7-methylguanosine cap

structure that marks the 5'-end of mRNAs 8; they have been systematically catalogued in mouse.

Most of the promoters regions of lincRNAs (85%) contain a significant cluster of CAGE tags,

with the density tightly localized around the promoter. The proportion and localization are

similar to that seen for protein-coding genes".

Additionally, we found that the lincRNA promoters show strong enrichment for binding of RNA

Poll and Transcriptional initiation factor 2D (TF2D) in mouse ES cells, compared to random

genomic regions (p<2x 10-16, Wilcoxon test). Together, these results suggest that the transcription
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and processing of lincRNAs is similar to that for protein-coding genes - including Poll

transcription, 5'-capping and polyadenylation (inasmuch as the transcripts are detected in

poly(A+)-selected RNA).

In embryonic stem cells, many lincRNA promoters are bound by Oct4 and Nanog.

The promoters of lincRNAs with K4-K36 domains in embryonic stem (ES) cells show strong

enrichment for binding of the pluripotency-associated transcription factors Oct4 and Nanog

compared to intergenic regions marked by K4me3 but not K36me3 in ES cells, based on analysis

of ChIP-PET (Paired End Ditags) data in mouse ES cells59 . Specifically, by analyzing ChIP-PET

data from mouse ES cells we found 249 regions across the genome that are bound by either Oct4

or Nanog and do not correspond to known protein-coding genes. Of these regions, 118 coincide

with the promoters of lincRNAs. Of the lincRNA promoters bound by Oct4 or Nanog, 86%

occur at lincRNAs whose K4-K36 domain is present only in ES cells - consistent with the fact

that Oct4 and Nanog are specific to the pluripotent state (Figure 3e).

Among 101 lincRNAs with K4-K36 domains present only in ES cells and containing an

Oct4 or Nanog binding site, we noticed that one lincRNA was ~100 kb from the Sox2 locus,

which encodes another key transcription factor associated with pluripotency. We cloned the

promoter of this locus (which we will refer to as lincRNA-Sox2) upstream of a luciferase

reporter gene and transfected the construct into mouse cells transiently expressing either Oct4,

Sox2, or both, as well as several controls. We found that Sox2 and Oct4 were each sufficient to

drive expression of this lincRNA promoter. We further found that Oct4 and Sox2 together

synergistically increased expression of lincRNA-Sox2 (Figure 3f). Together, these results

demonstrate that lincRNA promoters are directly regulated by key transcription factors in a cell-

specific manner.
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Figure 3: lincRNA K4-K36 domains, exons, and their promoters are highly conserved. (A)
Cumulative distribution of sequence conservation across 21 mammalian species for the genomic
region of the K4-K36 domain of each lincRNA (blue), protein coding gene (green), and random
intergenic regions (red). (B) Cumulative distribution of sequence conservation across 21
mammals for lincRNA exons (blue), protein coding exons (green), and protein coding introns
(red). (C) Cumulative distribution of sequence conservation across 21 mammals for the
promoters of each lincRNA (blue) and protein coding promoters (green). The X-axis is the
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conservation measure (Methods) normalized by random genomic regions; thus larger scores
reflect higher conservation. (D) Enrichment of various promoter features plotted as the distance
from the start of the K36me3 region averaged across all lincRNAs. (Top) Enrichment in each
cell type of K4me3 domains across ES (red), MEF (black), MLF (blue), NPC (green) is shown.
(Middle) Enrichment of 5' CAGE tag density representing 5' end of RNA molecules, indicating
the K4me3 regions correspond to apparent transcriptional start site. (Bottom) Conservation
scores within the K4me3 region. (E) K36me3 enrichment across 4 cell types for lincRNAs bound
by Oct4 or Nanog. Red indicates high enrichment and blue low enrichment. The Venn diagram
indicates the total number of ES specific lincRNAs bound by Oct4 or Nanog (Gray) compared
with the total number of Oct4 or Nanog bound regions (Black). (F) Direct transcriptional
regulation of lincRNA-Sox2 promoter by Sox2 and Oct4. The lincRNA-Sox2 promoter was
cloned into a luciferase reporter construct and assayed for transcriptional activity with co-
transfection with either Sox2 or Oct4 alone, in combination and the same reporter construct
without the lincRNA-Sox2 promoter. The y-axis represents the transcriptional activity of this
promoter relative to a renilla construct control to control for transfection efficiency.
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Identification of human lincRNAs

While this studies clearly demonstrate that there are many functional lincRNAs, a key

questions remains: How many lincRNAs are encoded in mammalian genomes? To further extend

the catalog of lincRNAs, we sought to analyze chromatin-state maps of six human cell types:

human embryonic stem cells (hESC) 60 , two hematopoetic stem cells (CD133+ and CD36+) 61, T-

cells 3, lung fibroblasts (hLF)41 , and normal embryonic kidney (hEK). Using our previous

computational approach, we identified K4-K36 domains that are well-separated from (i) the

regions containing known protein-coding genes and all known classes of small non-coding

RNAs in human and (ii) the orthologous regions of known protein-coding genes in mouse, rat

and dog. We also eliminated the orthologous regions of our previously identified mouse

lincRNAs. (We previously showed that, for similar cell types in mouse and human, lincRNA loci

show cross-species conservation not only at the level of nucleotide sequence, but also with

41respect to the presence of K4-K36 domains

We found a total of 1833 novel intergenic K4-K36 domains in these six human cell types.

We analyzed the coding potential of each such K4-K36 domain using the codon substitution

frequency score (see Methods) and found that <8% showed any evidence of protein-coding

capacity39. After eliminating these cases, we were left with 1703 loci encoding putative

lincRNA genes.

To test whether these loci actually encode lincRNAs, we designed genomic tiling

microarrays (at 10 base resolution) across 1147 of the 1703 loci (see Methods) to determine their

exonic structure. We hybridized poly(A*)-amplified RNA from hES, brain, breast, hEK, hFF,

hLF, K562, ovary, skin, spleen, testis, thymus tissues. We analyzed the hybridization data using

our previously reported peak-calling algorithm. This analysis revealed multi-exonic RNA
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transcripts in 74% of the K4-K36 domains examined. There was an average of 9 exons per K4-

K36 domain (total of 7523 exons). We further focused on the 535 K4-K36 domains that were

discovered in cell types in which RNA from the same cell type was hybridized. In these three

cell types, RNA hybridization revealed multi-exonic RNA transcripts in 85% of the tested loci;

this detection rate is similar to that previously seen for K4-K36 domains corresponding to known

protein-coding genes and lincRNA loci in mouse4 1 . Given that such a high proportion of the

human K4-K36 domains tested were validated as encoding lincRNAs, we conclude that the vast

majority of the full set of 1703 loci encode bonafide lincRNAs.

We then studied the evolutionary conservation of the novel lincRNA loci. For each exon,

we calculated the extent of sequence conservation across 29 mammalian species as previously

described (see Methods). The novel lincRNAs showed evolutionary conservation at levels

similar to those seen for the lincRNAs in mouse.

Combining the 1586 human orthologs of the lincRNA genes reported in our previous

study with the 1703 newly discovered human lincRNA genes identified in this study, our catalog

of human lincRNA genes now includes 3289 distinct loci. This catalog is certain to be

incomplete, because it is based on chromatin-state maps of only ten cell types (four mouse and

six human). Nonetheless, it is possible to make a rudimentary estimate of the total number of

human lincRNAs based on the observation that 73% of all protein-coding genes are expressed in

at least one of the ten cell types analyzed here. If a similar proportion applies to lincRNAs, the

total number of human lincRNAs would be estimated to be -4500. If lincRNAs have expression

patterns that are more tissue- or condition-specific, the total number could be considerably

higher. Obtaining a complete catalog will require generating chromatin-state maps across many

more tissues.

68



Discussion

Although it has become clear that abundant transcription in mammalian genomes generates

many large RNAs without protein-coding capacity62, the biological significance of these

molecules remained in doubt because most of the cases identified by shotgun cDNA sequencing

or microarray hybridization show little evidence of sequence conservation indicative of function.

It is likely that many-perhaps most-of these RNAs represents transcriptional noise, but that

hidden among them are important classes of ncRNAs.

We therefore developed an alternative approach to finding lincRNAs, based on

identifying novel genomic regions carrying a distinctive chromatin structure associated with

actively transcribed genes (K4-K36 domains). Studying chromatin-state maps across four mouse

cell types and 6 human cell types revealed -3500 lincRNA loci. Analysis of these loci show that

most indeed encode large RNA transcripts that exhibit strong cross-species conservation at the

level of sequence (in both exons and promoters), transcription and chromatin structure and show

promoter binding by both general (PolII) and relevant specific transcription factors (Sox2 and

Oct4 in ES cells). Yet, the vast majority shows no evidence of protein-coding capacity. Overall,

these properties closely resemble those of the roughly dozen known lincRNAs (e.g. HOTAIR,

and XIST)62

Our results show that chromatin structure can identify sets of lincRNAs that show a high

degree of evolutionary conservation, implying that they are biologically functional. (We do not

exclude the possibility that lincRNAs identified by shotgun sequencing that fail to show

conservation are nonetheless functional, but other evidence will be required to establish this

point.) Together, the results suggest that the mammalian genome may encode a large collection

of functional lincRNAs. The precise number of lincRNAs is difficult to estimate from the current

data. As a first approximation, we note that -75% of all protein-coding genes are expressed in at
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least one of the four cell types. If a similar ratio pertains to lincRNAs, the total might exceed

4500. If lincRNAs are more tissue specific, however, the total could be much higher. We

emphasize that our analysis focuses only on large intergenic RNAs. It thus excludes many other

classes of non-coding RNAs, including those overlapping protein coding genes such as promoter

associated RNAs2 5 , intronic and antisense transcription 3 and small RNAs, such as miRNAs,

piRNAs and snoRNAs4 . In addition, our analysis would likely not be sensitive to extremely low-

level transcription; such low level transcription could be biologically important.

The next steps will require detailed characterization of structure and function of

lincRNAs - including obtaining full-length cDNAs; expanding the gene-expression compendium

to more tissues and more lincRNAs; performing RNAi-mediated knockout in appropriate

settings; studying interactions with cellular proteins and DNA; and finally genetic deletion of

lincRNAs in mouse model systems. Whatever their functions, the well-conserved lincRNAs

represent an important new contingent in the growing population of the modern 'RNA world'.
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METHODS

Chromatin Map Data

Chromatin data for H3K4me3 and H3K36me3, for mouse Embryonic Stem Cells (mES), mouse

Embryonic Fibroblasts (MEF), and mouse neural precursor cells (NPC) were taken from

Mikkelsen et al. 2007 and were downloaded from (ftp://ftp.broad.mit.edu/pub/papers/chipseq/).

Chromatin data in mouse lung fibroblasts and human lung fibroblasts were generated as

34previously described

Identifying K4-K36 Enriched Domains

To identify regions of enriched chromatin marks we employ a sliding window approach: we slide

windows, score each window based on the number of ChIP fragments, compute a threshold for

significance, and use the significant windows to define intervals. Specifically: (i) We fix a

window size w and slide it across each position of the genome. For each position, we compute a

score, Sw, as the number of reads aligned within the window. (ii) To identify windows that have

significantly more reads than would be expected by chance, we define a null model based on the

randomization of read locations across the genome. This null model is estimated as a Poisson

distribution where k is defined as the number of reads in the library divided by the number of

possible non-overlapping windows of size w. (iii) Given the null model, we choose a threshold T

on the score such that the genome-wide probability that the Score Sw exceeds the threshold T by

chance is less than 0.01 (Prob(Sw>T)<0.01). We therefore cannot compute this probability

exactly, since the scores Sw occur in overlapping windows they are not independent values or

multiple testing corrected values. We therefore estimate it genome-wide across overlapping

windows using the scan statistic procedure 63. Therefore, windows that pass this threshold T are

significantly enriched after multiple testing correction. (iv) We retain only windows that pass this

threshold T, and merge overlapping significant windows into a single contiguous interval. We
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refine the boundaries of this interval by taking the maximum contiguous subsequence. (vi) To

generalize for multiple window sizes, we compute a threshold for each window size separately

and repeat the above procedure, merging windows of different sizes. (v) Finally, we score each

interval and test if it is significantly enriched using the same scan statistic approach introduced

above. The result is a set of intervals and their p-values.

To identify the intervals that encode intergenic K4-K36 domains we applied this approach to

independently find K4 and K36 regions. We filtered all K4 and K36 regions that overlapped with

known annotations (as described below). We identified all K4 and K36 intervals that were

adjacent. To define a K4-K36 domain we required that the interval from the K4 region through

the end of the K36 region was significantly enriched for K36 using the same scan statistic

approach. We then filter the list by regions that are at least 5Kb in length.

All results were produced in the March 2006 (MM8) freeze of the Mouse genome.

Filtering Gene Lists

We filtered the list of K4-K36 domains to eliminate all regions annotated as containing a protein

coding gene in mouse or orthologous protein coding genes in human, rat, or dog.

We obtained the list of all human protein coding genes as determined by Clamp et al. 2007 in the

Human genome (Hg 17) from (http://www.broad.mit.edu/mammals/alpheus/data/) and used the

liftOver (http://genome.ucsc.edu/cgi-bin/hgLiftOver) tool to identify their orthologous location

in the mouse genome (MM8). We also used the list of allRefSeq protein coding genes (MM8)

along with all RefSeq genes annotated in the Human (Hg 18), Rat (Rn4), and Dog (canFam2)

genomes. All refSeq gene lists were obtained from the UCSC Genome Browser

(http://hgdownload.cse.ucsc.edu/downloads.html). The liftOver tool was similarly used to place
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genes from other species in the mouse genome (MM8). In our analysis, we eliminated all regions

that overlapped any portion of a protein coding locus, including introns, exons, and UTRs. We

also excluded all regions that overlap a known miRNA gene obtained from the MIRBASE

64database

RNA Preparation and Sources

We purchased total RNA for mouse lung, brain, testes, and ovary (Ambion). We isolated RNA

from Mouse whole embryo, forelimb, and hindlimb from developmental time points E9.5, 10.5

and 13.5. These mice were generated using timed mating embryo isolation and dissection. We

obtained mES, mEF, and NPC RNA extracted from cell lines using the Qiagen RNAEasy Kit.

Bone Marrow dendritic cells were extracted as previously described 65, and stimulated with

various ligands (see below). We extracted RNA after 6 hours using the Qiagen RNAEasy Kit.

Tilling array design, hybridization and analysis.

High resolution DNA tiling arrays containing 2.1 million features were designed on the

Nimblegen platform (HD2) to represent a random sampling of -400 intergenic K4-K36 domains

identified in the mouse genome. Total RNA from mES, mLF, NPC and mEF was amplified

using poly-dT and labeled as described 8 . Arrays were hybridized and washed according to the

Nimblegen protocols and kits (Roche/Nimblegen). Array image files were processed using

Nimblescan (Roche/Nimblegen) and arrays were normalized by mean centering the data.

A second array was designed on the Nimblegen platform (HD 1) arrays containing 300,000 and

representing -150 K4-K36 domains. We hybridized mES, mEF, mLF, NPC, BMDC, TLR2,
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TLR4, TLR9, lung (Ambion), brain (Ambion), testis (Ambion), ovary (Ambion), whole embryo,

forelimb, and hindlimb to this array from developmental time points E9.5, 10.5 and 13.5. Total

RNA was amplified and labeled for array as described1 8 . For both arrays we tiled across all Hox

genes as well as handful of other genes as controls.

Determining Transcribed Segments From Tiling Arrays

To identify transcribed regions of K4-K36 domains, we hybridized poly-A RNA to a tiling

microarray. We developed a statistical algorithm to identify peaks in hybridization, representing

likely exons in a mature transcript.

We normalized the data by dividing each probe value by the average probe intensity across the

array. We scanned the K4-K36 domains using sliding windows of width w. We computed a score

defined as the sum of the normalized probe intensities. To determine the significance of this

score we permuted the intensity values assigned to each probe and recalculated the statistic. We

took the value for each permutation as the maximum score obtained for any random region. We

performed 1000 permutations and assigned a multiple testing corrected p-value to each region

based on its rank within this distribution. All regions with a p-value less than 0.05 were retained.

After determining the transcribed segments from each sample on the array, we defined exons as

the union of all bases covered by a transcribed segment.

RNA blot analysis.

RNA blot analysis was performed on Ambion first choice RNA blots (Ambion). The blots

contained RNA from various mouse tissues including heart, brain, liver, spleen, kidney, whole
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embryo, lung, thymus, testes, and ovary. Probes were designed to selected lincRNA exons, as

determined by tiling arrays, and hybridized to the RNA blot. Probes were prepared by PCR of

genomic regions followed by biotin incorporation using the North2South @ Biotin Labeling Kit

(Pierce). Probes were hybridized to the RNA blot for 14-15 hrs using the North2South @

Hybridization Kit (Pierce). The resulting chemiluminescence was detected using a CCD camera.

RT-PCR

RT-PCR analysis was performed on cDNA libraries made from total RNA from mouse embryo

(13.5), lung, brain, MEF, NPC, and ES cells reverse transcribed using Superscript II (Invitrogen)

and a poly-dT /random hexamer primer mix.

To validate the presence of individual lincRNA exons and their connectivity within a locus we

designed primers within and across exon boundaries using the Primer3 computer program. PCR

was performed as previously described" on reverse transcribed cDNAs. We performed a

negative control using a no RT reaction and a positive control using the mouse GAPDH gene.

The PCR products were analyzed by gel electrophoresis. To confirm splicing across exons, the

PCR products were purified with QlAquick PCR Clean-up kits (Qiagen) and then sequenced,

using the forward primer. To characterize apparent alternative splicing, the products were run on

2% NuSieve agarose (Lonza) gels and the multiple bands purified with a QlAquick Gel

Extraction kit (Qiagen) and sequenced. The primers used are detailed in supplemental table 6.

Multiple Species Alignments
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All multiple species alignments were the MULTIZ alignments obtained from the UCSC genome

browser (build MM9, http://hgdownload.cse.ucsc.edu/goldenPath/mm9/multiz30way/).

Coding Potential

We tested for protein coding potential of K4-K36 domains by determining the maximum

CSF39,66 score observed across the entire genomic locus. We downloaded the alignments from

UCSC and computed the CSF scores across sliding windows of 30 base pairs. We then scanned

all 6 possible reading frames in each window. After computing a score for each window, we

defined the 'max CSF score' for a K4-K36 domain to be the maximum observed score across the

region.

We also computed a 'normalized CSF score' for each individual exon. The 'normalized CSF

score' for each exon was defined to be the CSF score for each exon divided by the nucleotide

length of the exon.

PhastCons Enrichment Within K4-K36 Domains and Promoter Regions

We downloaded the phastConsElements30way from the UCSC Genome Browser (MM9). We

counted the number of phastCons elements within each K4-K36 domain as well as the number of

these elements within random, size matched, genomic regions. We constructed a distribution

based on the random genomic regions. A p-value was computed based on the rank of the K4-

K36 domain's rank within the random genomic distribution. This statistic was similarly applied

to the promoter regions of lincRNAs.
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Computing Pi Constraint

To detect sequence constraint within large ncRNAs, we chose to use a method that explicitly

models the rate of mutation as well as the level of constraint. This is especially relevant for

detecting constrained sequences in noncoding regions of the genome since many of these sites

are known to be degenerate and can tolerate mutations between certain nucleotides.

Briefly the method we used to identify purifying selection uses a probabilistic neutral model of

evolution. Given a phylogenetic tree T and a substitution rate matrix Q, constrained regions will

be evident because they are poor fits to the neutral model. In this framework, selection can be

apparent in 2 ways either through contraction of the tree length that depends on the intensity of

selection (o>) or through a mutation pattern (n) that is not concordant with the rate matrix.

We compute a log-odds score, Pi LOD score, which is the estimate of the sequence evolution

compared to neutrally evolving sequences. Sitewise LOD score estimation provides low

sensitivity to determine conservation, we therefore integrated across multiple bases. We chose

12mers based on empirically testing the tradeoff between sensitivity and specificity for various

kmers. Since the estimation of functional constraint is site specific, we can determine the log-

odds score for a region by adding the log-odds scores for each base contained in the region 5 .

Exon Conservation and K4-K36 Pi LOD Enrichment

To identify functional constraint within exons of large ncRNAs, we analyzed each exon

separately. We computed the Pi LOD score for each 12-mer contained within the exon. We took

the maximum 12-mer value for each exon. In order to normalize for the size differences between

different exons we computed a size matched random score. To do this we randomly generated

size matched regions of the genome and divided the observed LOD score by the average LOD
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score from the random regions. This normalization procedure produces a score for each exon in

the genome that reflects a size-independent level of constraint on each exon. The

Observed/Expected score can be interpreted as an enrichment level of the LOD score compared

with the genomic average. The distributions of this normalized score were then compared among

multiple different classes of genomic units, specifically protein coding introns, exons, and

untranslated regions (UTRs), as well as known large non-coding RNAs and non-coding cDNA

sequences. This statistic is robust to detecting regions of the genome that, while highly

constrained in sequence, are not neccessarily highly conserved over the entirety of the region.

We performed the same analysis for the K4-K36 domain, using 75bp windows.

CAGE and RNA Poll Enrichment

For each promoter region, we computed the number of CAGE tags or ChIP-Seq reads for PolIl.

We compared the number of aligned reads in the promoters to the number of aligned reads in

random regions of similar size (excluding repetitive regions of the genome). We computed

enrichment with a wilcoxon rank sum statistic between the promoters and random genomic

DNA.

CAGE data were downloaded from http://fantom31p.gsc.riken.jp/cage/download/mm5/ and the

regions were mapped to the MM8 build using the liftOver tool (http://genome.ucsc.edu/) CAGE

scores were computed by summing the number of reads in each tag cluster (Carninci et al. 2006).

RNA Polymerase II ChIP-Seq data was generated as previously described 34 in mES cells.

Oct4/Nanog Enrichments in ES-specific lincRNAs
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We used data generated by Loh et al 200659. Briefly, Chromatin Immunoprecipitation (ChIP)

was performed using antibodies against Oct4 and Nanog in mES cells. The resulting library was

sequenced using 454 sequencing and the 'paired end reads' were mapped to the genome. We

downloaded the read clusters mapped on the mouse genome (build MM5) from

http://www.nature.com/ng/journal/v38/n4/suppinfo/ng1760_S1.html. We used the liftOver tool

(http://genome.ucsc.edu/) to place the reads on the MM8 build of the mouse genome. We defined

binding events as clusters with at least 3 independent ChIP sequencing reads, as described in Loh

et al. 2006.

In order to determine the enrichment of intergenic Oct4/Nanog binding sites we counted the

number of intergenic Oct4/Nanog binding sites that overlapped with a K4me3 peak in the four

cell types. Next we counted how many of these regions coincided with the promoter of a

lincRNA in the four cell types. We then counted the number of these lincRNA promoter binding

events in ES cells and the number that had strong enrichment levels specifically in ES cells. A

hypergeometric statistic was applied to determine if the intergenic binding of Sox2 and Oct4 was

enriched at lincRNA promoter regions (K4) compared to other intergenic non-lincRNA K4

regions.

Luciferase Reporter Assay

We amplified individual regions of the lincRNA-Sox2 promoter using AccuPrime Pfx

polymerase (Invitrogen) and cloned the products into the pCR 2. lTOPO vector (Invitrogen).

Each region was subsequently cloned into pGL3 firefly Luciferase Reporter Vector (Promega).

293T cells were transiently transfected in triplicate using FuGENE 6 transfection reagent

(Roche) and analyzed 24 hours post-transfection by Promega Dual-Luciferase Reporter Assay

kit. Analysis was performed using the Veritas Microplate Luminometer system. Expression of
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the promoter regions was detected by firefly luciferase activity and was determined by obtaining

the relative value compared to the transfection control plasmid (CMV Renilla luciferase).

Comparison with Previous Transcript Maps

We downloaded the cDNAs sequenced by the FANTOM consortium from

(ftp://fantom.gsc.riken.jp/FANTOM3/). We defined two sets of FANTOM transcripts: the first

was the ncRNA conservative set, as provided on their site, and the second was all FANTOM

cDNA transcripts. We computed significant overlap between the genomic locus of a lincRNA

and a FANTOM unit by asking how much of a K4-K36 domain was covered by a FANTOM unit

and how much of a FANTOM unit was covered by a K4-K36 unit. We identified all cases in

which a transcript overlapped at least 25% of a K4-K36 domain or vice versa. We performed a

similar analysis between exons determined by our tiling arrays and FANTOM exons.

80



References

1 Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409,
860-921 (2001).

2 Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome.
Nature 420, 520-562 (2002).

3 Birney, E. et al. Identification and analysis of functional elements in 1% of the human
genome by the ENCODE pilot project. Nature 447, 799-816 (2007).

4 Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233
(2009).

5 Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116,
281-297 (2004).

6 Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs
with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862 (2001).

7 Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel
genes coding for small expressed RNAs. Science 294, 853-858 (2001).

8 Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans.
Science 294, 862-864 (2001).

9 Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 (1993).

10 Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse
spermatogenic cells. Genes Dev 20, 1709-1714 (2006).

11 Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes.
Nature 442, 203-207 (2006).

12 Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific
class of small RNAs binds mammalian Piwi proteins. Nature 442, 199-202 (2006).

13 Brannan, C. I., Dees, E. C., Ingram, R. S. & Tilghman, S. M. The product of the H19
gene may function as an RNA. Mol Cell Biol 10, 28-36 (1990).

14 Brown, C. J. et al. A gene from the region of the human X inactivation centre is
expressed exclusively from the inactive X chromosome. Nature 349, 38-44 (1991).

15 Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-
inactivation centre. Nat Genet 21, 400-404 (1999).

16 Lyle, R. et al. The imprinted antisense RNA at the Igf2r locus overlaps but does not
imprint Mas1. Nat Genet 25, 19-21 (2000).

17 Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island.
Nature 389, 745-749 (1997).

18 Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human
HOX loci by noncoding RNAs. Cell 129, 1311-1323 (2007).

19 Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a
repressor of NFAT. Science 309, 1570-1573 (2005).

20 Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309,
1559-1563 (2005).

21 Rinn, J. L. et al. The transcriptional activity of human Chromosome 22. Genes Dev 17,
529-540 (2003).

81



22 Bertone, P. et al. Global identification of human transcribed sequences with genome
tiling arrays. Science 306, 2242-2246 (2004).

23 Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide
resolution. Science 308, 1149-1154 (2005).

24 Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22.
Science 296, 916-919 (2002).

25 Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for
pervasive transcription. Science 316, 1484-1488 (2007).

26 Ebisuya, M., Yamamoto, T., Nakajima, M. & Nishida, E. Ripples from neighbouring
transcription. Nat Cell Biol 10, 1106-1113 (2008).

27 Struhl, K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat
Struct Mol Biol 14, 103-105 (2007).

28 Pang, K. C., Frith, M. C. & Mattick, J. S. Rapid evolution of noncoding RNAs: lack of
conservation does not mean lack of function. Trends Genet 22, 1-5 (2006).

29 Ponjavic, J., Ponting, C. P. & Lunter, G. Functionality or transcriptional noise? Evidence
for selection within long noncoding RNAs. Genome Res 17, 556-565 (2007).

30 Martens, J. A., Laprade, L. & Winston, F. Intergenic transcription is required to repress
the Saccharomyces cerevisiae SER3 gene. Nature 429, 571-574 (2004).

31 Schmitt, S. & Paro, R. Gene regulation: a reason for reading nonsense. Nature 429, 510-
511 (2004).

32 Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group
response element counteracts silencing. Genes Dev 19, 697-708 (2005).

33 Wang, J. et al. Mouse transcriptome: neutral evolution of 'non-coding' complementary
DNAs. Nature 431, 1 p following 757; discussion following 757 (2004).

34 Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-
committed cells. Nature 448, 553-560 (2007).

35 Barski, A. et al. High-resolution profiling of histone methylations in the human genome.
Cell 129, 823-837 (2007).

36 Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J.
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34,
D140-144 (2006).

37 Dinger, M. E., Pang, K. C., Mercer, T. R. & Mattick, J. S. Differentiating protein-coding
and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 4, e1000176 (2008).

38 Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific
transcript containing no conserved ORF and located in the nucleus. Cell 71, 515-526
(1992).

39 Lin, M. F., Deoras, A. N., Rasmussen, M. D. & Kellis, M. Performance and scalability of
discriminative metrics for comparative gene identification in 12 Drosophila genomes.
PLoS Comput Biol 4, e1000067 (2008).

40 Lin, M. F., Jungreis, I. & Kellis, M. PhyloCSF: a comparative genomics method to
distinguish protein coding and non-coding regions. Bioinformatics 27, i275-282 (2011).

41 Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large
non-coding RNAs in mammals. Nature 458, 223-227 (2009).

82



42 Galindo, M. I., Pueyo, J. I., Fouix, S., Bishop, S. A. & Couso, J. P. Peptides encoded by
short ORFs control development and define a new eukaryotic gene family. PLoS Biol 5,
e106 (2007).

43 Kondo, T. et al. Small peptides switch the transcriptional activity of Shavenbaby during
Drosophila embryogenesis. Science 329, 336-339 (2010).

44 Clamp, M. et al. Distinguishing protein-coding and noncoding genes in the human
genome. Proc Natl Acad Sci U S A 104, 19428-19433 (2007).

45 Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29
mammals. Nature 478, 476-482 (2011).

46 Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome Profiling of Mouse Embryonic
Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes. Cell
(2011).

47 Kisselev, L. L. & Buckingham, R. H. Translational termination comes of age. Trends
Biochem Sci 25, 561-566 (2000).

48 Jiao, Y. & Meyerowitz, E. M. Cell-type specific analysis of translating RNAs in
developing flowers reveals new levels of control. Mol Syst Biol 6, 419 (2010).

49 Li, Y. M. et al. The H19 transcript is associated with polysomes and may regulate IGF2
expression in trans. J Biol Chem 273, 28247-28252 (1998).

50 Greider, C. W. & Blackburn, E. H. A telomeric sequence in the RNA of Tetrahymena
telomerase required for telomere repeat synthesis. Nature 337, 331-337 (1989).

51 Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of
ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849-857 (1983).

52 Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse
reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28, 503-510
(2010).

53 Kastenmayer, J. P. et al. Functional genomics of genes with small open reading frames
(sORFs) in S. cerevisiae. Genome Res 16, 365-373 (2006).

54 Hanada, K., Zhang, X., Borevitz, J. 0., Li, W. H. & Shiu, S. H. A large number of novel
coding small open reading frames in the intergenic regions of the Arabidopsis thaliana
genome are transcribed and/or under purifying selection. Genome Res 17, 632-640
(2007).

55 Garber, M. et al. Identifying novel constrained elements by exploiting biased substitution
patterns. Bioinformatics 25, i54-62 (2009).

56 Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res 15, 1034-1050 (2005).

57 Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and
evolution. Nat Genet 38, 626-635 (2006).

58 Kodzius, R. et al. CAGE: cap analysis of gene expression. Nat Methods 3, 211-222
(2006).

59 Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in
mouse embryonic stem cells. Nat Genet 38, 431-440 (2006).

60 Ku, M. et al. Genomewide analysis of PRC 1 and PRC2 occupancy identifies two classes
of bivalent domains. PLoS Genet 4, e1000242 (2008).

61 Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells
indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80-93 (2009).

83



62 Amaral, P. P., Dinger, M. E., Mercer, T. R. & Mattick, J. S. The eukaryotic genome as an
RNA machine. Science 319, 1787-1789 (2008).

63 Glaz, J., Naus, J. I. & Wallenstein, S. Scan statistics. (Springer, 2001).
64 Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for

microRNA genomics. Nucleic Acids Res 36, D154-158 (2008).
65 Palliser, D. et al. A role for Toll-like receptor 4 in dendritic cell activation and cytolytic

CD8+ T cell differentiation in response to a recombinant heat shock fusion protein. J
Immunol 172, 2885-2893 (2004).

66 Lin, M. F. et al. Revisiting the protein-coding gene catalog of Drosophila melanogaster
using 12 fly genomes. Genome Res 17, 1823-1836 (2007).

84



Chapter 2: Ab initio reconstruction of transcriptomes of pluripotent
and lineage committed cells reveals gene structures of thousands of
lincRNAs

In this chapter, we describe the development of a method for ab initio reconstruction of a

mammalian transcriptome from RNA-Seq data and used it to define the precise sequence of

lincRNAs.

This work was first published as:

Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ,
Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A. (2010) Ab initio reconstruction of
transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of
lincRNAs. Nature Biotechnology 28(5):503-10
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Recent studies have suggested that mammalian genomes encode thousands of large non-

coding RNA (ncRNA) genes, including large intergenic ncRNAs (lincRNAs). Defining the

gene structure of lincRNAs is essential for experimental and computational studies of their

function. Recent advances in massively parallel cDNA sequencing (RNA-Seq) provide an

unbiased way to study a transcriptome, including both coding and non-coding genes. To

date, most RNA-Seq studies have critically depended on existing annotated genes, and thus

focused on studying expression levels and structural variation in known transcripts. Here,

we present Scripture, a method to reconstruct the transcriptome of a mammalian cell using

only RNA-Seq reads and the unannotated genome sequence. We apply this approach to

mouse embryonic stem cells, mouse neuronal precursor cells, and mouse lung fibroblasts to

accurately reconstruct, for the vast majority of expressed genes, the full-length gene

structures at single-base resolution, including different splice isoforms. We identify novel

high-confidence biological variation in known protein-coding genes, including thousands of

novel 5'-start sites and 3'-ends, and almost a thousand novel internal coding exons. We

then determine the gene structures of over a thousand lincRNA loci, 27% of which show

alternative isoforms. The gene structures demonstrate that lincRNAs show strong

signatures of evolutionary conservation and pinpoint the specific regions under purifying

selection. Finally, we also identify hundreds of large multi-exonic anti-sense transcripts,

which show substantially lower conservation than the lincRNAs. Our results open the way

to direct experimental manipulation of thousands of non-coding RNAs, and demonstrate

the power of ab initio reconstruction to provide a comprehensive picture of mammalian

transcriptomes.
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INTRODUCTION

A critical task in understanding mammalian biology is defining a precise map of all the

transcripts encoded in a genome. While much is known about protein-coding genes in mammals,

relatively little is known about non-coding RNA (ncRNA) genes. Recent studies have suggested

that the mammalian genome encodes many thousands of large ncRNA genes -3, including a class

of large intergenic ncRNAs (lincRNAs) 4 . Recently, we used a chromatin signature, combining

Histone 3 Lysine 4 tri-methylation modifications (H3K4me3) that mark the promoter region and

Histone 3 Lysine 36 tri-methylation modifications (H3K36me3) that mark the entire transcribed

region, to discover the genomic regions encoding ~1600 lincRNAs in four mouse cell types

(mouse embryonic stem cells, embryonic fibroblast, lung fibroblasts, and neural progenitor

cells)4 , and -3300 lincRNAs across 6 human cell types5.

Defining the complete gene structure of these lincRNAs is a pre-requisite for both

experimental and computational studies of their function, including over-expression and

knockdown experiments, site-directed mutagenesis, and analysis of functional sequence features

and conservation. In our previous studies, we gained initial insights into the gene structure of

lincRNAs by hybridizing total RNA to tiling microarrays defined across the K4-K36 region. This

provided a coarse list of putative exonic locations and suggested that lincRNAs are likely to be

multi-exonic, spliced transcripts. However, due to the limited resolution of tiling arrays, the

precise gene structures of these lincRNAs - including 5' and 3' ends, intron-exon boundaries,

and connectivity between different exons - have remained unclear.

Advances in massively-parallel cDNA sequencing (RNA-Seq) have opened the way to

unbiased and efficient assays of the transcriptome of any mammalian cell6 ,7,8,9. In principle,
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RNA-Seq allows the identification of all expressed transcripts, both protein-coding and non-

coding. Recent studies in mouse and human cells have mostly focused on using RNA-Seq to

study known genes -for example, to quantify their expression level,' 8 , assess the level of

alternative splicing between known splice junctions7',0 and identify fusions between known

genes in cancers . However, these studies have critically depended on existing annotated genes,

and have focused on understanding variability within known transcripts. They were thus of

limited utility for discovering the complete gene structure of large numbers of non-coding

transcripts, such as lincRNAs.

An alternative strategy is to use an ab initio reconstruction approach 9,"2 -14 to learn the

complete transcriptome of an individual sample from only the unannotated genome sequence

and millions of relatively short sequence reads. A complete ab initio transcriptome

reconstruction of a sample will (1) identify all exons within the transcriptome; (2) enumerate all

the splicing events that connect these exons; (3) combine these connected sequences into

complete transcriptional units; (4) determine all isoforms of these transcripts, including

alternative 5' and 3' ends, and (5) discover novel transcriptional units. A successful ab initio

method should be applicable to large and complex genomes such as in mammals, and should be

able to reconstruct transcripts of variable sizes (short and long), expression levels (high and low)

and protein-coding capacity (coding and non-coding). When applied to diverse cell types, ab

initio reconstruction can thus render a comprehensive and unbiased picture of transcriptome

variation including novel alternative splicing events, variation in existing annotations, and

previously unknown genes.
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Despite early successes in yeast9, ab initio reconstruction of a mammalian transcriptome

has remained an elusive and substantial computational challenge. There has been important

recent progress in mammals, including (1) efficient gapped aligners (e.g., TopHat) that can map

short reads that span splice junctions ('spliced reads')13; (2) use of such gapped alignments to

identify novel splicing events9,13; (3) exon identification methods that can be used in principle to

piece together transcripts14; and (4) direct genome-independent assembly of the unmapped reads

to create sequence contigs (e.g., Abyss ). Each of these methods provides an important

component towards reconstruction, but none can reconstruct the complete transcriptome of a

mammalian cell. The ab initio approach applied in yeast9 does not scale to mammalian genomes

which are significantly larger, contain mostly multi-exonic transcripts, and have substantial and

complex alternative splicing. Exon identification methods14 treat each exon in isolation (as a

'transcribed region') but do not handle splicing directly. Thus, they are underpowered to identify

short or low-expressed exons, can miss whole genes despite strong cumulative evidence,

generate disconnected exons rather than (alternatively spliced) transcripts, and cannot resolve

anti-sense from overlapping sense transcription. Finally, approaches for genome-independent,

assembly-based reconstruction such as Abyss' 2 (that assemble the reads directly without

mapping to the genome) can currently only be applied to transcripts with immense coverage, and

are hence partial and biased in practice.

Here, we present Scripture, a comprehensive method for ab initio reconstruction of the

transcriptome of a mammalian cell, and apply it to transcriptomes of mouse embryonic stem

(mES) cells, neural progenitor cells (NPCs), and mouse lung fibroblasts (MLFs) to discover the

complete gene structures of 9738 protein coding genes, 1868 lincRNA genes (1073 from

previously undescribed loci), and 446 large, multi-exonic anti-sense genes. Our approach uses
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gapped alignments of spliced reads followed by reconstruction of the reads into statistically

significant transcript structures. For example, when applied to mES cells, we correctly identify at

high confidence the complete annotated full-length gene structures from 5' to 3' end at single

nucleotide resolution for 78% of mES expressed genes. Of the remainder that are expressed in

ESC, we successfully build the annotated 5' start for 20% of genes and the annotated 3' end for

71% of genes. For many of the expressed genes, we reconstructed structures that differ from the

reported annotation but we demonstrate that many of these alternative structures are supported

by independent experimental data. The three reconstructed transcriptomes reveal substantial

variation between cell types, including thousands of novel 5'-start sites for protein coding genes,

hundreds of alternative 3'-ends, and thousands of additional coding exons spliced onto annotated

protein-coding genes.

We also discover the gene structure and expression level of over 2000 non-coding

transcripts. These include hundreds of transcripts from previously identified loci encoding mouse

lincRNAs, more than a thousand additional previously unknown lincRNAs with similar

properties, and hundreds of multi-exonic antisense ncRNAs transcribed from the opposite strand

of an overlapping protein-coding gene locus. These detailed gene structures allow us to identify

distinct alternatively spliced isoforms of lincRNAs in different cell types, definitively show that

they have no significant coding potential, and show that they are evolutionary conserved,

including identifying for the first time the specific regions of conserved sequence within these

lincRNAs. These results open the way to direct experimental manipulation of this new class of

genes. Finally, our sensitive approach can correctly determine the transcribed strand, allowing us

to detect gene structures for hundreds of novel multi-exonic antisense ncRNAs transcribed from

the opposite strand of an overlapping protein-coding gene locus. Our results highlight the power
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of RNA-seq along with an ab initio reconstruction to render a comprehensive picture of cell

specific transcriptomes, and to identify novel genes and variation encoded in mammalian

genomes.

RESULTS

RNA-Seq libraries

We used massively parallel (Illumina) sequencing to sequence a cDNA library from

polyA(+) mRNA from mES, NPCs and MLFs cells. We used a cDNA preparation procedure that

combines a random priming step with a fragmentsation step'' 9 ' 5 and results in fragments of -700

nucleotides in size (Methods). We previously found'15 that this protocol provides relatively

uniform coverage of the whole transcript, thus assisting in ab initio reconstruction. We

sequenced each library on three lanes of the Illumina Genome Analyzer. For example, for the

mES library, we generated a total of 152 million paired-end reads of 76 bases in length. Using a

gapped aligner' 3, 93 million of these reads were uniquely alignable to the genome, providing

497Mb of aligned bases, at an average 262X fold coverage of the 38Mb within known protein

coding genes expressed in mES cells. We obtained similar results for the NPCs and MLFs

libraries (Methods).

Most uniquely aligned reads are consistent with the position of annotated protein coding

genes and measured expression levels, supporting the quality of our dataset. For example, in

mES cells, 76% of these reads map within the exonic regions of known protein-coding genes,

9% are in introns of known protein coding genes, and 15% map in intergenic regions.

Furthermore, less than 0.001% of paired reads extend across multiple known protein-coding loci,

92



indicating lack of chimeras. Finally, we found a strong correlation between expression levels of

protein-coding genes as measured by the number of sequence reads obtained here compared to

Affymetrix expression arrays (r=0.88 for all genes).

Scripture: a statistical method for ab initio reconstruction of a mammalian transcriptome

We next developed Scripture, a genome-guided method to reconstruct the transcriptome

using only an RNA-Seq dataset and an (unannotated) reference genome sequence. Scripture

consists of six steps (Fig. 1): (1) We use reads uniquely aligned to the genome, including those

with gapped alignments spanning exon-exon junctions ('aligned spliced reads')' 3 (Fig. 1c); (2)

From the aligned spliced reads, we construct a connectivity graph representing spliced

connections between base pairs in the genome (Fig. 1d); (3) Using all spliced and non-spliced

(contiguous) read data, we use a statistical segmentation approach4 to traverse the connectivity

graph and identify significant paths (Fig. le); (4) From the paths, we construct a transcript graph

connecting each exon in the transcript (Fig. If); (5) We augment the transcript graph with

connections based on paired-end reads and their distance constraints, allowing us to join

transcripts or remove unlikely isoforms (Fig. 1g); and (6) We generate a catalogue of transcripts

defined by the transcript graph. We discuss each of these steps in detail below.

We first map our reads to the genome, using a gapped aligner13 that efficiently handles

reads that span splicing junctions (Fig. la). This step is critical since -30% of 76 base reads are

expected on average to span an exon-exon junction (Methods). Furthermore, 'spliced' reads

provide direct information on the location of splice junctions within the transcript.

We next use only the spliced reads to infer a connectivity graph across the genome,

where each base in the genome is connected to those bases in the genome that are its immediate
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neighbors either in the genomic sequence itself or within a spliced read (Fig. 1d). Furthermore,

we use agreement with splicing motifs at each putative junction in the graph to orient the

connection (edge) in the connectivity graph9" 3 (Fig. Id, Methods).

To infer transcripts, we apply a statistical segmentation approach that identifies

significantly enriched paths in the connectivity graph using both spliced and non-spliced reads

(Fig le). Briefly, our segmentation approach identifies regions of mapped read enrichment

compared to the genomic background. This is done by scoring a sliding window using a test

statistic for each region, computing a threshold for genome-wide significance, and using the

significant windows to define intervals (Methods). To define intervals, we scan short windows

to identify consecutive coverage blocks that have a read coverage scoring above the genome-

wide significance threshold we computed. This approach is based on our successful method for

identification of chromatin modified regions in genomes4 , but is applied here to the connectivity

graph rather than to the linear genome.

The result is a set of statistically significant directed transcript graphs (Fig if), each

representing one or more splice isoforms of a transcript. Each node in a transcript graph is an

exon and each edge is a splice junction. A path through the graph from an exon with no

incoming edges (first exon) to an exon with no outgoing edges (last exon) represents one isoform

of the gene. Since each graph is directed, all multi-exonic paths are oriented (i.e. strand-specific,

Fig. le). Alternative spliced isoforms are identified by considering all possible paths in the

transcript graph; since this number may be large and represent spurious paths, we refine it in the

next step.
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Paired-end reads in transcriptome reconstruction and resolution of alternative spliced

isoforms

Paired-end information, consisting of reads that came from the two ends of the sequenced

RNA fragment, can provide two kinds of valuable additional information in the reconstruction.

First, the presence of paired-ends linking two regions shows that they appear in the same

transcript; such a connection might not otherwise be apparent because low expression levels or

non-alignable sequence might prevent a continuous chain of overlapping sequence reads (spliced

or unspliced) across the transcript. We thus augment the transcript graphs with paired-end

information, where available, to (indirectly) link nodes in the graph. We use these indirect links

(Fig. 1g) to add edges between disconnected graphs, add internal nodes (exons) that might have

been missed within a path (transcript), and add extra support for existing edges. This refines the

structure of our transcripts and increases our confidence in them, especially in lowly-expressed

transcripts that are more likely to have coverage gaps.

Second, the distribution of library insert sizes constrains the distance between the paired

end reads; these distance constraints can be used to infer the relative likelihood of some potential

transcripts (for example, those in which the paired ends would be much closer or much further

than typical). We infer the distribution of insert sizes for a given library from the position of read

pairs on transcripts from those genes for which there is only a single transcript model (i.e., no

detectable alternative splicing) (Methods). Indeed, for our ES library, for example, this

estimated distribution matches extremely well with the experimentally determined size range

(data not shown). We use this distribution to assign likelihoods to each read pair occurring within

a transcript graph, and then remove transcripts that are too unlikely (Methods).
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Figure 1: Scripture: a method for ab initio transcriptome reconstruction from RNA-Seq
data. (a) Spliced and unspliced reads. Shown is a typical expressed 4-exon gene
(1500032D16Rik, top, exons: grey boxes) with coverage from different type of reads. Unspliced
reads (black bars) fall within a single exon, whereas splice reads (dumbbells) span exon-exon
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junctions (thin horizontal lines connect the alignment of a read to the exons it spans). The
coverage track (bottom) shows the aggregate coverage of both spliced and unspliced reads. (b-g)
A schematic description of Scripture. (b) A cartoon example. Reads (black bars) originate
from sequencing a contiguous RNA molecule. Shown are transcripts from two different genes
(blue and red boxes), one with seven exons (blue boxes) and one with three exons (red boxes),
which are adjacent in the genome (black line). The grayscale vertical shading in subsequent
panels is shown for visual tracking. (c) Spliced reads. Scripture is initiated with a genome
sequence and spliced aligned reads (dumbbells) with gaps in their alignment (thin horizontal
lines). Scripture uses splice site information to orient splice reads (arrow heads). (d)
Connectivity graph construction. Scripture builds a connectivity graph by drawing an edge
(curved arrow) between any two bases that are connected by a spliced read gap. (Edges are color
coded to relate to the original RNA and eventual transcript). (e) Path scoring. Scripture scans
the graph with fixed-sized windows and uses coverage from all reads (spliced and non-spliced,
bottom track) to score each path for significance (p-values shown as edge labels). (f) Transcript
graph construction. Scripture merges all significant windows and uses the connectivity graph to
give significant segments a graph structure (three graphs in this example). (g) Refinement with
paired-end data. Scripture uses paired-end (dashed curved lines) to join previously
disconnected graphs (Gene 1, bold dashed line), find break point regions within contiguous
segments (e.g. no dashed lines between Gene 1 and 2), and eliminate isoforms that result in
paired-end reads mapping at a distance with low likelihood.
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Correct reconstruction of full-length gene structures at single-base resolution for the

majority of protein-coding genes

We first applied Scripture to our mouse ES RNA-Seq dataset, and estimated the method's

sensitivity and accuracy by comparing our reconstructions to known annotations of protein-

coding genes. Scripture identified 15,246 nonoverlapping, multi-exonic transcript graphs which

correspond to 16,122 known genes from the NCBI RefSeq project 16. The average number of

transcript graphs per gene is 1.3, with 76.6% of reconstructed genes covered by a single graph

(single transcript in the reconstruction, though possibly with multiple paths for different splice

isoforms) and 18.5% covered by two transcript graphs (the transcript is split to two separate

pieces in the reconstruction).

For -78% (10,355) of the expressed transcripts, Scripture reconstructed the full-length

structure of the longest known splice isoform (from 5' to 3' end of the gene, including all exons

and splice junctions) at single base resolution (e.g. Fig. 2a). All of our reconstructed transcripts

for known multi-exonic transcripts also had the correct orientation (strand). In particular,

Scripture was able to correctly reconstruct known genes that overlap one another on opposite

strands (e.g. Fig. 2a).

Complete transcript structures are recovered across a very broad range of expression

levels (Fig. 2b,c). For example, Scripture accurately reconstructs the full-length transcript of

-73% of the known protein-coding genes at the second quintile of expression (68.4X mean

coverage), -88% of genes from the third quintile (144X fold coverage), and 94% of the genes

from the top quintile. Similarly, the average proportion of bases constructed for each transcript

(considering both full and partial reconstructions) was high (Fig. 2c). For example, even for the

bottom 5% of expressed genes (15X mean coverage), where we reconstruct the full length gene
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structure for only 19% of the transcripts (Fig. 2b), we do recover on average 62% of each of

these transcripts' bases (Fig. 2c). This demonstrates the power of Scripture to reconstruct a

substantial portion of lowly expressed transcripts.

In the remaining -22% (3007 genes) of cases that do not correspond to annotated full-

length transcripts, 71% (15% of the total) match at the annotated 3'-end, 20% (4% of the total)

match at the annotated 5' start; and the remainder (3% of total reconstructed transcripts) match at

neither end. Importantly, we show below that many of these variant transcripts likely represent

true alternative isoforms.

We obtained similar results in the other two cell types, with 20,854 transcript graphs that

correspond to 12,854 known genes in NPCs and 22,216 transcripts graphs corresponding to

13,257 known genes in MLFs. Taken together, our analysis shows that Scripture can accurately

reconstruct full-length gene structures at nucleotide resolution for the majority of expressed

genes. Since the minority of genes that are not reconstructed are those with low expression

levels, it should be possible to reconstruct most of these genes simply by generating additional

RNA-Seq data.
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Figure 2: Scripture correctly reconstructs full length transcripts for the majority of
annotated protein coding genes. (a) A typical Scripture reconstruction on mouse chr9. Top
(red) - RNA-Seq read coverage (from both non-spliced and spliced reads); middle (black) -
three transcripts reconstructed by Scripture, including exons (black boxes) and orientation (arrow
heads); bottom (blue) -RefSeq annotations for this region. All three transcripts are fully
reconstructed from 5' to 3' ends capturing all internal exons; notice that Scripture correctly
reconstructed the overlapping transcripts Pus and Hyls1. (b) Fraction of genes fully
reconstructed in different expression quantiles (5% increments) in ESC. Each bar represents
a 5% quantile of read coverage for genes expressed (mean read coverage is noted in blue). The
height of each bar is the fraction of genes in that quantile that were fully reconstructed. For
example, ~20% of the transcripts at the bottom 5% of expression levels are fully reconstructed;
~94% of the genes at the top 95% of expression are fully reconstructed. (c) Portion of gene
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length reconstructed in different expression quantiles in ESC. Shown is a box plot of the

portion of each transcript's length that was covered by a Scripture reconstruction in each 5%
coverage quantile. The black line in each box is at the median, the rectangle spans the 25% and
75% coverage quantiles; the whiskers depict the annotations in the quantile most and least
covered by our reconstruction. For example, at the bottom 5% of expression, Scripture
reconstruct a median length of 60% of the full length transcript.
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Novel transcriptome variations in annotated protein-coding genes

Given that the vast majority of the significant ab initio reconstructions of protein-coding

genes are extremely accurate, we next investigated the differences between the reconstructed

mESC transcriptome and the known gene annotations. We focused on transcripts in mESC with

(i) novel 5' start sites; (ii) novel 3' ends; and (iii) previously unidentified exons within the

transcriptional units of known protein-coding genes. In each category, we first discuss below the

reconstructed transcripts in mESC and then consider the results for the NPCs and MLFs.

(i) Alternative 5' start sites in mouse ES cells are supported by H3K4me3 marks

We found 1804 transcripts in mESCs that match the annotated 3'-end but have an

alternative 5' start site. We distinguish between internal alternative 5' start sites (1397 cases,

Fig. 3a) that occur downstream of the annotated start, and external alternative 5' start sites (407

cases, Fig. 3b) that occur upstream of the annotated start. These novel 5 start sites are derived

from an additional exon (coding or UTR) not overlapping the annotated first exon.

We sought independent experimental support for the accuracy of 1397 internal 5'-start

sites by examining the location of H3K4me3, a mark of the promoter region of genes 7 . We

found that 1260 (90%) of the internal 5'-starts contain H3K4m3 marks, consistent with being

actively transcribed promoters. Notably, in 63% of cases with an internal 5'-start site, our

reconstructed transcriptome contained no isoform starting at the annotated 5'-start site.

For the 407 transcripts with external 5' start sites, we found that 75% are marked with

H3K4me3. These alternative start sites are on average 21Kb upstream of the annotated site

(48Kb SD), substantially revising the annotated promoters. For 66% (214 transcripts) of these

cases, our reconstructions contain only the novel 5' start site and not the annotated start site.
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We observed similar results from NPCs and MLFs cells (Fig, 3ab) Altogether, we

identified 2502 internal 5' start sites (2193 are supported by K4me3 in their respective tissues) in

at least one cell type (1870 are specific to one cell type, 497 are present in two cell types, and

135 in all three), and 635 external 5' start sites in at least one cell type (396 are specific to one

cell type, 149 are present in two cell types, and 90 in all three). In particular, 44% of these novel

5' ends are unique to the ESC state and are not present in either MLFs or NPCs.

(ii) Alternative 3' UTRs used in mES cells supported by polyadenylation motifs

Among our reconstructed transcripts in mES cells, there are 551 (-4%) cases with an

alternative 3'-end downstream of the annotated 3'-end (mean distance 30 Kb ± 67Kb SD

downstream, e.g. Fig. 3c). Of these, 275 (-50%) have evidence of a polyadenylation motif

within the novel 3' exon, which is only slightly lower than for annotated 3' ends (60%), and

much higher than for randomly chosen size-matched exons (6%). The frequency of the

polyadenylation motif supports the accuracy of the reconstruction.

Accurately detecting upstream (early) termination is more challenging, because it is

difficult to distinguish between early termination and incomplete reconstruction, especially in the

case of genes with relatively low expression levels and sequence coverage. We therefore

designated novel 3' ends only in those cases that did not overlap any of the known exons in the

annotated transcript and required that all considered transcripts contain complete 5' start sites

(further reducing the likelihood of incomplete reconstruction). We identified 759 transcripts with

upstream 3'-ends in mESCs (Fig. 3d); the vast majority of them (90%) also had isoforms that

contained the annotated 3' end. Of these upstream 3'-ends, 44% contain a poly-adenylation

motif. This is lower than the -60% for annotated 3'-ends, but much higher than the 6% for other
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size-matched exonic regions; it thus supports the biological relevance of many of the novel

upstream 3'-ends. We note that the isoform with alternative 3' internal end tends to be expressed

at a somewhat lower level than the isoform with the annotated 3' end (at a median 1.5 fold, p<

0.002, paired t-test).

We observed similar results for NPCs and MLFs cells (Fig. 3c,d). Altogether, we

identified 868 downstream 3' ends in at least one cell type (635 are specific to one cell type, 144

are present in two cell types, and 93 in all three) and 1609 upstream 3' ends in at least one cell

type (1221 are specific to one cell type, 318 are present in two cell types, and 70 in all three).

(iii) 903 additional coding exons within known gene structures are highly conserved and

preserve ORFs

We found 534 high confidence transcripts in mESC with at least one additional

previously unannotated internal coding exon (neither first nor last) spliced into annotated

protein-coding transcripts (Fig. 3e). These transcripts contained 591 novel internal exons,

ranging in length from 6bp to 3.5Kb (mean length of 217bp ± 388bp SD, comparable to

annotated exons). Of these additional exons, 322 (60%) are present in all versions of the

reconstructed transcript in mESC, whereas the remaining additional exons are part of some

transcript isoforms but not others within the same cell type.

The vast majority (83%) of these novel exons retain the reading frame of the transcript,

consistent with their being novel protein-coding exons. Moreover, the vast majority of these

novel coding exons are as highly conserved as known coding exons, further supporting their

functionality. We tested for the presence of the novel exons within 5 transcripts, using RT-PCR

followed by Sanger sequencing (Methods), and validated all of these tested cases.
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We observed similar results in MLFs (194 transcripts, with 212 exons) and NPCs (300

transcripts, 309 exons) (Fig. 3e). In -70% of cases, the novel exons are present in all versions of

the reconstructed transcript within a cell type. Altogether, we identified 903 novel internal exons

in at least one cell type (739 are specific to one cell type, 128 are present in two cell types, and

36 in all three, Fig. 3e). The vast majorities of these retain the ORF and show clear evolutionary

conservation.
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Figure 3: Alternative 5' ends, 3' ends and novel coding exons in transcripts reconstructed
by Scripture. Shown are representative examples (tracks, left) and summary counts (Venn
diagrams, right) of five categories of variations discovered in Scripture transcripts compared to
the known annotations. In each representative example, shown is the coverage by RNA-Seq
reads (top track, red), the reconstructed annotation (middle track, black), and the known
annotation (bottom track, blue). The novel regions in the reconstruction are marked by gray
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shading. In each proportional Venn diagram we show the number of transcripts in this class in
each cell type (ESC - green, NPC - blue, MLF - red) and their overlap. (a) Internal alternative
5' start; (b) External alternative 5' start; (c) Alternative downstream 3' end (extended
termination); (d) Alternative upstream 3' end (early termination); (e) Novel coding exons.
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Discovery of the complete gene structures of hundreds of lincRNA loci

We next turned to identifying the gene structures of transcripts expressed from known

lincRNAs loci. In our previous work, we had identified 317 lincRNAs based on K4-K36

domains in mES cells and using conservative filtering criteria . In the mES RNA-Seq data, we

were able to reconstruct multi-exonic gene structures for 250 (78.8%) of these 317 loci (e.g. Fig.

4a). (This is comparable to the proportion (78.5%) reconstructed for protein-coding genes with

K4-K36 domains in mES cells.) We accurately reconstructed 88% (160/183) of mES lincRNAs

for which we previously identified an RNA hybridization signal from tiling microarrays. In 11

cases we identified a single reconstructed lincRNA structure that spans across multiple K4-K36

regions and in 55 cases we identified a single K4-K36 locus that corresponded to two distinct

lincRNA gene structures in opposite orientations. These discrepancies are likely due to the lower

resolution of our chromatin maps compared with the base-pair resolution of our transcript maps.

We failed to reconstruct transcripts for the remaining 67 lincRNAs that had been

previously identified based on K4-K36 domains in mESC. These lincRNA genes may not have

been reconstructed because they are either expressed at lower levels, are single exons, are false

positives of our chromatin signature, or are false negatives of the reconstruction approach. For

example, 30 of our previously identified K4-K36 domains are reconstructed as likely connected

to a new isoform of a neighbouring protein coding transcript and thus are no longer counted as

lincRNAs in our refined catalogue. The principal reason we miss the remaining 37 K4-K36

domains is low expression levels. Nonetheless, 67% of these remaining lincRNA loci (25

lincRNAs) are significantly enriched for reads (average of 0.76 reads/bp compared to expected

0.01 reads/bp, nominal p<0 .0 0 1, random permutation of reads against size matched random
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regions). This is consistent with these loci being transcribed. With higher coverage, it should be

possible to reconstruct them.

The reconstructed lincRNA transcripts in mESCs have 3.7 exons ± 2.1 SD on average, an

average exon size of 350 ± 465 bp, and an average mature spliced size of 3.2 ± 1.7 Kb

(compared to 9.7 ± 9.5 exons, exon length of 291 ± 648 bp, total length of 2.9Kb ± 2.3 Kb for

protein coding genes). Since lincRNAs contain canonical splice acceptor and splice donor sites at

their exon-intron boundaries, we can use these to identify the strand information for >99% of

reconstructed lincRNAs. The predicted strand is consistent with that inferred from the location of

K4me3 modification, which marks the 5' end, and with the orientation determined from a strand-

specific RNA-Seq library which we generated independently (below, Methods). At least 82% of

lincRNAs in mESCs (205 lincRNAs) likely represent 5'-complete transcripts, as indicated by

overlap between the reconstructed 5'-ends of lincRNAs and a site of H3K4me3 modification.

Furthermore, the majority of the lincRNAs appear to be 3'-complete as well (since -50% contain

a polyadenylation motif, comparable to 60% for protein-coding genes and far above background

of 6%).

We had similar success in reconstructing lincRNA gene structures for K4-K36 lincRNA

loci in MLFs and NPCs. We identified 211 out of 264 multi-exonic lincRNAs in MLFs and 202

out of 245 in NPCs. 69% of lincRNAs in MLFs (145 lincRNAs) and 81% of lincRNAs in NPCs

(163 lincRNAs) likely represent 5'-complete transcripts based on sites of H3K4me3

modification; 18% of lincRNAs in MLFs (37 lincRNAs) and 37% in NPCs (75 lincRNAs) have

detectable 3' polyadenylation sites. In addition to these lincRNAs, we successfully reconstructed

another 103 lincRNAs previously identified only in mouse embryonic fibroblasts but which were

now reconstructed in at least one of the other three cell types (Methods). Altogether, we
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identified gene structures for 567 previously defined lincRNA loci in at least one of the three cell

types (78% of those previously defined in these 3 cell type; 56% of those present in the previous

catalogue in any cell type). 312 of the 567 lincRNAs are specific to one cell type, 174 are present

in two cell types, and 80 are in all three.
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Figure 4: Non-coding transcripts reconstructed by Scripture. (a) A representative example of
a lincRNA expressed in ESC. Top panel - mouse genomic locus containing the lincRNA and its
neighbouring protein coding genes. Bottom panel - zoom in on the lincRNA locus showing the
coverage of H3K4me3 (green track), H3K36me3 (blue track), and RNA-Seq reads (red track)
overlapping the transcribed lincRNA locus, as well as its Scripture reconstructed transcript
isoforms (black). (b) A representative example of a multi-exonic antisense ncRNA expressed in
ESC. Top panel - mouse genomic locus containing the antisense transcript. Bottom panel -
zoom in on the antisense locus showing the coverage of H3K4me3 (green track), H3K36me3
(blue track), and RNA-Seq reads (red track) overlapping the transcribed antisense locus, as well
as its Scripture reconstructed gene structure (black).
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Additional novel lincRNAs identified across mES cells, MLFs and NPCs

In addition to previously annotated protein-coding genes, pseudogenes, and lincRNA loci, our

catalog contains another 1073 reconstructed multi-exonic transcripts that map to intergenic

regions in at least one cell type (591 in mESCs, 369 in MLFs, and 445 in NPCs; 846 are cell type

specific, 185 in two of the three, and 63 appear in all three cell types). These represent novel

intergenic transcripts. In principle, they could be either protein coding or non-coding RNAs.

The majority (88%) of the 1073 novel intergenic transcripts do not appear to encode

proteins, and can be designated as novel lincRNAs, based on the Codon Substitution Frequency

(CSF) scores 1'19 (Methods) across the mature (spliced) RNA transcript (Fig. 5a). Furthermore,

the vast majority (-80%) of the transcripts do not contain any open reading frame (ORF) larger

than 100 amino acids (Fig. 5b). The remaining ~12% might reflect novel protein coding genes,

ambiguous calls, and/or segmental duplications of protein coding loci. When we carefully

reviewed the loci to eliminate possible artifacts, we identify 66 loci that are likely to be novel

protein coding genes based on their high CSF score, a large open reading frame (>200 amino

acids), and very high levels of evolutionary conservation, comparable to known protein-coding

genes.

We investigated why the novel lincRNA loci had not been identified in our previous

study that identified lincRNAs based on the presence of K4-K36 domains in niESCs. One of the

reason appears to be that our previous study imposed stringent criteria to ensure that the novel

loci were well separated from known protein-coding genes - for example, requiring that a K4-

K36 domain extend over at least 5 Kb and be clearly separated from the nearest known gene

locus 4. Indeed, of the novel intergenic transcripts found in ES cells, 450 (76%) had enrichment

for a K4-K36 domain (a comparable proportion as for protein-coding genes) but failed to meet
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the other two criteria or were too weak to be identified at a genome-wide significance (without

knowing their locus a priori). The genomic loci of the novel lincRNAs tend to be much shorter

than the previously identified set (average -3.5Kb) and have shorter transcript lengths (859bp ±

1230bp SD vs. 3.2Kb ± 2.1Kb SD, with 3.4 exons vs 3.7 exons). On average, they are also closer

to neighboring protein-coding genes (20Kb ± 157Kb SD). These results underscore the increased

power of RNA-Seq to confidently identify lincRNAs compared to a chromatin-based method.

Most lincRNAs are evolutionarily conserved, with 22% of bases under purifying selection

The reconstructed full-length gene structures of lincRNAs allow us to accurately assess

their evolutionary sequence conservation in each exon and in small windows. To this end, we

identified the orthologous sequences for each lincRNA across 29 mammals and considered the

total contraction of the branch length of the evolutionary tree connecting them. Specifically, we

used a constraint metric (4 that reflects the 'contraction' of the branch length compared to the

neutral tree based on the total number of substitutions per base for random genomic regions

(Methods). We calculated o over the entire lincRNA transcript, as well as over individual exons.

Our previous estimates of conservation had relied on approximate definitions of the exons based

on hybridization to tiling arrays4 , leaving open the possibility of mis-estimation.

Based on our high resolution gene structures, the lincRNA sequences show significantly

greater conservation than random genomic regions or introns (Fig. 5c). Their conservation level

is similar to that seen for 8 known functional lincRNAs, including XIST , HOTAIR and

NRON , and is lower than that seen for protein-coding exons, likely reflecting a difference in

the constraints acting on protein coding sequences versus lincRNAs. The results are consistent

with our previous estimates of conservation4. Interestingly, the conservation profiles are
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essentially identical between the chromatin defined lincRNAs from our previous study and the

novel ones identified only in this study (Fig. 5c), further supporting our conclusion above that

they are part of the same class of functional large ncRNA genes.

We also determined the specific regions within each lincRNA that are under purifying

selection and thus likely to be functional. By computing o> within short windows (Methods), we

found that on average, 22% of the bases within the lincRNAs lie within conserved patches,

which is comparable to 25% for the 8 known functional lincRNAs cited above. In contrast, 7%

of intronic bases and 77% of protein coding bases lie within conserved patches. These conserved

patches provide a critical starting point for functional studies, by experimental manipulation and

computational analysis. For example, one such conserved patch in the XIST lincRNA has been

shown to allow the ncRNA to bind to the Polycomb complex 23.

lincRNAs are expressed at comparable levels to moderately expressed protein coding genes

On average, we found that lincRNAs are expressed at readily detectable levels, albeit

slightly lower than those of protein-coding genes. We estimated the expression for each of our

reconstructed transcripts using RPKM (Methods), and found that the median expression level of

the lincRNAs is approximately 3-fold lower than that of protein-coding genes (Fig. 5d). The

distributions show substantial overlap, with -25% of lincRNAs having expression levels higher

than the median level for protein-coding genes (Fig. 5d).
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Figure 5: Protein coding capacity, conservation levels and expression of lincRNAs and
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multi-exonic antisense transcripts. Shown is the cumulative distribution of CSF scores (a) and
maximal ORF length (b) for protein coding transcripts (black), lincRNAs (blue) and multi-
exonic anti-sense transcripts (green). (c) Conservation levels for exons from protein coding
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distribution of sequence conservation across 29 mammals for exons from protein-coding exons
(black), introns (red), exons from previously annotated lincRNA loci (blue), exons from newly
annotated lincRNA transcripts (grey), and exons from multi-exonic antisense transcripts (green).
(d) Expression levels of protein coding, lincRNAs and multi-exonic antisense transcripts. Shown
is the cumulative distribution of expression levels (RPKM) in ESC for protein coding transcripts
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Variations in lincRNA isoforms and expression

A substantial fraction (-41%) of the novel lincRNAs were identified in at least two of the

three cell types. This is comparable to the 45% of the previously identified lincRNAs present in

at least 2 out of the 3 cell types. In contrast, 80% of expressed protein coding genes are

expressed across two of the three cell types. This suggests that lincRNAs are likely to be more

tissue-specific than protein coding genes.

Despite the shared presence of hundreds of lincRNAs in all three cell types, there can be

substantial differences in their expression levels. For example, of the 217 lincRNAs with

detectable expression in all three cell types, 10% were expressed at least 3-fold higher in mESCs

than in either of the other two cell types (3% were most highly expressed in MLFs, 29% were

most highly expressed in NPCs). Conversely, 38% of lincRNAs were expressed at least 3-fold

lower in mESCs than in MLFs and NPCs (11% in MLFs, 5% in NPCs).

A substantial portion of lincRNA loci produce alternative spliced isoforms. For example,

within mESCs we identified two or more alternative splicing isoforms for 25% of lincRNA

genes, comparable for 30% of protein coding genes (16% of lincRNAs in MLFs have alternative

splice isoforms, and 13% in NPCs) Altogether, 27% of the 1640 lincRNA loci have evidence for

alternative isoforms in any of the three cell types.

Discovery of hundreds of novel large antisense transcripts

Our transcriptome reconstruction also includes hundreds of transcripts that overlap

known protein-coding gene loci but are transcribed in the opposite orientation and likely

represent anti-sense transcripts. To focus on novel antisense transcripts, we required that a

protein-coding gene has no known antisense protein-coding genes overlapping the region.
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Furthermore, since Scripture used the orientation of the splice junctions to infer the transcript's

orientation (strand), we required that any identified antisense transcript be multi-exonic.

Using these criteria, we identified 201 antisense multi-exonic transcripts in mESCs (e.g.

Fig. 4b); these transcripts have an average 5 exons ± 8 SD per transcript, and an average

transcript size of 1.7Kb ± 1.6Kb SD (min 121bp, max 15.8Kb). The antisense transcripts overlap

the genomic locus of the overlapping protein coding gene by 1023 bp ± 1620bp SD (83% ± 29%

SD) on average, but their overlap with the exons of the sense transcript is substantially lower at

766bp ± 1581 SD (48% ±43% SD) on average.

We validated the reconstructed mESC anti-sense transcripts by three independent sets of

experimental data. First, the majority of the anti-sense loci carry an H3K4me3 mark at their 5'-

end, consistent with its independent and antisense transcription. Specifically, of the 164

transcripts where it is possible to detect an independent H3K4me3 mark (because the 5'-end of

the anti-sense transcript does not overlap the 5'-ends of the sense gene), we found an

independent H3K4me3 mark at the 5'-ends of the antisense locus in 64% of the cases (e.g. Fig.

4b). Second, we generated and sequenced a strand-specific library in mES cells (Methods) using

a published RNA ligation protocol and sequenced one lane of this library (17.5M reads,

Illumina, Methods). In >90% of cases we were able to confirm the existence of a significant

number of reads on the correct strand of these antisense transcripts. The remaining cases have

lower average expression levels, and thus are likely less readily detected in the more limited

amount of data in the strand-specific library. In no case did the strand-specific library indicate

that Scripture had identified the wrong strand. Finally, we used RT-PCR to unique exons of the

antisense transcript (Methods) followed by Sanger sequencing to individually confirm 5 of 5

anti-sense transcripts tested.
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The majority of the anti-sense transcripts appear to be non-protein coding, by both ORF

analysis and CSF scores (Fig. 5a,b). The novel antisense transcripts largely lack significant

ORFs, with the maximum possible ORF less than 100 amino acids in >95% of cases (Fig. 5b).

Furthermore, -85% are likely to be non-protein-coding based on their CSF scores (Methods,

Fig. 5a). Four of the newly identified antisense transcripts had a large, conserved open reading

frame and are likely novel, previously unannotated protein coding genes.

We obtained similar results for anti-sense transcripts in MLFs and NPCs (159 and 168

multi-exonic anti-sense transcripts, respectively). Altogether, we identified 446 novel anti-sense

transcripts expressed in at least one cell type (372 are cell type specific, 66 in two of the three,

and 8 appear in all three cell types).

The 446 anti-sense transcripts are expressed at comparable levels to the novel lincRNAs

(Fig. 5d), but show substantially lower sequence conservation. When we estimated the

conservation of these genes by calculating the o metric for the transcript (calculated over the

portions that do not overlap protein-coding exons on the sense strand), we found that the

antisense ncRNAs showed very little evolutionary conservation, suggesting that the antisense

ncRNAs are a distinct class from the lincRNAs (Fig. 5c).

DISCUSSION

Despite the availability of the genome sequence of many mammals, a comprehensive

understanding of the mammalian transcriptome has been an elusive goal. While the recent

development of massively parallel RNA-Seq provides a systematic method to comprehensively

sequence the transcriptome of a mammalian cell, the computational tools needed to reconstruct

all full-length transcripts from the wealth of short read data were largely missing. Indeed, most
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methods for analyzing RNA-Seq have assumed the availability of a previously annotated catalog

of protein-coding genes, and are thus not optimal for discovering novel transcript variations in

known genes or for finding novel genes - especially moderately expressed, non-coding ones

such as lincRNAs. A recent study proposed to overcome this limitation experimentally by using

very long reads (e.g. 454 sequencing), as a scaffold for short read reconstruction. This is

applicable, albeit at a substantial cost, for highly expressed genes, but would require incredible

depth to cover more lowly expressed ones.

Here, we present Scripture, a novel computational method to reconstruct a mammalian

transcriptome with no prior knowledge of gene annotations. Scripture relies on spliced reads to

traverse splice junctions and build a connectivity graph between discontiguous (spliced)

segments, uses this graph and both spliced and non-spliced reads to identify transcripts as

significant paths, resolves multiple splice isoforms as alternative paths, and leverages paired-end

information to refine these transcripts, by removing low likelihood transcripts, breaking spurious

connections and combining disconnected ones. At the heart of Scripture is a statistical

segmentation approach, which provides a principled method to identify significant transcripts.

By relying on a range of window sizes to drive the segmentation process, Scripture can identify

both short but strongly expressed transcripts as well as much lower expressed transcripts for

which there is aggregate (diffuse) evidence along the entire transcript length. This latter feature

is critical for the discovery of relatively low expressed transcripts, such as many lincRNAs.

Notably, Scripture does rely on a reference genome sequence (albeit unannotated), but many of

its components can also be used in the development of methods for de novo assembly of

transcripts from read data only (with no read mapping). This will be essential when a reference

genome is not known, as in environmental samples, non-model organisms, and cancer.
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We applied Scripture to RNA-Seq data from pluripotent ES cells and differentiated

lineages and showed that we can accurately reconstruct the majority of expressed annotated

protein coding genes, at a broad range of expression levels. Our results also uncover a large

number of novel isoforms in the protein-coding transcriptome, including thousands of novel 5'

start sites, hundreds of novel 3' ends and hundreds of novel coding exons. We provide strong

evidence from chromatin modification states, polyadenylation signals and sequence conservation

that these novel isoforms are biologically functional. This novel variation within known protein

coding genes may play key regulatory roles. For example, most of the discovered alternative 5'

start sites occur in a cell-type specific fashion, and thus involve cell-specific promoters likely

with distinct regulatory mechanisms. Similarly, novel 3' ends define distinct 3'-UTRs and have

the potential for distinct translational regulation (for example, through different miRNA binding

sites). Finally, the novel tissue-specific protein-coding gene exons that we discover are highly

conserved and preserve the ORF, suggesting that they encode cell type-specific protein products.

Going beyond protein-coding genes, we leverage Scripture's sensitivity and resolution to

reconstruct the gene structures of hundreds of non-coding RNA genes in these 3 cell types,

including both lincRNAs and multi-exonic antisense transcripts. It is clear that the mammalian

genome encodes thousands of large ncRNAs, which are typically moderately expressed and are

hence missed by traditional methods. We had previously identified many lincRNAs by searching

for chromatin signatures of actively transcribed genes that are well-separated from known

protein-coding genes to define novel loci, and by using RNA hybridization to tiling microarrays

to approximately define the exons. In contrast, Scripture identified many additional lincRNAs

(including those that are closer to protein-coding loci and those that have relatively low

expression) and provided precise gene structures for each. In addition, Scripture identified
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hundreds of large antisense ncRNAs, which overlap protein coding gene transcripts and hence

could not be effectively detected using chromatin data alone. Notably, our reconstructions

(despite being based on non-strand specific libraries) resolve such overlapping sense and anti-

sense transcripts at great accuracy, as subsequently validated with strand-specific RNA-Seq.

Overall, we find that there are thousands of large ncRNAs across the three cell types in

our study. Our data show that the ratio of active protein-coding to non-coding genes in these cell

types is roughly 10:1 (although the ratio may fall somewhat as additional cell types are studied,

because ncRNAs appear to be somewhat more tissue specific). However, the total number of

RNA molecules is more heavily biased toward the protein-coding fraction, with a proportion of

-100:1 coding to non-coding RNA.

Scripture identifies precise gene structures for the majority of previously found lincRNA

loci (as well as for the newly discovered ones). These gene structures are a pre-requisite for

further functional studies, both experimental and computational. For example, using these gene

structures, we identified the specific regions within each lincRNA that are under purifying

selection (conservation). These will provide a starting point for experimental manipulation (e.g.

site directed mutagenesis) and computational investigation (e.g. identification of sequence or

RNA structural elements).

Taken together our results highlight the power of ab initio reconstructions - using only

read data and an unannotated reference genome - to discover novel transcriptional variation

within known protein coding genes, and they provide a rich catalog of precise gene structures for

novel non-coding RNAs. The next step is clearly to apply this approach to a wide range of cell

types in human and mouse, to obtain a comprehensive picture of the complex and dynamic

mammalian transcriptome.
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METHODS

Cell culture

Mouse embryonic stem cells (V6.5) were co-cultured with irradiated MEFs (GlobalStem; GSC-

6002C) on 0.2% gelatin coated plates in a culture media consisting of Knockout DMEM

(Invitrogen; 10829018) containing 10% FBS (GlobalStem; GSM-6002), 1% pen-strep 1% Non-

essential amino acids, 1% L-glutamine, 4ul Beta-mercaptoethanol, and .01% LIF (Millipore;

ESG1106). mES cells were passaged once on gelatin without MEFs before RNA extraction.

V6.5 ES cells were differentiated into neural progenitor cells (NPCs) through embryoid body

formation for 4 days and selection in ITSFn media for 5-7 days, and maintained in FGF2 and

EGF2 (R&D Systems) as described 26. The cells uniformly express nestin and Sox2 and can

differentiate into neurons, astrocytes and oligodendrocytes. Mouse lung fibroblasts (ATCC),

were grown in DMEM with 10% fetal bovine serum and penicillin/streptomycin at 370, 5% CO2.

RNA Extraction & Library Preparation

RNA was extracted using the protocol outlined in the RNeasy kit (Qiagen). Extracts were

treated with DNase (Ambion 2238). Polyadenylated RNAs was selected using Ambion's

MicroPoly(A)Purist kit (AM1919M) and RNA integrity confirmed using Bioanalyzer (Agilent).

A 'regular' RNA sequencing library (non strand specific) was created as previously described,

with the following modifications. 250 ng of polyA' RNA was fragmented by heating at 98'C for

33 minutes in 0.2 mM sodium citrate, pH 6.4 (Ambion). Fragmented RNA was mixed with 3 pig

random hexamers, incubated at 70'C for 10 minutes, and placed on ice briefly before starting

cDNA synthesis. First strand cDNA synthesis was performed using Superscript III (Invitrogen)

for 1 hour at 55'C, and second strand using E. coli DNA polymerase and E. coli DNA ligase at
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16 C for 2 hours. cDNA was eluted using Qiagen MiniElute kit with 30ul EB buffer. DNA

ends were repaired using dNTPs and T4 polymerase, (NEB) followed by purification using the

MiniElute kit. Adenine was added to the 3' end of the DNA fragments to allow adaptor ligation

using dATP and Kelnow exonuclease (NEB; M0212S) and purified using MiniElute. Adaptors

were ligated and incubated for 15 minutes at room temperature. Phenol/choloform/isoamyl

alcohol (Invitrogen 15593-031) extraction followed to remove the DNA ligase. The pellet was

then resuspend in lOul EB Buffer. The sample was run on a 3% Agarose gel (Nusieve 3:1

Agarose) and a 160 - 380 base pair fragment was cut out and extracted. PCR was performed

with Phusion High-Fidelity DNA Polymerase with GC buffer (New England Biolabs) and 2M

Betaine (Sigma). [PCR conditions: 30 sec at 98'C, (10 sec at 98'C, 30 sec at 65'C, 30 sec at

72'C -16 cycles) 5 min at 72'C, forever at 4'C], and products were run on a poly-acrylamide gel

for 60 minutes at 120 volts. The PCR products were cleaned up with Agencourt AMPure XP

magnetic beads (A63880) to completely remove primers and product was submitted for Illumina

sequencing.

The "strand-specific" library was created from 100 ng of polyA* RNA using the previously

published RNA ligation method2 4 with modifications from the manufacturer (Illumina,

manuscript in preparation). The insert size was 110 to 170 bp.

RNA-Seq library sequencing

All libraries were sequenced using the Illumina Genome Analyzer (GAII). We sequenced 3 lanes

for mouse ESC corresponding to 152 million reads, 2 lanes for MLFs corresponding to 161

million reads, and 2 lanes for NPCs corresponding to 180 million reads.
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Alignments of reads to the genome

All reads were aligned to the mouse reference genome (NCBI 37, MM9) using the TopHat

aligner13 . Briefly, TopHat uses a two-step mapping process, first aligning all reads that map

directly to the genome (with no gaps), and then attempting to map all the reads that were not

aligned in the first step using gapped alignment. TopHat uses canonical and non-canonical splice

sites to determine possible locations for gaps in the alignment. While all reported results rely on

TopHat alignments, very similar results are obtained in practice using the BLAT algorithm 27,

when allowing for gaps, and conservatively removing all gapped alignments that are aligned to

less than 80% of the read and do not contain canonical or non-canonical splice sites at the

locations of the gap. Since TopHat uses a global alignment strategy it is more suitable for short

RNA-Seq reads and far more efficient than BLAT.

Generation of connectivity graph

Given a set of reads aligned to the genome, we first identified all spliced reads, as those whose

alignment to the reference genome contains a gap. These reads and the reference genome are

used to construct connectivity graphs. Each connectivity graph contains all bases from a single

chromosome. The nodes in the graph are bases and the edges connect each base to the next base

in the genome as well as to all bases to which it is connected through a 'spliced' read (Fig. 1). In

the analysis presented, we defined an edge between any two bases in the chromosome that were

connected by two or more spliced reads. The connectivity graph thus represents the contiguity

that exists in the RNA but that is interrupted by intron sequences in the reference genome.

Identification of splice site motifs and directionality
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We restricted our analysis to splice reads that mapped connecting donor/acceptor splice sites,

either canonical (GT/AG) or non-canonical (GC/AG). We oriented each mapped spliced read

using the orientation of the donor/acceptor sites it connected.

Construction of transcript graphs

The 'spliced' edges in the connectivity graph reflect bases that were connected in the original

RNA but are not contiguous in the genome. To construct a transcript graph, we 'thread' the

connectivity graph (which was constructed only from the genome and spliced reads) with the

non-spliced (contiguous) reads, to provide a quantitative measure of the reads supporting each

base and edge. We then use a statistical segmentation strategy to traverse the graph topology

directly and determine paths through the connectivity graph that represent a contiguous path of

significant enrichment over the background distribution (below). In this segmentation process,

we scan variable sized windows across the graph and assign significance to each window. We

then merge significant paths into a transcript graph. Specifically, for a window of fixed size, we

slide the window across each base in the connectivity graph (after augmenting it with the non-

spliced reads). If a window contains only contiguous non-spliced reads, then it represents a non-

spliced part of the transcript. However, if the window hits an edge in the connectivity graph

connecting two separate parts of the genome (based on two or more spliced reads), then the path

follows this edge to a non-contiguous part of the genome, denoting a splicing event. Similarly,

when alternative splice isoforms are present, if a base connects to multiple possible places, then

all windows across these alternative paths are computed. Using a simple recursive procedure we

can compute all paths of a fixed size across the graph.

126



Identification of significant segments

To assess the significance of each path, we first define a background distribution. We estimate a

genomic defined background distribution by permuting the read alignments in the genome and

counting the number of reads that overlap each region and the frequency by which they each

occur. Specifically, if we are interested in computing the probability of observing alignment a (of

length r) at position i (out of a total genome size of L) we can permute the alignments and ask

how often read a overlaps position i. Under this uniform permutation model, the probability that

read a overlaps position i is simply r/L. Extending this reasoning, we can compute the

probability of observing k reads (of average length r) at position i as the binomial probability.

Given the large number of reads and the large genome size, the binomial formula can be well

approximated by a Poisson distribution where A=np (or the number of reads/number of possible

positions).

Given a distribution for the real number of counts over each position we scan the genome for

regions that deviate from the expected background distribution. First consider a fixed window

size w. We slide this window across each position (allowing for overlapping windows), and

compute the probability of each observed window based on a Poisson distribution with ) =wnp.

Since we are sliding this window across a genome of size L, we correct our nominal significance

for multiple testing, by computing the maximum value observed for a window size (w) across a

number of permutations of the data. This distribution controls the family-wise error rate, defined

28as the probability of observing at least one such value in the null distribution . Notably, we can

estimate this maximum permutation distribution well by a distribution known as the scan statistic

distribution 29, which depends on the size of the genome that we scan, the window size used, and

our estimate of the Poisson k parameter. This method provides us with a general strategy to
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determine a multiple testing corrected P-value for a specified region of the genome in any given

sample. We use this method to compute a corrected significance cutoff for any given region.

Finally, to identify significant intervals, we scan the genome using variable sized windows,

computing significance values for each and filtering by a 5% significance threshold. For each

window size, we merge the significant regions that passed this cutoff into consecutive intervals.

We trim the ends of the intervals as needed, since we are computing significant windows (rather

than regions) and it is possible that an interval need not be fully contained within a significant

region. Trimming is performed by computing a normalized read count for each base in the

interval compared to the average number of reads in the genome. We then trim the interval to the

maximum contiguous subsequence of this value. We test this trimmed interval using the scan

procedure and retain it only if it passes our defined significance level.

We work with a range of different window sizes in order to detect paths (intervals) with variable

support, Small windows have power to identify short regions of strong enrichment (e.g. short

exon which is highly expressed), whereas long windows capture long contiguous regions with

often lower and more 'diffuse' enrichment levels (e.g. a longer lower expression transcript,

whose 'moderate evidence' aggregates along its entire length).

Estimation of library insert size

We estimated the insert size distribution by taking all reconstructed transcripts for which we only

reconstructed a single isoform and computing the distribution of distances between the paired-

end reads that aligned to them.

Weighting of isoforms using paired end edges
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Using the size constraints imposed by the length of the paired ends, we assigned weights to each

path in the transcript graph. We classified all paired ends overlapping a given path and assigned

them to all possible paths that they overlapped. We then assigned a probability to each paired

end of the likelihood that it was observed from this transcript given the inferred insert size for the

pair in that path. We used an empirically determined distribution of insert sizes, estimated from

single isoform graphs. We then scaled each value by the average insert size. We refer to this

scaled value as our insert distribution. For each paired end in a path, we computed I, the inferred

insert size (the distance between nodes following along the full path) minus the average insert

size. We then determined the probability of I as the area in our insert distribution between -I, L

This value is the probability of obtaining the observed paired end insert distance given this

distribution of paired end reads. To aggregate these into weights for each path, we simply weight

each paired end by its probability of observing to the given path. Paired ends that equally support

multiple isoforms will count equally for all, but paired ends with biases toward some isoforms

and against others will provide weighted evidence for each isoform. We assign this weight to

each isoform path. This score is normalized by the number of paired ends overlapping the path.

We filter paths with little support (normalized score<O. 1) of paired reads supporting it.

Determination of expression levels from RNA-Seq data

Expression levels are computed as previously described. Briefly, the expression of a transcript is

computed in Reads Per Kilobase of exonic sequence per Million aligned reads (RPKM) defined

109 r
as: rpkm(transcript) = , where r is the number of reads mapped to the exonic region of the

Rt
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transcript, t is the total exonic length of the transcript, and R is the total number of reads mapped

in the experiment.

Array expression profiling in mES cells

Microarray hybridization data was obtained from our previous studies including ES and NPCs17

and MLFs4.

Comparisons to known annotation

The reconstructed transcripts were compared to the RefSeq genome annotation' 6 (NCBI Release

39). To determine whether a known annotation of a protein coding gene from RefSeq was fully

reconstructed, we first compared the 5' and 3' ends of the reconstructed vs the annotated

transcript. If these overlapped, we further verified that all exons in the annotated transcript

matched those in the reconstructed version. To score the portion of an annotated transcript

covered by our reconstructions, we found the reconstructed transcript whose exons covered the

largest fraction of the annotated transcript, and reported the portion of the annotation that it

covered.

ChIP-seq profiles in mES cells and determination of K4 and K36 regions

To determine regions enriched in chromatin marks from ChIP-seq data we used our previously

described method4 applied to ESC, MLFs, and NPCs data4 '17.

Determination of external and internal 5' start sites
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We identified alternative 5' start sites by comparing the 5' exon of our reconstructed transcripts

to the location of the 5' exon of the annotated gene overlapping it. If the reconstructed 5' start

site resided upstream to the annotated 5' we termed it 'external start site'. For the novel 5' ends

that are downstream of the annotated 5' end (internal) we required a few additional criteria to

avoid reconstruction biases due to low coverage. First, we required that the novel internal 5' end

do not overlap any of the known exons within the known gene. Second, we required that the

reconstructed gene contains a completed 3' end. To determine the presence of H3K4me3

modifications overlapping the promoter regions defined by these novel start sites, we computed

regions of enriched K4me3 genome-wide (as previously described) and intersected the location

of the novel 5' exon (both internal and external) with the location of a K4me3 peak.

Determination of premature/extended 3' end

To determine novel 3' ends, we compared the locations of the 3' exon of our reconstructed 3'

ends and those of annotated genes. If the reconstruction extended past the annotated 3' end, we

classified it as an extended 3' end. If the reconstruction ended before the annotated 3' end we

required that it not overlap any known exon and have a fully reconstructed 5' start site.

Determination of sequence conservation levels

We used the SiPhy30 algorithm and software package to estimate a, the deviation ('contraction'

or 'extension') of the branch length compared to the neutral tree based on the total number of

substitutions estimated from the alignment of the region of interest across 20 placental mammals

(build MM9, http://hgdownload.cse.ucsc.edu/goldenPath/mm9/multiz3Oway/). For global (whole

transcript) conservation, we estimated a for each protein coding, lincRNA and antisense
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transcript exon and compared it to similarly sized regions within introns. To identify local

regions of conservation within a transcript, we computed o for all 12-mers within the transcript

sequence, and assigned a p-value for each 12-mer based on the chi-square distribution, as

previously described 0. We then took all 12-mers showing significance at p< 0.05, collapsed

overlapping 12-mers, and identified constrained regions within the transcript.

ORF determination

We estimated maximal supported open reading frames (ORFs) for each transcript built by

scanning for start codons and computing the length (in nucleotides) until the first stop codon was

reached.

CSF Scores

To further estimate the coding potential of novel transcripts, we evaluated whether evolutionary

sequence substitutions were consistent with the preservation of the reading frame of any detected

peptide. In a nutshell, if a transcript encodes a protein, we expect a reduction in frame shifting

indels, non-synonymous changes and, in general, any substitution that affects the encoded

protein. To assess this, we used Codon Substitution Frequency (CSF) method as previously

described'9.

RT-PCR validations

Primers were obtained for a randomly selected set of predicted lincRNA, protein coding genes,

antisense transcripts, and intron primers; all begining with M13 primer sequence. RNA from

mES cells was extracted using Qiagen's RNeasy kit (74106). A a one-step cDNA /RT-PCR
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reaction was run using Invitrogen's one-step RT-PCR kit (12574-018), following the

manufacturer's instructions, with the following PCR protocol: 55'C for 30 minutes, 94'C for 2

minutes (94'C for 15 seconds, 64'C for 30 seconds, 68'C for 1 minute - 40 cycles) 68'C for 5

minutes, 4'C forever. Samples were separated on a 3% agarose gel, and all bands were cut out

and gel extracted suing the QlAquick Gel Extraction Kit 28706. 30ng of DNA were mixed with

3.2pmol M13 forward or M13 reverse primer for sequencing.
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Chapter 3: Expression patterns implicate lincRNAs in diverse
biological processes

In this chapter, we describe a functional genomics strategy for inferring putative roles for
lincRNAs. The approach suggested functional roles for hundreds of lincRNAs in diverse
biological processes.

Parts of this work were first published as:

Guttman M, Amit I, Garber M, French C, Lin M, Feldser D, Huarte M, Cabili M, Carey BW,
Cassady J, Jaenisch R, Mikkelsen T, Jacks T, Hacohen N, Bernstein BEB, Kellis M, Regev A,
Rinn JL, Lander ES. (2009) Chromatin structure reveals over a thousand highly conserved, large
non-coding RNAs in mammals. Nature. 458(7235):223-7

Huarte M, Guttman M, Feldser D, Garber M, Koziol M, Broz D, Khalil AM, Zuk 0, Amit I,
Rabani M, Attardi L, Regev A, Lander ES, Jacks T, Rinn JL. (2010). A large intergenic
noncoding RNA induced by p53 mediates global gene repression in the p53 transcriptional
response. Cell 142(3):409-19
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We recently reported the identification of more than a thousand large intergenic ncRNAs

(lincRNAs) that are evolutionarily conserved in mammalian genomes and thus likely to be

functional. Yet, what these functional roles are remains largely uncharacterized. Here, we

develop a novel functional genomics approach that assigns putative functions to each

lincRNA, revealing a diverse range of roles for lincRNAs in processes from ES

pluripotency to cell proliferation. We obtained independent functional validation for the

predictions for over 100 lincRNAs, using cell-based assays. In particular, we identify

several lincRNAs that are regulated by p53, based on two model systems and find that one

of these lincRNAs, termed lincRNA-p21, serves as an important regulator in the p53-

dependent transcriptional responses and is required for proper regulation of cellular

apoptosis. Collectively, our 'guilt-by-association' approaches along with targeted

perturbation studies have demonstrated that lincRNAs play critical regulatory roles across

diverse biological processes.

INTRODUCTION

It has become increasingly clear that the mammalian genome encodes numerous large

1 2non-coding RNAs We have recently reported the identification of more than a thousand large

intergenic non-coding RNAs (lincRNAs) in the mouse genome . Our approach to identify

lincRNAs was based on the fact that they contain a chromatin signature of actively transcribed

genes, consisting of a histone 3-lysine 4 trimethylated (H3K4me3) promoter region and histone

3-lysine 36 trimethylation (H3K36me3) corresponding to the elongated transcript. These

lincRNAs show clear evolutionary conservation, implying that they are functional 3,4.
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Despite the identification of thousands of ncRNAs, their functions remained largely

unknown. Identifying the functional role of a ncRNA requires direct perturbation experiments,

such as loss of function and gain of function. Individual ncRNAs involved in specific processes

have been functionally characterized (Reviewed in5 ). For example, XIST is critical for random

inactivation of the X-chromosome , Air is critical for imprinting control at the Igf2r locus7,

HOTAIR affects expression of the HoxD gene cluster8 as well as multiple genes throughout the

genome -11, HOTTIP affects expression of the HoxA gene cluster , lincRNA-RoR affects

reprogramming efficiency13, NRON affects NFAT transcription factor activity 1 4 , and Tug1

affects retina development through regulation of the cell cycle'5 . While there are now many

examples of large ncRNAs that are required for proper regulation of gene expression, this is just

one function for large ncRNAs which play critical roles in processes ranging from telomere

16 17replication1 to translation

Yet, global characterization of ncRNA function is challenging because in most cases it is

14
unclear what phenotype to explore . One approach to classify the putative functional roles of

ncRNAs utilizes 'guilt by association' 18. These methods associate ncRNAs with biological

processes based on common expression patterns across tissues and thereby identify groups of

ncRNAs associated with specific cellular processes. We utilize expression patterns across 21

mouse cell types and tissues to classify the function of lincRNAs based on their coexpression

with functional protein-coding genesets. Using this approach, we classified the putative

functional roles of hundreds of lincRNAs across diverse biological processes such as stem cell

pluripotency, immune responses, neural processes, and cell cycle regulation.

While such correlations cannot prove that lincRNAs function in these processes, they

provide hypotheses for targeted follow-up using loss-of-function experiments. We demonstrate
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this principle using a group of lincRNAs that are strongly associated with and regulated by the

p53 transcriptional pathway. p53 is an important tumor suppressor gene involved in maintaining

genomic integrity 9. In response to DNA damage, p53 becomes stabilized and triggers a

transcriptional response that causes either cell arrest or apoptosis . While p53 is known to

activate numerous genes, the mechanisms by which p53 leads to gene repression has remained

elusive. We recently reported evidence that many lincRNAs physically associate with repressive

chromatin modifying complexes and suggested that they may serve as regulators in

transcriptional regulatory networks9 . We therefore hypothesized that lincRNAs may also be

directly activated by p53 and subsequently regulate downstream transcriptional repression.

Here we show that lincRNAs play a key regulatory role in the p53 transcriptional

response. By exploiting multiple independent cell-based systems, we identified lincRNAs that

are misregulated upon p53 perturbations and showed that many are transcriptional targets of p53.

Moreover, we find that one of these p53-activated lincRNAs (which we termed lincRNA-p21)

serves as a transcriptional repressor in the p53 pathway and plays a role in the maintenance of

apoptotic function. Together, these results implicate lincRNAs in diverse biological processes

and reveal a direct role for a lincRNA in the p53 transcriptional response.

Results

Functional classification of lincRNAs

Having identified a large collection of conserved lincRNAs, we sought to gain insight into

their biological function by profiling their expression across 16 mouse cell types and tissues.

These samples consisted of the original four cell types (mES, NPC, mEF, mLF), a time course of
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embryonic development (Whole Embryo, Hindlimb and Forelimb at embryonic days 9.5, 10.5

and 13.5), and 4 normal tissues (brain, lung, ovary and testis). The expression compendium

revealed numerous clusters of correlated and anticorrelated lincRNAs. Unsupervised clustering

grouped the tissues and cells in our compendium in a biologically coherent way. For example,

the developmental time course was robustly grouped according to their temporal regulation (p <

105, bootstrap p-value).

The expression data contains a wealth of information about the lincRNAs. As an example,

we searched for lincRNAs with an expression pattern opposite to the known lincRNA HOTAIR.

Interestingly, we found that the most highly anti-correlated lincRNA in the genome lies in the

HOXC cluster, in the same euchromatic domain as HOTAIR; we call this lincRNA, Frigidair

(Figure la). This suggests that Frigidair may repress HOTAIR or perhaps activate genes in the

HOXD cluster.

We then compared the expression profiles of the lincRNAs to the expression profiles of

protein-coding genes (see methods). We first constructed a matrix A showing the correlation

coefficient for the lincRNAs vs. -22,000 protein coding genes, across the 16 cells and tissues;

we found that numerous lincRNAs were associated with groups of protein coding genes. Using

matrix A, we also constructed a matrix B showing the correlation of lincRNAs vs. 1700

functional gene sets; correlations were determined using the gene set enrichment analysis

(GSEA) methodology and the functional gene sets were taken from the Molecular Signatures

Database (MSigDB)21 . We then performed biclustering on matrix B to identify groups of

lincRNAs that are associated with various functional categories22 . Each bicluster represents a

group of lincRNAs with shared functional annotations. Finally, we used Gene Ontology (GO)

analysis to infer functions associated with each bicluster.
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This analysis revealed a wide range of lincRNAs that were associated with distinct and

diverse biological processes. These include cell proliferation, RNA binding complexes, immune

surveillance, neuronal processes, morphogenesis, gametogenesis, and muscle development

(Figure le). The bicluster with the largest number of associated lincRNAs and highest

significance level was associated with cell proliferation, cell-cycle regulation, and RNA binding

genes. The second most significant bicluster was associated with innate immunity, response to

biotic stimulus and inflammatory response genes.

To assess the validity of the inferred functional associations, we examined the gene sets

associated with HOTAIR, a lincRNA of known function (repression of HOXD cluster).

HOTAIR showed negative association with HOXD genes (FDR<0.018) and positive association

with 'Chang Serum Response' (FDR <0.001) a known predictor of breast cancer metastasis23

Together, these associations suggest a role for HOTAIR in breast cancer. Consistent with this

hypothesis, it has been experimentally shown that loss of HOXD expression is a signature of

24,25invasive breast cancer

We then sought to obtain independent experimental validation of the inferred biological

functions for many of the lincRNAs. We focused on three large clusters of lincRNAs associated

with NFKB signalling, embryonic stem cell pluripotency, and the p53-mediated DNA damage

response based on their expression patterns across tissues.

TLR-regulated lincRNAs

We used a similar strategy to investigate lincRNAs associated with the 'immune

surveillance' cluster. To search for lincRNAs related to immune pathways, we stimulated sorted
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CD11 C+ bone marrow-derived dendritic cells with a specific agonist of the toll-like receptor

TLR4, lipopolysaccharide (LPS). LPS is well known to cause dramatic activation of NFKB

transcriptional activity26 and induction of many immune genes. We found 20 lincRNAs whose

expression changed dramatically upon TLR4-stimulation, representing -5% of lincRNAs present

on the array and comparable to the fraction of regulated protein-coding genes 27 . Interestingly,

the greatest change in expression was observed in a lincRNA located -51Kb upstream of the

protein coding gene Cox2, a critical inflammation mediator that is induced by TLR4; we refer to

this as linc-Cox2. Using quantitative PCR, we found that linc-Cox2 is induced -1000 fold over

the course of 12 hours following TLR4 stimulation (Figure 1b). In contrast, only weak

induction of linc-Cox2 was seen upon stimulation of TLR3 (using polyl:C). ,which signals more

strongly through IRF3 than NF-KB, suggesting that lincRNAs provide an additional regulatory

layer in the signaling network defining the specificity of the innate immune response.

ES cell pluripotency and direct regulation by Sox2, Oct4, and Nanog

Using published data from mouse ES cells, we identified 118 lincRNAs whose promoter

28loci were bound by the core transcription factors Oct4 and Nanog . Of those represented on our

expression array 72% resided in the cluster associated with pluripotency, again supporting the

validity of the functional inference. We noticed that one of these lincRNAs, which is only

expressed in ES cells, is located -100 kb from the Sox2 locus, which encodes another key

transcription factor associated with pluripotency. This lincRNA is highly expressed only in the

pluripotent cell state (Figure 1c). We cloned the promoter of this locus (which we will refer to as

lincRNA-Sox2) upstream of a luciferase reporter gene and transfected the construct into mouse
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cells transiently expressing Oct4, Sox2, or both, as well as several controls. We found that Sox2

and Oct4 were each sufficient to drive expression of this lincRNA promoter, while expression of

both Oct4 and Sox2 caused synergistic increases of expression. In addition to ES specific

lincRNAs, we identified other lincRNAs that are exclusively expressed in other cell lineages

such as the neural lineage (Figure 1d).

The ultimate proof of function will be to demonstrate that RNAi-mediated knock-out of

each lincRNAs has the predicted phenotypic consequences. Toward this end, we examined a

recently published shRNA screen of (presumed) protein-coding genes to identify genes that

regulate cell proliferation rates in mouse ES cells 2 9 . The screen involved genes and some

unidentified transcripts that had been identified as expressed in ES cells and showing rapid

decrease in expression upon retinoic acid treatment. Of the top 10 hits in the screen, one

corresponded to a gene of unknown function. We discovered that this gene corresponds to one of

our lincRNAs (located -181 kb from Enc 1) contained in both the 'cell cycle and cell

proliferation' cluster (FDR < 0.001) and the 'embryonic stem cell' cluster (FDR<0.001). This

provides functional confirmation that this lincRNA plays a direct role in cell proliferation in ES

cells, consistent with the analysis above.
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Figure 1: lincRNAs are differentially expressed in various conditions. (a) Map of mouse
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FrigidAIR. HOTAIR and FrigidAIR show diametrically opposed expression patterns between
mouse forelimb (anterior) and mouse hindlimb (posterior). (b) Map of genomic locus containing
COX2, a key inflammation gene and a direct NFKB target, along with the location of lincRNA-
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COX2. qRT-PCR shows that lincRNA-Cox2 is upregulated in TLR4 stimulated cells (NFKB
mediated, green) but not TLR3 stimulated cells (IRF3 mediated, blue). (c) A map of the genomic
locus containing SOX2 shows a lincRNA -50Kb upstream that is similarly expressed
specifically in ES cells. (d) Map of the genomic locus of Brn 1, a key neural lineage transcription
factor, is flanked by two lincRNAs. qRT-PCR shows lineage specific expression, similar to Bn 1,
in neural lineages. (e) Correlation matrix of lincRNA and functional gene sets. Each entry
reflects the association between the lincRNA and the functional gene set based on Gene Set
Enrichment Analysis (GSEA). Functional gene sets (columns) and lincRNAs (rows) are shown
as either positively (red), negatively (blue) or not correlated (white) with lincRNA expression
profiles. Two major cluster are highlighted, 'Cell-Cycle regulation and Cell Proliferation' and
'Immune Surveilence'. Gene ontology of the protein coding genes in these clusters is shown and
plotted as the -log(p-value) for the enrichment of each GO term.

148



p53-dependent regulation of lincRNAs

We hypothesized that some of the lincRNAs associated with 'cell cycle and proliferation' might

be regulated by p53. We decided to test this hypothesis in a well-defined DNA damage system

that induces p5330 . This system allows conditional restoration of wildtype Trp53 within an

30++inducible cre-lox system . We will refer to the recombined cells (Trp53 restored): p53*'+ and

non-recombined: p53-' mEFs (Figure 2a). We performed several controls to demonstrate

significant restoration of p53 function upon activation of cre. We obtained p53+'* and p53-'-

MEFs and exposed them to a DNA damaging agent (doxorubicin). We then profiled lincRNA

expression across a time course at 0, 1, 3, 6, and 9 hours post DNA damage induction. We found

38 lincRNAs that increased significantly across the induction time course in the p53*'* cells

(Figure 2b). We found that the promoters of these lincRNAs were significantly enriched for the

p53 cis-regulatory element (compared to all lincRNA promoters, p<.01 Wilcoxon Test). This

suggests that p53 directly binds and regulates the expression of at least some these lincRNA

genes. We then asked if these lincRNAs were also present in the "cell cycle and proliferation"

cluster. Indeed, the p53-induced lincRNAs were strongly enriched in the "cell cycle and

proliferation" cluster (p < lOe-7).

Several lincRNAs are transcriptional targets of p53

To validate the functional importance of these classifications, we focused on lincRNAs

associated with the p53-mediated DNA damage response. We first sought to identify lincRNAs

that could be canonical p53 target genes. We cloned two lincRNA promoter regions with highly

conserved canonical p53-binding motifs 31,32 into a luciferase reporter vector. Both the lincRNA-

p21 and lincRNA-Mkln1 constructs showed significant induction of luciferase driven in p53-

wild type but not in p53-null cells (p<0.01, Figure 2c).
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To determine if the canonical p53-binding motif is required for the observed

transactivation we repeated these experiments in the absence of the p53 binding motif. Mutant

promoters resulted in the abolition of the observed transactivation for lincRNA-p21 and

lincRNA-Mklnl in p5 3 "'+ cells. Finally, we performed Chromatin Immunoprecipitation (ChIP)

experiments to determine if p53 directly binds to the consensus motif of lincRNA-p21 and

lincRNA-Mknll. Indeed, p53 is bound to the consensus motif in the promoters of both lincRNA-

p21 and lincRNA-Mkln1 and is not enriched at negative control sites lacking a canonical p53

binding motif (Fig 2d). Together these results demonstrate that lincRNA-p21 and lincRNA-

Mkln1 are bona fide transcriptional targets in the p53 pathway.
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Figure 2: P53 regulated lincRNAs. (a) Experimental layout to monitor p53-dependent
transcription. p53-restored (p53*'*) and non-restored (p5 3 -'-)p 5 3LSULSL MEFs were treated with
500nM dox for 0, 3, 6 and 9 hours (top left). KRAS (p53 LSUL) tumor cells were treated with
hydroxytamoxifen for p53 restoration for 0, 8, 16, 24, 40 or 48 hours (bottom left). RNA was
subjected to microarray analysis of mRNAs and lincRNAs. (b) lincRNAs activated by p53
induction (FDR < 0.05) in MEF or KRAS system. Colors represent transcripts above (red) or
below (blue) the global median scaled to 8 fold activation or repression, respectively. (c) p53-
dependent induction of lincRNA promoters requires the consensus p53 binding elements.
Relative firefly luciferase expression driven by promoters with p53 consensus motif (lincRNA-
p21, lincRNA-Mkln1) or with deleted motif (DlincRNA-p21 and DlincRNA-Mkln1) in p53*'* or
p53~'-cells. Values are relative to p53-'- and normalized by renilla levels. (d) p53 specifically
binds to p53 motifs in lincRNA promoters. p53 ChIP enrichment in p53'* and p53~'- MEFs on
regions with p53 motifs (lincRNA-p21, lincRNA-Mklnl, Cdknla) or two irrelevant regions
(controls). Enrichment values are relative to IgG, and average of 3 technical replicates of a
representative experiment.
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lincRNA-p21 regulates gene expression in the p53 pathway

We next sought to determine the consequence of the loss of lincRNA-p21 function in the

context of the p53 response. We reasoned that, if lincRNA-p21 plays an important role in

orchestrating the p53 transcriptional response, then inhibition of lincRNA-p21 would show

similar effects as inhibition of p53 itself. To test this hypothesis, we used RNAi-mediated

depletion of lincRNA-p21 and p53 and monitored the resulting transcriptional changes by DNA

microarray analysis.

Toward this end, we first designed three pools of siRNA duplexes targeting lincRNA-

p21, p53 or non-targeting control sequences. We validated that they were effective at knocking

down the intended target genes in p53LSULSL restored MEFs (Figure 3a and 3b). We then used

microarray analysis to examine the broader transcriptional consequences of knockdown of p53

and lincRNA-p21 compared to the non-targeting control. We identified 1520 and 1370 genes that

change upon knockdown of p53 or lincRNA-p21, respectively (relative to non-targeting control

siRNA, FDR <0.05). We observed a remarkable overlap of 930 genes in both the lincRNA-p21

and p53 knockdowns, vastly more than would be expected by chance (p<10 2 00 ) (Figures 3c).

Strikingly, 80% (745/930) of the common target genes are derepressed in response to both p53

and lincRNA-p21 knockdown; this proportion is much higher than expected by chance (Figure

3c). In contrast, the genes misregulated by the p53 knockdown alone showed no bias for

upregulation or downregulation, suggesting that lincRNA-p21 participates in downstream p53

dependent transcriptional repression.

To further demonstrate that the observed derepression upon lincRNA-p21 loss-of-

function is indeed p53-dependent and not due to off target effects of the RNAi mediated

depletion experiments, we performed several additional experiments and analyses. First we
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repeated the depletion experiments with four individual siRNAs targeting lincRNA-p2 1,

transfected separately rather than in a pool and confirmed the derepression effect across multiple

duplexes for select target genes in the microarray experiment. Second we confirmed that the

same genes that were derepressed in the lincRNA-p21 and p53 depletion experiments correspond

to genes that are normally repressed upon p53 induction in both the KRAS and MEF systems

(GSEA FDR < 0.002) (Figure 3d). Thus, derepressed genes in the siRNA depletion experiments

are highly enriched for genes that exhibit temporal repression upon induction of p53 in both the

KRAS and MEF systems in the absence of RNAi treatment. Third we demonstrated that forced

over-expression of lincRNA-p21 (Methods) also perturbed the expression of genes that were

affected upon depletion of lincRNA-p2 1. Finally, we did not observe derepression of these genes

upon repeating the same siRNA depletion experiments in the absence of p53 (-AdCre).

Collectively, these results suggest that lincRNA-p21 serves as a repressor in p53-dependent

transcriptional responses.
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Figure 3: lincRNA-p21 is a global repressor of genes in the p53 pathway. (a) RNAi-mediated
depletion of lincRNA-p21 and p53. Relative RNA levels determined by qRT-PCR in p53-
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lincRNA-p21 regulates apoptosis

The activation of the p53 pathway has two major phenotypic outcomes: growth arrest and

apoptosis 33. Consistent with this, our microarray analysis demonstrates that p53 and lincRNA-

p21 share regulation of several apoptosis and cell-cycle regulator genes. However, critical cell-

cycle regulators, such as Cdknla/p21 Cdkn2a or Reprimo are regulated by p53 independently of

lincRNA-p21. In contrast, p53 and lincRNA-p21 share regulation of common genes involved in

apoptosis such as Apaf 1, Noxa, G2e3 or Bcl213. Thus, we aimed to determine the physiological

relevance of lincRNA-p21 in the p53 response.

Toward this end, we used RNAi mediated depletion of lincRNA-p21 in either dox treated

or untreated primary MEFs. We similarly performed RNAi mediated depletion of p53 (as a

positive control) or used the non-targeting siRNA pool (as a negative control) under the same

conditions. We observed a significant increase in viability of cells treated with siRNAs targeting

lincRNA-p21 or p53 in the presence of DNA damage compared to the control siRNA pool

(Figure 4a,b). Such increase in viability was greater for depletion of p53, but still highly

significant for depletion of lincRNA-p21 (P < 0.01). We observed similar results using three

individual siRNA duplexes targeting lincRNA-p2 1, as well as two different control siRNA pools

(Figure 4b). These results demonstrate that lincRNA-p21 plays a physiological role in regulating

cell viability upon DNA damage in this system, although it does not distinguish whether the

effect is due to misregulation of the cell cycle or apoptosis33

To distinguish between these two possibilities, we quantified the proportion of the cell

population undergoing apoptosis by detection of Annexin-V by FACS analysis. We observed a

significant decrease in the number of apoptotic cells in both the lincRNA-p21 and p53 depleted

cells relative to siRNA control, when cells were subjected to DNA damage (P<0.01) (Figure
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4d,e). Consistent with the lincRNA-p21 dependent reduction of apoptosis we observed a

decrease in Caspase 3 cleavage relative to controls (Figure 4). We note that MEFs typically

34respond to DNA damage with cellular arrest, rather than apoptosis . However, we do observe a

reproducible and similar reduction of apoptotic cells in response to DNA damage in both

lincRNA-p21 and p53 experiments. We further determined that the observed apoptosis is

dependent on the dosage of dox-induced DNA damage. Thus, the apoptosis response is clearly

both p53-dependent and lincRNA-p21-dependent, with this dependence being confirmed in

multiple settings (Figures 4b,d,f); The decrease of apoptotic cells in response to knockdown of

lincRNA-p21 was comparable to that caused by knockdown of p53, suggesting that lincRNA-

p21 is required for the p53-dependent induction of apoptosis under the experimental conditions

used (Figure 4c).

We further tested whether depletion of lincRNAp-21 affects cell cycle regulation in

response to DNA damage by measuring 5-bromo-2-deoxyuridine (BrdU) incorporation and

propidium iodide staining of the cells. Consistent with the known function of p53, depletion of

p53 caused a significant increase in BrdU incorporation in response to DNA damage (P<0.01). In

contrast, depletion of lincRNA-p21 neither showed significant changes in BrdU levels nor in the

percentages of cells in any of the cell cycle phases (S, G1 or G2) either treated or untreated with

DOX (Figure 4c). These results suggest that lincRNA-p21 does not substantially contribute to

cell cycle arrest upon DNA damage.

We next wanted to determine whether, conversely to lincRNA-p21 depletion,

overexpression of lincRNA-p21 would result in increased apoptosis. Indeed, lincRNA-p21

overexpression in a lung cancer cell line harboring a KRAS mutation (referred to as LKR) and in

3T3 MEFs caused a significant decrease in cell viability (Experimental Procedures and Figures
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4g). This decrease in viability was due to increased apoptosis in response to DNA damage

(P<0.01) and not to an effect in cell cycle regulation (Figure 4h,i).

Several additional lines of evidence are consistent with the observed apoptosis

phenotype. First, we observed that both lincRNA-p21 and p53 repress genes involved in the

repression of apoptosis and the promotion of cell survival (Bcl213, Stat3, Atf2). Second, although

lincRNA-p21 and p53 depletions exhibit derepression of cell-cycle regulators, some key cell-

cycle genes are regulated by p53 independently of lincRNA-p2 1, including Ckn la/p21. In fact,

depletion of lincRNA-p21 does not perturb the transcript levels of Cdkn la/p21 nor the protein

stability; thus lincRNA-p21 is insufficient to mount a cell-cycle phenotype. Taken together, these

observations demonstrate that lincRNA-p21 plays an important role in the p53-dependent

induction of cell death under the experimental conditions used.
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Figure 4: lincRNA-p21 is required for proper apoptotic induction. (a) Increased cell viability
of lincRNA-p21 depleted cells. Relative number of siRNA-transfected MEFs treated with
400nM DOX from 24h after transfection (right) or untreated (left) determined by MTT assay.
(b) Depletion of lincRNA-p21 with individual siRNAs increases cell viability. Images of MEFs
treated with different individual siRNAs after 48 hours of DOX treatment (72h post
transfection). (c) LincRNA-p21 depletion doesn't affect cell cycle regulation. Relative cell
numbers in each cell cycle phase determined by FACS of BrdU incorporation and PI staining of
MEFs treated as in (a). Numbers inside bars represent percentages of cells in each phase (average
of 3 biological replicates). (d) LincRNA-p21 depletion causes a decrease in cellular apoptosis.
P53-reconstituted p53LSULSL MEFs transfected with three individual siRNAs targeting lincRNA-
p21 (bottom), two independent control siRNAs (top left and middle) or a siRNA pool targeting
p53 (top right). 24 hours after transfection cells were treated with 400nM doxorubicin and 14
hours later harvested and subjected to FACS analysis. X-axis represents Annexin-V and y-axis 7-
AAD staining. The percentage of cells in each quadrant are indicated. (e) Decreased apoptosis
caused by lincRNA-p21 depletion. Quantification of the relative apoptosis levels by Annexin-V
FACS detection at 38h post transfection (14h of 400nM DOX treatment) in MEFs treated as in
(a). Values are average of 3 biological replicates of a representative experiment. Stars show
significant difference (P<0.01) relative to control. (f) LincRNA-p21 depletion in p53-
reconstituted p53LSULSL MEFs causes decrease in Caspase 3 cleavage. Levels of cleaved Caspase
3 or control bActin in p53 reconstituted-p53LSULSL MEFs treated with the indicated siRNA pools
and 500nM DOX for 14 hours. (g) Decreased cell viability caused by lincRNA-p21
overexpression. Relative numbers of LKR cells overexpressing lincRNA-p21 or control plasmid
determined by MTT assay. Values are average of 3 biological replicates. (h) Overexpression of
lincRNA-p21 causes cellular apoptosis under DNA damage induction. Apoptosis quantification
by Annexin-V FACS in LKR cells overexpressing lincRNA-p21 or control vector treated with
500nM DOX. Values are the average of 3 biological replicates. Star represents P<0.01. (i)
LincRNA overexpression doesn't affect cell cycle regulation. Cell cycle analysis of DOX-treated
LKR cells overexpressing lincRNAp21 or control plasmid. Values are average of 3 biological
replicates.
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DISCUSSION

We provide a functional genomics pipeline for inferring putative roles for lincRNAs.

This 'guilt-by-association' approach associates lincRNAs with biological processes based on

common expression patterns across tissues and thereby identify groups of ncRNAs associated

with specific cellular processes. This approach suggested functional roles for 150 lincRNAs that

we studied on microarrays, and the independent experiments provided support for the predicted

pathways for -85 lincRNAs. The pipeline thus provides a useful guide for hypothesis-driven

functional studies.

Our analysis strongly suggests the existence of a rich world of functional lincRNAs with

a diversity of biological roles that may resemble that seen for proteins. For example, the

expression patterns of lincRNAs are as diverse as those of protein coding genes across the cell

types and conditions studied, allowing us to associate lincRNAs with a myriad of biological

processes at least at the level of correlated expression. We also show that some lincRNAs are

directly regulated by the key master regulators of stem-cell pluripotency such as Sox2 and Oct4.

And, we validated several functional associations between lincRNAs that are likely regulated by

p53 in cancer and by NFKB during the immune response.

It is important to point out that not all non-coding transcripts act as functional RNA

molecules. Several examples of intergenic transcription have been identified where the act of

transcription alone changes the chromatin and transcription factor binding landscape allowing

activation and repression of neighboring genes35'6 . As such, these correlations cannot prove that

lincRNAs function in these predicted processes but rather provide hypotheses for targeted loss-

of-function experiments. Methods that degrade RNA after its transcription, such as RNAi, can

distinguish between a functional RNA molecule and the act of transcription for which there

should be no observable effect upon RNA degradation.
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We utilize these predictions to show their value in identifying direct functional roles of a

specific lincRNA predicted to play a role in the p53 process. For example, the lincRNA-p21 was

predicted to be associated with the p53-mediated DNA damage response18 . Indeed, lincRNA-p21

was found to be a target of p53 and upon perturbation was shown to regulate apoptosis in

response to DNA damage 37. Another lincRNA, lincEnc l1 , was predicted to have a role in cell-

cycle regulation in embryonic stem cells (ESCs) and shown in a distinct study to affect

proliferation in ESCs 2 9 .

A fundamental issue will now be to elucidate the biological functions and determine the

mechanisms by which lincRNAs act. One clue may come from our previous observation that

HOTAIR represses gene expression and is associated with chromatin remodeling proteins,

38together with recent similar observations for XIST . Based on these observations, we speculate

that many lincRNAs may play a role in transcriptional control, perhaps by guiding chromatin

modifying proteins to target loci. Testing this hypothesis will require biochemical and genetic

studies, including gene knock-down in appropriate settings. Whatever their mechanism, the

lincRNAs appear to be involved in diverse biological process and likely play a direct regulatory

role in these processes.
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Methods

Protein Coding Gene Expression Profiles

We obtained Affymetrix 430 2.0 mouse gene expression data for all RNA samples profiled on

our lincRNA array. For ES, MEF, NPC (GSE8024) and brain, lung, testis, and ovary (GSE9954)

arrays were already available in the Gene Expression Omnibus (GEO) and in these cases we

downloaded the data. For Forelimb, Hindlimb, and Whole Embryo for days 9.5, 10.5, and 13.5,

we generated our own data using Affymetrrix 430 2.0 arrays. For dendridic cells we generated

data for, unstimualted, TLR2 stimulated, TLR4 stimulated, and TLR9 stimulated cells using

Affymetrrix 430A arrays (RNA isolated as mentioned above).

Correlation Matrix Clustering

We generated a correlation matrix between lincRNAs by computing the Pearson correlation

coefficient between all pairs of lincRNAs. A matrix was constructed whoe entries are the

correlation coefficients. This matrix was clustered and visualized using the Gene Pattern

platform for integrative genomics (http://genepattern.broad.mit.edu/) using a Euclidian distance

metric and complete linkage clustering 39. The same procedures were used to produce, cluster,

and visualize the lincRNA-Protein coding gene matrix and the lincRNA-Functional Term matrix.

Gene Set Enrichment Analysis and Functional Term Clustering

Gene Set Enrichment Analysis was performed as previously described 2. Briefly, we used each

lincRNA as a profile, computed the Pearson correlation for each protein coding gene and then

ranked the protein coding genes by their correlation coefficient. The rank of these genes was

used to identify significant gene sets, using the weighted Kolmogorov-Smirnov (KS) testl.

Gene sets were permuted 1000 times to obtain FDR corrected p-values. We constructed an

association matrix between lincRNAs and terms. We then performed biclustering on this matrix
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to identify significant lincRNAs associated with functional terms. Biclusters were obtained using

the Samba algorithm implemented in the Expander software package.

Identifying Differentially Expressed Genes in DNA Damage Stimulated Cells

Tp53LSU+ heterozygous mice were intercrossed and fibroblasts were derived from p53LSULSL and

p53*' embryos as decribed previously30. Sub-confluent cultures were infected on two

consecutive days with adenoviruses expressing green fluorescent protein (AdGFP) or Cre

recombinase (AdCre) (University of Iowa Genetics Core Facility). Cells were then seeded

overnight into 10 cm dishes and treated with 500 nM doxorubicin (Sigma) for the indicated time

course. Cells were harvested into Trizol reagent (Invitrogen) and total RNA was extracted for

subsequent analysis as described 0 .

In parallel, cells were harvested for analysis of p53 protein expression. A monoclonal antibody to

mouse p53 (Gift from Kristian Helin) was used for protein blotting and detected by enhanced

chemiluminescence (GE Healthcare) per manufacturer's instructions. Hsp90 monoclonal

antibody served as a loading control (BD Biosciences).

We identified differentially expressed genes, protein coding and lincRNA, using the Patterns

from Gene Expression (http://www.cbil.upenn.edu/PaGE/) program 41 . Briefly, we determined

differential expression between p53' MEFs compared to p53-'- MEFs at paired times (paired t-

test). We filtered the list by genes that were specifically induced across the time points.

Motif Enrichments

Motifs were represented by Position Weight Matrix (PWM) downloaded from the TRANSFAC

matrix database v8.3 (http://www.gene-regulation.com/pub/databases.html) 42. Given a PWM, for
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each nucleotide position in a promoter, we calculated an affinity score defined as the log

likelihood (LOD score) for observing the sequence given the PWM versus a given random

genomic background. We then found the best conserved motif instance over the entire promoter

region for each PWM. An instance was considered conserved if its conservation score was in the

top 5% of the genome distribution.

We computed this score for each lincRNA promoter and computed enrichment of the motif for

our experimentally determined set compared with all lincRNA promoters. To ensure that

enrichment was not due to nucleotide bias within the promoter, we shuffled the PWM and

computed enrichment for the true PWM compared to the shuffled PWMs. Enrichment was

computed using a two-sided Wilcoxon rank-sum test between the set and the background. We

then computed an FDR to correct for testing of multiple PWMs.

Bone marrow dendritic cell (BMDC) cultures

Bone marrow was harvested from 6-8 week old female mice and cultured for 6 days in GM-

CSF 43 supplemented medium. Non-adherent cells were sorted using anti-CD1 c-beads (Miltenyi

Biotech) according to manufacturer's guidelines. CD1 Ic positive cells where replated 1.5* 106

cells/plate on day 7. BMDCs were left untreated or stimulated with 100 ng/ml LPS for 6 hours or

stimulated with 250 ng/ml Pam3CSK4 for 6 hours (TLR2 stimulation) or with CpG

oligonucleotide luM for 6 hours (TLR9 stimulation) or with poly-inosine:cytosine (polyl:C)

2ug/ml for 6 hours (TLR3 stimulation) . Cells were then collected by scraping and RNA was

purified using the miRNAEasy RNA isolation kit (Qiagen). RNA integrity was verified using

bioanalyzer (Agilent).

Real-time quantitative PCR.
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cDNA was generated by the use of High-Capacity cDNA Archive Kit (Applied Biosystems).

Real-time PCR assays were performed using SYBR Green I as a fluorescent dye on a lightCycler

480 (Roche), according to the manufacturer's guidelines. Experiments were carried out in

triplicate, and relative gene expression was normalized to glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) RNA levels. Real-time PCR primer pairs for protein coding genes

were designed using ProbeLibrary (https://www.roche-applied-

science.com/sis/rtpcr/upl/index.jsp), primer pairs for lincRNA were designed using primer3

(http://frodo.wi.mit.edu/) with similar settings.

Cell lines and in vivo models

KRAS Lung tumor-derived cell lines were isolated from individual tumors . Isolation of matched

p53' and p53-'- MEFs, p513SULSL MEFs, Lymphomas and Sarcomas and p53 restoration as

described 44 . Primary wt MEFs and 3T3 MEF cells were purchased from ATCC. Transfection,

infection and treatment conditions are described in Supplemental Experimental Procedures.

Promoter reporter assays

LincRNA promoters were cloned into the pGL3-basic vector (Promega) and motif deletions were

performed by mutagenesis. p53- reconstituted or control p53LSULSL MEFs were transfected with

800ng of pGL3 and 30ng of TK-Renilla plasmid per 24 well. 24 hours later cells were treated

with 500nM dox for13 hours and cell extracts were assayed for firefly and renilla luciferase

activities with Dual Luciferase Reporter Assay System (Promega E1910).

lincRNA and gene-expression profiling.

RNA isolation, lincRNA expression profiling (Nimblegen arrays) and analysis were performed
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as described 3 and Supplemental Experimental Procedures). Affymetrix, gene-expression

profiling was performed as described 3.

Antibodies

Anti-p53:Novocastra (NCL-p53-CM5p) (western blot) and Vector Labs (CM-5) (ChIP). Anti-

hnRNP-K: Santa Cruz Biotechnology (sc-25373) (western blot) and Abcam (Ab70492 and

Ab39975) (ChIP and RIP). Control rabbit IgG Abcam (Ab37415-5) (RIP and ChIP-chip).

Viability and apoptosis assays and cell cycle analysis

MTT assays were performed using Cell Proliferation Kit I from Roche (11465007001) in 96-

well plates with initial density of 2500 cells/well. For apoptosis quantification, the Apoptosis

Detection Kit I from BD Biosciences (cat#559763) was used followed by FACS 45. Cell cycle

46analysis was performed as described

Cloning, RNA pull-down, deletion mapping, RIP, ChIP

5' and 3' RACE cloning of lincRNA-p21 was performed from total RNA of dox-treated MEFs

using RLM-RACE Kit (Ambion AM1700). RNA pull-down and deletion mapping were

performed as described 8 using 1mg of mES nuclear extract and 50 pmol of biotinylated RNA.

RNA-bound proteins were resolved in a SDS-PAGE gel, bands were cutout and analyzed by

47 8
Mass Spec as described or detected by western blot. Native RIP was carried out as described

For cross-linked RIP, cells were cross-linked with 1% formaldehyde, 6ug of antibody was added

and incubated overnight, recovered with protein G magnetic Dynabeads and washed three times
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in RIPA buffer. After reverse-crosslink, RNA was analyzed by qRT-PCR. P53 ChIP and hnRNP-

K ChIP-chip experiments were performed as previously described 8

RNA interference and lincRNA-p21 overexpression

siRNA transfections were done in 6-well plates of subconfluent cells with 75nM of siRNA and

3ul of Lipofectamine 2000 (Invitrogen) per well following manufacturer's instructions. For

overexpression, lincRNA-p21 was cloned into the pBABE vector and after transfection cells

were selected with 2ug/ml puromycin for 8 days.

Cell lines, p53 restoration and DNA damage induction

Lung tumor-derived cell lines were isolated from individual tumors from KrasLA2/+;

Trp53LSIJLSL Rosa26CreERT2 animals (D.F. and T.J. manuscript in preparation). Lymphomas

and Sarcomas were isolated when they formed in Trp53LSIULSL Rosa26CreERT2 animals as

described (Ventura et al. 2007). For p53 restoration, cultured tumor cell lines were incubated

with 500nM 4-hydroxytamoxifen (Sigma) for the indicated time points and p5 3LSULSL MEFs,

were infected with AdenoCre virus or AdenoGFP for 24h (University of Iowa) at moi of 5. For

DNA damage, cells were treated with 100 to 500nM doxorubicin hydrochloride (Sigma D1515).

lincRNA and Protein Coding Gene Expression Profiling

High resolution DNA tiling arrays were designed on the Nimblegen platform to represent a

random sampling of -400 lincRNAs identified in the mouse genome. Total RNA from different

experimental conditions was amplified using poly-dT and labeled as described 3
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Identifying Differentially Expressed lincRNAs

We designed custom Nimbelgen tiling microarrys which tile the exonic regions of each mouse

lincRNA at l0bp resolution. To identify lincRNAs that were differentially expressed in these

conditions, we first determined which lincRNAs are significantly expressed in each sample. We

then used this set of expressed lincRNAs to test for differential expression.

To determine expressed lincRNAs we used our previously developed statistical algorithm

to identify peaks in hybridization. We first normalized the data by dividing each probe value by

the average probe intensity across the array. We scanned each region and computed a score

defined as the sum of the normalized probe intensities. To determine the significance of this

score we permuted the intensity values assigned to each probe and recalculated the statistic. We

took the value for each permutation as the maximum score obtained for any random region. We

performed 1000 permutations and assigned a multiple testing corrected p-value to each region

based on its rank within this distribution. All exons with a p-value less than 0.05 were retained.

We computed differentially expressed exons by extending the above strategy but

computed a t-statistic between each group (ie Ohr vs 8hr). We assessed a multiple testing

corrected p-value by permuting the probe values across all conditions and recomputing the t-

statistic. We performed 1000 permutations and generated a maximum distribution for each

permutation and assigned FWER corrected p-values. We retained all exons with p-values < 0.05.

We performed post-processing of these results to ensure robust differential lincRNAs.

Specifically, for MEF time course we required that a lincRNA exon was differentially expressed

between P53*'* and P53-' cells and also differentially expressed between any time point and time
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0. For the KRAS experiment we required that any differential exon be differentially expressed in

2 consecutive time points compared to time 0.

Protein Coding Gene Expression Profiles

We generated expression profiles for protein coding gene expression using Affymetrix 430 2.0

arrays. We identified differentially expressed genes using the Patterns from Gene Expression

(http://www.cbil.upenn.edu/PaGE/) program. Briefly, we determined differential expression

using a t-statistic between groups and permutation distribution to compute an FDR for each gene.

We filtered all genes with an FDR<0.05 as significantly differentially expressed. We filtered the

list by genes similar to the criteria used for the lincRNA (tiling arrays). We required differential

expression between P53+1+ and P53~'- for each time point and differential expression compared to

time 0. For the RAS experiment we required differential expression of each gene for at least 2

consecutive time points.

Gene Set Enrichment Analysis and Functional Term Clustering

Gene Set Enrichment Analysis was performed as previously described (Grant et al., 2005, 21

Briefly, we used each condition as a group (ie siLincRNA-p21 vs siControl) and ranked the gene

list based on differential expression between the groups. The rank of these genes was used to

identify significant gene sets, using the weighted Kolmogorov-Smirnov (KS) test '". Gene sets
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were permuted 1000 times to obtain FDR corrected p-values. We used gene sets representing the

Molecular Signatures Database or custom gene sets defined by other experiments.

p53 Motif Analysis

To scan for conserved motifs in putative P53 targets we used an extension of the a method that

scores conservation at single nucleotide resolution based on the evolutionary substitution pattern

inferred for the site 48. Motifs were represented by Position Weight Matrix (PWM) downloaded

from the TRANSFAC matrix database v8.3 (http://www.gene-

regulation.com/pub/databases.html) 48. Given a PWM, for each nucleotide position in a

promoter, we calculated an affinity score defined as the log likelihood (LOD score) for observing

the sequence given the PWM versus a given random genomic background. We then found the

best conserved motif instance over the entire promoter region for each PWM. An instance was

considered conserved if its conservation score was in the top 5% of the genome distribution.

We computed this score for each lincRNA promoter and computed enrichment of the motif for

our experimentally determined set compared with all lincRNA promoters. To ensure that

enrichment was not due to nucleotide bias within the promoter, we shuffled the PWM and

computed enrichment for the true PWM compared to the shuffled PWMs. Enrichment was

computed using a two-sided Wilcoxon rank-sum test between the set and the background. We

then computed an FDR to correct for testing of multiple PWMs.

RNA interference and lincRNA-p21 overexpression
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siRNA oligos targeting lincRNA-p21 (#1 UGAAAAGAGCCGUGAGCUA, #2

AAAUAAAGAUGGUGGAAUG and #3 AGUCAAAGGCAAUGAGCAU) and hnRNP-K

(siRNA smart pool M-048002) were purchased from Dharmacon. p53 siRNAs (#1

AGAAGAAAAUUUCCGCAAA and #2 ACAGCGUGGUGGUACCUUA) were purchased

from Ambion. Non-targeting siRNAs were purchased from Dharmacon (D-001206-14) and

Ambion (AM4636). siRNA transfections were done in 6-well plates of subconfluent cells with

75nM of siRNA and 3 ul of Lipofectamine 2000 (Invitrogen) per well following manufacturer's

instructions. For overexpression, LincRNA-p21 was cloned into the pBABE vector and after

transfection cells were selected with 2mg/ml puromycin for 8 days. For gene expression profiling

of lincRNA-p21 overexpression, pBABE plasmid expressing lincRNA-p21 or empty vector were

transfected into p53-reconstituted p53LSULSL MEFs and 24 hours later treated with 500nM

doxorubicin. 14h after treatment total RNA was extracted for microarray analysis.

Nuclear fractionation

For nuclear fractionation 107 cells were harvested and resuspended in lml of PBS, 1ml of buffer

C1 (cell lysis buffer, Qiagen) and 3ml of water, and incubated for 15 minutes on ice. Then cells

were centrifuged for 15 minutes at 2,500 rpm, the supernatant was discarded and the nuclear

pellet was kept for RNA extraction.
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Chapter 4: Many human large intergenic noncoding RNAs associate

with chromatin-modifying complexes and affect gene expression

In this chapter, we show that many lincRNAs bind to chromatin regulatory proteins and act
through their physical interactions to regulate shared gene expression programs.

Parts of this work were first published as:

Khalil AM*, Guttman M*, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A,
Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL. (2009) Many human large
intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene
expression. Proceedings of the National Academies of Science_106(28):11667-72
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We recently showed that the mammalian genome encodes more than a thousand

large intergenic non-coding RNAs (lincRNAs) that are clearly conserved across mammals

and thus functional. Gene expression patterns have implicated these lincRNAs in diverse

biological processes including cell cycle regulation, immune surveillance, and embryonic

stem cell pluripotency. However, the mechanism by which these lincRNAs function is

unknown. Inspired by the observation that the well-characterized lincRNA HOTAIR bind

the Polycomb Repressive Complex 2 (PRC2), we tested whether many lincRNAs are

physically associated with PRC2. Remarkably, we observe that -20% of lincRNAs

expressed in various cell types are bound by PRC2, and that additional lincRNAs are

bound by other chromatin-modifying complexes. Moreover, we show that siRNA-mediated

depletion of certain lincRNAs associated with PRC2 leads to changes in gene expression

and that the upregulated genes are enriched for those normally silenced by PRC2. We

propose a model in which some lincRNAs guide chromatin-modifying complexes to specific

genomic loci to regulate gene expression.

Introduction

Mammalian genomes produce a wide variety of non-coding RNA transcripts' -3.

addition to classical RNAs (such as ribosomal RNAs, transfer RNAs and others) and more

recently discovered classes of small non-coding RNAs (such as microRNAs and promoter

associated small RNAs)4, there are many large non-coding RNAs of unknown functions

Several, such large non-coding RNAs have been biologically characterized (including XIST,

TSIX, HOTAIR and AIR) (Reviewed in reference3 ), but shotgun cDNA sequencing and

microarray hybridization have suggested that the vast majority of the mammalian genome can
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produce RNA transcripts under some circumstances 2,6,7. The biological significance of these

transcripts, however, has been highly controversial because most occur at extremely low levels

and show little evolutionary conservation' 9.

Recently, we developed a new approach for identifying large non-coding RNAs based on

a distinctive chromatin signature that marks actively transcribed genesI. The signature consists

of a short region with Histone 3 Lysine 4 trimethylation (H3K4me3) (corresponding to the

promoter) and a longer region with Histone 3 Lysine 36 trimethylation (H3K36me3,

corresponding the transcribed region)' 0 '". We refer to this chromatin signature as a K4-K36

domain. We generated chromatin-state maps across four mouse cell types, searched for K4-K36

domains and then eliminated those corresponding to known protein-coding genes. We found

1586 novel K4-K36 domains in the four mouse cell types and showed that the vast majority

encode large intergenic non-coding RNAs (lincRNAs). These lincRNAs show similar

expression levels as protein-coding genes, but lack any protein-coding capacity. Importantly,

lincRNAs show significant evolutionary conservation relative to neutral sequences, providing

strong evidence that they have been functional in the mammalian lineage'. This is in contrast to

some recent catalogs of large non-coding RNAs obtained by shotgun sequencing, which show

8,9little or no evolutionary conservation within the RNA transcripts,9. (We note that these non-

conserved RNAs could be functional, but biological evidence such as loss-of-function

experiments would be needed to establish their functionality).

Our previous studies demonstrated that groups of lincRNAs exhibit expression patterns

across cell types and tissues that correlate with patterns seen for protein-coding genes involved in

cellular processes such as cell-cycle regulation, innate immunity responses, and stem cell

pluripotency'. While these studies clearly demonstrate that there are many functional lincRNAs,
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key questions remain, including: How many lincRNAs are encoded in mammalian genomes?

How do lincRNAs exert their functions? To begin to investigate the number of lincRNAs, we

extended our approach of mapping K4-K36 domains to six human cell types. The results expand

our catalog to 3289 lincRNAs, which show clear evolutionary conservation within their

transcripts. Extrapolation suggests that the total number may approach -5000 lincRNAs.

To examine the biochemical mechanism by which lincRNAs function, we drew

inspiration from one of the few well-studied lincRNAs: HOTAIR. We previously reported

HOTAIR as a lincRNA transcribed from within the HOXC cluster and showed that it acts to

repress genes in the HOXD cluster, by binding to the Polycomb Repressive Complex 2 (PRC2)

and recruiting it to the locus12. PRC2 is a methyltransferase that trimethylates H3K27 to repress

transcription of specific genes'3,14. Recently, several other large non-coding RNAs have been

found to associate with chromatin modifying complexes - including a large non-coding RNA

encoded within the 5' of XIST that can target PRC2 to the inactive X chromosome1 5 ,16 , the

antisense transcript AIR that is associated with the chromatin-modifying complex G9a, an

H3K9me2 methyltransferase 7 ; and the Kcnqlotl transcript that binds both G9a and PRC218.

Some recent studies have demonstrated that large non-coding RNAs bind chromatin proteins that

add activating modifications (e.g. Trithorax)'9,20

These few examples raised the possibility that many lincRNAs might be physically

associated with chromatin-modifying complexes and might potentially target them to specific

genomic regions. To test this hypothesis, we performed RNA Co-immunoprecipitation (RIP)

with antibodies directed against several proteins involved in chromatin-modifying complexes

(PRC2 and CoREST), and found that this is indeed the case. We find that as many as 38% of the

lincRNAs expressed in the cell types studied are reproducibly associated with one of these
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complexes. Moreover, we show that RNA-interference-based depletion of various PRC2-

associated lincRNAs results in activation of genes known to be repressed by PRC2. Together,

our results indicate that thousands of functional lincRNAs are encoded in the human genome and

a significant proportion of lincRNAs are physically associated with chromatin-modifying

complexes. We propose that some lincRNAs function by regulating the epigenetic landscape at

distinctive target loci.

RESULTS

Many lincRNAs are associated with PRC2

We explored the mechanism by which lincRNAs function. As noted above, the lincRNA

HOTAIR has been shown to physically associate with the Polycomb Repressive Complex

PRC2 2 . This physical association was shown by an RNA immunoprecipitation-polymerase

chain reaction (RIP-PCR) assay: total (non-crosslinked) nuclear extract was incubated with an

antibody against the SUZ12 protein, a component of PRC2; the extract was precipitated with

Protein-A-coupled beads; and the co-precipitated RNA was then subjected to locus-specific

reverse transcriptase (RT)-PCR to demonstrate the presence of HOTAIR.

To test whether other lincRNAs are also associated with PRC2, we designed a 'RIP-

Chip' assay (see Methods) to assay many lincRNAs simultaneously (Figure 1). Briefly, we used

antibodies against the proteins SUZ12 and EZH2, components of PRC2 . The antibodies were

incubated with non-crosslinked nuclear extracts from three human cell types: HeLa cells, lung

fibroblasts (hLF) and foot fibroblasts (hFF); these cell types were chosen because they have

previously been shown to have distinctive epigenetic landscapes and diverse gene expression

patterns . We analyzed the co-precipitated RNAs by hybridization to a custom 'exon-tiling'
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array (at 10 base resolution), containing exons from -900 human lincRNA loci and -1000

human protein-coding genes; the protein-coding genes were previously known to be expressed in

at least one of the three cell types. In parallel, we carried out a mock control with a non-immune

rabbit IgG polyclonal antibody to assess non-specific interactions that may occur in RIP.

To identify lincRNAs and protein-coding genes that are co-precipitated with each of the

PRC2 components, we analyzed the hybridization data with a peak-calling algorithm that finds

regions in which the signal from the RIP assay is significantly enriched over the signal from the

mock controls (see Methods). Regions were defined based on a maximum family-wise error rate

(FWER) < 0.05 (see Methods'). Given that RIP assays are known to show considerable

variability (with typical reproducibility of -60% ), we performed several biological replicates

for each cell type. We observed that -76% of the genes detected in one replicate are also

detected in a second replicate (hLF: 70%, hFF: 75%, HeLa: 83%).

As a positive control, we checked whether HOTAIR and XIST were detectably co-

precipitated in our RIP-Chip data. Consistent with previous reports, HOTAIR co-precipitated

with PRC2 in both HeLa and foot fibroblasts, but not in lung fibroblasts. Similarly, XIST, which

is expressed only in female cells, was detectably co-precipitated in the hLF cells (which came

from a female source) but not the hFF cells (which came from a male source) (Figure 1). These

results were consistent across all replicates.

In addition to the RIP assay, we also assayed expression patterns of lincRNAs and

protein-coding genes on the custom exon-tiling array. We extracted total RNA from the same

three human cell types (HeLa, hLF, hFF), prepared poly(A*)-amplified cDNA and hybridized the

product to the exon-tiling array. Of the lincRNA genes on the array, we found that 47% were

detectably expressed in at least one of the three cell types (HeLa: 25%; hLF: 37%; and hFF:
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33%). Consistent with the design of the tiling array, essentially all of the protein-coding genes

were detectably expressed in the relevant cell type.

Analysis of the RIP-Chip results in conjunction with the expression analysis suggests that

a significant proportion of all lincRNAs expressed in one of these 3 cell types are physically

associated with PRC2. Specifically, we find that -30% of expressed lincRNAs are detected in at

least one of the replicates. As a conservative estimate, we only considered lincRNAs detected in

at least two replicates. Using this criterion, we observe that 24% of lincRNAs (114 of 469)

expressed in one of the three cell types is detected as physically associated with PRC2 (Figure

1).

As an independent validation of the association with PRC2, we selected five lincRNAs

that were detected in our RIP-Chip data as associated with PRC2 in both HeLa and hFF and

performed RIP-qPCR assays for these transcripts, using quantitative RT-PCR. In all 10 tests

(five lincRNAs in two cell types), the results were confirmed. Notably, the RIP-qPCR assays

showed a higher degree of enrichment than the RIP-Chip assays - consistent with the fact that

22arrays have a narrower dynamic range

As a validation that the associations of lincRNAs with PRC2 are specific, we tested

whether the enrichment in the RIP-Chip experiment was simply a reflection of transcript

abundance (which would suggest non-specific interactions). We found no significant correlation

between transcripts levels of the lincRNAs and their level of PRC2-enrichment (r = -0.109, p

>.99).
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Figure 1:
complexes.
experiments

Numerous lincRNAs are physically associated with chromatin-modifying
(A) Several examples of lincRNA exons (black box) that are enriched in RIP
relative to the IgG control in hFF (left column), hLF (middle column) and Hela

(right column) cells. lincRNAs were in enriched in RIP experiments performed with antibodies
recognizing the chromatin modifying complexes: PRC2 (blue), CoREST (red), but not with
antibodies recognizing the chromatin protein H3K27me3 (grey). Coprecipitated RNA for each
antibody and for the respective control (IgG) was hybridized to the DNA tiling arrays. The
hybridization values for each probe within a lincRNA exon are plotted as the log2 values for RIP
hybirdization intensity divided by control (IgG) hybridization intensity.
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As a second approach to assess the specificity of PRC2 binding to lincRNAs, we

examined the proportion of mRNAs bound to PRC2. In sharp contrast to the lincRNAs, very

few of the protein-coding genes assayed in the RIP-Chip experiment showed physical association

with PRC2. Of the 1000 protein-coding genes represented on the array, only 16 (<2%) were

detected in two replicates (Figure 2a); we suspect that many of these 16 cases are artefacts,

because only a small proportion (less than 1% of ex ressed mRNAs) are detected in three

replicates. The proportion of transcripts associated with PRC2 is thus much higher for lincRNAs

than for protein-coding mRNAs. To demonstrate that this result is not simply due to a low

concentration of protein-coding mRNAs in the nucleus, we compared the concentration of

lincRNAs and mRNAs in the nucleus (see Methods). While lincRNAs tend to have greater

abundance in the nucleus than mRNAs, we find that the distributions of nuclear abundance of

lincRNAs and mRNAs show substantial overlap, with at least 25% of mRNAs being expressed

at levels comparable to the 501h percentile level for lincRNAs.

We also reasoned that lincRNAs associated with PRC2 should have significant

representation in the nucleus. To test this, we examined the abundance of lincRNAs in the

nucleus, and we found that PRC2-bound lincRNAs show a significantly higher abundance in the

nucleus than non-PRC2-bound lincRNAs (methods). We also performed fluorescent in situ

hybridization (FISH) on HOTAIR, XIST and four novel lincRNAs detected as associated with

PRC2. In all cases, the lincRNAs showed either exclusively nuclear or nuclear and cytoplasmic

localization (Figure 2b).
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Finally, we explored whether a lincRNA that is expressed in two cell types (A and B) and

associated with PRC2 in one cell type (A) is also associated with PRC2 in the second cell type

(B). Considering all pairs of cell types, we found that this was the case for -85% of lincRNAs

(Supplemental Table 3). Collectively, these results provide strong evidence that a substantial

portion (20-30%) of lincRNAs are specifically bound by PRC2 (Figures 1 and 2A).
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Figure 2: Diversity and nuclear localization of chromatin associated lincRNAs. (A)
Subcellular localization analysis of lincRNAs by RNA fluorescence in situ hybridization (RNA
FISH) demonstrates localization of a large majority of lincRNAs to the nucleus. Each panel
represents the in situ hybridization of approximately 40 fluorescently labeled DNA oligos with
complementarity to the interrogated lincRNA. RNA FISH experiments were performed in male
hFF for each represented lincRNA (XIST, HOTAIR, TUG-1, lincMKLN-1, lincFOXF1, and
lincSFPQ) and also in female hLF for XIST (XX). White 'speckles' indicate the subcellular
localization of each lincRNA. The nuclear compartment is demarked by DAPI staining (purple).
(B) Venn diagrams demonstrating the number of lincRNAs bound to PRC2 in hLF (red), hFF
(green) and Hela (blue) cells. (C) Pie charts indicating many lincRNAs, but not protein-coding
genes are physically associated with chromatin-modifying complexes. Top: pie chart
representing the percentage of unique lincRNAs expressed in all three tested cell types (hFF,
hLF and Hela) that are bound only to PRC2 (red), only to CoREST (green), bound by both PRC2
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and CoREST (yellow) and those not bound by either complex (black). The percentage is
calculated by adding the number of unique lincRNAs bound by each complex or those bound by
both complexes in all three cell types and dividing by the total number of lincRNAs expressed in
hLF, hFF and Hela cells. Bottom: pie chart indicating the percentage of protein-coding genes
(black) reproducibly bound to PRC2 and or CoREST in all three cell types relative to the total
number of expressed protein-coding genes (grey).

190



Association of lincRNAs with other chromatin-modifying complexes

Having found that many lincRNAs are associated with PRC2, we were interested to

explore whether they might be associated with additional repressive chromatin-modifying

complexes. We examined CoREST, a repressor of neuronal genes23 . We performed RIP-Chip

using an antibody against CoREST in the same three cell types (HeLa, hLF, and hFF). Applying

the analysis above, we found that 63 of the 469 lincRNAs expressed in HeLa cells were

reproducibly detected as bound to CoREST. As with PRC2, <2% of protein-coding genes co-

precipitated with CoREST.

We note that about 60% of the lincRNAs associated with CoREST are not associated

with PRC2 in HeLa cells, indicating that each complex has specific lincRNAs associated with it.

The observation that 40% of the lincRNAs associated with CoREST are also associated with

PRC2 may reflect the fact that the two complexes are known to share some regulatory targets

23,24

Considering PRC2 and CoREST together, we find that -38% of lincRNAs expressed in

at least one of the cell types examined are reproducibly bound to at least one of the two

complexes (180 of 469 expressed). This proportion is likely to be an underestimate, because we

only count lincRNAs that were detected in at least two replicates; the proportion could be as high

as 52%. These results raise the possibility that lincRNAs may be associated with additional

chromatin-modifying proteins.

We also tested whether chromatin proteins themselves (rather than chromatin-modifying

proteins) are associated with lincRNAs. Specifically, we performed RIP-Chip with antibodies

against the modified histones H3K27me3 and H3K4me2. We found no significant enrichment of
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lincRNAs (Figure 1). These findings are consistent with other studies that identified XIST to

16co-precipitate with PRC2, but not H3K27me3 despite their immediate nuclear proximity'

Functional evidence that lincRNAs act through the PRC2 pathway

Having found that a substantial fraction of lincRNAs are physically associated with

PRC2, we sought evidence that they play a functional role in polycomb-mediated repression.

Previous studies have shown that depletion of HOTAIR and XIST causes up-regulation of genes

normally repressed by PRC2 1". To test whether other lincRNAs have a similar effect, we

studied HOTAIR and six additional lincRNAs found to be associated with PRC2. For each of

these seven lincRNAs, we designed pools consisting of four small-interfering RNAs (siRNAs)

targeting each lincRNA (see Methods). We also used standard control siRNA pools that do not

correspond to any human sequence. We transfected the siRNA pools into hLF (three pools), hFF

(three pools) or both (one pool), with each experiment performed in duplicate. We measured the

level of lincRNA knock-down by qRT-PCR and compared the results to the control siRNA pool;

we only used experiments in which we achieved >2-fold depletion.

We hybridized the total RNA from these experiments to standard gene-expression arrays

to measure the resulting changes in gene expressions. Specifically, for each of the seven

lincRNAs, we determined the gene sets (Si, S2, ... , S7) that were up-regulated relative to the

control siRNA pools (at a false discovery rate (FDR) < 0.1). These sets contained between 30

and 134 genes (Figure 3a). The sets of genes affected by each lincRNA did not show significant

overlap suggesting that each lincRNA has distinct target sets. We searched for, but found no

common motifs enriched among the upregulated genes for each lincRNA. However, given the
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small number of target genes and the inability to distinguish between direct and indirect targets

this result may simply reflect the low statistical power in analyzing a relatively small set of

genes. Additionally, no lincRNA knock-down significantly affected the expression level of

nearby genes (a window of at least 10 genes in either direction) suggesting that these lincRNAs

are not likely to function via a cis-acting mechanism. This suggests that influence on gene

regulation by PRC2 associated lincRNAs is likely exerted by a trans mechanism, similarly to

12what we have previously shown for HOTAIR

We then sought to determine whether the up-regulated gene sets were highly enriched in

genes normally repressed by PRC2 in human fibroblasts. Toward this end, we analyzed

published data 13 in which the investigators measured gene expression changes in human

embryonic fibroblasts in response to depletion of three key components of PRC2 (EZH2, SUZ12

and EED-1) with short-hairpin RNAs (shRNAs). For each component, we ranked all genes

based on their change in expression level; the ranked lists are similar for each of the three

components. We then used Gene Set Enrichment Analysis (GSEA) to test whether the gene

sets upregulated in response to depletion of the seven lincRNAs (Si, S2 , ... , S7) were enriched

among the genes up-regulated in response to depletion of the PRC2 components. The resulting

enrichments were highly significant (FDR < 0.001) for each of the seven lincRNAs and each of

the three PRC2 components (21 analyses in all, Figure 3a). As a negative control we examined

the genes affected by the shRNA-mediated depletion of YY 126, a transcription factor associated

with chromatin. In contrast to depletion of the lincRNAs, we found no significant enrichment of

PRC2 target genes. These results show that depletion of lincRNAs associated with PRC2 causes

changes in gene expression and these genes are strongly enriched for genes normally repressed
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by PRC2. This provides functional evidence that many lincRNAs likely function through their

interaction with PRC2.

An example: TUG1 represses p53-dependant cell cycle regulation

Finally, we decided to focus on a specific PRC2-associated lincRNA, TUG1. TUG1 was

originally identified as a transcript upregulated by taurine, and siRNA-based depletion of TUG1

in the developing mouse eye was found to block retinal development 27,28; the mechanism by

which TUG1 depletion produces this phenotype is unknown. In our study, we found that TUG1

is ubiquitously expressed in human and mouse cell types and tissues and is bound to PRC2 in all

three of the cell types examined. Previously, we studied regulation of lincRNAs in response to

DNA damage and found that TUG1 was among the 39 lincRNA specifically induced in p53-wild

type but not p53-mutant cells 1 (Figure 3c). Moreover, the TUGI promoter contains many highly

conserved binding sites for p53 (Figure 3d).

We selected TUG1 as one of the seven lincRNAs above that we depleted with siRNA

pools. Depletion of TUG1 led to significant upregulation of 71 genes, which were strongly

enriched for those involved in cell-cycle regulation (regulation of mitosis, spindle formation and

cell-cycle phasing, Figure 3b). TUGI thus is induced by p53, binds to PRC2 and plays a role in

repressing specific genes involved in cell-cycle regulation. Interestingly, p53 is well known to

cause both activation and repression of many genes. While p53 has been shown to be a direct

activator of many genes, the mechanism of p53-induced repression remains unknown. Our

results suggest the intriguing hypothesis that TUGI, and perhaps other lincRNAs, may function

as downstream repressors in p53-mediated gene regulation.
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are significant at p < 0.05. The enrichment profiles for all lincRNAs tested were significant at p
< 0.05, whereas as the enrichment profile for an unrelated protein depletion (YY-1) was not
significant. The rank of each gene in the lincRNA gene set is indicated by tick marks (below
each enrichment score plot) on a schematic color bar indicating levels of differential expression,
upregulation in red and down regulation in blue. (B) Gene Ontology (GO) enrichment analysis
identified numerous cell-cycle regulation pathways that were specifically derepressed upon
knock down of lincRNA TUG1. The enrichment false discovery rate (FDR) is plotted as -
log(FDR) on the x-axis. Results are shown from knockdown experiments in lung fibroblasts
(grey) and in foot fibroblasts (black). Dashed line denotes FDR < 0.05. (C) lincRNA TUG1 is
transcriptionally regulated by p53 in response to DNA damage. The y-axis indicates the log2
ratio of lincRNA TUG1 expression in p53 wild-type cells divided by the expression value in p53
knock-out cells. The x-axis indicates time after induction of DNA damage. (D) The lincRNA
TUGI promoter exhibits highly conserved p53 binding motifs (boxed region) whereas the
transcriptional unit does not exhibit enrichment. The log odd conservation score (methods) is
shown for the p53 binding motif at each position along the lincRNA TUGI promoter.
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Discussion

It is becoming clear that the mammalian genome encodes thousands of lincRNAs that are

highly conserved and thus biologically functional'. Expression patterns suggest that these

lincRNAs are involved in diverse biological processes, including cell cycle regulation, innate

immunity, and ES pluripotency, but the mechanisms by which they play their roles were

completely unknown.

Inspired by studies of the lincRNAs HOTAIR' 2 and XIST16 , we investigated the idea that

many lincRNAs are involved in the establishment of chromatin states. In this study, we report

that a substantial proportion (24%) of lincRNAs expressed in a cell type are physically

associated with the repressive chromatin modifying complex PRC2, and the proportion is even

larger (38%) when additional chromatin modifying proteins (CoREST and SCMX) are included.

It thus seems likely that significant fraction of lincRNAs will be associated with chromatin

modifying proteins. Beyond the physical association, our functional analysis demonstrates that

siRNA-mediated depletion of these lincRNAs results in preferential derepression of PRC2

regulated genes at distant loci, consistent with a trans acting mechanism. Together, these results

suggest that many lincRNAs collaborate with chromatin modifying proteins to repress gene

expression at specific loci.

There is a growing body of literature from yeast to mammals suggesting the non-coding

29,30
RNAs play an important role in chromatin-state formation . In Schizosaccharomyces pombe, a

process known as RNA Induced Transcriptional Silencing (RITS) has been shown to play an

important role in heterochromatin formation over centromeric repeats (reviewed in 3 '). Similarly,

short RNAs have been shown to play an important role in the establishment of heterochromatic

silencing in plants. In C. elegans, genetic screens have identified polycomb homologs to be
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required for proper gene silencing in an RNA dependent manner30. In mammals, only a few

specific RNAs (such as HOTAIR and XIST) have been implicated in directing chromatin

modification. However, there is evidence that RNA plays a key role in shaping mammalian

epigenetic landscapes. For example, depletion of single-stranded RNA (ssRNA) in mouse

fibroblasts inhibits global heterochromatin formation32 . Similarly, ssRNA but not ssDNA is

required for the maintenance of the histone modifications H3K27me3 and H3K9me333

Our results suggest an intriguing hypothesis: that lincRNAs bind to chromatin-modifying

complexes to guide them to specific locations in the genome. Whereas chromatin-modifying

proteins are often ubiquitously expressed, they establish epigenetic states that differ markedly

among cell types and conditions". Under our model, differentially expressed lincRNAs could

bind to these complexes and help establish cell type specific epigenetic states. In particular, the

PRC2 complex is involved in establishing repressive chromatin states involving H3K27me3.

Together, PRC2 and a lincRNA might play the role of a transcriptional repressor by directing

silencing to specific loci.

Such a mechanism could function within a larger regulatory program. Specifically, a

newly induced transcription factor might establish a particular cellular state by (i) directly

activating some downstream genes and (ii) activating lincRNAs that (with PRC2) repress genes

involved in a previous or competing cellular state. Our observations concerning the lincRNA

TUGI suggest that it may function in such a program. Upon DNA damage, TUGI is induced in a

p53-dependent manner, likely through direct binding of p53, in view of many p53-binding sites

in its promoter. It then binds PRC2 (based on our RIP-Chip data) and is involved in repressing

important cell-cycle related genes (based on siRNA-based depletion of TUG1). Thus, we
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speculate that TUGI may serve as a downstream transcriptional repressor in the p53 pathway to

repress cell cycle progression in response to DNA damage.

Similarly, we have recently shown that HOTAIR serves as a transcriptional repressor of

HOXD genes. We now know that HOXA13, the key distal regulator, directly transcribes

HOTAIR to establish positional identity by repressing the appropriate HOX clusters 4 . Thus,

HOTAIR serves as a downstream repressor in the HOXA13 transcriptional network (Presser et

al. in preparation). This model raises many mechanistic questions, including (i) whether most

lincRNAs associated with chromatin modifying complexes directly guide the complexes to

specific loci and (ii) if so, how the guidance is accomplished (for example, by direct base pairing

at specific sequence motifs). Future studies are needed to resolve the mechanism.

Our experiments have focused on chromatin-modifying complexes that add repressive

chromatin marks. It is possible that many additional lincRNAs are associated with chromatin-

modifying complexes that confer activating modifications, as has been recently reported in a few

cases 19,20. These questions can be addressed by performing RIP experiments with a wide range

of antibodies across a wide range of cell types, to create a catalog of lincRNA-protein

interactions.

Finally, while we have found that a substantial proportion of lincRNAs are associated

with repressive chromatin modifying complexes, we do not mean to suggest that all lincRNAs

necessarily function in this manner. There may be classes of lincRNAs that function in entirely

different ways. For example, the lincRNAs NEAT 1 and NEAT2 have been recently shown to be

important in the formation of the nuclear speckle 35,36 , and the lincRNA NRON plays a role in

repressing nuclear import3 7. It is possible that additional lincRNAs play roles in these and
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numerous other cellular pathways. The full range of biological diversity of lincRNAs and their

mechanisms clearly remains to be explored.
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Chapter 5: lincRNAs function in the molecular circuitry controlling
pluripotency and differentiation in embryonic stem cells

In this chapter, we describe a systematic loss-of-function study, which demonstrated that
lincRNAs play a clear functional role in the cell and that many lincRNAs play an essential role
in maintaining the pluripotent cell and repressing differentiation programs.

Parts of this work were first published as:
Guttman M, Donaghey J, Carey BW, Garber M, Grenier J, Munson G, Young G, Lucas AB,
Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES. (2011).
lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature
477(7364):295-300

Guttman M and Rinn JL. (2012). Modular regulatory principles of large non-coding RNAs.
Nature 482(7385):339-46
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While thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in

mammals, few have been functionally characterized leading to debate about their biological

role. To address this, we performed loss-of-function studies on most lincRNAs expressed in

mouse embryonic stem cells (ESC) and characterized the effects on gene expression. Here

we show that knockdown of lincRNAs have major consequences on gene expression

patterns, comparable to knockdown of well-known ESC regulators. Notably, lincRNAs

primarily affect gene expression in trans. We identify dozens of lincRNAs whose

knockdown causes an exit from the pluripotent state or upregulation of lineage

commitment programs. We integrate lincRNAs into the molecular circuitry of ESCs and

show that lincRNA genes are regulated by key transcription factors and that lincRNA

transcripts physically bind to multiple chromatin regulatory proteins to affect shared gene

expression programs. Together, the results demonstrate that lincRNAs have key roles in

the circuitry controlling ESC state.

INTRODUCTION

The mammalian genome encodes many thousands of large non-coding transcripts'-4

including a class of -3500 large intergenic ncRNAs (lincRNAs) identified using a chromatin

signature of actively transcribed geness 7. These lincRNA genes have been shown to have

interesting properties, including clear evolutionary conservation5-9, expression patterns correlated

with various cellular processes 5'1-12 and binding of key transcription factors to their

promoters5'-113, and the lincRNAs themselves physically associate with chromatin regulatory

proteins7'1' 4-16. Yet, it remains unclear whether the RNA transcripts themselves have biological

functions 17 ,1'. Few have been demonstrated to have phenotypic consequences by loss-of-

function experiments". As a result, the functional role of lincRNA genes has been widely
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debated. Various proposals include that lincRNA genes act as enhancer regions, with the RNA

transcript simply being an incidental by-product 1 -19, that lincRNA transcripts act in cis to

activate transcription20, and that lincRNA transcripts can act in trans to repress transcription3 '14.

We therefore sought to undertake systematic loss-of-function experiments on all

lincRNAs known to be expressed in mouse embryonic stem cells (ESCs)s,6 . ESCs are pluripotent

cells that can self-renew in culture and can give rise to cells of any of the three primary germ

layers including the germline2 1. The signalling21-23 , transcriptional 24-29, and chromatin24,30-34

regulatory networks controlling pluripotency have been well characterized providing an ideal

system to determine how lincRNAs may integrate into these processes.

Here we show that knockdown of the vast majority of ESC-expressed lincRNAs has a

strong effect on gene expression patterns in ESCs, of comparable magnitude to that seen for the

well-known ESC regulatory proteins. We identify dozens of lincRNAs that upon loss-of-function

cause an exit from the pluripotent state and dozens of additional lincRNAs that, while not

essential for the maintenance of pluripotency, act to repress lineage-specific gene expression

programs in ESCs. We integrate the lincRNAs into the molecular circuitry of ESCs by

demonstrating that most lincRNAs are directly regulated by critical pluripotency-associated

transcription factors and -30% of lincRNAs physically interact with specific chromatin

regulatory proteins to affect gene expression. Together, these results demonstrate a regulatory

network in ESCs whereby transcription factors directly regulate the expression of lincRNA

genes, many of which can physically interact with chromatin proteins, affect gene expression

programs, and maintain the ESC state.

RESULTS

Functional effects of lincRNAs on gene expression

To perform loss-of-function experiments on lincRNAs, we generated five lentiviral-based

shRNAs 35 targeting each of the 237 lincRNAs previously identified in ESCs5 ,6 (see Methods).
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These shRNAs successfully targeted 147 lincRNAs and reduced their expression by an average

of -75% compared to endogenous levels in ESCs (see Methods, Figure la). As positive

controls, we generated shRNAs targeting -50 genes encoding regulatory proteins, including both

transcription factor and chromatin factor genes that have been shown to play critical roles in ESC

regulation 29,32,36; we obtained validated hairpins against 40 of these genes. As negative controls,

we performed independent infections with lentiviruses containing 27 different shRNAs with no

known cellular target RNA.

We then studied the effects of knocking down each lincRNA on global transcription. We

infected each shRNA into ESCs, isolated RNA after 4 days, and profiled their effects by

hybridization to genome-wide microarrays (Figure la, see Methods). We employed a stringent

procedure to control for non-specific effects due to viral infection, generic RNAi responses, or

'off-target' effects. Expression changes were deemed significant only if they exceeded the

maximum levels observed in any of the negative controls, showed a two-fold change in

expression compared to the negative controls, and had a low false discovery rate (FDR) assessed

across all genes based on permutation tests (Figure 1b, see Methods). This approach controls for

the overall rate of non-specific effects by estimating the number and magnitude of observed

effects in the negative control hairpins, where all effects are non-specific.

For 137 of the 147 lincRNAs (93%), knockdown caused a significant impact on gene

expression, with an average of 175 protein-coding transcripts affected (range: 20-936) (Figure

1c). These results were similar to those obtained upon knockdown of the 40 well-studied ESC

regulatory proteins: 38 (95%) showed significant effects on gene expression, with an average of

207 genes affected (range: 28 (for DNMT3L) to 1187 (for Oct4)) (Figure ic). Although some

individual lincRNAs have been found to lead primarily to gene repression 3,14, we find that

knockdown of the lincRNAs studied here largely led to comparable numbers of activated and
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repressed genes. To further assess whether the expression changes were due to 'off-target'

effects, we also profiled the effects of the second-best validated shRNA targeting 10 randomly

selected lincRNA genes. In all cases, second shRNAs against the same target produced

significantly similar expression changes (see Methods). Together, these results indicate that the

vast majority of lincRNAs have functional consequences on overall gene expression of

comparable magnitude (in terms of number of affected genes and impact on levels) to the known

transcriptional regulators in ESCs.
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Figure 1: Functional effects of lincRNAs. (a) A schematic of lincRNA perturbation
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knockdown of 147 lincRNAs (blue) and 40 well-known ESC regulatory proteins (red). Points
corresponding to five specific ESC regulatory proteins are marked. (d) Effects of knockdown of
13 lincRNAs on the 10 neighbour genes on each side (downregulation in blue, upregulation in
red). For the remaining 134 lincRNA genes, no neighbouring genes are affected. (e) Distance to
the closest affected gene upon knockdown of a lincRNA (blue) or protein-coding gene (red).
Grey Inset: A close-up of the region from 0-5 Mb. The grey dashed line represents a distance of
300 kb in both panels.
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lincRNAs affect gene expression in trans

The discovery of XIST as a ncRNA immediately suggested a model for how it can act in

an allele specific manner3. In theory, a ncRNA possess intrinsic cis regulatory capacity since it

can function while remaining tethered at its own locus 3 7 ,3 8 whereas an mRNA must be

dissociated, exported, and translated to function. In this review, we define a cis regulator as one

that exerts its function on a neighboring gene on the same allele from which it is transcribed and

a trans regulator if it does not meet this criteria. Because of the unique cis regulatory capability

of ncRNAs, it has been speculated that cis regulation may be a common mechanism for large

ncRNAs 20,38 . However, global functional evidence strongly suggests that this is not the case (see

Figure 2).

To distinguish cis and trans regulatory models, initial studies used correlation analysis

and identified significant correlations of expression between ncRNAs and their neighboring

protein-coding genes'9,39 . However, several of these cases have been demonstrated to be trans

models and the apparent correlations are due to shared upstream regulation (such as lincRNA-

p2113 and lincRNA-Sox2 5), positional correlation (such as HOTAIR 14), transcriptional 'ripple

effects' 19 and indirect regulation of neighboring genes (Figure 2). Consistent with these

explanations, a recent study showed that the increased correlation of expression between

ncRNAs and neighboring genes is comparable to that observed for protein-coding genes40.

Some recent papers have claimed that most lincRNAs act primarily in cis We

found no evidence to support this latter notion: knockdown of only 2 lincRNAs showed effects

on a neighbouring gene, only 13 showed effects within a window of ten genes on either side

(Figure 1d), and only 8 showed effects on genes within 300 kb (Figure le); these proportions

are no greater than observed for protein-coding genes (Figure le). In short, lincRNAs appear to

affect expression largely in trans.
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Our results contrast with a recent study that concluded that lincRNAs act in cis, based on

the observation that knockdown of 7 out of 12 lincRNAs affected expression of a gene within

300Kb2 0. The explanation appears to be that the threshold for significant changes in gene

expression used in the study failed to account for multiple hypothesis testing within the local

region. Accounting for this, the effects on neighbouring genes are no greater than expected by

chance and are consistent with our observations here (see Methods).

While perturbation experiments can demonstrate that an RNA works in trans, evidence

that an RNA works in cis is more difficult to obtain (see Figure 2). As an example, perturbation

experiments demonstrate that the JPX ncRNA affects the expression of the neighboring XIST

41gene yet it was demonstrated to perform this role by acting in trans . The ultimate proof of cis

regulation requires demonstrating that an RNA regulates a neighbouring gene on the same allele

(Figure 2). To date, few studies have performed such tests and it is unclear what percentage of

ncRNAs suggested to act in cis by loss-of-function experiments 20,42 will pass this test.

While it is clear that some lincRNAs can regulate gene expression in cis20,42-44

determining the precise proportion of cis regulators requires more direct experimental

approaches. We note that our results are consistent with observed correlations between lincRNAs

and neighbouring genes ,39 , which may represent shared upstream regulation 5' or local

transcriptional effects 9' 45 . In addition, the lincRNAs studied here should be distinguished from

transcripts that are produced at enhancer sites17'18 , the function of which has yet to be

determined.
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lincRNAs are required to maintain the pluripotent state

We next sought to investigate whether lincRNAs play a role in regulating the ESC state.

Regulation of the ESC state involves two components, maintaining the pluripotency program and

repressing differentiation programs 24. To determine whether lincRNAs play a role in the

maintenance of the pluripotency program, we studied their effects on the expression of Nanog, a

key transcription factor that is required to establish 46 and uniquely marks the pluripotent

47,48state . We infected ESCs carrying a luciferase reporter gene expressed from the endogenous

Nanog promoter 49 with shRNAs targeting lincRNAs or protein-coding genes. We monitored loss

of reporter activity after 8 days relative to 25 negative control hairpins across biological

replicates (see Methods). To ensure that the observed effects were not simply due to a reduction

in cell viability, we excluded shRNAs that caused a reduction in cell numbers (see Methods).

Altogether, we identified 26 lincRNAs that had major effects on endogenous Nanog levels with

many at comparable levels to the knockdown of the known protein-coding regulators of

pluripotency such as Oct4 and Nanog (Figure 3a). This establishes that these lincRNAs have a

role in maintaining the pluripotent state.

To further validate the role of these 26 lincRNAs in regulating the pluripotent state, we

knocked down these lincRNAs in wild-type ESCs and measured mRNA levels of Oct4 and

Nanog after 8 days across biological replicates. For -90% of these lincRNAs, we identified a

significant decrease in both Oct4 and Nanog levels. For the 16 lincRNAs for which we had a

second effective hairpin, we found comparable reductions in Oct4 expression levels upon

knockdown using these hairpins (Figure 3b). Notably, >90% of lincRNA knockdowns affecting

Nanog reporter levels led to loss of the ESC morphology (Figure 3c). In summary, inhibition of

these 26 lincRNAs lead to an increased exit from the pluripotent state.
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Figure 3: lincRNAs are critical for the maintenance of pluripotency. (a) Activity from a
Nanog promoter driving luciferase, following treatment with control hairpins (black) or hairpins
targeting luciferase (green), selected protein-coding regulators (red), and lincRNAs (blue). (b)
Relative mRNA expression levels using qPCR of Oct4 following knockdown of selected protein-
coding (red) and lincRNA (blue) genes affecting Nanog-luciferase levels. The best hairpin
(black line) and second best hairpin (grey line) are shown. All knockdowns are significant with a
p-value<0.001. Error bars represent standard error across replicate infections (n=4). (c)
Morphology of ESCs and immunofluorescence staining of Oct4 for a negative control hairpin
(black line), a hairpin targeting Oct4 (red line), and hairpins targeting two lincRNAs (blue
line). The first row shows bright field images of infected ESCs. The second row shows
immunofluorescence staining of the Oct4 protein and the third row shows DAPI staining of the
nuclei.
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lincRNAs repress lineage-specific gene expression programs

We next sought to explore the biological roles of ESC lincRNAs by classifying the

overall gene expression patterns resulting from a lincRNA knockdown. To interpret the patterns,

we compared them to a curated set of >100 publicly available gene expression profiles and

signatures resulting from perturbations or differentiation of ESCs (see Methods)504. We mapped

our observed profiles onto these previously identified states by comparing the expression

changes induced by knockdown of the lincRNA with the expression changes in the previously

studied states; we assessed significance using a permutation-derived FDR (see Methods)55'5 6 . The

states include differentiation into the endoderm, ectoderm, mesoderm, and trophectoderm

lineages5 0 ,5 1,5 3 ,5 4 . As a positive control for our analytical method, we confirmed the expected

results that the expression pattern caused by Oct4 knockdown was strongly associated with the

trophoectoderm lineage5 7 and by Nanog knockdown with endoderm differentiation 48 (Figure

4a).

Using this approach, we identified 30 lincRNAs whose knockdown produced expression

patterns similar to differentiation into specific lineages (Figure 4a). Amongst the lincRNAs

associated with differentiation, 13 are associated with differentiation into the endoderm lineage,

7 with ectoderm differentiation, 5 with neuroectoderm differentiation, 7 with mesoderm

differentiation, and 2 with the trophectoderm lineage (Figure 4a). Consistent with these

functional assignments, we observe that the majority (>85%) of the 30 lincRNAs associated with

specific differentiation lineages showed upregulation of the well-known marker genes for the

identified states 2 9' 5 3 ,5 4 upon knockdown (such as Sox17 (endoderm), Fgf5 (ectoderm), Pax6

(neuroectoderm), Brachyury (mesoderm), and Cdx2 (trophectoderm)) (Figure 4b).

The fact that knockdown of these 30 lincRNAs induce gene expression programs

associated with specific early differentiation lineages suggests that these lincRNAs normally act

as a barrier to such differentiation. Interestingly, most of the lincRNA knockdowns (-85%) that

induce gene expression patterns associated with these lineages did not cause the cells to
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differentiate as determined by Nanog reporter levels (Figure 3a). This is consistent with

observations for several critical ESC chromatin regulators, such as the polycomb complex; loss-

of-function of these regulators similarly induce lineage-specific markers without causing

30,58,59differentiation

Together, these data indicate that many lincRNAs play important roles in regulating the

ESC state, including maintaining the pluripotent state and repressing specific differentiation

lineages.
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Figure 4: lincRNAs repress specific differentiation lineages. (a) Expression changes for each
lincRNA compared to gene expression of five differentiation patterns. Shown are associations
for Oct4 and Nanog (left) and for lincRNAs with a significant (FDR<0.01) association with these
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(FDR<0.05) are displayed on a log scale as the t-statistic compared to a panel of negative control
hairpins for each lineage gene.
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lincRNAs are direct regulatory targets of the ESC transcriptional circuitry

Having demonstrated a functional role for lincRNAs in ESCs, we sought to integrate the

lincRNAs into the molecular circuitry controlling the pluripotent state. First, we explored how

lincRNA expression is regulated in ESCs. Toward this end, we utilized published genome-wide

maps of 9 pluripotency-associated transcription factors (TFs)26,60 and determined whether they

bind to the promoters of lincRNA genes expressed in ESCs. We observe that -75% of the 237

lincRNA promoters are bound by at least one of 9 pluripotency-associated TFs (including Oct4,

Sox2, Nanog, cMyc, nMyc, Klf4, Zfx, Smad, and Tcf3) with a median of 3 factors bound to each

promoter (Figure 5a), comparable to the proportion reported for protein-coding genes26

Interestingly, the 3 core factors (Oct4, Sox2, and Nanog) bind to the promoters of ~12% of all

lincRNAs and -50% of lincRNAs involved in the regulation of the pluripotent state.

To determine if lincRNA expression is functionally regulated by the pluripotency-

associated TFs, we used shRNAs to knock down the expression of 5 of the 9 pluripotency-

associated TF genes for which we could obtain validated hairpins and profiled the resulting

changes in lincRNA expression after 4 days. Upon knockdown of a TF, expression changes are

seen at -50% of lincRNAs genes whose promoters are bound by the TF (Figure 5a, bottom); the

proportion is comparable to that seen for protein-coding genes whose promoters are bound by the

TF. The strong but imperfect correlation between TF-binding and effect of TF-knockdown is

consistent with previous observations 61-63 and may reflect regulatory redundancy in the

28,64pluripotency network . In addition, we profiled the knockdown of an additional 7

pluripotency-associated transcription factors (including Esrrb, Zfp42, and Stat3). Altogether, for

-60% of the ESC lincRNAs, we identified a significant downregulation upon KD of one of these

11 TFs (Figure 5b).

We also characterized the expression of the ESC lincRNAs following retinoic-acid-

induced differentiation of the ESCs. The ESC lincRNAs show temporal changes across the time

course with -75% showing a decrease in expression compared to untreated ESCs (Figure 5c).
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Notably, all of the lincRNAs shown to regulate pluripotency are down-regulated upon retinoic

acid treatment (Figure Sc). Our results establish that lincRNAs are direct transcriptional targets

of the pluripotency-associated TFs and are dynamically expressed across differentiation.

Collectively, these results demonstrate that lincRNAs are an important regulatory component

within the ESC circuitry.
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Figure 5: lincRNAs are direct regulatory targets of the ESC transcriptional circuitry. (a) A
heatmap representing enrichment for lincRNA promoters (rows) by ChIP-Seq for 9 transcription
factors (columns). The percentages of bound promoters downregulated upon knock-down of a
TF, are indicated in boxes beneath the associated column ('na' were not measured). lincRNA
promoters were grouped into two main clusters: one bound by Oct4, Sox2, and Nanog (Core
regulated) and the other bound by cMyc and nMyc amongst other factors (Myc regulated). Right:
Example lincRNAs in each cluster showing their genomic neighbourhood and TF binding. (b) A
heatmap representing changes in lincRNA expression (rows) following knockdown of 11 TFs
(columns), relative to negative control hairpins. Middle: Effect of knockdown of Sox2, Oct4 and
Nanog on expression levels of linc 1405 (gray) and Oct4 (black). Right: Effect of knockdown of
Klf2, Klf4, nMyc, and Esrrb on expression levels of linc1428.
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lincRNAs physically interact with diverse chromatin regulatory proteins

To explore how lincRNAs carry out their regulatory roles, we studied whether lincRNAs

physically associate with chromatin modifying proteins in ESCs. We previously showed that

many human lincRNAs can interact with the polycomb repressive complex 7, a complex that

30,31plays a critical functional role in the regulation of ESCs . To determine whether the ESC

lincRNAs physically associate with the polycomb complex, we crosslinked RNA-Protein

complexes using formaldehyde, immunoprecipitated the complex using antibodies specific to

both the Suz 12 and Ezh2 components of Polycomb, and profiled the co-precipitated lincRNAs

using a direct RNA quantification method (see Methods). We performed immunoprecipitation

of the Polycomb complex across 5 biological replicates and 8 mock-IgG controls, and we

assessed significance using a permutation test (see Methods). Altogether, we identified 24

lincRNAs (-10% of the ESC lincRNAs) that were strongly enriched for both Polycomb

components (Figure 6b).

To determine if lincRNAs interact with additional chromatin proteins, we systematically

analysed chromatin-modifying proteins that have been shown to play critical roles in ESCs3 0-

34,66,67. Specifically, we screened antibodies against 28 chromatin complexes (see Methods) and

identified 11 additional chromatin complexes that are strongly and reproducibly associated with

the lincRNAs (see Methods). These chromatin complexes are involved in 'reading' (PRC 1,

Cbx 1, and Cbx3), 'writing' (Tip60/P400, PRC2, Setd8, ESET, and Suv39h 1), and 'erasing'

histone modifications (Jaridlb, JaridIc, and HDAC1) 68, as well as a chromatin-associated DNA

binding protein (YYl) (Figure 6a). Altogether, we found that 74 (-30%) of the ESC lincRNAs
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are associated with at least one of these 12 chromatin complexes (Figure 6b). While most of the

identified interactions are with repressive chromatin regulators, this is likely due to limitations of

our selection criteria and available antibodies.

Interestingly, we note that many lincRNAs are strongly associated with multiple

chromatin complexes (Figure 6b). For example, we identified 8 lincRNAs that bind to the PRC2

H3K27 and ESET H3K9 methyltransferase complexes ('writers' of repressive marks) and the

Jaridlc H3K4 demethylase complex (an 'eraser' of activating marks). Consistent with this, the

PRC2 and ESET complexes have been reported to bind at many of the same 'bivalent' domains 33

69,7and to functionally associate with the Jaridlc complex ,70. Similarly, we identified a distinct set

of 17 lincRNAs that bind to the PRC2 complex ('writer' of K27 repressive marks), PRC1

complex ('reader' of K27 repressive marks), and Jaridlb complex ('eraser' of K4 activating

marks) (Figure 6c), as well as other functionally consistent 'reader', 'writer', and 'eraser'

combinations (Figure 6c). One of several potential models consistent with this data is that

lincRNAs may bind to multiple distinct protein complexes, perhaps serving as 'flexible

scaffolds' to bridge functionally related complexes as previously described for telomerase

71RNA.

To determine if the identified lincRNA-protein interactions have a functional role on

gene expression, we examined the effects on gene expression resulting from knockdown of

individual lincRNAs that are physically associated with particular chromatin complexes and

from knockdown of genes encoding the associated complex itself (see Methods). For >40% of

these lincRNA-protein interactions, we identified a highly significant overlap in affected gene

expression programs compared to just -6% for random lincRNA protein pairs (see Methods).
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Other cases may reflect the limited power to detect the overlaps, because specific lincRNA-

protein complexes may be related to only a fraction of the overall expression pattern mediated by

the chromatin complex.

Together, these data suggest that many of the ESC lincRNAs physically associate with

multiple different chromatin regulatory proteins and that many of these interactions are likely to

be important for the regulation of gene expression programs.
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Figure 6: lincRNAs physically interact with chromatin regulatory proteins. (a) A schematic
of the classes of chromatin regulators profiled: 'readers' (blue), 'writers' (orange), and 'erasers'
(green). (b) A heatmap showing the enrichment of 74 lincRNAs (rows) for one of 12 chromatin
regulatory complexes (columns). The names are color-coded by their chromatin-regulatory
mechanism. Major clusters are indicated by vertical lines with a description of the chromatin
components. (c) Examples of each cluster, enrichment levels for lincRNAs are shown for the
indicated complexes. Enrichments are shown as the t-statistic compared to five mock-IGG
controls. The colour of the bars corresponds to the chromatin regulatory mechanism of the
immunoprecipitated protein.
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DISCUSSION

While the mammalian genome encodes thousands of lincRNA genes, few have been

functionally characterized. We performed an unbiased loss-of-function analysis of lincRNAs

expressed in ESCs and show that lincRNAs are clearly functional and primarily act in trans to

affect global gene expression. Our results establish that lincRNAs are key components of the

ESC transcriptional network that are functionally important for maintaining the pluripotent state,

and that many are down-regulated upon differentiation. The ESC lincRNAs physically interact

with chromatin proteins, many of which have been previously implicated in the maintenance of

30,32-34the pluripotent state3 '3-3. In addition to chrornatin proteins, lincRNAs interact with other

protein complexes including many RNA-binding proteins.

Our data suggests a model whereby a distinct set of lincRNAs is transcribed in a cell type

and interacts with ubiquitous regulatory protein complexes to give rise to cell-type-specific

RNA-protein complexes that coordinate cell-type specific gene expression programs (Figure 7).

Because many of the lincRNAs studied here interact with multiple different protein complexes,

one hypothesis is that they act as cell-type specific 'flexible scaffolds' 7 1,72 to bring together

protein complexes into larger functional units (Figure 7). This model has been previously

demonstrated for the yeast telomerase RNA 7 1 and suggested for the XIST 72-74 and HOTAIR 75

lincRNAs. The hypothesis that lincRNAs serve as flexible scaffolds could explain the uneven

patterns of evolutionary conservation seen across the length of lincRNA genes6: the more highly

conserved patches could correspond to regions of interaction with protein complexes.
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While a model of lincRNAs acting as 'flexible scaffolds' is attractive, it is far from

proven. Testing the hypothesis for lincRNAs will require systematic studies, including defining

all protein-complexes with which lincRNAs interact, determining where these protein

interactions assemble on RNA, and ascertaining whether they bind simultaneously or

alternatively. Moreover, understanding how lincRNA-protein interactions give rise to specific

patterns of gene expression will require determination of the functional contribution of each

interaction and possible localization of the complex to its genomic targets.
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Lineage
program

Pluripotency
program

Figure 7: A model for lincRNA integration into the molecular circuitry of the cell. ESC-
specific transcription factors (such as Oct4, Sox2, and Nanog) bind to the promoter of a lincRNA
gene and drive its transcription. The lincRNA can then bind to different ubiquitous regulatory
proteins, giving rise to cell-type specific RNA-protein complexes. Through different
combinations of protein interactions, the lincRNA-protein complex can give rise to unique
transcriptional programs. Right: A similar process may also work in other cell types with specific
transcription factors regulating expression of lincRNAs, creating cell-type-specific RNA-protein
complexes and regulating cell-type-specific expression programs.
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METHODS

ES Cell Culture

V6.5 and Nanog-Luciferase 49 cells were co-cultured with irradiated C57BL/6 MEFs

(GlobalStem; GSC-6002C) on pre-gelatinized plates as previously described 76 . Briefly, cells

were cultured in mES media consisting of knock-out DMEM (Invitrogen; 10829018)

supplemented with 10% FBS (GlobalStem; GSM-6002), 1% penicillin-streptomycin (Invitrogen;

15140-163), 1% L-glutamine (Invitrogen; 25030-164), 0.001% Beta-mercaptoethanol (Sigma;

M3148-100ML) and 0.01% ESGRO (Millipore; ESG 1106).

Picking lincRNA gene candidates

Using our previous catalogue of K4-K36 defined lincRNAs5 along with the reconstructed full-

length sequences we determined using RNA-Seq 6, we designed shRNA hairpins targeting each

lincRNA identified in both sets. Specifically, we used the conservative K4-K36 definitions from

our previous work5 that were expressed in mouse ES cells. We further filtered the list to include

only multi-exonic lincRNAs that were reconstructed in mouse ES cells6 . Together, this yielded

237 lincRNA genes.

Picking protein-coding gene candidates

We selected protein coding gene controls consisting of both transcription factors and chromatin

proteins. These proteins were selected based on their well-characterized role in regulating mouse

ES cells and include Pou5fl (Oct4)5'77, Sox2 29,78 , Nanog48'79, Stat323 , Klf480, and Zfp42
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(Rex 1)8 1. In addition, we selected additional transcriptional and chromatin regulators that were

identified by RNAi screens as regulators of pluripotency 29,32,36 and/or were found in smaller

focused studies to have critical roles in the maintenance of the pluripotent state (such as Carm182

Chdl 83, Thap 118, Suz12 30,31,s, and Setdb133,34). A full list is provided in Supplemental Table 4.

shRNA Design Rules

For each lincRNA we designed 5 hairpins by extending the previously described design rules 35

accounting for the sequence content of the hairpin, miRNA seed matches, uniqueness to the

target compared to the transcriptome and the genome, and number of lincRNA isoforms covered.

For each lincRNA we enumerated all 21-mer sub-sequences as follows: (i) A "clamp score" was

computed by looking at the nucleotides at positions 18, 19, and 20. If all three positions

contained an A/T it was assigned a score of 4, if two positions were A/T it was assigned a score

of 1.5 and if one was A/T it was assigned a score of 0.8. We then looked at positions 16, 17, and

21 if all 3 were A/T it was assigned a score of 1.25, if 2 were A/T it was assigned a score of 1.1,

and if 1 was A/T is was assigned a score of 0.8. The clamp score was computed as the product of

these two scores. (ii) A "GC score" was computed by looking at the total GC percentage of the

21-mer sequence. If the sequence was <25% GC it was assigned a score of 0.01 if it was <55% it

was assigned a score of 3, if it was <60% it was assigned a score of 1, and if >60% it was

assigned a score of 0.01. (iii) A "4-mer penalty" of 0.01 was assigned for any hairpin containing

the same nucleotide in 4 subsequent nucleotides. (iv) A "7 GC penalty" of 0.01 was assigned to

any hairpin containing any 7 consecutive G/C nucleotides. (v) We removed all hairpins

containing an A in either position 1 or position 2 of the hairpin. (vi) We removed all hairpins
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containing a repeat masked nucleotide. (vii) Finally, we computed a "miRNA-seed penalty" by

looking at the forward positions 11-17, 12-20, and 13-19 of the hairpin as well as the reverse

complement of positions 14-20, 15-2 1, or 16-21 plus a 3' C. We then looked up whether these

positions matched known miRNA seeds and with what frequency. We computed the scores for

the forward and reverse positions and defined the score as the product of the forward and reverse

scores. The final score for each hairpin sequence is defined as the product of all seven scores

values.

We then sorted the candidate hairpin sequences by score, breaking high scoring ties by

the total number of lincRNA isoforms that are covered by the hairpin. We then aligned each

hairpin sequence against both the genome and the RefSeq-defined transcriptome (NCBI Release

39), and filtered any hairpin with fewer than three mismatches to any other gene or position in

the genome. Candidate sequences were chosen for shRNA production by first picking the highest

scoring candidate and then proceeding to successively lower scores. As each hairpin was

selected, all other hairpins overlapping this hairpin were removed. We repeated this process until

we identified 5 hairpins that covered each lincRNA.

shRNA cloning and virus prep

We designed 1,144 hairpins targeting 237 lincRNA genes. Of these, we successfully cloned 1087

hairpins targeting 223 lincRNAs. These hairpins were cloned into a vector containing a

puromycin resistance gene and incorporated into a lentiviral vector as previously described35.

Briefly, synthetic double stranded oligos that represent a stem-loop hairpin structure were cloned

into the second-generation TRC (the RNAi Consortium) lentiviral vector, pLKO.5; the
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expression of a given hairpin produces shRNA that targets the gene of interest. Lentivirus was

prepared as previously described 35 . Briefly, 100ng of shRNA plasmid, 100ng of packaging

plasmid (psPAX2) and lOng of envelope plasmid (VSV-G) were used to transfect packaging

cells (293T) with TranslT-LT1 (Mirus Bio). Virus was harvested 48 and 70 hours post-

transfection. Two harvests were combined. Virus titers were measured as previously described3 s

Briefly, we measured virus titers by infecting A549 cells with appropriately diluted viruses. 24

hours post infection, puromycin was added to a final concentration of 5ug/ml and the selection

proceeded for 48 hours. The number of surviving cells, which is correlated to virus titer, was

measured by alamarBlue (BioSource) staining utilizing the Envision 2103 Multilabel plate reader

(PerkinElmer)

Infection and selection protocol

V6.5 ES cells were plated at a density of 5000 cells/well in 100ul mES media onto pre-

gelatinized 96-well dishes (VWR; BD356689). Cells were infected with 5ul of a lentiviral

shRNA stock and incubated at 37'C for 30 minutes. Puromycin resistant DR4 MEFs

(GlobalStem; GSC-6004G) were then added to the plates at a density of -6000/well and

incubated overnight at 37'C, 5% C02. After 24 hours, all media was removed from the cells

and replaced with media containing lug/mL puromycin. Media was then changed every other

day with fresh media containing lug/mL puromycin. The end-point depended on the assay and

was either 4-days post infection (validation and microarrays) or 8-days (reporters and qPCR of

marker genes).
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RNA Extraction

ES cells were infected and lysed at day 4 with 150ul of Qiagen's RLT buffer and 3 replicates of

each virus plate were pooled for RNA extraction using Qiagen's RNeasy 96-well columns

(74181). RNA extraction was completed following Qiagen's RNeasy 96-well protocol with the

following modifications: 450ul of 70% ethanol was added to 450ul total lysate prior to the first

spin. An additional RPE wash was added to the protocol, for a total of 3 RPE washes.

lincRNA primer design and prescreen

lincRNA primers were designed using primer3 (http://frodo.wi.mit.edu/primer3/). Specifically,

we designed primers spanning exon-exon junctions by specifying each of the regions as

preferred inclusion regions in the primer3 program. When a low scoring primer pair (primer

penalty <1) was available it was used. If none was available, we then identified all primers that

contained amplicons that spanned an exon-exon junction. In a few cases, when we could not

identify a primer pair spanning an exon-exon junction, we designed primers within an exon of

the lincRNA. For each primer pair, we tested the specificity against the transcriptome85 (Ref Seq

NCBI Release 39) and the genome (Mouse MM9) using the isPCR (http://genome.ucsc.edu/cgi-

bin/hgPcr) program. Specifically, we required that the primer pair amplify the lincRNA gene and

no other genomic of gene amplicon.

For each primer pair, we validated the quantification and specificity prior to use.

Specifically, we tested primers in qPCR reactions using a dilution series of mouse ES cDNA

including a no reverse transcriptase (RT) sample. We excluded any primer that did not have

robust quantification across a 64-fold dilution curve, had high signal in the no RT sample, or had
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low detectable expression in the undiluted sample (cycle number >34). For primers that failed

this validation we redesigned and tested new primers.

Knockdown validation using qPCR

To determine if lincRNA hairpins were effective at knocking down the lincRNA of interest, we

infected each hairpin into mouse embryonic stem cells, selected for lentiviral integration, and

measured changes in the targeted lincRNA expression level. We isolated total cellular RNA after

4 days; this time-point was chosen to allow for identification of robust changes while minimizing

secondary effects due to differentiation of the ES cells. We reasoned that this would allow us to

determine more direct effects due to RNAi rather than to differentiation.

Gene panels were constructed that contained all 5 hairpins targeting a gene along with an

empty vector control pLKO.5-nullT and the GFP-targeting hairpin clonetechGfp_437s1ci.

cDNA was generated using lOul of RNA and lOul of 2x cDNA master mix containing 5x

Transcriptor RT Reaction Buffer (Roche), DTT, MMLV-RT (Roche), dNTPs (Agilent; 200415-

51), Random 9-mer oligos (IDT), Oligo-dT (IDT) and water. cDNA was diluted 1:9 and

quantitative PCR was performed using 250 nM each primer in 2x Sybr green master mix (Roche)

and run on a Roche Light-Cycler 480. Target lincRNA expression and GAPDH levels were

computed for each panel. lincRNA expression levels were normalized by GAPDH levels and this

normalized value was compared to the reference control hairpins within the panel. Knockdown

levels were computed as the average of the fold decrease compared to the two control hairpins.

Hairpins showing a knockdown greater than 60% of the endogenous level were considered
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validated and the best validated hairpin from a lincRNA panel was selected for subsequent

studies.

Picking candidates for microarray analysis

To assess the effects of a lincRNA on gene expression, we profiled the changes in gene

expression after knocking down each lincRNA gene. Specifically, for each lincRNA with at least

1 validated hairpin we profiled the genome-wide expression level changes after knockdown

across 2 independent infections (see above). To control for expression changes due to viral

infection, we performed five independent infections containing no RNAi hairpin (pLKO.5-

nullT). This control hairpin was embedded in each RNA prep plate. To control for effects due to

an off-target RNAi effect, we profiled 27 distinct negative control hairpins which do not have a

known target in the cell. These hairpins included 6 RFP hairpins, 10 GFP hairpins, 6 Luciferase

hairpins, and 5 LacZ hairpins. These hairpins provide a measurement of the variability of the

RNAi response triggered due to non-specific effects. Furthermore, we profiled hairpins targeting

147 lincRNAs, including 10 with a second best hairpin, and 40 protein-coding genes in

biological replicate. The hairpins and their replicates were randomly distributed across 7 96-well

plates and prepared in batches. Each RNA preparation batch contained 1 pLKO hairpin and 1

clonetechGfp_437slc1 hairpin in a random location on the plate. To minimize batch effects, the

plate locations of the biological replicates were scrambled and the positions within the plates

were scrambled for all hairpins and replicates.

Agilent Microarray hybridization
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Using Agilent's One-Color Quick Amp Labelling kit (5190-0442), we amplified and labelled

total RNA for hybridization to prototype mouse lincRNA arrays (G4140-90040) according to

manufacturer's instructions with a few variations. The custom Agilent SurePrint G3 8x60K

mouse array design used for this study (G4102A, AMADID 025725 G4852A) has probes to

21,503 Entrez genes and 2,230 lincRNA genes. A new updated version of this mouse design is

commercially available that contains probes to 34,017 Entrez gene targets as well as 2,230

lincRNA genes (G4825A). The cRNA samples were prepared by diluting 200ng of RNA in

8.3ul water and adding positive control one-color RNA spike-in mix (Agilent, 5188-5282) that

was diluted serially 1:20, then 1:25 and finally 1:10. We annealed the T7 promoter primer from

the kit by incubating at 65'C for 10 minutes. We prepared the cDNA master mix and added to

the annealed RNA and incubated at 40'C for 2 hours, followed by 65'C for 15 minutes. We

prepared the cRNA transcription master mix and added it to the cDNA and incubated at 40'C for

2 hours protected from light. We purified the labeled cRNA using Qiagen's RNeasy 96-well

columns (Qiagen, 74181) by adding 350ul of Qiagen RLT (without BME) to the cRNA followed

by the addition of 250ul of 95% ethanol before applying to the plate column. After a 4 minute

spin at 6000RPM, we washed the columns 3 times with 800ul buffer RPE. We dried the columns

by spinning for 10 minutes and eluted the cRNA with 50ul of water. We measured the cRNA

yield and dye incorporation using the Nanodrop 8000 Microarray measurement setting. We

mixed 600ng of cRNA with blocking agent and fragmentation buffer (Agilent, 5190-0404) and

fragmented for 30 minutes in the dark at 60'C. We added 2x Hybridization Buffer to each

sample and loaded 40ul onto an 8-pack Hybridization gasket. We placed the microarray slides

on top, sealed in the Hybridization Chamber, and incubated for 18 hours at 65'C. We washed

the slides for 1 minute in room temperature GE Wash Buffer 1 and then for 1 minute in 370 C GE
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Wash Buffer 2 (Agilent 5188-5327, no triton addition). We scanned the microarrays using an

Agilent Scanner C (G2565CA) using the following settings: Dye Channel = Red&Green, Scan

Region = ScanArea (61x21.6mm), Scan Resolution = 3gm. We prepared all of the samples

simultaneously using homogenous master mixes to limit variability. Fragmentation and

hybridization was staggered over time in batches of 3 to 4 slides (24 to 32 samples).

Array filtering, Normalization, and Probe filtering

Each array was processed and data extracted using the Agilent feature extraction software

(G4462AA, Version 10.7.3). Samples were retained if they passed all the following quality

control statistics:

AnyColorPrcntFeatNonUnifOL<1,

eQCOneColorSpikeDetectionLimit >0.01 and <2.0,

MetricabsGElElaSlope between 0.9 and 1.2,

Metric-gE 1 aMedCVProcSignal <8,

gNegCtrlAveBGSubSig >-10 and <5,

Metric-gNegCtrlAveNetSig <40,

gNegCtrlSDevBGSubSig <10,

Metric-gNonCntrMedCVProcSignal <8,

Metric-gSpatialDetrendRMSFilterMinusFit <15,
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SpotAnalysisPixelSkewCookiePct >0.8 and <1.2

Gene expression values were determined using the gProcessedSignal intensity values. Probes

were flagged if they were not detectable well above background or had an expression level lower

than the lowest detectable spike-in control value. The values were floored across all samples by

taking the maximum of the minimum non-flagged values across all experiments. Any value less

than this maximum value were set to the maximum. This conservatively eliminates any detection

variability across the samples due to stringency or other array variables.

The result of this is a single value for each probe per array. To normalize expression

values across arrays, we performed quantile normalization as previously described 86 . Briefly, we

ranked each array from lowest to highest expression. For each rank, we computed the average

expression and each experiment with this value at the associated rank. For each probe, we

computed the difference between the second smallest expression value and the second largest

expression value. If this difference was less than 2, we filtered the probe. This metric was chosen

to eliminate bias due to single sample outliers.

Identifying significant gene expression hits from RNAi KDs

To control for effects due to non-specific effects of shRNAs, we profiled 27 distinct

negative control hairpins which do not have a known target in the cell. These hairpins provide a

measurement of the variability of the expression profiles due to random variability or triggered

by 'off-target' effects of the shRNA lentiviruses. Assuming that any observed effects in the

negative control hairpins are due to 'off-target' effects and observed effects in the targeting
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hairpins include a mix of both 'off-target' effects and 'on-target' effects, we use permutations of

the negative controls to assign a false discovery rate (FDR) confidence level for being an 'on-

target' hit to each gene. As such, a gene would only reach genome-wide significance if the

number of genes and scale of the effect was much larger than would be observed randomly

among all of the expression changes found for the negative control hairpin.

Specifically, for each gene we computed a t-statistic between shRNAs targeting the

lincRNA and control shRNA samples. To assess the significance of each gene we permuted the

sample and control groups retaining the relative sizes of the groups and computing the same t-

statistic. We then assigned an FDR value to each gene by computing the average number of

values in the permuted t-statistics that were greater than the observed value of interest and

divided this by the number of all observed t-statistics that were greater than the observed value.

We defined genes as significantly differentially expressed if the FDR was <5% and the fold-

change compared to the negative controls was >2-fold. Using this approach, an effect would

only reach a significant FDR if the scale is significantly larger than would be observed in the

negative controls. Knockdown of a lincRNA was considered to have a significant effect of gene

expression if we identified at least 10 genes that had an effect that passed all of the criteria.

Gene-Neighbour analysis

We identified neighbouring genes based on the RefSeq genome annotation85 (NCBI Release 39).

We excluded from analysis all RefSeq genes that corresponded to our lincRNA of interest but

included all other coding and non-coding transcripts. We identified a significant hit as any

lincRNA affecting a neighbour within 10 genes on either side with an FDR<.05 and 2-fold
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expression change. To compute the closest affected neighbour, we classified all genes affected

upon knockdown of the lincRNAs using the same criteria above. We computed the distance

between each affected gene and the locus of the lincRNA gene (and protein-coding gene) that

was perturbed and took the minimum absolute distance across all affected genes.

Analysis of expected number of neighbouring genes that will change by chance

To determine the expected number of differentially expressed "neighbouring" genes occurring

by chance assuming that the knockdown has no effect on gene expression, we calculated the

average number of genes in a 300Kb window around a randomly selected gene in the human and

mouse genome. We calculated this to be 11.2 (human) and 11.8 (mouse). For simplicity, we will

conservatively round this down to 11. Assuming that no genes are changing between the

knockdown and control, using a nominal p-value, which has a uniform distribution under the null

hypothesis (nothing effected), we would expect to see a difference called in 5% of cases at a p-

value of 0.05. If we test one locus, which has on average 11 neighbours we would expect to

identify 0.55 hits by chance (11 x 0.05=0.55). However, if we now test 12 loci we would expect

to see 6.6 (12 x 0.55) knockdowns which appear to have an effect under the null hypothesis.

Luciferase analysis of Nanog ES lines

ES cells containing a Nanog-Luciferase construct4 9 were infected in biological duplicate and

monitored after 7 days. Luciferase activity was measured using Bright-Glo (Promega). All

reagents and cells were equilibrated to room temperature. 100ul Bright-Glo solution was added

to each plate well. Plates were incubated in the dark at room temperature for 10 minutes and
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luciferase was measured on a plate reader. The luciferase units were normalized to the control

hairpins and a z-score compared to the negative controls (excluding luciferase hairpins) was

computed. For each hairpin, we computed a Z-Score relative to the negative control hairpins and

identified hits reducing Luciferase levels more than 6 standard deviations (Z<-6) for both

independent replicates. In all cases we were able to identify a significant reduction in luciferase

levels when using distinct hairpins targeting luciferase. To exclude hits that were due to an

overall reduction in proliferation (which would also cause a reduction of nanog positive cells in

this read-out) we excluded all hairpins that caused a reduction in proliferation as measured by

AlamarBlue incorporation (described below). AlamarBlue incorporation was measured in the

same cells immediately before reading out Nanog-Luciferase levels.

AlamarBlue analysis of ES lines

After a 7 day infection, Nanog-Luciferase cell viability was measured using AlamarBlue

(Invitrogen; DAL 1025). AlamarBlue was mixed with mES media in a 1:10 ratio, added to the

cells and incubated at 37'C for 1 hour. Absorbance readings at 570nm were taken. To control

for possible effects due to virus titer, we measured AlamarBlue incorporation on both puromycin

treated and non-puromycin treated samples for each infection.

Immunofluorescence

We crosslinked cells in 4% paraformaldehyde for 15 minutes, and washed in 1x PBS three times.

To permeabilize the cells, we washed with lx PBS + 0.1% Triton and then blocked in 1x PBS +

0.1% Triton + 1% BSA for 45 minutes at room temperature. We incubated cells with a-Pou5f 1
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antibody (Santa Cruz: SC-908 1) at 1:100 dilution in blocking solution for 1.5 hours at room

temperature and then washed in blocking solution three times. Next, we incubated cells in a-

rabbit secondary antibody coupled to GFP (Jackson ImmunoResearch: 111-486-152) at a

dilution of 1:1000 in blocking solution for 45 minutes. Finally, we thoroughly washed cells in

blocking solution three times, and added vectashield containing DAPI (VWR: 101098-044) to

each well.

Public Dataset curation

Traditionally, lineage markers are used to identify changes in phenotypic states. While

these markers can be good indicators of differentiation potential, there are two major limitations

with this approach. First, there are multiple genes that are associated with each lineage so simply

looking at one can often be misleading. Second, this approach only works for classifying states

with well-characterized marker genes but would not work for a comprehensive characterization

of the function in the cell. Therefore, we decided to take a different approach and look at the

entire gene expression profile of each lincRNA knockdown to determine what cell state each

lincRNA resembles.

We curated a set of ES perturbations and differentiation states from publicly available

sources. Specifically, we utilized the NCBI e-utils (http://eutils.ncbi.nlm.nih.gov/) to

programmatically identify all published datasets containing keywords associated with embryonic

stem cells. We filtered the list to only include mouse data sets that were generated across one of

three commercial array platforms (Affymetrix, Agilent, and Illumina). Following this approach,

we manually curated the list to include datasets associated with ESC perturbations (genetic
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deletions, RNAi, or chemical perturbations) and differentiation or induced differentiation

profiles. This curation yielded 41 GEO datasets corresponding to >150 samples.

Specifically, we defined differentiation lineage states using the following datasets.

1. Neuro-ectoderm. We downloaded a dataset (GSE12982) corresponding to mouse ES

cells containing a Sox 1 -GFP reporter construct. Upon differentiation of Sox 1 -GFP ES

cells into Embryoid bodies (EBs), Sox1-GFP positive cells were collected and their

global expression was profiled5. In addition, we downloaded a dataset (GSE4082)87

corresponding to direct neuroectoderm differentiation88.

2. Mesoderm. We downloaded the same dataset (GSE12982) as above, where the authors

differentiated Brachyury-GFP reporter ES cells into EBs and sorted and profiled

50Brachyury-GFP positive cells

3. Endoderm. We downloaded a dataset (GSE 11523) corresponding to mouse ES cells

which were engineered to overexpress GATA65 1 . GATA6 overexpression has been

shown to drive ES cells into a primitive endoderm-like state 9.

4. Ectoderm. We downloaded a dataset (GSE4082) 87 corresponding to mouse ES cells

differentiated into primitive ectoderm like cells with defined media 8.

5. Trophectoderm. We downloaded a dataset (GSE11523)51 corresponding to mouse ES

cells which were engineered to deplete Oct457. These cells have been shown to enter a

trophectoderm-like state57 . To ensure specificity to the trophectoderm state, we also

compared the expression effects to trophoblast stem cells. For all lincRNAs identified,

we required a significant enrichment for both induced Oct4 knock-out and trophoblast

stem cell programs.
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In addition, for all lineage states we utilized a curated discrete gene expression signature of

differentiation which was previously functionally tested and shown to correspond specifically

54
to differentiation into the associated states

Continuous enrichment analysis and Phenotype-projection analysis

To determine relationships between lincRNA knockdowns and functional states, we

employ a modified Gene Set Enrichment Analysis5 5 approach that accounts for the continuous

nature of the two datasets, similar to previously described extensionsss,56,90. For each lincRNA

knockdown by functional pair we compute a continuous enrichment score. Specifically, (i) for

each lincRNA knockdown we compute a normalized score matrix compared to a panel of

negative control hairpins by computing a t-statistic for each gene between the replicate lincRNA

knockdown expression values and the control knockdown values. (ii) For each experiment, we

sort the matrix by the normalized score such that the most differentially expressed upregulated

gene is first and the most differentially expressed downregulated genes is last. Using this

ordering we sort the functional dataset such that the ordering corresponds to the differential rank

of the lincRNA knockdown set. (iii) We compute a score Si as the running average of values

from the first position to position i. We then define the enrichment score E as the maximum of

the absolute value of Si for all values of i> 10. We require i>10 to avoid small fluctuations in the

beginning of the ranked list causing fluctuations in the enrichment score. This score is computed

for each lincRNA knockdown by functional set. Since we have many lincRNA knockdowns and
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functional sets, in reality we have a matrix of scores and we will refer to the enrichment score of

the ith knockdown and jth functional set as Ej.

To assess the significance of these scores, we compute a permutation derived false

discovery rate and assign a confidence value for each projection. Specifically, to assess the

significance of E1, we permute the lincRNA knockdown samples and control samples and

compute the enrichment score for each pair across all permutations. To account for the false

discovery rate associated with many lincRNAs and functional sets, we use the values of all

permutations directly to assess the FDR level of E3. Specifically, to assess the FDR for each

enrichment value Eg, we accumulate all the permutation values for all lincRNA knockdowns and

functional sets and compute the number of values greater than Egj as well as a vector of values

greater than E1 corresponding to each permutation. The FDR is computed as the average number

of permuted values greater than Ey divided by the observed number greater than E1. Using this

approach, we assign an FDR value to each lincRNA knockdown by functional set and identify

significant hits as those with an FDR<0.01.

To highlight the accuracy of this approach, we observed that for publicly available gene

perturbations for which we also perturbed the gene we were able to identify a significant

association of target genes in -75% of cases. While the remaining few did not pass our

conservative significance criteria, they also showed increased enrichments consistent with their

common effects. In addition, the projected effects are highly reproducible across distinct

experiments originating from many groups and across multiple expression platforms.

Highlighting the specificity of this approach, we note that there are many profiles for which no

lincRNA had a similar effect.
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Analysis of gene-expression overlaps between independent hairpin knockdowns

To determine whether independent hairpins targeting the same lincRNA gene share common

gene targets, we computed a continuous enrichment score described above. Briefly, we

computed a t-statistic for both hairpins against the negative controls. We then took the second

best hairpin and sorted the genes. We scored the best hairpin affected genes based on this ranked

order. We assessed the significance of this enrichment by permuting the samples and controls

and assigned an FDR of the overlap of the expression effect (as described above).

Discrete gene set analysis

Discrete gene sets were analysed using the Gene Set Enrichment Analysis with a slight

modification to the scoring procedure to be more analogous to our continuous scoring procedure

(described above). Specifically, we computed the average of the expression changes (defined by

the t-statistic) for all genes within the discrete gene set upon knockdown 4 . Significance was

assessed by permuting the control and sample labels and recomputing the average statistic for

each permutation. The FDR was assessed off of these values as described above.

Lineage marker gene analysis

We curated lineage marker gene sets from published work and publicly available sources29 535 4

We identified lineage marker genes as significantly upregulated using the differential expression

criteria outlined above. We validated the expression of these lineage marker genes for a selected

set of lineage marker genes using qPCR (as described above) after an 8-day infection.
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Specifically, we looked at the expression of FGF5 (ectoderm), SoxI (neuroectoderm), Sox17

(endoderm), Brachyury (mesoderm), and Cdx2 (trophectoderm). Expression estimates were

normalized to GAPDH and compared to a panel of 25 negative control hairpins.

Identifying bound lincRNA promoters

We obtained genome-wide transcription factor binding data in mouse ES cells from 2 sources.

The transcription factors Oct4, Sox2, Nanog, and Tcf3 were downloaded from the Gene

Expression Omnibus (GSE11724) and the cMyc, nMyc, Zfx, Stat3, Smadl, Klf4, and Esrrb from

GEO (GSE11431). For each ChIP-Seq dataset, the raw reads were obtained from the SRA

(http://www.ncbi.nlm.nih.gov/sra) and processed as follows. (i) The reads were all aligned to the

mouse genome assembly (build MM9) using the Bowtie aligner91 , requiring a single best

placement of each read. All reads with multiple acceptable placements were removed from the

analysis. (ii) Binding sites were determined from the aligned reads using the MACS92

(http://liulab.dfci.harvard.edu/MACS/) algorithm using the default parameters with -mfold 8 to

account for varying read counts in the libraries. (iii) lincRNA promoter regions were defined as

previously described5,6 using the location of the K4me3 peaks overlapping or within 5Kb of the

transcriptional start site determined by RNA-Seq reconstruction. (iv) The transcription factor

binding locations and lincRNA promoter locations were intersected and the enrichment level of

the peak overlapping a lincRNA promoter was assigned transcription factor binding enrichment

for each lincRNA. We defined transcription factor binding locations for protein-coding genes in

a comparable way. (v) To exclude the possibility that some of this binding might be due to

transcription factor binding at distal enhancers, we excluded all binding events that showed
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evidence of P300, a protein associated with active enhancers 93, localization. Altogether, we only

identified -5% of promoters overlapping with any P300 enrichment signal, a slightly lower

percentage than identified for protein-coding gene promoters with detectable P300 signal.

Identifying TF-regulated lincRNA genes

lincRNA probes on the Agilent microarray were analysed using the differential expression

methodology described above after knockdown of the transcription factor and comparison to the

negative control hairpins. To confirm the expression changes of these lincRNAs, we hybridized

12 transcription factor knockdowns on a custom lincRNA codeset using the Nanostring nCounter

assay . The knockdowns were profiled in biological duplicate along with 15 negative controls.

Regulated lincRNAs were identified using the differential expression approach described above.

Nanostring probeset design

Nanostring probes against lincRNA genes were designed following the standard nanostring

design principles with the following modifications specifically for the lincRNA probes. (i) To

exclude possible cross-hybridization, probes were screened for cross-hybridization against both

the standard mouse transcriptome as well as a background database constructed from all the

lincRNA sequences. (ii) To account for isoform coverage, a first pass design attempted to select

a probe that would target as many isoforms as possible for each lincRNA. In cases where it was

not possible to target all isoforms for a given lincRNA, the probe that targeted the largest number

was selected, and additional probes were chosen when possible to target the remaining isoforms.
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(iii) The standard restrictions on Tm and sequence composition were relaxed to include probes

for as many lincRNAs as possible.

RA differentiation

V6.5 cells were cultured on gelatin-coated dishes in mES media in the absence of LIF. 5[tM of

retinoic acid was added daily and cell samples were taken daily for 6 days. RNA was extracted

using Qiagen's RNeasy spin columns following the manufacturer's protocol.

Western blots

30ug of mESC nuclear protein extracts were run on 10% Bis-Tris gels (Invitrogen NPO316BOX)

in MOPS buffer (Invitrogen NPOOO1) at 75 volts for 20 minutes followed by 120 volts for 1

hour. Gels were incubated for 30 minutes in 20% methanol transfer buffer (Invitrogen NP0006-

1) and transferred onto PVDF membranes (Invitrogen 831605) at 20 volts for 1 hour using the

Bio-Rad semi-dry transfer system (170-3940). Membranes were blocked in Blotto (Pierce,

37530) at room temperature for 1 hour. Antibodies were diluted in Blotto and membranes were

incubated overnight at 4'C. Antibodies were diluted in using the following concentrations. Ezh2

1:2000, Suz 12 1:5000, hnRNPH 1:1000, Ruvbl2 1:1000, Jarid lb 1:500, HDAC 11:250, Cbx6

1:500, YY1 1:500. All antibodies tested were raised in rabbit. The next day, membranes were

washed 3x in 0.1% TBST for 5 minutes each. The membranes were probed with anti-Rabbit-

horse radish peroxidase (GE Healthcare; NA9340V) at a 1:10,000 dilution, washed 3x in 0.1%

TBST, incubated in ECL reagent (GE Healthcare RPN2132), and exposed.
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Crosslinked RNA immunoprecipitation

V6.5 mES cells were fixed with 1% formaldehyde for 10 minutes at room temperature,

quenched with 2.5M glycine, washed with 1x PBS (3x) harvested by scraping, pelleting, and

resuspended in modified RLPA lysis buffer (150mM NaCl, 50mM Tris, 0.5% Sodium

deoxycholate, 0.2% SDS, 1% NP-40) supplemented with RNase inhibitors (Ambion, AM2694)

and protease inhibitors. For UV crosslinking experiments, cells were irradiated with 254nm UV

2
light. Cells were kept on ice and crosslinked in lx PBS using 400,000 [joules/cm.

Cell suspension was sonicated using Branson 250 Sonifier for 3 x 20 s cycles at 20%

amplitude. lOul of Turbo DNase (Ambion, AM2238) was added to sonicated material, incubated

at 370 C for 10 minutes, and spun down at max speed for 10 minutes at 4'C. Protein-G beads

were washed and pre-incubated with antibodies for 30 minutes at room temperature. Lysate and

beads were incubated at 4'C for 2 hours. Beads were washed 3x using the following wash buffer

(lx PBS, 0.1% SDS, 0.5% NP-40) and crosslinks were reversed and proteins were digested with

5ul proteinase-K (NEB, P8102S) at 650 for 2-4 hours. RNA was purified using

phenol/chloroform/isoamyl alcohol and RNA was precipitated in isopropanol.

Nanostring hybridization

500ng of total RNA was hybridized for 17 hours using the lincRNA codeset. The

hybridized material was loaded into the nCounter prep station followed by quantification on the

nCounter Digital Analyzer following the manufacturer's protocol. For RNA

immunoprecipitation experiments, we used a modified protocol. After reverse crosslinking, RNA
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was extracted using phenol/chloroform and ethanol precipitation methods and resuspended in

1Oul of H20. Sul of the eluted material was hybridized for 17 hours using the lincRNA codeset.

Nanostring analysis

Probe values were normalized to negative control probes by dividing the value of the probe by

the maximum negative control probe. Probe values were floored to a normalized value of 3 (3-

fold higher than maximum negative control). Probes with no value greater than this floor across

all samples were removed from the analysis. The values were log transformed. To control for

variability between runs and different input material amounts, we normalized all samples

simultaneously using the quantile normalization approach described above. The result is a set of

normalized log-expression values for each probe normalized across all experiments.

Validation of RNA immunoprecipitation methods

To validate our formaldehyde based RNA immunoprecipitation method we immunoprecipitated

the RNA binding protein hnRNPH, which plays a role in mRNA splicing9 4 and identified the

associated RNAs. Consistent with known interactions, we identified a strong enrichment for its

binding to intronic regions of mRNA genes. We validated these observed results in mouse ES

cells by performing UV-crosslinking experiments 95-97 and identified nearly identical results. We

identified a similar correlation between the UV and formaldehyde crosslinked samples as for

biological replicates of UV crosslinked samples and formaldehyde crosslinked samples and

highly comparable enrichments (Supplemental Figure 13).

251



Antibody Selection

We selected chromatin proteins that have been implicated in regulation of the pluripotent

state along with their known associated 'reader', 'writer', and 'eraser' complexes. Specifically,

we tested antibodies against 40 chromatin proteins, corresponding to 28 chromatin complexes. In

many cases, we tested multiple antibodies against the same target protein to try and identify an

antibody that worked well for immunoprecipitation. A full list of tested complexes and their

associated antibodies are listed in Supplemental Table 20.

Determining significant chromatin-lincRNA enrichments

We tested each antibody using formaldehyde crosslinked cells and had a two-step

procedure for considering an antibody successful. (i) We tested all selected antibodies in batches,

with each batch containing a mock-IGG (Santa Cruz) negative control and hnRNPH (Bethyl)

positive control. Batches with variability in either the mock-IGG or hnRNPH controls were

excluded and retested. For each successful batch, we computed enrichment for each lincRNA

between the tested antibody and mock-IGG. We considered an antibody successful in the first

step if the highest enrichment level exceeded a 5-fold change compared to the mock-IGG control

and more than 10 lincRNAs exceeded this threshold. While this approach can yield false

positives (antibodies that pass but are not efficient) it significantly reduced the number of

antibodies to be tested in the next step. (ii) For all antibodies that successfully passed the first

criteria, we performed immunoprecipitation on two additional biological replicates along with 4

mock-IGG controls. We computed a t-statistic for each lincRNA compared to the controls and
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assessed the significance using a permutation test, by permuting the samples and IGG samples

(as above). Hits were considered significant if they exceed a t-statistic cutoff of 2 (log scale)

compared to the controls and had an FDR<0.2. We allowed a slightly higher FDR cutoff since

the number of permutations was far smaller yielding lower power to estimate the FDR. Only

antibodies yielding significant lincRNAs were considered successful. In total, we identified 12 of

the 28 complexes (55 antibodies) with at least one successful antibody.

Determining significant overlaps between lincRNA and chromatin protein knockdown

effects

To determine the functional overlap between the lincRNA and the chromatin complexes it

physically interacts with, we compared the effects on gene expression upon knockdown of the

lincRNA and the associated protein complex. To do this, we utilized the gene expression profiles

determined for each lincRNA knockdown and knockdowns of 9 of the 12 identified chromatin

complexes for which we had good hairpins. We defined each interaction between a lincRNA and

protein, and compute a continuous enrichment score, generated all permutations of the control

hairpins and sample hairpins and assigned a false discovery rate to the scores (as described

above). At an FDR<0.05 we identified 43% of the interactions to be significant. For 69% of the

interactions, we were able to identify an overlap at an FDR<O. 1.
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Chapter 6: Future Directions

In this chapter, we describe the outlook for the future of large ncRNA research.

Parts of this work were first published as:

Guttman M and Rinn JL. (2012). Modular regulatory principles of large non-coding RNAs.
Nature 482(7385):339-46
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Large ncRNAs as scaffolds of proteins

One emerging theme for many large ncRNAs is the formation of multiple distinct RNA-

protein interactions to carry out their role (Figure 1). An initial clue for this phenomenon came

from the discovery of telomerasel. Telomerase activity requires an RNA component, TERC 2,

which serves as a template for telomeric regulation and as a scaffold for the polymerase enzyme

around the RNA3 (Figure 1b). Importantly, genetic studies demonstrated that the RNA plays a

modular functional role as genetically swapping particular domains of the RNA retained the

overall function4 . This demonstrated that the RNA was made up of discrete functional modules

that simply needed to be brought into proximity.

More recently, HOTAIR has been shown to contain distinct protein-interaction domains

that can associate with PRC25 and the CoREST/LSD 1 complex6, which together enable its

function (Figure 1b). XIST also contains discrete functional domains. Through a series of

genetic deletions it was demonstrated that XIST contains at least two discrete domains

responsible for silencing (RepA) and localization (RepC)7 (Figure 1b). These functional

domains could be independently deleted without affecting the role of the other domain, thus

suggesting the modularity of the RNA 7. The XIST ncRNA was also shown to have multiple

protein interaction domains; the silencing domain (RepA) binds to PRC2 and the localization

domain (RepC) binds to YYl 8 and hnRNPU 9. These examples illustrate that large ncRNAs can

act as molecular scaffolds for protein complexes. Importantly, this phenomenon may generalize,

as our recent studies have demonstrated that -30% of ESC lincRNAs associate with multiple

10
regulatory complexes.

In addition to interacting with multiple proteins, several examples of ncRNAs have been

reported to interact directly with both DNA and RNA. In a few cases, ncRNAs have been
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reported to form triplex structures with DNA' (Figure la) such as a ncRNA that binds to the

ribosomal DNA promoter and interacts with the DNMT3b protein to silence expression".

Moreover, RNA can also form traditional duplex base pairing interactions with DNA, a property

long speculated for large ncRNAs13 . Finally, RNA can form base-pair interactions with RNA

(Figure 3a), which are crucial for processes such as tRNA-mRNA anticodon recognition14,

miRNA targeting' 5 , ribosome structure as a ribozyme 16, and splicing' 7 amongst many others.

Despite these few examples, the interactions between large ncRNAs and genomic DNA and

other RNAs are not well characterized.

A Potential Modular RNA Code

Collectively, these studies suggest an intriguing hypothesis for large ncRNAs as flexible

modular scaffolds4,6,7,10. In this model, RNA contains discrete domains that interact with specific

protein complexes. These RNAs, through a combination of domains, bring specific regulatory

components into proximity resulting in the formation of a unique functional complex. These

RNA regulatory complexes can include interactions with proteins but may also extend to RNA-

DNA and RNA-RNA regulatory interactions.

RNA is well suited for such a role since RNA is a malleable evolutionary substrate

14
compared to a protein, allowing for the selection of discrete interaction domains . Specifically,

RNA can be easily mutated, tested, and selected without breaking its core functionality 4. This

model of modular interactions may explain the observation that there are highly conserved

'patches' within large RNA genes'8-20 that may have evolved for specific protein

7,21,22
interactions . The remaining regions may be more evolutionarily flexible, allowing for

formation of new functional domains by random mutation and selection. This is consistent with
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the observation, based on genetic deletion experiments, that non-constrained regions of

telomerase are dispensable4.

The model of a modular scaffold is not limited to protein interaction. RNA can also base-

pair with DNA, which might be used to 'guide' complexes to specific DNA sequences.

Alternatively, RNAs might 'guide' complexes by bridging together sets of DNA-binding

proteins. Such a model could explain how the same protein complexes are 'guided' to different

DNA loci in distinct cell types.

Large ncRNAs can also form RNA-RNA interactions, raising additional intriguing

possibilities for future experimental exploration. For example, two large RNA scaffolds might be

linked through RNA-RNA interactions. Another possibility is that RNA-RNA interactions may

result in unique RNA structures that can interact with protein complexes not attainable by the

individual units. This has been observed in the ribosome, where the combination of RNA-RNA

and RNA-Protein interactions are required for proper complex formation.

Outlook

The mechanism by which large ncRNAs carry out their regulatory role is only beginning

to emerge. While a modular RNA regulatory code is an attractive hypothesis, it remains to be

tested. Specifically, how large ncRNA-Protein interactions occur and their molecular principles

remain unknown. Determining these principles will require identifying the sites of RNA-protein

interactions and the direct RNA binding proteins in vivo. Moreover, how large ncRNAs localize

to targets genes is unknown, but may involve direct RNA-DNA interactions (Figure la) or

interactions with proteins containing DNA recognition elements (as suggested for XIST 8 and

HOTAIR6). To gain insight, it will be important to catalog the interactions that ncRNAs form
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with genomic DNA and RNAs. Together, this data will help elucidate the rules guiding

interaction and the functional implications of these associations which can be tested

experimentally.

If large ncRNAs are truly modular, then each individual domain would carry out a unique

functional role independent of the other domains. Demonstrating modularity will require genetic

deletions of domains and spacer regions as well as domain swapping experiments. Learning

these principles would result in a defined 'modular RNA code' for how RNAs can affect cell

states. A true understanding of the 'modular RNA code' will allow for the creation of

synthetically engineered RNAs that can interact with both nucleic acids and protein modules to

carry out engineered regulatory roles.

In addition, large ncRNAs may work by other mechanisms that may not fit neatly into

this 'modular RNA code'. However, it is premature to dismiss large ncRNAs having other

mechanisms that may not fit neatly into this 'modular RNA code'. In the meantime, it is clear

that mammalian genomes encode a diverse cast of functional large important ncRNAs whose

roles we are only beginning to understand.
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a
1. RNA-Protein

V
3. Protein-DNA

2. DNA-RNA

4. RNA-RNA

b
1 + 2 = DHFR

1 + 3 = Hotair and Xist

1 + 4 = Ribosome

1 + 2 + 3 = Telomerase

Figure 1: Modular principles of large RNAs. (a) Four principles of nucleic acid and protein
interactions. (1) RNA-Protein interactions, (2) DNA-RNA hybridization based interactions, (3)
DNA-Protein interactions, and (4) RNA-RNA hybridization based interactions. (b) Each of these
principles can be combined to build distinct complexes. For example, combining RNA-Protein
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and RNA-DNA interactions a protein complex can be localized to a specific DNA sequence in
an RNA dependent manner as has been implicated for the DHFR99 promoter and localization of
DNMT3b98 . Combining RNA-Protein and Protein-DNA principles can also localize a diverse set
of proteins scaffolded by RNA to a specific DNA sequence in a protein dependent manner. The
ribosome is a multifaceted combination of RNA-Protein interactions that facilitate proper RNA-
RNA interactions for the ribozyme activity of the ribosome. The telomere replication activity of
Telomerase is an example of combining RNA-Protein, RNA-DNA, and Protein-DNA
interactions.
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