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ABSTRACT
Array technologies have made it possible to record simultaneously
the expression pattern of thousands of genes. A fundamental prob-
lem in the analysis of gene expression data is the identification of
highly relevant genes that either discriminate between phenotypic
labels or are important with respect to the cellular process studied in
the experiment: for example cell cycle or heat shock in yeast exper-
iments, chemical or genetic perturbations of mammalian cell lines,
and genes involved in class discovery for human tumors. In this pa-
per we focus on the task of unsupervised gene selection. The prob-
lem of selecting a small subset of genes is particularly challenging
as the datasets involved are typically characterized by a very small
sample size — in the order of few tens of tissue samples — and
by a very large feature space as the number of genes tend to be
in the high thousands. We propose a model independent approach
which scores candidate gene selections using spectral properties of
the candidate affinity matrix. The algorithm is very straightforward
to implement yet contains a number of remarkable properties which
guarantee consistent sparse selections. To illustrate the value of our
approach we applied our algorithm on five different datasets. The
first consists of time course data from four well studied Hematopoi-
etic cell lines (HL-60, Jurkat, NB4, and U937). The other four
datasets include three well studied treatment outcomes (large cell
lymphoma, childhood medulloblastomas, breast tumors) and one
unpublished dataset (lymph status). We compared our approach
both with other unsupervised methods (SOM,PCA,GS) and with
supervised methods (SNR,RMB,RFE). The results clearly show
that our approach considerably outperforms all the other unsuper-
vised approaches in our study, is competitive with supervised meth-
ods and in some case even outperforms supervised approaches.

1. INTRODUCTION
In DNA microarray expression studies, estimated abundances of

thousands of mRNA species in different tissue samples are obtained
through hybridization to oligonucleotide or cDNA arrays. Biologi-
cal class differences manifest themselves as significant differences
in the expression levels of a relatively small set of genes, resulting
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in the observed overabundance of mRNA. The set of relevant genes
is typically small since the majority of the active cellular mRNA is
not affected by the biological differences. In other words, a signif-
icant difference in biological characteristics (such as a normal cell
versus a tumor cell from the same tissue) does have a gene expres-
sion level manifestation, but the set of genes that is involved can
be rather small. For example, previous work on classification of
tumor tissue samples based on gene expression profiles has shown
that in many cases, cancer types can be discriminated using only a
small subset of genes whose expression levels strongly correlated
with the class distinction [1, 2]. Identifying highly relevant genes
from the data is therefore a fundamental problem in the analysis of
expression data.

Relevant genes can be selected either in a supervised or unsu-
pervised fashion. A tissue sample consists of a vector in Rn de-
scribing the expression values of n genes/clones. In a supervised
setting each tissue sample is associated with a label — typically
binary or trinary (negative, positive, control) — denoting its class
membership. In an unsupervised setting, the class labels are omit-
ted or unknown. A variety of algorithms exist for supervised gene
selection: signal-to-noise [1], recursive feature elimination [3], t-
test metrics [4], Wilcoxon rank sum test [4], and gene shaving [5].
These studies all make the implicit assumption that that relevant
genes are discriminative genes.

However, discrimination is not the only measure of relevance
and there are many studies where the objective does not necessar-
ily consists of some measure of discrimination. Some examples
include finding genes relevant for cell cycle [6], analyzing a com-
pendium of expression profiles with different mutations [7], and the
problem of class discovery [8]. Unsupervised methods for select-
ing relevant features have been applied in these types of problems
using singular value decomposition (SVD) [6], principle compo-
nents analysis (PCA) and iterative principle components analysis,
a.k.a gene shaving, [5, 9], max-surprise [10], self organizing maps
[8], and hierarchical clustering [11].

In this paper we focus on the task of unsupervised gene selec-
tion. Gene selection, unlike other applications of feature selection
in the machine learning literature, is characterized by first and fore-
most by a very small sample size q — typically in the order of
few tens of tissue samples — and by a relatively very large fea-
ture space Rn as the number of genes tend to be in the thousands
(n ≈ 104). Coupled with the notion that applications in the do-
main of unsupervised gene selection (such as ”class discovery”)
require one to discover things which are unknown or unexpected,
it follows that the unsupervised gene selection process should be
model-independent as much as possible. Motivated by this fact, we
approach the gene selection task as a process of dividing the tissue



samples into k (typically k = 2, 3) clusters where the goal is to find
the gene subset which maximizes the clusters coherency. In other
words, we assume that if one knew which were the relevant genes
to begin with then the tissue sample values corresponding to the
selected genes would be naturally clustered in into k sets. Our task
therefore, is to find (among the exponentially many gene subsets)
that subset which maximizes the cluster coherency.

The task of gene selection is somewhat different from the that of
interpreting patterns of gene expressions [8, 12]. In the latter case,
by regarding the quantitative expression levels of n genes over q
samples as defining n points in Rq , one employs a clustering tech-
nique for grouping together genes which have similar expression
profiles and use the cluster averages as expression profiles. Var-
ious clustering techniques have been proposed from direct visual
inspection [12] to employing self organization maps (SOM) [8].
The visual inspection approach does not scale well to larger data
sets, is best suited for data with an expected pattern (like cyclic cell
lines) and thus is less appropriate for discovering unexpected pat-
terns. The SOM clustering approach, as with all exploratory data
analysis tools, involves manual inspection of the data to extract in-
sights. Gene selection in comparison is an open problem. Rather
than grouping the gene expression levels into clusters, one seeks to
distinguish a small set of genes which are relevant to the biological
classification of the tissue samples. As a result of this distinction,
rather than grouping the gene expression levels we look for a subset
of genes for which the corresponding tissue sample values are co-
herently divided into k (2 or 3) clusters. The notion of clustering is
still there but in an indirect manner — the goodness of clustering is
used a score for the gene selection process. More on the distinction
between selection and pattern seeking, and comparison with SOM
results are discussed in Section 4.1.

The clustering score in our approach is measured indirectly. Rather
than explicitly performing a clustering phase per gene selection
candidates, we employ spectral information in order to measure
the cluster arrangement coherency. Spectral algorithms have been
proven to be successful in clustering [13], manifold learning or di-
mensionality reduction [14, 15], approximation methods for NP-
hard graph theoretical questions [16]. In a nutshell, given a selec-
tion of genes, the strength (magnitude) of the leading k eigenvalues
of the affinity matrix constructed from the corresponding expres-
sion levels of the selected genes are directly related to the coher-
ence of the cluster arrangement induced by the subset of selected
genes. More details are described in Section 2.

It is worthwhile noting that unsupervised gene selection differs
from dimensionality reduction in that it only selects a handful of
genes (features) which are “relevant” with respect to some infer-
ence task. Dimensionality reduction algorithms, for example PCA,
generate a small number of features each of which is a combina-
tion of all of the original features. A main purpose of expression
analysis is to extract a set of genes that are of interest from the
perspective of the biological process being studied. In general, it is
assumed that each such process involves a limited number of genes.
For this reason feature combination methods are not as desirable as
methods that extract a small subset of genes. The challenge in the
selection process is to overcome the computational burden of prun-
ing an exponential amount of gene subsets. The Q − α algorithm
[17] which we propose using as a basis for our approach handles
the exponential search space by harnessing the spectral informa-
tion (the sum of eigenvalues of the candidate affinity matrix) in
such a manner where a computationally straightforward optimiza-
tion guarantees a sparse solution, i.e., a selection of genes rather
than a combination of the original genes.

In the next section we will describe the workings of the spectral

approach to gene selection and the mechanism by which a sparse
solution (i.e., a selection) is obtained. In the sections that follow we
apply our algorithm on a variety of gene expression datasets. We
show that for datasets with label information our unsupervised al-
gorithm performs as well as the leading supervised algorithms and
is significantly superior to previously proposed unsupervised algo-
rithms. We also show that genes selected using the unsupervised
Q−α overlap with those selected using supervised procedures and
have some biological relevance.

2. METHODS: SELECTING GENES WITH
THE Q − α ALGORITHM

The array based technologies, cDNA and oligonucleotide, for
studying gene expression levels provide static information about
gene expression (i.e. in which tissue(s) the gene is expressed)
and dynamic information (i.e. how the expression pattern of one
gene relates to those of others). In general the raw data have to be
corrected for different experimental conditions by a normalization
procedure sometimes followed by a logarithmic transformation to
the absolute intensities or ratios. This gives the data matrix whose
rows correspond to genes and whose columns correspond to tissue
samples. We assume that exactly one value for each gene/sample
is given, which may be achieved over repeated measurements for
samples or genes.

Let the microarray data matrix be denoted by M . The gene ex-
pressions levels form the rows of M denoted by m>

1 , ..., m>
n and

normalized to unit norm ‖mi‖ = 1. Each row vector represents
a gene sampled over the q trials. The column vectors of M repre-
sent the q samples (each sample is a vector in Rn). As mentioned
in the previous section, our goal is to select rows (genes) from M
such that the corresponding candidate data matrix (containing only
the selected rows) consists of columns that are coherently clustered
in k groups. The value of k is user dependent and is typically 2
or 3 denoting the expected number of different biological classes
contained in the tissue samples. The challenge in this approach is
to avoid the exponential number of row selections and preferably
avoid explicitly clustering the columns of the candidate data matrix
per each selection.

Mathematically, to obtain a clustering coherency score we com-
pute the ”affinity” matrix of the candidate data matrix defined as
follows. Let αi ∈ {0, 1} be the indicator value associated with the
i’th gene, i.e., αi = 1 if the i’th gene is selected and zero otherwise.
Let Aα be the corresponding affinity matrix whose (i, j) entries are
the inner-product (correlation) between the i’th and j’th columns of
the resulting candidate data matrix: Aα =

Pn

i=1 αimim>
i (sum

of rank-1 matrices). From algebraic graph theory, if the columns
of the candidate data matrix are coherently grouped into k clusters,
we should expect the leading k eigenvalues of Aα to be of high
magnitude [18, 19, 20, 21, 13]. The resulting scheme should there-
fore be to maximize the sum of eigenvalues of the candidate data
matrix over all possible settings of the indicator variables αi.

What we do in practice, in order to avoid the exponential growth
of assigning binary values to n indicator variables, is to allow αi to
receive real values in an unconstrained manner. A least-squares
energy function over the variables αi is formed and its optimal
value is sought after. What makes this approach different from the
“garden variety” soft-decision-type algorithms is that this particu-
lar setup of optimizing over spectral properties guarantees that the
αi always come out positive and sparse over all local maxima of
the energy function. This property is intrinsic rather than being
the result of explicit constraints in the form of regularizers, priors
or inequality constraints. The energy function takes the following



form:

max
Q,αi

trace(Q>A>
α AαQ) (1)

subject to
n

X

i=1

α2
i = 1, Q>Q = I

Note that the matrix Q holds the first k eigenvectors of Aα and that
trace(Q>A>

α AαQ) is equal to the sum of squares of the leading k

eigenvalues:
Pk

j=1 λ2
j . A local maximum of the energy function

is achieved by interleaving the “orthogonal iteration” scheme [22]
within the computation of α as follows:

DEFINITION 1 (Q − α METHOD). Let M be an n × q input
matrix with rows m>

1 , ..., m>
n , and some orthonormal q × k matrix

Q(0), i.e., Q(0)>Q(0) = I . Perform the following steps through a
cycle of iterations with index r = 1, 2, ...

1. Let G(r) be a matrix whose (i, j) components are

(m>
i mj)m>

i Q(r−1)Q(r−1)>mj

.

2. Let α(r) be the leading eigenvector of G(r).

3. Let A(r) =
Pn

i=1 α
(r)
i mim>

i .

4. Let Z(r) = A(r)Q(r−1).

5. Z(r) QR
−→ Q(r)R(r), that is, Q(r) is determined by the “QR” fac-

torization of Z(r).

6. Increment index r and go to step 1.

Note that steps 4,5 of the algorithm consist of the “orthogonal it-
eration” module, i.e., if we were to repeat steps 4,5 only we would
converge onto the eigenvectors of A(r). However, the algorithm
does not repeat steps 4,5 in isolation and instead recomputes the
weight vector α (steps 1,2,3) before applying another cycle of steps
4,5.

The algorithm would be meaningful provided that three condi-
tions are met:

1. the algorithm converges to a local maximum,

2. at the local maximum αi ≥ 0 (because negative weights are
not admissible), and

3. the weight vector α is sparse (because without it the soft
decision does not easily translate into a hard gene selection).

Conditions (2) and (3) are not readily apparent in the formulation
of the algorithm (the energy function lacks the explicit inequality
constraint αi ≥ 0 and an explicit term to “encourage” sparse solu-
tions) but are nevertheless satisfied. The key for having sparse and
non-negative (same sign) weights is buried in the matrix G (step
1). Generally, the entries of G are not necessarily positive (other-
wise α would have been non-negative due to the Perron-Frobenious
theorem) — nevertheless due its makeup it can be shown that in a
probabilistic manner the leading eigenvector of G is positive with
probability 1 − o(1). In other words, as the number of genes n
grows larger the chances that the leading eigenvector of G is pos-
itive increases rapidly to unity. Fig. 2 shows the (sorted) α values
on the Hematopoietic differentiation cell lines (details about this
dataset are found below). The details of why the makeup of G in-
duces such a property, the convergence proof and the proof of the
”Probabilistic Perron-Frobenious” claim can be found in [17].

Finally, it is worth noting that the scheme can be extended to
handle the supervised situation (when class labels are provided);

that the scheme can be applied also to the Laplacian affinity ma-
trix; and that the scheme readily applies when the spectral gap
Pk

i=1 λ2
i −

Pq

j=k+1 λ2
j is maximized rather than

Pk

i=1 λ2
i alone.

Details can be found in [17].

3. DATASETS
We evaluated our proposed approach for gene selection on five

datasets — one of which is a time course dataset and the remaining
four datasets with outcome or status labels. With the four datasets
with label information we applied supervised approaches to com-
pare with our unsupervised gene selection algorithm.

The first dataset consisted of time course data from four Hematopoi-
etic cell lines [8]: HL-60, Jurkat, NB4, and U937. The dimension-
ality of the expression data was 7, 229 genes. The HL-60, U937,
and Jurkat cell lines were stimulated with phorbol 12-myristate 13-
acetate (PMA) for (0, .5, 4, 24) hours. The NB4 cell line was
stimulated with with all trans-retinoic acid (ATRA) for (0, 6, 24, 48, 72)
hours.

The remaining four datasets were treatment outcome or status
studies. The first was a study of treatment outcome of patients with
diffuse large cell lymphoma (DLCL), reffered to as ”lymphoma”
[23]. The dimensionality of this dataset was 7, 129 and there were
32 samples with good successful outcome and 26 with unsuccessful
outcome. The second was a study of treatment outcome of patients
with childhood medulloblastomas [24], referred to as ”brain”. The
dimensionality of this dataset was 7, 129 and there were 39 sam-
ples with good successful outcome and 21 with unsuccessful out-
come. The third was a study of the metastatis status of patients with
breast tumors [25], reffered to as ”breast met”. The dimensional-
ity of this dataset was 24, 624 and there were 44 samples where
the patients were disease free for 5 years after onset and 34 sam-
ples where the tumors metastasized within five years. The fourth
is an unpublished study of of breast tumors [26] for which corre-
sponding lymph nodes either were cancerous or not, referred to as
”lymph status”. The dimensionality of this dataset is 12, 600 with
47 samples positive for lymph status and 43 negative for lymph
status.

4. RESULTS
The datasets, as detailed above, used for our experiments consist

of thousands of genes (in the order of 104). Many of the tech-
niques presented in the past begin with a pre-filtering step aiming
at reducing the number of genes from thousands to hundreds. For
example, [8] passes the gene expression vectors through a variation
filter before applying the SOM code for clustering the remaining
gene expression vectors. The variation filter eliminates those genes
with no significant change across the samples.

One of the strengths of our approach is the ability to handle large
amounts of data. Any preprocessing filtering step of the data im-
poses a prior which very likely has a dramatic effect on the final
results. In many cases, the final results depend not so much on the
strength of the main algorithm but on the type and care placed on
the pre-filtering step. Therefore, we applied our algorithm on the
original data set without performing pre-filtering steps for pruning
the data. The results reported below start with data matrices con-
sisting of thousands of genes and produces a few tens of relevant
genes.

4.1 Comparison with SOM on Time Course
Data

A significant amount of expression data is time course data. Find-
ing relevant genes in these types of datasets is an open problem.



PCA is a reasonable approach when the underlying factor of the
study is cyclical for example cell cycle [6] or circadian rhythms
[27]. However, for many studies the underlying process of interest
is not cyclical. One may want to find genes that increase in ex-
pression over time in one cell line but decrease in expression for
another cell line. A standard approach to address this is to cluster
genes and use the clusters as expression profiles. Using our unsu-
pervised gene selection procedure we can find the relevant genes in
time course data directly without having to cluster.

In [8] Hematopoietic differentiation was studied across four cell
lines. Two myeloid cell lines HL-60 and U937 were examined, a
T cell line called Jurkat was examined, and an acute promyelocytic
leukemia cell line was examined. Time course data for these four
cell lines was concatenated into a dataset with 17 samples and 7229
genes. A 6× 4 self-organizanizing map (SOM) was used to cluster
this dataset after preprocessing with a variation filter. The 24 clus-
ters are displayed in figure 1. We applied the Q − α to this dataset
and found that the set of relevant genes was sparse (meaning it con-
tains a small number of relevant genes) as shown in Fig. 2. Of the
genes corresponding to the top 40 α values we display the time
course signatures of 6 genes if figure 3 for brevity. The signature of
all 40 genes can be found at www.ai.mit.edu/people/sayan/hemat.
The time course of these 6 genes correspond to clusters 20, 1,
22/23, 4, 15, 21 in figure 1. For a biological explanation of these
genes or coresponding clusters see [8]. Using the Q− α algorithm
we were able to recapitulate the time courses of [8] with individual
genes rather than gene clusters and also find those genes that are
relevant.

4.2 Comparison with Other Supervised and
Unsupervised Methods using Labeled Data

For the four datasets with label information classification ac-
curacy was used as a measure of the goodness of the (unsuper-
vised) Q − α algorithm. We compared the leave-one-out error
on these datasets with that achieved by both supervised and unsu-
pervised methods of gene selection. The supervised methods used
were signal-to-noise (SNR) [1], radius-margin bounds (RMB) [28,
29], and recursive feature elimination (RFE) [3]. The unsupervised
methods used were PCA and gene shaving (GS) [5]. In the unsu-
pervised mode the class labels were ignored — and thus in general
one should expect the supervised approaches to produce superior
results than the unsupervised ones. A linear support vector ma-
chine classifier was used for all the gene selection methods [30].
Parameters for SNR, RFE, and RMB were chosen to minimize the
leave-one-out error. A summary of the results appear in table 1.

The Q − α algorithm considerably out-performs all other unsu-
pervised methods. Furthermore, and somewhat intriguing, is that
the Q−α algorithm is competitive with the other supervised algo-
rithm (despite the fact that the labels were not taken into account
in the course of running the algorithm) and performs significantly
better on the lymph status of breast tumors as compared to all other
gene selection approaches — including the supervised methods.

5. DISCUSSION
The advent of array technologies make it possible to collect data

on thousands of genes simultaneously while recording both static
information (in which tissues the gene is expressed) and dynamic
information (how the expression pattern of one gene relates to those
of others). A typical microarray contains several to tens of thou-
sands of genes over a relatively few samples (few scores). In many
cases it has been observed that among the many genes only a small
fraction are really relevant for providing discriminatory informa-
tion over the tissue samples or providing other non-discriminatory

Figure 1: A plot of the 24 SOM clusters from the Hematopoeitic
differentiation cell lines. In each of the 24 clusters the time
courses of all four cell lines are shown (left to right) HL-
60+PMA, U937 + PMA, NB4+ATRA, Jurkat+PMA. This is Fig-
ure 4 from Tamayo et al.
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Figure 2: A plot of the sorted α-values for the Hematopoietic
differentiation cell lines. As noted, all values come out positive
despite the fact that positivity is not explicitly constrained in
the energy function. The profile of the values indicates spar-
sity meaning that around 95% of the values are of an order of
magnitude smaller than the remaining 5%.
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Figure 3: A plot of 6 of the top 40 genes that correspond to
clusters 20, 1, 22/23, 4, 15, 21 in Tamayo et al. In each of the
six panels time courses of all four cell lines are shown (left to
right) HL-60+PMA, U937 + PMA, NB4+ATRA, Jurkat+PMA.

Method brain lymph status1 breast met.1 lymphoma

RAW 32 44 34 27
PCA5 22 47 33 40

PCA10 26 47 26 27
PCA20 25 47 25 29
PCA30 31 47 31 33
PCA40 31 47 31 33
PCA50 30 47 30 33

GS5 20 45 32 33
GS10 24 43 31 30
GS20 28 47 32 31
GS30 30 44 33 33

Q − α 15 19 22 15
SNR 16 42 29 18
RFE 14 38 26 14
RMB 13 39 24 14

Table 1: Leave-one-out classification results for the supervised
and unsupervised algorithms on the various datasets. In both
PCAN and GSN the number N the number of components
used. Parameters for SNR, RFE, and RMB were chosen to
minimize the leave-one-out error. The Q−α algorithm consid-
erably out-performs all other unsupervised methods. Further-
more, and somewhat intriguing, is that the Q − α algorithm
is competitive with the other supervised algorithm (despite the
fact that the labels were not taken into account in the course of
running the algorithm) and performs significantly better on the
lymph status of breast tumors as compared to all other gene se-
lection approaches — including the supervised methods. 1 Only
the first 7, 000 genes were used.

information about class discovery or cell line analysis. The task of
selecting a small subset of genes is particularly challenging from
an information theoretic point of view in light of the few samples.
Another challenge in gene selection (or generally in feature selec-
tion) is the combinatorial explosion introduced when all possible
gene subsets are to be scored.

In this work we focused on the unsupervised version of gene
selection. The selection is unsupervised when class labels are ei-
ther absent (as in class discovery) or when the selection is required
in the context of cellular process studied in experiments — such
as cell cycle or heat shock in yeast experiments and chemical or
genetic perturbations of mammalian cell lines. The algorithm we
proposed was also applied to supervised settings (where class la-
bels are available) and was competitive and in some cases per-
formed significantly better than well studied supervised gene selec-
tion methods. In unsupervised settings, our algorithm significantly
and consistently outperformed other well studied approaches.

The principle of our method is based on scoring gene subsets by
means of measuring the coherence of the cluster arrangements of
the sample vectors induced by the selection. The cluster coherence
can be indirectly evaluated by the magnitude of the leading eigen-
values of the corresponding affinity matrix. The combinatorial ex-
plosion problem is avoided by the special makeup of a key matrix
in the algorithm which makes possible to use a soft-selection type
of approach yet guarantee sparse solutions (i.e. discrete solution).

We have first illustrated the value of our approach on a prob-
lem that is inherently unsupervised – that of finding relevant genes
in time course data. Instead of directly selecting relevant genes
most algorithms cluster all genes and explain the time courses in
terms of gene clusters and then look for genes in the various clus-
ters to try and understand the underlying biology. We directly find
the relevant genes in the time course data. We compared the two
approaches on four well studied Hematopoietic cell lines (HL-60,
Jurkat, NB4, and U937). Using our approach we were able to find
individual genes with time courses very similar to those of gene
clusters found using SOMs on this dataset. We then applied our al-
gorithm to four (labeled) treatment outcome datasets. Cmparisons
with other supervised and non-supervised approaches showed a
consistent superiority over other unsupervised approaches we tested
in our studies and comparable performance to supervised approaches
(despite the fact that our algorithm did not make use of the available
class labels). In one case, the performance of our algorithm on the
lymph nodes dataset for breast tumor study was significantly supe-
rior compared to all the methods we compared against — including
the supervised methods.

The simplicty of our approach to gene selection (see Matlab code
in Section 6) and the success of the Q − α algorithm in finding
relevant genes in the datasets explored in this paper suggests that it
would be a useful addition to expression analysis tools being devel-
oped. Coupling this approach with tools such as Gene Set Enirch-
ment Analysis [31, 32] which take the list of relevant genes and
measures whether genes in known or computed pathways fall into
this list can provide valuable insights into biological processes at
the molecular level.

6. CODE
To illustrate the simplicity of the Q − α algorithm we attach a

vanilla implementation of it below:

function [alpha,A] = Qalpha(M,nclusters,numIter);
%M is the measurement matrix
%nclusters is the number of expected clusters
%numIter is the total number of iterations



%normalize data to have zero mean unit norm features vectors
[M,normXparams] = normalizeData(M);
mimj = M*M’;

%init A,Q,alpha
alpha = rand(nf,1);
alpha = alpha./norm(alpha);
A = diag(alpha)*M’*M*diag(alpha);
[Q,R] = qr(A,0);
Q = Q(:,1:nclusters);

for i = 1:numIter,
%compute G
G = zeros ( size(M,1) )
miq = M*Q;
for j = 1:nclusters,

D = diag(miq(:,j) );
G = G + D*mimj*D;

end
%compute the vector of weights alpha
[alpha,S] = svds(G,1);

A = diag(alpha)*M’*M*diag(alpha);

%Orthogonal Iteration steps
Z = A*Q;
[Q,R] = qr(Z,0);
Q = Q(:,1:ne);

end
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