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ABSTRACT

In an event of a pandemic influenza outbreak such as the great “Spanish Flu” of 1918 and the more recent
2009-2010 HIN1 “Swine Flu” scare, pharmaceutical as well as non-pharmaceutical resources are limited
in availability and effectiveness. In this thesis we apply OR methods to evaluate the effectiveness of such
resources and the strategies for reducing the number of infections resulting from an outbreak.

In the first half of this work, we focus on epidemiological analysis of influenza modeling in a
heterogeneous population. The majority of existing epidemiological literature models influenza spread in
a statistically homogeneous population, but the model-based inclusion of heterogeneity by contact rate,
susceptibility, and infectivity introduces significant effects on disease progression. We introduce a new
discrete-time influenza outbreak model for a heterogeneous population and use it to describe the changes
in a population’s flu-related characteristics over time. This information allows us to evaluate the
effectiveness of different vaccine targeting techniques in achieving herd immunity, that is, the point at
which there is no further growth in new infections.

In the second half of this work we switch to a practical application of OR methods in a pandemic
situation. We evaluate the effectiveness of vaccines administered to US states during the 2009-2010
HIN1 pandemic. Since the US is geographically diverse and large, the outbreak progressed at different
rates and started at different times in each individual state. We discuss dynamic, multi-regional, vaccine
allocation schemes for large geographical entities that take into account the different conditions of the
epidemic in each region and maximize the total effect of available vaccines. In addition, we discuss
effective strategies for combining vaccines with non-pharmaceutical interventions such as hand-washing
and public awareness campaigns to decrease the strain of an outbreak on the population.
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Chapter I: Introduction to pandemic influenza

According the US National Intelligence Council’s 2020 Project, ‘“Mapping the Global Future,” an
influenza pandemic is the single most important threat to the global economy [1]. A potential new
pandemic similar to the infamous “Spanish Flu” pandemic of 1918 or the “Asian Flu” outbreak of 1957
can have catastrophic consequences for the United States as well as the global economy and population.
While medical and academic advances have been made since the first worldwide pandemic event in 1918,
the global community still has very little power to stop or mitigate a pandemic in its devastating force. In
addition to naturally evolving viruses, we now have to worry about a possible threat of a biologically
engineered deadly strain of a vaccine. Just recently, a new, deadly version of an HSN1 virus has been
produced in a lab setting [2]. If released to a susceptible population, such a virus can easily infect
hundreds of millions of people throughout the world. A medical “cure” for influenza has not been
identified. We can only fight an outbreak through various preventative measures such as vaccines, school
closures, and good hygiene practices; and mitigating measures such as anti-viral drugs and self-isolation.

In this work we focus on using operations research techniques to improve decision-making in both
preparation for a pandemic and reaction to an ongoing outbreak. We introduce a generalized influenza
spread model and use this model to prove some fundamental results regarding intervention effectiveness.
We then use the epidemic data from the recently occurring 2009-2010 HIN1 pandemic to demonstrate the
importance of timing in implementing various interventions and suggest an effective vaccine allocation
strategy for a large multi-regional entity such as the United States.

1. Seasonal and pandemic influenza

A new outbreak of influenza occurs when an already existing strain of a virus mutates to form a new
strain, to which the majority of a population does not yet have a built up immunity. Once the new virus
enters the community, if the strain is particularly transmissible it will pass from person to person
spreading throughout the susceptible population. The virus can be airborne and pass through face-to-face
contact or can be contracted by a susceptible person if she touches a surface contaminated by particles
containing the virus.

Once a susceptible person becomes infected by virus particles, the virus replicates within the host until a
critical mass is reached and the person becomes symptomatic [3]. That initial replication period is the
latent period when the person is infected but not yet infections. After the latent period, the infected
individual becomes infectious and starts shedding virus. Sometime during the infectious period, the
infected person becomes symptomatic, and often retires from the population to treat the symptoms. See
Figure 1 for stages of an individual flu case progression. Throughout this work, we will often refer to the
entire timeline in Figure 1 as a “generation” of the flu. In our models, we will also use the term “day” to
refer to a generation.
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Figure 1: The temporal progression of the flu’s syimptoms and infectiousness. The highlighted segment between the start
of viral shedding and appearance of symptoms is the time when people are particularly likely to spread the flu as they are
unaware of their infectious status [3].

Seasonal influenza outbreaks occur almost every year. A seasonal virus is usually characterized by fairly
low transmissibility and the typical demographics for a seasonal outbreak include the entire spectrum of a
population. Although approximately 36,000 deaths [4] result from seasonal influenza each year in the US,
the majority of these deaths occur due to complications in the at-risk segments of the population
consisting of the elderly, the very young, and people with preexisting conditions. While seasonal
influenza constitutes a burden on the population and the economy it is usually well managed on an annual
basis due to its predictability and ample time to prepare for each yearly outbreak.

The seasonal influenza preparedness process begins with the identification of new strains of the influenza
virus. Surveillance centers report on the new viruses found circulating in the general population and a
governing body such as the World Health Organization or the Centers for Disease Control and Prevention
in the US determine the few strains that are to be included in a particular season’s vaccine that will be
eventually delivered to healthcare providers. Once these strains are identified, vaccines are manufactured
using chicken eggs to grow a weakened virus. Preparation of the environment and growing the virus in
bulk quantities takes approximately six months. After the first few samples are created, the virus is
clinically tested for safety and then ordered in bulk to be produced and delivered to the public (Figure 2).
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Figure 2: The arrows with dotted lines preceded by non-broken arrows indicate the time period required for the first time
an activity is done (non-broken arrow line) that is then repeated (dotted arrow line). The solid lines signify that the
activity takes place within a finite period [ 5].

Since the preparation for a seasonal flu virus begins relatively early, the six month lag time is not
detrimental to managing the spread of influenza. Moreover, the people most at risk of serious
complications such as pneumonia have been identified — elderly, infants, pregnant women, etc. - and are
first to receive the protection offered by distributed vaccine [ 6]. In addition, recently developed
methodology has provided a way to shorten the vaccine manufacturing process by 8 to 10 weeks [ 7, 8].
The new methodology, which would use animal cells instead of eggs to cultivate the virus, will eliminate
the majority of the lag time. One production plant using such methodology is on track to be opened in the
United States [ 9].

Contrary to seasonal influenza, pandemic outbreaks have much more devastating effects on the world
population. Pandemic viruses are usually a mutated variation of an animal strain and are much more
deadly and more easily transmitted than its seasonal counterparts [ 4]. The general population usually has
little built-up immunity to the novel virus. Consequently, groups that are usually not susceptible to strong
effects from influenza also suffer infections. One of the defining characteristics of pandemic influenza is
that the strongly effected demographic shifts to healthy individuals in their 20s or 30s.

In addition, since a pandemic arises suddenly without much time for preparation, governing bodies have
significantly less time to commission vaccine production. When vaccines are finally manufactured, it is
possible that they are no longer needed to the global population. This is particularly evident in our in-
depth analysis of the 2009-2010 HIN1 “Swine Flu” pandemic in Chapters 4 and 5.

Experts agree that an emergence of a devastating new pandemic influenza strain is a matter of when not
if. When such an event occurs, if the world is not meticulously prepared for the outbreak the results can
cause devastating effects on the population, medical infrastructure, and economic situation of all affected
countries. The first such event is referred to as the great “Spanish Flu,” lasting from June 1918 until
finally dying out in 1919. This outbreak was more virulent and deadly than any seen before, with nearly
500 million people infected, a third of the world’s population at the time [ 10]. The infection rate was
combined with a staggering 2.5% case-fatality rate, leaving anywhere from 20 to 40 million people dead
throughout the world. The surprising nature of the outbreak was not limited to the high morbidity and
mortality rates, but also included the demographics affected by the mortality rate. Consider the death rate
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durihg this pandemic as compared to that of the seasonal influenza rates from a few years prior to 1918 in
Figure 3.
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Figure 3: W-curve: the death rate by age for the 1918-1919 pandemic. The unique factor of this outbreak is that unlike
most seasonal flu that is deadly for the very young and elderly, it killed an unusnally high number of people in the 2040
years old category { 3, 10].

Two other major outbreaks occurred in the 20™ century. The 1957 “Asian Flu” started in China but
progressed to the other end of the world very quickly, infecting 10-35% of the world’s population and
killing about two million people [ 11]. The 1968 “Hong Kong Flu” also killed about one million people
throughout the world [ 12].

The Lowy Institute for International Policy reported that even a very mild pandemic, like the Hong Kong
or the Asian Flu would result in a global economic loss of $330 billion and a human loss of 1.4 million. A
pandemic of 1918 proportions is projected to result in a cost of $4.4 trillion of global economic output
and the deaths 140 million people [ 13].

While these 3 pandemics were the most devastating outbreaks experienced by the world in the last
century, researchers did not yet have the resources to record and analyze the data from the outbreaks as
extensively as we have been able to do in the last few decades. The most data-driven progress in
modeling and evaluating pandemic response has come from outbreaks such as the SARS epidemic that
lasted from 2002 to 2004 predominantly in China and the surrounding areas. This outbreak had a fairly
low impact on a global scale, with approximately 1000 deaths worldwide, but it demonstrated the
effectiveness of non-pharmaceutical interventions on mitigating the effect of a serious respiratory illness
[14].

The most complete data available to us comes from a recent pandemic, the 2009-2010 HIN1 “Swine Flu”
pandemic. While the outbreak was not as deadly as was at first feared, the information gathered by the
United States during this pandemic is the key to the analysis we present in Chapters 4 and 5. The novel
HI1N1 influenza virus surfaced in San Diego in early April of 2009, very soon thereafter in Mexico and
was announced as a pandemic by the World Health Organization in June 2009 [ 15, 16]. By early fall
most of the world was experiencing the fall wave of the HIN1 pandemic [ 17]. The US Center for
Disease Control (CDC) took the threat of a pandemic seriously, and by the middle of April 2009,
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researchers began to develop vaccines matched to the new virus [ 15]. The inherent delays of egg-based
vaccine production resulted in the first vaccines being shipped in early October 2009 [ 18]. The vaccine
had varying ameliorative effects in different regions of the US. Due in part to early school openings in the
Southeast [ 19], the major wave of the outbreak hit the southeastern states earlier than the northern ones.
Nonetheless, vaccines as produced were delivered to states strictly on a per-capita basis [ 20], with each
state receiving vaccine in direct proportion to its population. As a result, some states were able to
vaccinate a significant portion of their population prior to the major flu wave hitting, while others did not
receive vaccines until the major flu wave had already passed and interest in vaccinations had waned.
Vaccine distribution within individual states was significantly more complicated as states had relative
freedom in utilizing the vaccines shipped from the CDC [ 21].

Regardless of the classification of an influenza outbreak, there are a number of measures that can be taken
to mitigate the effects of the disease on the population. There are three main categories of interventions.

1. Pharmaceutical interventions: Antiviral medication such as Oseltamivir (Tamiflu) can be used
for treatment or prophylactic purposes. If taken within the first 48 hours of manifestation of
influenza-like symptoms. Some of this medication has been shown to reduce symptoms and
complications and shorten illness by one to two days [ 22]. Antiviral medication is generally not
used for preventative purposes for anyone but members of the medical profession who are likely
to come across many infectious individuals in the course of their daily activities. The medical
intervention most used for massive distribution is vaccines. These are also not 100% effective,
but they significantly lower the susceptibility and infectivity of an individual. Newly
administered vaccines take up to proximately 2 weeks to take effect [ 23].

2. Non-pharmaceutical interventions:

e Individual: a single person can make behavioral changes to help lower his or her
chances of contracting influenza and to prevent the spread of the virus to others.
These changes include improved hygiene practices such as increased hand-washing,
Telecommuting to work for jobs involving multiple interactions with other people
also prevents transmission. Changes such as these are largely up to the individual to
implement, but with a high compliance rate they have been shown to be effective in
curbing the spread of disease in an entire population [ 14].

¢ Government mandated: policy-making bodies may also implement non-
pharmaceutical interventions with significant effects. Such interventions include
school closures and public awareness campaigns to encourage the public to use good
hygiene practices.

Although it has been shown that individual behavioral changes can be very helpful in mitigating the
effects of the flu, [ 3, 14] we will focus our work on the options available to policy makers such as the
CDC in implementing both pharmaceutical and non-pharmaceutical interventions.
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2. Modeling disease spread

2.1 Basic reproductive number Ry

The vast majority of all epidemiological literature modeling infectious disease includes estimates of the
basic reproductive number, Ry. R, is the fundamental construct quantifying the transmissibility of a virus
strain. It is defined as the expected number of secondary cases produced, in a completely susceptible
population, by a typical infected individual during its entire period of infectiousness [24]. In formal terms,
for each person in the population, there exists a random variable that corresponds to the number of
secondary cases that person would cause if placed in a fully susceptible population. Ry is the mean of this
random variable for a randomly picked individual.

Ry is the first parameter that is determined with the emergence of any new outbreak. It is considered a
representation of the transmissibility of a particular strain of influenza and corresponds to the exponential
growth factor of the epidemic curve in the beginning of the outbreak. Consider, for example, an epidemic
in which Ry = 2 and select the first infectious person, “patient zero”, from the population. We assume
that our population is large enough, that in the early stages of the epidemic nearly everyone is susceptible
and our “completely susceptible population” criterion is satisfied. In that case, patient zero infects, on
average, two people. Those two newly infected people in turn also infect about two people each, causing
four new infections to emerge. As this goes on we experience a branching process where the number of
infections increases by a factor of R until the number of people who have already acquired immunity in
the population becomes significant enough to stop exponential growth. See Table 1 for estimated values
for R, for a few major pandemics in the last century.

Pandemic Estimated R, range
1918 Spanish Flu 1.7-3.4 [ 25]

1957 Asian Flu 1.8 [ 26]

SARS 2-3.3[27]

2010 Swine Flu 1.5-3.1 [ 28]

Table 1: R, values for major pandemics in the last centary

R, is central to the idea of a threshold criterion. In general, the threshold criterion suggests that whenever
Ro > 1 the epidemic takes off and the epidemic curve grows while if Ry < 1, the epidemic should die
out.

While this is true in the average case, Ry is an aggregate statistic and must be taken with a grain of salt.
As the expectation of a random variable, it hides the underlying probability distribution. Consider two
hypothetical homogeneous population examples in which Ry, is astronomically high.

e Scenario 1: Every person would infect exactly 90 others if placed in a fully susceptible
population.
e Scenario 2: The number of people infected by any given member of the population in a fully

100 w.p.0.9

susceptible population follows the following probability mass function { 0w.p.0.1

In both of these scenarios, Ry = 90. However, in the first population, if the virus is introduced to the
population, it will cause an epidemic with probability 1, as patient zero will infect exactly 90 people, In
the second scenario, with probability 0.1 patient zero will infect no one at all, and the outbreak will die
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out as she recovers despite the fact that Ry > 1. The variance of the underlying population is hidden by
R, but plays an important role in outbreak dynamics.

Another important aspect of the definition of Ry, is the use of the term “typical.” The ambiguous part here
is the selection mechanism used to choose patient zero in a heterogeneous population where not all
individuals behave identically. One may be tempted (and some are) to select a person from the population
uniformly at random. However, it is preferable to select patient zero using other methods. We will
discuss in detail, in Chapter 2, the reasons why the uniform selection mechanism will likely provide an
underestimate for the true R in a heterogeneous population. A distribution that favors selecting the more
active and susceptible people in the population is more appropriate.

As a final word of warning, one must also avoid the temptation of thinking of R, as a constant particular
to a given outbreak. In fact, R is an expectation of a random variable that consists of multiple
components. One way to start breaking up R, is to think of it as the function, Ry = Ap. Here, 1 is the
average number of contacts that a typical infectious person in the population has during the period of her
infectiousness, and p is the expected probability that a single contact between an infectious and a
susceptible person results in the susceptible person’s infection. This is just one level of simplification, as
p can be further deconstructed into components corresponding to the infectiousness of the infected person
involved in a typical face-to-face contact and the susceptibility of the susceptible person. The key
observation here, however, is that the distributions of A and p vary not only with the strain of a flu virus,
but also with the geographical, cultural, and other factors particular to any community.

Despite some of these concerns, Ry, is still a very good aggregate measure of a virus’s spreading potential.
When used cautiously, it should guide epidemiologists and healthcare officials in appropriately reacting to
a new influenza outbreak.

2.2 Effective reproductive number R(t)

The effective reproductive number is closely related to Ry. Recall that Ry is the expected number of
infections a single infected person causes in a fully susceptible population, that is, at the very beginning of
an outbreak. Similarly, R(t), is a generalized concept of the expected number of infections caused by a
single person. It is defined as the expected total number of secondary cases produced by a typical
infectious individual at time t. If we were to take the infectious population at time t, and pick one person
out, at random, and record all infections caused by that individual we would have an estimate of R(t). In
an entirely homogeneous population where every person is identical, the calculation for R(t) is simple.
Suppose that at time t the proportion of the population K (t) is already immune to the infection due to
having already been infected or through vaccination. In that case, we know that a typical infectious person
would infect, on average, R, others if every other person were susceptible. However, only (1 -K (t))
fraction of the population is susceptible, so if we had independent mixing only a fraction (1 -K (t)) of
an infectious person’s usual contacts are susceptible. In other words, the contact rate parameter A needs to
be scaled by (1 -K (t)) to reflect the number of contacts that occur with a susceptible person. Therefore,
in a homogeneous population R(t) = Ro(l -K (t)). This analysis becomes more complicated in a
heterogeneous population, where people behave in different ways causing the characteristics of a
population to change with time.
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Note that when R(t) < 1, the number of infectious people in the population declines, as each infectious
person does not replace herself in the infectious population. Because of this, the goal of any intervention
program is to lower R(t) as much as possible through various means, ideally reaching a point where
R(t) < 1.

2.3 Herd immunity

The fraction of the population that is immune at the time when R(t) becomes equal to 1, is commonly
referred to as herd immunity. Specifically, herd immunity is the fraction of the population that needs to be
immune to the disease so that (t) = 1 [ 29]. Herd immunity coincides with the peak of infection. That is
exactly the point at which the epidemic curve stops increasing and the outbreak begins to subside. Herd
immunity can occur naturally without any intervention from the outside as people contract infection,
recover, and acquire immunity to the outbreak. It is also possible to obtain herd immunity through
vaccinating a portion of the population. In Chapter 3 we will discuss in detail how to achieve herd
immunity using different targeting strategies.

Calculating herd immunity for a homogeneous population is once again relatively easy. Recall that in a

homogeneous population R(t) = R, (1 -K (t)). Herd immunity in this situation is the fraction of the

population K, for which R(t) = Ry(1 — K) = 1. Solving for K, we get K = 1 — f—. As with R(t), herd
]

immunity gets more complicated in a heterogeneous population.

2.4 Common modeling techniques

2.4.1 Homogeneous compartmental modeling

There is extensive literature on modeling pandemic influenza spread. The simplest and most common
deterministic models for influenza spread follow some variant of the S-I-R compartmental approach
where each person in the population is susceptible, infected, recovered, or dead. Such models are often
used in a homogeneous setting, where all people in a single compartment behave identically and there is
random mixing [ 30, 31]. Consider the illustration in Figure 4. Each person is either susceptible, infected
or recovered. Within each compartment all people are identical. At any time, the susceptible, infected, and
recovered compartments contain S(t), I(t), and R(t) individuals respectively. People move from the S
compartment to the I compartment at rate pS(t)I (t) and from the I compartment at the rate al(t).

pBS(t)i(t) al(t)
U/

Figure 4: A typical S-I-R compartmental model. | 3]

The values for S(2), infectious /(?) and recovered R(t) are given by the solution to the following three
differential equations:

ds dr dR
S sty Lo ppSI—al; B
g =P =P dt
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The assumptions that are embedded in this model are:

1. An average member of the population makes BN contacts per unit of time, assuming N is the total
population size (mass action incidence).

2. The probability of infection spreading from an infected to a susceptible individual per contact is
)22

3. Infected individuals leave the infected group at a rate of a/ given 7 people in the infected
compartment. To elaborate further, the duration of the infective period is exponentially
distributed with mean 1/a.

4. There are no births or deaths from the overall model; there are no demographic effects.

The value of the basic reproductive number for this model is:

R0=ﬂp—i(0—).[3]

The S-I-R model is made more complex with the addition of the possibility of dying. Other compartments
like the exposed state can also be added to reflect the reality of an influenza outbreak in which some
people may be infectious without experiencing symptoms.

2.4.2 Heterogeneous compartmental modeling

This S-I-R approach may be considered incomplete because it ignores population heterogeneity. One
visible form of heterogeneity is manifested as “super-spreaders”. The extreme cases of super-spreaders
such as Typhoid Mary in the case of typhoid fever in the US [ 32], or Liu Janlun during the SARS
outbreak [ 18, 33] bring with them the possibility of one particularly active person sparking an outbreak
even if the rest of the population is relatively weak at transmitting the infection [34, 35]. More typical are
the populations where some members of the population are inherently more active at spreading the
disease than others. Literature on heterogeneity consistently shows that this inherent heterogeneity causes
a significant impact on the dynamics of the outbreak and even whether such an outbreak occurs at all [ 3,
30, 36]. Nigmatulina and Larson showed that people who have a large number of daily contacts are the
“drivers” of the infection. These people tend to get infected early in the outbreak and drive the
propagation of the flu in the early stages [ 3, 36, 37].

We will concentrate on three major dimensions of heterogeneity: activity level, susceptibility, and
infectivity. Susceptibility is determined by a person’s natural immune system, causing some to be more
likely to contract influenza after a brief contact with an infectious person. Infectivity is a measure of how
easily a person “sheds” virus particles when infected. Modeling heterogeneous activity levels has recently
become plausible with the work of Fu[ 38], and Mossong et al [ 39]. Both of these works provided a
summary of contact diaries filled out by participants, in which they enumerated all contacts that they had
throughout a single day. In particular, Mossong et al, provided contact rate distributions from eight
European countries with the specific goal of being used for influenza modeling. The availability of such
data allows us to model infection spread accurately and more realistically than simple homogeneous
modeling. In our research we intend to explore the ways in which this modeling can be used to effectively
develop mitigation strategies in a heterogeneous population during an influenza outbreak. Susceptibility
and infectiousness are much less visible constructs and there is still not enough reliable information about
them to use for heterogeneity modeling. We hope that the influenza researches will continue working on
quantifying these sources of heterogeneity.
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Heterogeneous compartmental models are also developed in the literature. The general idea is to divide
the population into a finite (usually small) number of discrete departments. People in each compartment
are assumed to behave identically, with full intra-compartmental random mixing [ 40, 41, 42]. This
approach usually involves a large number of differential equations with fixed Markovian assumptions,
and needs to be solved numerically to compute the model-predicted average trends of the epidemic.

In discrete-time heterogeneous models, a next-generation matrix is a useful tool in tracking an epidemic
[43]. The next-generation matrix takes into account the anticipated inter-group contact rates, and uses
them to calculate the number of infected individuals in each heterogeneous class of the population as the
outbreak progresses. It is used in modeling early-stage epidemic growth and in estimating flu parameters,
such as R,

Employing an approach quite different from the traditional compartmental models, in Chapter 2 of this
thesis, we will expand on the heterogeneous modeling by Larson [ 36]. Larson introduced simple
discrete-time modeling that took into account population heterogeneity without the need for the data that
forms the next-generation matrix. Instead, he used the idea of proportional mixing, where each person is
likely to get infected in proportion to his or her contact rate, as opposed to a posited specific rate of
infection between each pair of classes [ 36, 41]. In Chapter 2 we will generalize Larson’s approach to
eliminate the need for a finite number of discrete classes of statistically identical individuals. Before
moving on to this model, we will mention another approach to influenza modeling even though we will
not be focusing on this approach here.

2.4.3 Network models

One other way to include contact heterogeneity into a modeling framework is to use networks to represent
human to human contacts. In such models, a community is represented as a graph, in which nodes
represent individuals and connecting edges represent possible contacts between them. The weighting of
each edge corresponds to the probability that the disease progresses from one node to another. Such
models have been popular recently because they inherently incorporate heterogeneity and stochasticity.
Random graphs may be used to generate representations of realistic communities and stochastic
simulation on such graphs paints a picture of typical outcomes of an epidemic. Graph theory may be used
to describe epidemic spread, identify high risk individuals, and evaluate various mitigation strategies [ 44,
45). These models have been particularly helped by the development of technology that allows
researchers to track real life contacts through high-tech means (e.g. wireless signals) to produce a realistic
representation of a human social network [ 46].

The one shortcoming of these models is that they are inherently complex. They are quite useful for
evaluating pandemic scenarios or possible interventions, but they are not ideal tools for drawing general
insights that could guide decision making in a pandemic situation. Similarly, the few equations that
characterize these models usually do not reflect much on how the population changes as the outbreak
continues.

3. Research summary

In this work we will focus on the theoretical and applied aspects of pandemic influenza modeling. In
Chapters 2 and 3 we will introduce a generalized version of the heterogeneous community spread model.
The new model is more analytically tractable as well as more realistic than currently used influenza
spread models. It replaces the need for many coupled differential equations currently used to model
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influenza spread in a heterogeneous population. We will include insights about the changes in the
population characteristics as an outbreak develops with time, as well as some theoretical results that can
be proven about an outbreak developing in a heterogeneous population. In Chapter 3 we will discuss
lower and upper bounds on vaccines needed to achieve various levels of R(t) including herd immunity,
and the different vaccination strategies that can be used to achieve those bounds in a heterogeneous
population. In Chapter 4, we will switch to the more data-driven aspects of this thesis and discuss the
effectiveness of vaccines administered during the 2009-2010 HIN1 pandemic. In particular, we will focus
on the effect of time on how useful the vaccines have been in mitigating the epidemic in the US. In this
chapter we used a simple, homogeneous model for motivation of the in depth analysis in Chapter 5. In
Chapter 5 we introduce some dynamic heuristic algorithms to change vaccine allocation decision-making
and improve the effectiveness of vaccines in a multi-region area such as the United States. Finally, in
Chapter 6 we will zoom back to a smaller community such as a single US state. Prior to receiving
vaccines, the community must utilize non-pharmaceutical interventions effectively to manage the
outbreak until vaccines arrive. In its entirety, this work will provide an overview of new methodologies
that we hope will significantly improve our ability to fight influenza spread on national and local levels.
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Chapter II: Continuous-attribute heterogeneous population model

1. Introduction
Despite a large body of research dealing with mathematical modeling of influenza spread, there is still no

widely accepted way to inform decision making in the case of a global event such as the 2009-2010
HIN1 “Swine Flu” pandemic. The HIN1 influenza outbreak demonstrated that limited information and
short time allowances during a pandemic make it difficult to model accurately the spread of influenza
and to make appropriate and effective decisions with regard to public policy and vaccine distribution.

As a pandemic evolves, decision makers receive aggregate statistics in the form of the number of people
reporting to physicians with flu-like symptoms, number of related hospital admissions, number of flu-
related deaths, and number of vaccinations administered. Yet, aggregate statistics hide the fact that early
transmission and propagation of the disease are driven largely by particular segments of the population:
(1) those who are highly active in daily face-to-face encounters; (2) those who are overly prone to
become infected given exposure; and/or (3) those who shed virus and spread the disease much more than
average. Any person can be characterized along a spectrum of these three attributes: social activity,
proneness to infection, and proneness to shed virus and spread infection. Those who are at the “right-
hand-tails” of one or more of these distributional attributes play a significant role in the early spread of
the disease. Such individuals, due to early infection, drop out of the susceptible population near the
middle and almost certainly by the end of the outbreak.

The correlation between these types of heterogeneity also plays a role in the characterizing the speed and
duration of infection. It is reasonable to assume that people who are most susceptible to infection are
also those that are most likely to spread it to others. Those with high levels of both sources of
heterogeneity are likely to get infected first and quickly leave the susceptible population. However, a
negative correlation between susceptibility and infectiousness will cause the infection to spread much
slower and be sustained for a longer period of time within a community. To understand the dynamics of
flu spread, or the spread of any human-to-human infectious disease, one cannot ignore such population
heterogeneities.

In this chapter, we generalize the heterogeneous-population, influenza-spread model developed by
Larson [ 1]. We improve analytical tractability by incorporating a more general, continuous form of
population heterogeneity. In this chapter we generalize Larson’s approach to modeling influenza spread
in heterogeneous population by eliminating the need for a finite number of discrete classes of statistically
identical individuals. Instead, we introduce a continuous distribution for all the parameters in question,
in essence employing an infinite number of classes. Eventually we deal with all three attributes
introduced above: social activity, proneness to infection, and proneness to spread infection. Initially we
focus only on contact rates, the measure of social activity. The model relies on just a few equations that
define the state of infection at a given time. We present numerical examples showing how various
segments of the population are affected throughout the outbreak and the importance of determining a
good starting distribution for contact rates. We also discuss the calculation of R, and particularly the
effects of heterogeneity on R(t). We conclude by using contact data from four European countries to
demonstrate the empirical uses of our model. In addition to generalizing the traditional compartmental
model by using a spectrum of heterogeneity as opposed to arbitrary classes, our model introduces closed-
form equations to describe the state of the epidemic in a community at different points in time. These
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equations can be used to mathematically prove results regarding the changing characteristics of the
population and the progression of the virus within the community. We provide some such proofs of in
Section 2.3.

2. Generalized model
Larson employs a discrete-time model where the unit of time is a generation of influenza, or a “day”. A

generation for the purposes of this model is the period of infection during which a person is infectious
and actively interacting in society. Larson’s model assumes a finite number of classes of people,
differing by their activity level. Specifically,

A = Poisson rate of human contacts per day of an individual in class C
p = probability that a susceptible person becomes infected after a contact with an infectious individual

During each day i, a person may be classified as susceptible, infected, or immune. A person’s state may
change on day i + 1, where each susceptible person independently may become infected or remain
susceptible, an infected person recovers and becomes immune, and each immune person remains
immune. For simplicity here, we assume that there are no influenza-related deaths during this outbreak.

We generalize on this model by making the Poisson contact rate A a random variable, and assuming a
distribution of A over the entire population. For a given person in the population, we sample from the 1-
distribution and find A = 4,. Then, that person has a number of potentially infectious daily contacts n,
selected from a Poisson distribution with mean A,. Here A corresponds to the individual’s *“class”. We
introduce the following notation:

f (1) = population distribution of A, the individual Poisson rate of contacts per day’

f(A)= distribution of A, the individual Poisson rate of contacts per day, in the infectious population on
day i. That is, if we were to select a single person, at random, from the infectious population,
f(2) would represent the distribution corresponding to that person’s daily contact rate, 1.

;5 (1)= distribution of 1, the individual Poisson rate of contacts per day, in the susceptible population on
day i. That is, if we were to select a single person at random from the susceptible population,
£ (1) would represent the density function corresponding to that person’s daily contact rate, Az

N/=number of infectious individuals on day i.
Nf= number of susceptible individuals on day i.

N = total number of people in a population.

! We assume here that f(A) is a continuous probability density function. The arguments in this section may also be
applied to discrete distributions, for which f (1) represents the probability that the Poisson contact rate equals A.
We will use f(A) and the word “distribution” in both contexts to refer to either the probability density function or
the probability mass function and use summations instead of integrals where appropriate.

% Some individuals may change their contact rates during their infectious generation, e.g. by staying at home while
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Once we know the initial conditions, we can model a typical epidemic curve and approximate the social-
contact characteristics of the population by sequentially applying steps similar to those used by Larson:

Day i

We start with the known values of all our quantities of interest during day i: N7, N/, ;5 (1) and £ (4).
We now show how to find all the necessary values of N4, Nf,1, f51(2) and, £, ; (1). As per Larson:

B; = the day i probability that a random person’s next interaction is with an infected person.

We now consider the total expected number of contacts that all infectious people make on day i:
22} [}
f N/Afl(A)da= N} j AfI(A)dA= N'ElD
0 0

The mean total number of day i contacts by infectious people is the product of the average number of
contacts by an infectious person and the number of infectious people in the population. Likewise, the
mean total number of human contacts each day is

f coNAf(A) di= N f m,lf(l) dl = NE(A)
0 0

and, with no behavioral changes or deaths, is assumed to be constant throughout the outbreak. Therefore,
the probability that any interaction is with an infectious person, is simply the ratio,

_NE® 1)
hi= NE(A) *

We next define the day-specific infection probability
p;(I|1) = probability that a susceptible individual with contact rate A becomes infected on day i

which Larson showed to be
piI12) = 1 — e~4Phi )]
We now have all the necessary tools to find N3, ,, N/, 1, 5, (1) and 4, (D).

Niyy = fo CPUIDNSFS)dA = NS f DS DA )
[0}

Ni =N = Niyy @
The A-distributions over different segments of the population are slightly more complex. The distribution

of contact rates of infectious people changes on day i + 1 from what it was on day i. Onday i + 1, itis
the distribution of contact rates of those people who were susceptible and became infected on day i.

pi1D) = f5(2) (5)
Jy, 2012 * £5(2) da

fl1(D) = f(Alindividual was infected onday i) =
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Now for the susceptibles: their day i + 1 contact-rate distribution is that of those who were susceptible
on day i and who were not infected on day i + 1.

AU B A O IC)
Jy (1 =p: A1) * £5(2) da

f51(A) = f(Alindividual was not infected on day i) =

These formulae describe entirely the state of the epidemic in the community on day i. By starting with
some known boundary values of parameters and iteratively applying these rules over time, we obtain a
model of complete epidemic dynamics within a continuous heterogeneous context.

Model Summary:

Starting with the following quantities on day i: N', N/, f*(4) and, £/ (3)

Compute the intermediate quantities:
_NME®@
Y7 NEQ)
pi(112) = 1 — e~#Fi
Compute the relevant quantities on day i + 1:
Ny =N [ pUIDF DA
0

S _ nS_ Nl
N, =N — Ny,

1 ) = mpi(lll)* fEQ)
Tas ) ==~ fry aa
£5.0) = (1 —-p A1) * £5 )

J,o (1 = p(112)) = £5(2) da

3. Model details

3.1 Numerical examples:

3.1.1 Uniform distribution

We first model a population of a small hypothetical community of 10,000 people. As a boundary
condition, consider f(1) to be uniform between 0 and 40. Iteratively running our model, results are
summarized in Figures 1 and 2 and Table 1. Additional details are provided in Appendix C.

Outbreak Statistics
Duration of Outbreak 17 days
Total Number of Infections | 7,168

1 210)) 26.7
El7(A) 18.2
E3;(2) 10.4

Table 1: Qutbreak statistics. The initial distribution of A is uniform between 0 and 44.
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Figure 1: Under an initial uniform distribution of daily contact rates, the epidemic curve and R(t) of the outbreak. R(t) is
computed by dividing the number of infectious people at time t+1 by the number of infectious people at time t.
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Figure 2: Contact rate characteristics for the infectious and susceptible subsections of the population at different times
during the outbreak.

Talking through the example, on day 0, we introduced 10 infectious individuals into the population,
each having a A value drawn from the uniform distribution over 0 to 40. However, on day 1, the

distribution of contact rates of infectious persons resembles a straight line with slope 2 That is, if on day

1 we were to select a person at random from the infectious population, that person would be much more
likely to have a high daily contact rate, than a low one. In fact, the expected contact rate by an infectious
person on day 1 is 26.7 (Table 1). Note, also, that it is impossible for a person from the infectiou