
On the Gap-Tooth Direct Simulation Monte Carlo

Method
FTECHFNOLG

by
UN1 3 2012

Jessica D. Armour

Submitted to the School of Engineering ---------
in partial fulfillment of the requirements for the degree of ARfp

Master of Science in Computation for Design and Optimization

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2012

@ Massachusetts Institute of Technology 2012. All rights reserved.

Author
School of Engineering

January 20, 2012

Certified by...........

Accepted by

.

Ni s Hadjiconstantinou
Associate Professor of Me hanical Engineering

Thesis Supervisor

...................... M
Markus Buehler

Associate Professor of Civil and Environmental Engineering

2

On the Gap-Tooth Direct Simulation Monte Carlo Method

by

Jessica D. Armour

Submitted to the School of Engineering
on January 20, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science in Computation for Design and Optimization

Abstract

This thesis develops and evaluates Gap-tooth DSMC (GT-DSMC), a direct Monte
Carlo simulation procedure for dilute gases combined with the Gap-tooth method of
Gear, Li, and Kevrekidis. The latter was proposed as a means of reducing the com-
putational cost of microscopic (e.g. molecular) simulation methods using simulation
particles only in small regions of space (teeth) surrounded by (ideally) large gaps.
This scheme requires an algorithm for transporting particles between teeth. Such an
algorithm can be readily developed and implemented within direct Monte Carlo sim-
ulations of dilute gases due to the non-interacting nature of the particle-simulators.

The present work develops and evaluates particle treatment at the boundaries
associated with diffuse-wall boundary conditions and investigates the drawbacks as-
sociated with GT-DSMC implementations which detract from the theoretically large
computational benefit associated with this algorithm (the cost reduction is linear in
the gap-to-tooth ratio). Particular attention is paid to the additional numerical error
introduced by the gap-tooth algorithm as well as the additional statistical uncertainty
introduced by the smaller number of particles. We find the numerical error introduced
by transporting particles to adjacent teeth to be considerable. Moreover, we find that
due to the reduced number of particles in the simulation domain, correlations persist
longer, and thus statistical uncertainties are larger than DSMC for the same number
of particles per cell. This considerably reduces the computational benefit associated
with the GT-DSMC algorithm.

We conclude that the GT-DSMC method requires more development, particularly
in the area of error and uncertainty reduction, before it can be used as an effective
simulation method.

Thesis Supervisor: Nicolas Hadjiconstantinou
Title: Associate Professor of Mechanical Engineering

Acknowledgments

This work was completed while under the funding of MIT Lincoln Laboratory's Lin-

coln Scholars Program. A huge thanks to them for providing me with this opportunity

to better myself.

To Professor Hadjiconstantinou, I would like to express special thanks for giving

me a chance to work with him and for his never-ending patience with me throughout

the entire process.

To my family, thanks for their continued love, support, and encouragement, espe-

cially in the face of the hardships they have faced the past couple of years.

And to my roommate, thanks for always encouraging me to laugh and reminding

me to take life and education one day at a time.

5

6

Contents

Cover page

Abstract

Acknowledgments

Contents

List of Figures

1 Introduction

1.1 Equation-Free Methods: Introduction

1.2 Thesis Objective

2 Numerical Methods

2.1 Direct Simulation Monte Carlo method

2.1.1 Overview

2.1.2 Advection Substep

2.1.3 Collision Substep

2.1.4 Sampling

2.2 Gap-Tooth DSMC Method

2.2.1 Overview

2.2.2 Algorithm Details

7

1

3

5

7

11

13

15

17

19

19

19

21

23

25

26

26

27

.

.

2.2.3 Boundary Treatment .3

3 Model Problem - Couette Flow 33

3.1 Problem Setup . 33

3.2 R esults . 35

3.2.1 Implementation I versus II . 35

3.2.2 Verification of GT-DSMC for G = 0 36

3.2.3 Further Investigation of Implementation I 36

3.3 Computational Considerations . 37

3.3.1 Computational Run Time versus Gap Size 37

3.3.2 Variance in Results versus Gap Size 37

4 Conclusion and Future Work 51

4.1 Sum m ary . 51

4.2 Future W ork . 52

Appendix 53

A Matlab Implementation code 53

A .1 G eneral Files . 53

A.1.1 Setup file - setup.m . 53

A.1.2 Particle sorting routine - sorter.m 54

A. 1.3 Particle collision routine - colider.m 55

A.1.4 Statistical sampling routine - sampler.m 57

A.1.5 Post Processing routine - PostProcessing.m 58

A.2 DSMC specific files . 59

A.2.1 Main DSMC wrapper - Truth.m 59

A.2.2 Particle movement routine - mover.m 61

A.3 Dual Bounce implementation files . 62

8

30

A.3.1 Main GT-DSMC wrapper - GT2.m 62

A.3.2 GT particle movement routine - GT2mover.m 64

A.3.3 Recursive particle movement routine 1 - move.m 69

A.3.4 Recursive particle movement routine 2 - moveExtra.m 69

A.3.5 Recursive particle bounce routine - bounce.m 70

Bibliography 73

9

10

List of Figures

1-1 Patch Dynamics Diagram .

2-1 DSM C Flow Chart

2-2 Fluxes for a single tooth. .

2-3 Internal Gap-tooth flux and spacing diagram

2-4 Recursive Internal Tooth Particle Redistribution Diagram

2-5 External System Boundary Treatment of Left-Going Fluxes

2-6 External System Boundary Treatment of Right-Going Fluxes

3-1 Diagram of Couette Flow

3-2 Implementation I, Kn = 0.0626

3-3 Implementation I, Kn = 1

3-4 Implementation II, Kn = 0.0626

3-5 Implementation II, Kn = 1

3-6 Errors in Implementation I, Kn = 0.0626

3-7 Errors in Implementation I, Kn = 1........

3-8 Errors in Implementation II, Kn 0.0626

3-9 Errors in Implementation II, Kn =1

3-10 Error Comparison, DSMC vs. implementation II

Kn = 0.0626 .

3-11 Scaled Implementation I, Kn = 0.0626

3-12 Computational Time versus Gap Size

. 34

. 39

. 40

41

. 42

. 43

. 44

45

. 46

GT-DSMC at G = 0,

47

48

49

11

16

. . 21

. . 28

. . 29

. . 30

. . 31

. . 32

3-13 Variance over 50 Ensembles versus Gap Size 50

12

Chapter 1

Introduction

In this thesis we investigate methods for accelerating (reducing the cost) associated

with direct Monte Carlo simulations of dilute gases using novel ideas from the field of

multiscale modeling and simulation. We begin the introduction with a discussion of

Direct Simulation Monte Carlo (DSMC), which is the main ingredient of the present

work.

DSMC was developed by G. A. Bird in 1963 [6] and has since become an industry

standard used in a variety of software packages for modeling rarefied gas flows [5].

During the early years of DSMC, rarefied flows were of great interest in the context

of space and reentry aerodynamics; in fact, this was the driving force behind its con-

ception and has greatly contributed to its development and the rise in its popularity.

More recently, DSMC has found considerable applications for modeling gas flows in

micro-electronic mechanical systems (MEMS) [12]. More recent work has extended

the use of DSMC to cover dense gases [2] and led to the development of variance-

reduction methods that reduce the uncertainty associated with property evaluation

in DSMC, which is inherently statistical. Variance-reduction methods are crucial in

low-signal flows typical of micro and nanoscale applications [[4],[17]].

The Navier-Stokes description, typically referred to as the continuum descrip-

tion in the literature, is expected to fail as the characteristic flow length scale (L)

CHAPTER 1. INTRODUCTION

approaches the molecular mean free path (A). This is typically quantified via the

Knudsen number, defined by

Kn = (1.1)
L

For the hard-sphere gas used in this study, the molecular mean free path is given

by
1

A (1.2)

where n is the number density, or number of particles per volume and o is the

effective hard sphere diameter of a molecule.

Extensive literature studies [[8],[12],[7]] indicate that, typically, for Kn > 0.1 the

Navier-Stokes description with slip boundary conditions is no longer reliable and

molecular or kinetic approaches are required. DSMC is one of the most efficient

methods for providing solutions [[18],[1]] to the governing kinetic equation known

as the Boltzmann equation [8]. In contrast to molecular dynamics, where individual

molecular trajectories are numerically computed using Newton's equations of motion,

the DSMC method integrates [18] the Boltzmann equation, in which the simplifica-

tions arising from the fact that the gas is dilute are already included [17].

In addition to taking advantage of the lack of strong interactions between molecules

in a dilute gas, DSMC achieves great computational efficiency compared to molecular

dynamics by taking advantage of the form of the Boltzmann equation and formulat-

ing time integration using a splitting scheme, in which each time step is split into

an advection substep and a collision substep [1]. During the advection substep, the

particles are moved (without collisions). During the collision substep, particles are

sorted into small computational cells and collisions are stochastically generated be-

tween particle pairs within the same cell. By treating collisions stochastically, rather

than calculating exact trajectories as in molecular dynamics, DSMC achieves further

computational savings.

Despite the enormous computational savings compared to molecular dynamics

14

methods, DSMC is still expensive, especially as the continuum limit is approached

(molecular dynamics is prohibitively expensive in this limit). This is due to both the

increased number of particles required as the Kn << 1 (L >> A) limit is approached

and the fact that larger length scales imply longer duration timescales.

In the present thesis we investigate the use of the gap-tooth method as a means

of alleviating one of the above limitations, namely the increase in computational cost

due to the large number of particles required to "fill" the computational domain. The

gap-tooth method, originally proposed by Gear, Li, and Kevrekidis [10], falls under

the broader category of patch dynamics, itself a subset of equation-free methods [15].

These methods provide avenues for using microscopic (e.g. molecular and, in the

present case, kinetic) simulators to obtain solutions to macroscopic problems (in our

context Kn << 1), which is traditionally very difficult due to the computational

limitations described above. Equation-free methods are further discussed below.

1.1 Equation-Free Methods: Introduction

Macroscopic problems are typically solved using continuum formulations, such as the

Navier-Stokes description. These formulations are based on conservation laws, such

as mass, momentum, and energy, coupled to models for the transport of these quan-

tities, referred to as closures. The resulting models, typically in the form of partial

differential equations describing property fields, are solved analytically or numerically.

Although these approaches have been used successfully for centuries, the advent of

more extreme conditions (e.g. response to laser irradiation, nanoscale devices and

systems) leads to situations where the traditional closure assumptions are no longer

valid. The traditional way of overcoming this difficulty is to develop new closure

relations, using experiments, or more recently, using molecular dynamics simulations

(or a kinetic simulation like DSMC, in the case of dilute gases).

The equation-free framework provides an alternative approach to this problem

1.1. EQUATION-FREE METHODS: INTRODUCTION 15

16 CHAPTER 1. INTRODUCTION

Figure 1-1: Example of patch dynamics. Molecular simulation is only performed
within patches (shown here containing particles). Smooth line denotes the solution
obtained by interpolating the solutions from the patches.

which sidesteps the need for writing down equations governing the system dynam-

ics [15]. Instead, it uses the molecular simulation as a black box that can provide

closure information. What differentiates this approach from a molecular simulation of

the complete system is that in the patch-dynamics approach, the molecular simulator

is used only in small patches of space, in analogy to the nodes of a numerical solution

approach for the governing differential equation (see Figure 1-1). These patches are

linked together through interpolation to allow representation of the extended sys-

tem at the coarse level [16]. In this manner, the computational domain need not

be filled with particles. Particles move from one patch to another, thus transferring

information for a globally consistent solution.

This approach is expected to be valid provided that the solution field is smooth

16 CHAPTER 1. INTRODUCTION

on the length scale of the patches and associated gaps and that appropriate dynamics

are found describing the motion of the particles between patches [9]. In the case

of the Boltzmann equation, the weakly-interacting nature of particles lends itself

naturally to this approach. This is particularly the case for DSMC, in which, due

to the splitting algorithm, particle motion is collisionless and thus completely non-

interacting. As shown in section 2.1, this can be exploited to develop precise dynamics

for the motion of particles as they move between different patches. These dynamics

can be derived by writing down an interpolated from of the hydrodynamic fluxes

associated with the particle motion on the numerical grid defined by the patches [13].

This particular case involving particle-flux interpolation between patches is known as

the gap-tooth method [10].

1.2 Thesis Objective

In the present thesis we will implement a one-dimensional version of the gap-tooth

scheme in which the microscopic solver is DSMC but it has been limited to patches,

referred to here as teeth. The resulting simulation method will be referred to as GT-

DSMC. As explained in the previous section, this scheme has the potential to provide

significant computational savings in the limit Kn << 1, where DSMC is expensive.

However, it is currently unknown what the numerical error is associated with solving

the governing equation in only a small fraction of the computational domain. As

we discuss later, the particle dynamics that allows this process to be used amounts

to an interpolation of the particle flux between teeth. One might expect this to be

equivalent (in a numerical accuracy sense) to a first-order numerical solution scheme.

The major objective of the present thesis is to thoroughly investigate the error

associated with the gap-tooth method, by comparing GT-DSMC solutions with cor-

responding, highly resolved, DSMC solutions. Another objective is the establishment

of appropriate boundary conditions for the presence of diffuse boundaries (walls)

1.2. THESIS OBJECTIVE 17

in the system. Moreover, we also investigate the effect of the reduced number of

particles in the simulation domain in the context of correlations and their effect on

the resulting statistical uncertainties in the evaluation of hydrodynamic properties in

GT-DSMC (in comparison with DSMC). This is important because if increased corre-

lations between particles in GT-DSMC require longer sampling (or increased number

of simulation particles) for achieving the same statistical uncertainty as DSMC, this

directly negates some (or all) of the computational gain achieved by GT-DSMC.

In what follows, we describe the DSMC algorithm in more detail. We begin with

a physical description of the flows that we will be simulating in this work and the

associated model parameters. We then proceed to a more detailed description of the

gap-tooth method.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Numerical Methods

In this chapter, we discuss in detail the DSMC and GT-DSMC algorithms. A Matlab

implementation of these algorithms can be found in Appendix A.

2.1 Direct Simulation Monte Carlo method

2.1.1 Overview

In this thesis we will limit our investigation to argon gas, using the hard-sphere model

with an effective diameter a = 3.66 x 10-10 m and molecular mass m = 6.63 x 10-26

kg. At the reference conditions of Po = 1.013 x10 5 Pa and To = 273 K, the number

density, no, is equal to 2.685 x 1025 M-3, resulting in a mean free path, A = 6.2579

x 10-8 M. We use two system characteristic lengths, L = 1 x 10-6 meters, resulting

in Kn = 0.0626, and L = 6.2579 x 10-8 meters, resulting in Kn = 1. The first

length value was chosen because it places the computations in the regime (Kn << 1)

where kinetic descriptions typically become expensive to solve and techniques such as

the Gap-tooth method investigated here are potentially useful. In particular, in the

case of DSMC, the computational inefficiency is due to the large number of particles

required; this is because for Kn << 1, we have L >> A. The second length scale was

chosen as it is firmly in the range where the continuum description fails.

Unless otherwise stated, our DSMC simulations used 241 cells with 500 particles

per cell, for a maximum of 120,500 particles, and was run for 1 x 106 time steps of

size

At = (2.1)
4 vmp

where w is the cell width and vp is the most probable speed, given by

vmp KT0 (2.2)

In the above, k is the Boltzmann constant (k = 1.38065 x 10-23 JK- 1) and m is the

molecular mass. This ensures that the time step, At, is a fraction of the mean free time

(mean time between collisions). This is required to ensure that the approximation

yielded by splitting each time step into distinct advection and collision phases is

valid [11].

Correspondingly, the size of cells must be less than the mean free path, A [3], in

order to minimize the error associated with the stochastic processing of collisions. In

our work, the cell size was always much smaller than the molecular mean free path

since a larger number of cells was used.

When coupled with the requirement that several cells per mean free path are

required for accurate solutions [3], this leads to large numbers of simulation particles.

By reducing the total number of particles required for the simulation, the gap-tooth

method has the potential to significantly extend the range of values of Kn that can

be effectively simulated by DSMC.

In our implementation, particles are initially uniformly distributed within the

system. Particle velocities are initialized from a Maxwellian distribution parametrized

by the system's initial density, temperature and velocity. In our case, the initial

condition was taken to be the reference condition stated above, namely no = 2.685 x

10 n-3 , To = 273 K, and zero flow velocity.

The core DSMC algorithm consists of two main substeps, an advection substep, in

20 CHAPTER 2. NUMERICAL METHODS

2.1. DIRECT SIMULATION MONTE CARLO METHOD 21

Figure 2-1: DSMC flowchart

which individual particles move without collisions, and a collision substep, in which

a subset of the particles pairs within the same cell are selected to collide. Figure 2-1

shows a schematic of a typical algorithm flow. Both substeps are discussed in more

detail below.

2.1.2 Advection Substep

The advection substep of the DSMC algorithm updates particle positions based on

collisionless advection. For each particle, i, the new position, f', is given by

Ti =Ti +Vi-At (2.3)

Particles that reach the system boundaries need to be treated according to the

boundary conditions prescribed at that location. In this work, we assume all system

boundaries, namely at x = 0 and x = L, to be diffusively reflecting, as in the majority

Initialization of system

Move Particles

While
t < tfinal Sort and Collide Particles

Accumulate Statistics

Post Processing

2. 1. DIRECT SIMULATION MONTE CARLO METHOD 21

of recent studies [12].

For the particles encountering a boundary, given a point of impact with the wall,

Twan, we calculate the time of flight to the boundary, Atwau, as follows:

Atwan = C - (2.4)
vi -n

where nt is the unit normal to the surface at the point rwaul and r1 is the particle

position before the move that resulted in a boundary crossing.

In the case of diffusively reflecting walls, the components of particle velocity are

reset according to a biased Maxwellian distribution that also needs to take into ac-

count the translational motion of the walls (if applicable) [1]. The component of

molecular velocity normal to the wall is given by the distribution

P1 (v1) = vie _ (2.5)kTw Le2~

where Tw is the wall temperature [1].

Similarly, each of the molecular velocity components parallel to the wall are de-

scribed by the distribution [1]

P11 = m 2' (2.6)
2ntkT,

These distributions correspond to a non-moving wall. The case of a wall translating

in a direction parallel to its plane can be treated by adding the wall velocity value,

van, to the molecular velocity drawn from distribution 2.6; the case of a wall moving

normal to its plane is more complex and will not be treated here.

To draw molecular velocities from the above distributions, we proceed as follows:

If we let z be a uniformly distributed random number in [0,1] and let x., 1 3 be

random numbers that are Gaussian-distributed with zero mean and variance of unity,

then the resultant expressions for the tangential and normal components of velocity

22 CHAPTER 2. NUMERICAL METHODS

2.1. DIRECT SIMULATION MONTE CARLO METHOD

after a particle strikes the wall are given by [1]

kT (2.7)

-2kTw
vi = n(z) (2.8)

respectively. If, in particular, the wall moves in the y direction with velocity, vwan,

then

vy= -1jg + vwan (2.9)

The final position of the particle is given by

r = wan + Vnewtafter (2.10)

where tfter is given by

tafter = At - Atwan (2.11)

with Atwar1 calculated using equation 2.4

2.1.3 Collision Substep

The collision substep employs a random selection process, following rules drawn from

kinetic theory, which is used to choose a set of representative collisions to be processed

at each time step. It begins by sorting the particles into cells, allowing particles to

collide only if they fall within the same spatial cell, since this ensures that in a single

time step nearby particles are more likely to collide than largely spatially separated

particles.

The algorithm proceeds using the acceptance-rejection scheme outlined by A.

Garcia in [1], randomly selecting particle pairs and accepting them as a collision pair

if the ratio of their relative speed to the maximum relative particle speed in the cell

23

of interest, Vr,Max, is greater than some uniformly distributed random number, x, in

[0, 11:

> x(2.12)

vrnmax

If the pair is selected, the particle velocities are reset. We repeat this process until

we have processed Mcand collisions given by

N o2 O 2vT,maxN cot
Mcand = N 2Vc (2.13)

where Nc is the number of particles per cell, Vc is the volume of the cell, and Ne

is the the effective number (number of real physical molecules represented by each

computational particle).

Because the acceptance-rejection procedure accepts collisions proportionally to

the particle relative velocity, < Vr >, the actual number of collisions is related to the

number of candidate collisions by the relation

. 0 _co < Vr > (2.14)
Mcand Vr,max

which leads to a total number of collisions, Mcou, given by the following

N27no.2 < v, > N eAt
Mcou= C 2Vc (2.15)

as required by kinetic theory [1].

The velocity of the center of mass of the particle pair selected to undergo collision

will be unchanged by the collision because of conservation of linear momentum. We

denote the post collision velocity of the particles by v' and v', respectively, and the

velocity of the center of mass of the particle pair system as vem. Then

1 + 1
Vc= g(9+) =(" 2+ V') =i' (2.16)

24 CHAPTER 2. NUMERICAL METHODS

Similarly, conservation of energy requires that the following relation hold for the

relative velocities

Vr =Vi Vj - |= v' (2.17)

Then, for molecules of equal mass we can write

V" =V- 1" 2'5 (2.18)

where & denotes a unit vector chosen randomly on the unit sphere since all directions

are equally likely for the relative velocity of the particles post collision [1]. In other

words,

' =v [(sin 0 cos *)k + (sin 0 sin 4)y + (cos 0)] (2.19)

where 4 is the azimuth angle, uniformly distributed in the interval [0, 27r] and 0 is the

polar angle, distributed in the interval [0, 7T] from the distribution P(0)dO = 1sin d0.

To generate values of 4 and 0, we can write # = 2nr1 and 0 = cos-1(2r 2 - 1), where

ri, r 2 are uniformly distributed random numbers in the interval [0, 11.

2.1.4 Sampling

As in all molecular simulation methods, hydrodynamic fields are obtained by col-

lecting statistics of microscopic particle properties. These are averaged in time once

steady state is reached, and if required, further averaged over a number of independent

ensembles.

The properties of interest here, calculated for each cell of the system, are the

number of particles, used in the calculation of average number density, velocity of

particles, used to compute the mean flow velocity in each cell, and sum of the squares

of the velocity of the particles, used to calculate the temperature in each cell.

2. 1. DIRECT SIMULATION MONTE CARLO METHOD 25

2.2 Gap-Tooth DSMC Method

2.2.1 Overview

The gap-tooth direct simulation Monte Carlo (GT-DSMC) method that we develop

here can be used to extend current molecular modeling techniques to macroscopic

problems, which are currently at the limit (or beyond) of our computational capa-

bilities due to the computational cost associated with molecular simulations of large

systems. GT-DSMC combines a standard method for molecular modeling of rari-

fied gaseous flows, DSMC, with the gap-tooth method, developed by Gear, Li, and

Kevrekidis [10], to perform equation-free multi-scale modeling of systems using mi-

croscopic physics-based simulators.

The gap-tooth method is based on the idea that sufficiently smooth problems

on a macroscale domain can be accurately solved using molecular methods within

small (microscale) domains that "span" but not completely fill the space and that

can subsequently be interpolated to obtain a macroscale solution [13]. This allevi-

ates the need to use the molecular description over the full computational domain,

which is computationally prohibitive, thus allowing us to solve large scale problems

at significantly reduced costs. The difficulty associated with this method lies in the

development of an accurate interpolation scheme that moves particles between the

microscale domains in a way that captures the underlying physics of the problem.

We implemented a gap-tooth direct simulation Monte Carlo (GT-DSMC) method

as described below within Matlab, then set up several model problems on which we

could test this formulation. For larger scale problems, it would be advisable to move

to a more computationally efficient coding language; however, for the purposes of

this thesis, the performance of the Matlab code was sufficient. Vectorization of the

Matlab code allowed significant speed up in long runs. Additionally, running the

code in parallel for each simulation allowed us to complete simulations in an efficient

manner.

26 CHAPTER 2. NUMERICAL METHODS

We applied the GT-DSMC scheme to a test problem that involves coupled mo-

mentum and energy transfer, comparing our results with DSMC solutions. DSMC is

known to produce accurate solutions to the Boltzmann equation [18]; we will show

that using GT-DSMC, we were able to obtain solutions that match those of the DSMC

method, albeit with some numerical error.

2.2.2 Algorithm Details

Given a macroscale domain of length L, we divide the domain into n equally sized

cells of width h, as in the DSMC method. In contrast to DSMC, only a subset of these

cells will contain particles; let us call these teeth. The remaining cells not containing

particles form gaps between the teeth. In this implementation, we ensure that the

cells next to the physical domain boundaries are teeth (filled with particles).

The teeth in our GT-DSMC can be thought of as grid points for a finite difference

scheme and the solution for the overall system will be an interpolated form of the

values (microscale solutions) at these grid points. By imposing appropriate boundary

conditions at the tooth level dictating the motion of particles between teeth and

suitable boundary conditions to the external boundaries of the system, we can then

evolve the molecular (DSMC) description in time, arriving at a globally consistent

solution. We derive the scheme for handling particle motion between teeth internal to

the system from Gear, Li, and Kevrikidis [10]. Boundary conditions, however, have

not been treated before and are treated in this thesis for the first time.

We let F be the hydrodynamic flux between tooth boundaries. Each tooth has

right-going and left-going fluxes, both outgoing and incoming, for each boundary

of the tooth. In D-dimensions, we will have 2D boundaries to deal with and the

corresponding fluxes. For the purposes of the following discussion, we will label

fluxes as follows: F, is the right, outgoing flux from tooth i, and similarly F" is

the left moving, incoming flux to tooth i. The fluxes associated with a single tooth,

i, can be seen in figure 2-2.

2.2. GAP-TOOTH DSMC METHOD 27

F' Tooth i 1.

Figure 2-2: Diagram of incoming and outgoing, left-going and right-going fluxes
for a single tooth, i, of the system.

Let tooth i be centered a position x and let all teeth be equally sized with width

h. Let the centers of the teeth be separated by a distance Ax (see figure 2-3). If we

are interested in the right-going flux leaving tooth i through the right hand boundary,

given by Fk,, we can express this as a linear combination of the incoming, right-going

flux to the left hand boundary of tooth i, F, 1 , and the incoming, right-going flux at

the left boundary of tooth i + 1, F', as follows

F (Ax = h)F",1 + ()F'I+ (2.20)

Then, if we let c = , we can rewrite the above as

= (1 - C)F", + iF'+' (2.21)

Note that the interpolation coefficients are derived from the geometry of the par-

ticular gap-tooth setup. In particular, Ax - h is the physical size of the gap. In our

results in the following chapter, we label the results in terms of relative gap size, G

1
G = - - 1 (2.22)

The most important part of the gap-tooth scheme, namely the algorithm for parti-

cle motion between teeth, can be derived by interpreting equation 2.21 stochastically

CHAPTER 2. NUMERICAL METHODS28

Tooth i-1 Tooth i Tooth i+1

' e R0 R.o

SF+1*
0 04 . 0

.....................--- I-----------x- Ax Ax x h

Figure 2-3: Diagram of three teeth internal to the system, with right-going fluxes
labelled, and system spacing displayed.

as follows: if a particle is leaving tooth i, moving right, then with probability 0, the

particle will enter tooth i + 1 via the left boundary, and with probability (1 - a), the

particle will instead "loop around" and be redirected to enter the same cell via its

left boundary. This process can easily be extended to calculation of left-going fluxes.

Following the example of Gear, Li, and Kevrekidis [10], we will refer to this process

of particle movement as flux redistribution, rather than flux interpolation. It is worth

noting that the case G = 0 (Ax = h) corresponds to a "pure" DSMC calculation. In

this case, o = 1 in equation 2.21, so all particles moving to the right enter tooth

i + 1 and no particles are redirected into tooth i by way of its left hand boundary. In

this limit any interpolation error vanishes. We will make use of this fact later in our

comparison of GT-DSMC to the DSMC results, to make sure that our treatment of

external boundaries is accurate.

If we move a particle a total distance dxtot = vAt during the time step At, then

we can express the total distance traveled as a combination of the distance that the

particle moves inside of the tooth to reach the boundary, dxi, and the remaining

distance, dxout. If dxout is less then the tooth width, h, than we insert the particle

into the receiving tooth a distance dx0 at; however, if dxout > h, the particle passes

straight through the receiving tooth and undergoes the flux redistribution process

2.2. GAP-TOOTH DSMC METHOD 29

CHAPTER 2. NUMERICAL METHODS

if

h
*-----------------------

* e e dxtor=va
e els=dx +dx

in out

dx,,<hAN elsdxV,>

0

--a-
* S * *0

S 0
* 0 *00

6l

Figure 2-4: Diagram of recursive internal tooth particle redistribution scheme.

again (see figure 2-4). In fact, the flux redistribution is a recursive process, in order

to handle any value of dx0 at.

2.2.3 Boundary Treatment

Teeth adjacent to system physical boundaries need special treatment that amounts

to imposition of the external boundary conditions on the gap-tooth simulation. We

divide those into two cases, namely, the case of flux towards a boundary and the case

of flux away from a boundary. Those are show schematically in figures 2-5 and 2-6

for the case of the left system boundary. The case shown in figure 2-5 can be treated

as imposing a diffuse reflection on all particles corresponding to flux F"L.; the case

shown in figure 2-6 is more subtle.

The subtlety arises from the need to treat particles reentering the tooth (particles

with flux F', in figure 2-6) using the diffuse boundary conditions, as if they are re-

emitted after collision with the wall. Simulations without this subtle treatment of

30

li,

2.2. GAP-TOOTH DSMC METHOD 31

External

Boundary

With probability a, To

Particle velocity is reset FL

as if particle was re - emitted

after wall collision

oth 1

* * S S

With probability 1- a

Redirects into tooth again

Figure 2-5: External System Boundary
(here, the left)

Treatment of Fluxes towards a Boundary

particles gave inferior results (see section 3.2). Henceforth, we refer to the former

(without the additional, subtle treatment) as implementation I and refer to the latter

as implementation II.

In the following chapter we apply the GT-DSMC method, for both of the im-

plementations discussed directly, above to a model problem, comparing results with

those of DSMC and showing how error scales with gap size.

2.2. GAP-TOOTH DSMC METHOD 31

32 CHAPTER 2. NUMERICAL METHODS

External

Boundary

T(

Wi

Re

par

ooth l

th probability 1- a

enters tooth and

ticle velocity is reset

With probability a

Passes to next tooth

Figure 2-6: External System Boundary Treatment of Fluxes away from a Boundary
(here, the left)

CHAPTER 2. NUMERICAL METHODS32

Chapter 3

Model Problem - Couette Flow

In this chapter, we discuss the application of the GT-DSMC to a 1-dimensional Cou-

ette flow of gaseous argon between two moving thermal plates. We will show results

and error levels for a problem with Kn = 0.0626 and with Kn = 1 and for both of

the implementations discussed in section 2.2.3, comparing the results with DSMC

simulation results.

3.1 Problem Setup

Previous implementations of the gap-tooth method for molecular simulations have

had periodic boundary conditions, eliminating the challenges associated with proper

treatment of flux interpolation at the boundaries of the system. Here we implement

the non-periodic system shown in figure 3-1, with thermal walls at temperatures of

273 K and moving at a velocity of Mach 1 (337 meters per second). The left wall of

the system moves in the negative y direction and the right wall moves in the positive y

direction. The position of particles in the third (z) direction is not tracked (although

their velocity is).

We use 500 particles per tooth, which amounts to a total of 500(NGl + 1) particles

in the system where N is the total number of cells in the system and G is the relative

34 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

y

Thermal Wall
moving at

1mach

I I LI___
X
N
N
N
N
N
N
N
N
N
N
N
N
N
N Thermal Wall

moving at
1mach

%

x

Z

Figure 3-1: Diagram of Couette Flow Model Problem

gap size, given by equation 2.22. Each particle represents a varying number of atoms,

which depends on the problem and simulation parameters. In the Kn = 1 case, we

have less then 1 atom per particle. In contrast, in the Kn = 0.0626 case, we have

around 222 atoms per particle.

We discretize the domain, using 241 equal sized cells, and run simulations for

relative gap sizes, G, of 0, 1, 3, 9, and, where appropriate, 39.

We run each simulation for 1 x 106 time steps. Samples are collected during

the latter 90% of this period, a sufficient period of time for the system to reach

an equilibrium state, after which we begin statistical sampling. We calculate time-

averaged flow velocity, time-averaged temperature, and time-averaged number density

V0,000
pe

I-Irl-r

CHAPTER 3. MODEL PROBLEM - COUETTE FLOW34

r

i
X
X
X*
X
X
X
X
X
X
X
X
X
X
X
X

I I I I I

I

3.2. RESULTS

in each cell of the domain from the accumulated statistics.

3.2 Results

3.2.1 Implementation I versus II

In this section we compare the results from implementation I and II to DSMC solu-

tions. We will begin by discussing the results for number density, temperature, and

flow velocity in the y-direction as a function of spatial position for implementation I.

Looking at figures 3-2A and 3-3A, we notice that the number density values near the

walls of the system are low, for both systems, regardless of Knudsen number. The er-

ror (compared with the DSMC solution) increases as the gap increases. Figures 3-2B

and 3-3B show increasing discrepancies across the system in the temperature values

as the gap size increases, while figures 3-2C and 3-3C show discrepancies in the flow

velocity close to the wall with increasing gap size.

In contrast, figures 3-4A and 3-5A show that implementation II captures the

number density profiles near the walls of the system more accurately. The same

holds for the temperature profiles near the walls (see figures 3-4B and 3-5B). It is

most apparent with the considerable improvement in the flow profiles (see figures 3-

4C and 3-5C compared with figures 3-2C and 3-3C, respectively). It is worth noting

that there are still visible differences between the DSMC profile and the GT-DSMC

profiles, in the temperature profiles in particular. We believe that this is due to the

interpolation scheme that has been implemented to move particles within the internal

(bulk) cells of the system, which is, after all, only first-order accurate.

Figures 3-6, 3-7, 3-8, and 3-9 show the same results in terms of the fractional error

calculated by treating the DSMC solution as exact. The fractional error of property

X(x) was defined as
X(x) - XDSMC(x) (3.1)err(x) =(31

35

where XDSMC(X) is the DSMC value at the same location in space and k is a charac-

teristic magnitude. For all properties, i is taken to be the magnitude of the variation

of that quantity across the domain (IXmax - Xmn I).

Comparing the errors seen in figuress 3-6 and 3-7 to those of figures 3-8 and 3-9,

respectively, shows that implementation II features smaller error levels at the bound-

aries with some moderate error in the bulk which is consistent with the existence

of numerical error due to the gaps. In contrast, implementation I exhibits large er-

rors at the boundaries, suggesting that the boundary conditions are not implemented

accurately.

3.2.2 Verification of GT-DSMC for G = 0

Figure 3-10 shows a comparison between DSMC and implementation II GT-DSMC

with G = 0 for Kn = 0.0626. As expected, the difference between the two is random.

This further validates implementation II, as no deterministic error is discernible.

3.2.3 Further Investigation of Implementation I

Despite large errors close to the boundaries, implementation I exhibited smaller er-

rors in the temperature values in the bulk than implementation II. This was not be-

cause implementation I is more accurate than implementation II in the bulk as their

treatment of bulk cells is identical. It is a fortuitous coincidence that the increased

boundary slip at the walls present in implementation I leads to a reduced velocity

gradient and thus reduced viscous heating, which cancels some of the numerical error

associated with the gap-tooth interpolation in the bulk.

To demonstrate this, we run a series of implementation I simulations, of the type

presented in section 3.1, but in which the velocity of the walls was artificially increased

such that the gas velocity was equal to the value obtained by implementation II GT-

DSMC for the same value of G. The rationale behind these investigations is that

by eliminating the additional slip velocity associated with implementation I, we can

CHAPTER 3. MODEL PROBLEM - COUETTE FLOW36

3.3. COMPUTATIONAL CONSIDERATIONS

focus on the "true" effect of this implementation on the temperature and compare it

to that of implementation II.

Figure 3-11 A shows the results for the temperature and figure 3-11 B shows the

normalized error. These confirm that, when corrected for the additional slip, imple-

mentation I exhibits more error in resultant temperature. We see this by comparing

those results with the results shown in figures 3-4B and 3-8B.

3.3 Computational Considerations

3.3.1 Computational Run Time versus Gap Size

Figure 3-12 shows how computation time scales with gap size for the GT-DSMC

method. Note that G + 1 = 1 corresponds to a DSMC simulation. The results

correspond to GT-DSMC implementation II, applied to the Couette shearing problem,

with 500 particles per cell, run for 1e6 time steps. We see that the computational run

time scales linearly with the gap size. This is as expected, as the number of particles

simulated scales linearly with gap size and the run time is directly dependent on

the number of particles simulated. In other words, the potential for computational

savings is enormous, as one would expect. The previous statement, however, neglects

the additional cost due to increased statistical uncertainty in the GT-DSMC results

due to increased statistical correlations. This is quantified in the following section.

3.3.2 Variance in Results versus Gap Size

Although still a Monte Carlo method that converges as p//, the G-DSMC method

is expected to converge more slowly, i. e. p'/I/- with s' > P, since particles are con-

tinuously recycled (reenter teeth), leading to less renewal and increased correlations.

Here we attempt to characterize this phenomenon by plotting variance as a func-

tion of gap size. The variance was measured across a 50 ensemble calculation using

37

the GT-DSMC method, implementation II, applied to a system in equilibrium. As

before, we used 500 particles per cell and Kn = 0.0626, running each of the ensembles

for 1 x 105 time steps. Figure 3-13 shows the measured variance in temperature as a

function of G + 1.

The variance clearly increases with gap size, as expected. This implies that in

order to retain the same statistical uncertainty as a DSMC simulation (G + 1 = 1),

simulations with larger gap sizes require longer sampling or an increased number of

particles, reducing the overall effectiveness of the GT-DSMC method. In fact, from

the figures, we see that for a relative number of particle reduction of 39 (G + 1 = 40),

the variance increase is on the order of 20, thus negating the vast majority of the

computational benefit.

38 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

3.3. COMPUTATIONAL CONSIDERATIONS 39

A.) Number Density

X 1025
3.2 2

2.8-

E
Z

2.
0

- Gap 0
-Gap 1
Gap 3

-- Gap 9
-- Full DSMC

0.2 0.4 0.6 0.8 1
position X104

B.) Temperature

380

E

-- Gap 0
-Gap 1

Gap 3
-- Gap 9
-- Full DSMC

0 0.2 0.4 0.6 0.8 1
position X10 -a

C.) Flow Velocity

400

200

I 0

-200-

0

-Gap 0
-Gap I

Gap 3
Gap 9
Full DSMC

0.2 0.4 0.6 0.8
position

1

x 10,

Implementation I Results versus Spatial Postion for Kn = 0.0626

393.3. COMPUTATIONAL CONSIDERATIONS

Figure 3-2:

40 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

A.) Number Density

x 10252 .8 r

2.75

2.7

E
Z2.65

2.6 L
0

-- Gap 0
- Gap 1

Gap 3
Gap 9
Full DSMC

1 2 3 4 5 6 7
position x104

B.) Temperature

440-

430-

420-

E 410-

400

390 -
0

Gap 0
Gap 1
Gap 3
Gap 9
Full DSMC

1 2 3 4 5 6 7
position x 10,

C.) Flow Velocity

~1

-100

-200
0 1 2 3 4 5 6 7

position x 10,

Gap 0
Gap I
Gap 3
Gap 9
Full DSMC

Figure 3-3: Implementation I Results versus Spatial Postion for Kn = 1

40 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

3.3. COMPUTATIONAL CONSIDERATIONS 41

A.) Number Density

x 10253 .2 r

3

z

E
z

2.8 .

2.6

2.4'
0 0.2 0.4 0.6 0.8

position

- Gap 0
-- Gap 1
-- Gap 3
-- Gap 9

- Full DSMC

1

x g

B.) Temperature

380-

360-

B 340-

E 320-

300

280 -
0

-- Gap 0
- Gap 1

- Gap 3
- Gap 9
-- Full DSMC

0.2 0.4 0.6 0.8 1
position x 10,8

C.) Flow Velocity

400

200

0
*1

-200

-400
0

-- Gap 0
-- Gap 1
-- Gap 3
- Gap 9
-- Full DSMC

0.2 0.4 0.6 0.8 1
position x10

Implementation II Results versus Spatial Postion for Kn = 0.0626

I I I

3.3. COMPUTATIONAL CONSIDERATIONS 41

Figure 3-4:

42 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

A.) Number Density

.P

E
z

2.75

2.7

2.65

2.6'
0

x 1025
2.8 r

- Gap 0
- Gap 1

Gap 3
Gap 9
Full DSMC

1 2 3 4 5 6 7
position x 10-8

B.) Temperature

440

FL
E

IT

Gap 0
Gap 1
Gap 3
Gap 9
Full DSMC

1 4 5 6 7
position x 10-

C.) Flow Velocity

gi

100-

0-

-100-

-200i
0 1 2 3 4 5 6 7

position x 1 04

Figure 3-5: Implementation II Results versus Spatial Postion for Kn = 1

- Gap 0
- Gap 1

Gap 3
Gap 9
Full DSMC

42 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

3.3. COMPUTATIONAL CONSIDERATIONS 43

A.) Error in Number Density

2

E
z

- Gap 0
- Gap 1

Gap 3
Gap 9

0.6 0.8 1
position x 10

B.) Error in Temperature

20

15

910
E

5

0

-5

I

0 0.2 0.4
position

0.6 0.8

Gap 0
Gap I
Gap 3
Gap 9

I

x 10-

C.) Error in Flow Velocity

Gap 0
Gap I
Gap 3
Gap 9

0.2 0.4 0.6 0.8
position

I

x 10.6

Implementation I Error versus Spatial Postion for Kn = 0.0626

4

2

-2 -

-4-
0

3.3. COMPUTATIONAL CONSIDERATIONS 43

Figure 3-6:

CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

A.) Error in Number Density

- Gap 0
- Gap 1
- Gap 3

- Gap 9

5-

0

-5
E
z
. -10-

W -15

-20 -
0

B.) Error in Temperature

- Gap 0
- Gap I

- Gap 3
- Gap 9

1 2 3 4 5 6 7
position x 10,

C.) Error in Flow Velocity

4

-2

0

-2

-4L
0

-- Gap 0
- Gap 1
- Gap 3
- Gap 9

Implementation I Error versus Spatial Postion for Kn = 1

1 2 3 4 5 6 7
position x 104

15

10

5

0

E
1.

C

-5'
0

1 2 3 4 5 6 7
position x 108

44

Figure 3-7:

3.3. COMPUTATIONAL CONSIDERATIONS 45

A.) Error in Number Density

V

E
z
.Q
;i

-- Gap 0
-- Gap I

Gap 3
- Gap 9

0.6 0.8 1
position x 104

B.) Error in Temperature

2

a
E
S
I-.5

*

-- Gap 0
-Gap I

Gap 3
Gap 9

0 0.2 0.4 0.6 0.8 1
position x 10-6

C.) Error in Flow Velocity

0.6-

0.4-

0.2

0

-0.2S

-0.4

-0.6

-0.8 -
0

Gap 0
Gap I
Gap 3

1--Gap 9

Implementation II Error versus Spatial Postion for Kn = 0.0626

0.2 0.4 0.6 0.8 1
position x 10a

3.3. COMPUTATIONAL CONSIDERATIONS 45

Figure 3-8:

46 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

A.) Error in Number Density

- Gap 0
- Gap 1

- Gap 3
-- Gap 9

1 2 3 4 5 6 7
position x104

B.) Error in Temperature

E

4

3

2

1

0

0 1 2 3 4 5 6 7
position x 10

C.) Error in Flow Velocity

- Gap 0
-- Gap 1

- Gap 3
-- Gap 9

0.6 -

0.4-

0.2

0

-0.2

-0.4-

-0.6-

-0.80
0 1 2 3 4 5 6 7

position x 10 -

Figure 3-9: Implementation II Error versus Spatial Postion for Kn = 1

2

E
z

- Gap 0
- Gap I

- Gap 3
- Gap 9

46 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

3.3. COMPUTATIONAL CONSIDERATIONS 47

A.) Error in Number Density

E
z

Cj

0.5

0

-0.5

0 0.1 0.2 0.3 0.4 0.5
position

0.6 0.7 0.8 0.9 1

X -g

B.) Error in Temperature

0.8-

0.6-

0.4

0.2

0-

-0.2-

-0.4 -

LJ k.. I i t1.iA A

0 0.1 0.2 0.3 0.4 0.5
position

C.) Error in Flow Velocity in the Y-direction

0.06

0.04

0.02
0

* 0

-0.02

W -0.04

-0.06

0.1 0.2 0.3 0.4 0.5
position

0.6 0.7 0.8 0.9 1

x 10.6

Figure 3-10: Error versus Spatial Position for implementation II GT-DSMC with
G = 0 vs. DSMC for Kn = 0.0626

E
0

F-

2

wj

A, AA Ar~\
0.6 0.7 0.8 0.9 1

x 10,

-0.08 L.
0

3.3. COMPUTATIONAL CONSIDERATIONS 47

1

48 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

A) Temperature

400

12

E
1-

-Gap 0, SF = 0.99963
- Gap 1, SF = 1.012

-- Gap 3, SF = 1.0326
- Gap 9, SF = 1.0841
-- Gap 39, SF = 1.3121

0 0.2 0.4 0.6 0.8 1
position x 10,

B) Error in Temperature

FL

- -E

0

40

30

20 F

10

0

-in

- Gap 0, SF = 0.99963
- Gap 1, SF = 1.012

- Gap 3, SF = 1.0326
-- Gap 9, SF = 1.0841

0 0.2 0.4 0.6 0.8 1
position X io4

Figure 3-11: Temperature and error in temperature versus spatial position for
scaled implementation I GT-DSMC for Kn = 0.0626

48 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

3.3. COMPUTATIONAL CONSIDERATIONS 49

E
i~=

100 101
G+1

Computational time in seconds versus relative gap size plus one, G + 1.

3.3. COMPUTATIONAL CONSIDERATIONS 49

Figure 3-12:

50 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

10' 101
G+1

Figure 3-13: Variance in the calculated temperature over 50 ensembles versus gap
size plus one, G + 1.

50 CHAPTER 3. MODEL PROBLEM - COUETTE FLOW

Chapter 4

Conclusion and Future Work

4.1 Summary

We have shown that GT-DSMC is a plausible method for conducting molecular sim-

ulations at large length scales and reduced computational cost compared with the

DSMC. Application to realistic problems with non-periodic boundary conditions re-

quired the development of a boundary condition for diffuse walls. Comparison with

DSMC simulations shows that the gap-tooth procedure introduces numerical error

that monotonically increases as the gap size increases. Due to the low-order inter-

polation associated with the flux redistribution scheme used here for transferring

particles from one tooth to the other, the numerical error is non-negligible and needs

to be considered. Perhaps a higher order interpolation can alleviate this limitation.

This, and the challenges associated with it, are discussed in the next section. We also

note that using small gaps (the keep the error low) will be more beneficial in higher

dimensions (d) where the cost reduction will increase as Gd while presumably the

numerical error will not increase so fast.

We have also shown that in addition to the number of samples taken, the level

of statistical uncertainty in the GT-DSMC results monotonically increases with in-

creased gap size. In other words, for the same number of particles per cell, a GT-

DSMC simulation will exhibit larger statistical uncertainty at larger gap sizes, to the

extent that the computational gain from using a smaller number of particles is almost

completely lost. This is attributed to the increased correlations [14] between particles

that are now continuously recycled.

4.2 Future Work

One of the greatest advantages of the gap-tooth method is its simplicity. As a result,

implementation to three dimensions should be pursued in order to investigate whether,

as speculated above, the numerical error remains relatively constant with G while the

computational gain increases as Gd. Moreover, higher dimensions are more likely to

reduce the fraction of particles retained within a cell and thus reduce the correlations

that lead to high statistical uncertainties.

A higher-order interpolation also appears to be worthwhile since it has the po-

tential to reduce the computational error associated with particle redistribution. As

explained in [10], the challenge associated with such approaches is that the associated

interpolation polynomial is negative, thus complicating the physical interpretation of

the flux interpolation as a probabilistic particle redistribution. It is possible that

when coupled with the recently developed variance reduction techniques ([4], [10])

which use positive and negative particles, one can find a natural interpretation for

negative polynomial coefficients.

A more exhaustive study into the relationship between statistical uncertainty and

gap size needs to be undertaken as well, as it may uncover the precise origin of the

increased statistical uncertainty and may suggest ways in which it can be alleviated.

52 CHAPTER 4. CONCLUSION AND FUTURE WORK

Appendix A

Matlab Implementation code

This appendix contains the matlab code that was used to produce the results of

section 3.2. Appendix section A.1 contains routines that are used by both the DSMC

method and the GT-DSMC method, section A.2 contains the DSMC only routines,

and section A.3 contains the code needed to run implementation II of GT-DSMC. To

obtain electronic copies of this, or additional related codes, or for more information

feel free to contact the author with requests.

A.1 General Files

A.1.1 Setup file - setup.m

%setup.m - code contains all of the constants that will be

%fed into the dsmc or gap-tooth codes. The idea is to have one

%centralized file in order to ensure that we are passing in identical

%parameters for our runs. Both codes call the same setup file.

nstep = 1000*1000; % Number of time steps to run the code for.

ncell = 241; % Number of cells to divide the system into.

npart = ncell*500; % Number of particles per cell.

vwallm = 1; % Wall velocity as Mach number

% Initialize constants (particle mass, diameter, etc.)

% We are using argon, so the constants below reflect that.

boltz = 1.3806e-23; % Boltzmann's constant (J/K)

54 APPENDIX A. MATLAB IMPLEMENTATION CODE

mass = 6.63e-26;

diam = 3.66e-10;
T = 273;

density = 2.685e25;

L = 6.2579e-8;
Volume = L^3;

tauFactor=0.25;

% Mass of argon atom (kg)

% Effective diameter of argon atom (m)

% Initial temperature (K)

% Number density of argon at STP (m^-3)

% System size is one mean free path -> Kn = 1

% Volume of the system (m^3)

%Calculating system parameters of interest. Note, displays to screen.

mfp = 1/(sqrt(2)*pi*diam^2*density); % Mean free path
fprintf('System width is %g mean free paths \n',L/mfp);

mpv = sqrt(2*boltz*T/mass); % Most probable initial velocity

vwall = vwallm * sqrt(2 * boltz*T/mass); %Converts to m/s

fprintf('Wall velocities are %g and %g m/s \n',-vwall,vwall);

walls = linspace(0,L,ncell+l); %Array of wall positions for cells

selxtra = zeros(ncell,l); % Used by collision routine "colider"

vrmax = 3*mpv*ones(ncell,l); % Estimated max rel. speed in a cell

tau = tauFactor*(L/ncell)/mpv;
disp(['Final Time = ' num2str(tau*nstep)]);

%* Initialize structure and variables used in

sampData = struct('ncell', ncell, ...
'nsamp', 0,

'ave_n', zeros(ncell,l),

'ave_u', zeros(ncell,3),

'aveT', zeros(ncell,l));

tsamp = 0; % Total sampling
dvtot = zeros(1,2); % Total momentum

dverr = zeros(1,2); % Used to find e

colSum = 0; strikeSum = [0 0];

% Set timestep

statistical sampling

time
change at a wall
rror in dvtot

A.1.2 Particle sorting routine - sorter.m

function sD = sorter(x,L,sD)

% sorter - Function to sort particles into cells

% sD = sorter(x,L,sD)

% Inputs

% x Positions of particles

% L System size

% sD Structure containing sorting lists

% Output

% sD Structure containing sorting lists

% A. Garcia's particle sorting code, unmodified for J.Armour thesis.

% Publically avaliable, version can be downloaded from:

% http://www.algarcia.org/nummeth/Programs2E.html

%* Find the cell address for each particle

54 APPENDIX A. MATLAB IMPLEMENTATION CODE

A.1. GENERAL FILES

npart = sD.npart;
ncell = sD.ncell;

jx = floor(x*ncell/L) + 1;

jx = min(jx, ncell*ones(npart,1));

%* Count the number of particles in each cell
sD.celln = zeros(ncell,l);

for ipart=l:npart

sD.cell-n(jx(ipart)) = sD.celln(jx(ipart)) + 1;

end

%* Build index list as cumulative sum of the

% number of particles in each cell

m=1;

for jcell=l:ncell

sD.index(jcell) = m;

m = m + sD.cell-n(jcell);
end

%* Build cross-reference list

temp = zeros(ncell,l); % Temporary array

for ipart=l:npart

jcell = jx(ipart); % Cell address of ipart

k = sD.index(jcell) + temp(jcell);

sD.Xref(k) = ipart;

temp(jcell) = temp(jcell) + 1;
end

return;

A.1.3 Particle collision routine - colider.m

function [v,crmax,selxtra,col] = ...
colider(v,crmax,tau,selxtra,coeff,sID)

% colide - Function to process collisions in cells

% [v,crmax,selxtra,col] = colider(v,crmax,tau,selxtra,coeff,sD)

% Inputs

% v Velocities of the particles

crmax
tau
selxtra
coeff
sD

Outputs

v

crmax

selxtra

col

Estimated maximum relative speed in a cell

Time step

Extra selections carried over from last timestep

Coefficient in computing number of selected pairs

Structure containing sorting lists

Updated velocities of the particles

Updated maximum relative speed

Extra selections carried over to next timestep

Total number of collisions processed

55

APPENDIX A. MATLAB IMPLEMENTATION CODE

% A. Garcia's particle colision code, unmodified for J.Armour thesis.

% Publically avaliable, version can be downloaded from:

% http://www.algarcia.org/nummeth/Programs2E.html

ncell = sD.ncell;

col = 0; % Count number of collisions

%* Loop over cells, processing collisions in each cell

for jcell=l:ncell

%* Skip cells with only one particle
number = sD.cell-n(jcell);

if(number > 1)

%* Determine number of candidate collision pairs
% to be selected in this cell

select = coeff*number^2*crmax(jcell) + selxtra(jcell);
nsel = floor(select); % Number of pairs to be selected

selxtra(jcell) = select-nsel; % Carry over any left-over fraction

crm = crmax(jcell); % Current maximum relative speed

%* Loop over total number of candidate collision pairs
for isel=l:nsel

%* Pick two particles at random out of this cell
k floor(rand(l)*number);

kk rem(ceil(k+rand(l)*(number-1)),number);

ipl = sD.Xref(k+sD.index(jcell)); % First particle

ip2 = sD.Xref(kk+sD.index(jcell)); % Second particle

%* Calculate pair's relative speed
cr = norm(v(ipl,:)-v(ip2,:)); % Relative speed

if(cr > crm)% If relative speed larger than crm,

crm = cr; % then reset crm to larger value

end

%* Accept or reject candidate pair according to relative speed

if(cr/crmax(jcell) > rand(l))
%* If pair accepted, select post-collision velocities

col = col+l; % Collision counter

vcm = 0.5*(v(ipl,:) + v(ip2,:)); % Center of mass velocity

costh = 1 - 2*rand(1); % Cosine and sine of

sinth = sqrt(l - cos-th^2); % collision angle theta

phi = 2*pi*rand(l); % Collision angle phi
vrel(l) = cr*cos_th; % Compute post-collision

vrel(2) = cr*sinth*cos(phi); % relative velocity

vrel(3) = cr*sin th*sin(phi);

v(ipl,:) = vcm + 0.5*vrel; % Update post-collision

v(ip2,:) = vcm - 0.5*vrel; % velocities

end

56

A.l. GENERAL FILES 57

end % Loop over pairs

crmax(jcell) = crm;
end

end % Loop over cells

return;

% Update max relative speed

A.1.4 Statistical sampling routine - sampler.m

function sampD = sampler(x,v,npart,L,sampD)

% sampler - Function to sample density, velocity

% Inputs

% x Particle positions

% v Particle velocities

% npart Number of particles

% L System size

% sampD Structure with sampling data

% Outputs

% sampD Structure with sampling data

and temperature

A. Garcia's particle sampling code.

We modified the original code, commenting out line 44.

because with the velocity offsets near the walls of our

this process was causing points near the boundary to be

reimplement what it is essentially doing here in our

post-processing instead!

This is

system,

off. We

% Publically avaliable original version can be downloaded from:

% http://www.algarcia.org/nummeth/Programs2E.html

%* Compute cell location for each particle
ncell = sampD.ncell;

jx=ceil(ncell*x/L);

%* Initialize running sums of number, velocity and v^2

sumn = zeros(ncell,l);

sumv = zeros(ncell,3);

sum_v2 = zeros(ncell,l);

%* For each particle, accumulate running sums for its cell

for ipart=l:npart

jcell = jx(ipart); % Particle ipart is in cell jcell

sum-n(jcell) = sum-n(jcell)+l;

sum-v(jcell,:) = sum v(jcell,:) + v(ipart,:);

sum v2(jcell) sum-v2(jcell) + ...

v(ipart,1)^2 + v(ipart,2)^2 + v(ipart,3)^2;

end

%* Use current sums to update sample number, velocity
% and temperature

A.1. GENERAL FILES 57

for i=l:3
sumv(:,i) = sumv(:,i)./sumn(:);

end

sumv2 = sumv2./sum-n;
sampD.aven = sampD.aven + sumn;

sampD.aveu = sampD.aveu + sum_v;

sampD.aveT = sampD.aveT + sum_v2 ;%

%(sumv(:,1).^2 + sumv(:,2).^2 + sumv(:,3).^2);
%Comment above out as the sum_v(:,2).^2 causes the points near the

%boundary to be off because of the velocity offsets.

%Instead, we do this in post-processing.

sampD.nsamp = sampD.nsamp + 1;

return;

A.1.5 Post Processing routine - PostProcessing.m

%PostProcessing - opens up results from run, calculates things, saves

% into data structure.

function [filename]=PostProcessing(datafile, fileprefix)

if nargin < 1

[file path] = uigetfile('*.mat','Please select results.');

datafile = [path file];

end

load(datafile);

if nargin < 2

fileprefix = 'final';

end

%* Normalize the accumulated statistics

nsamp = sampData.nsamp;

disp(['nsamp: ' num2str(nsamp)]);

const = eff-num/(Volume/ncell);

aven = const*sampData.ave-n/nsamp; %mean number density in each cell
aveu = sampData.ave u/nsamp; %mean velocity in each cell

%correct for modification in sampler.m

aveT = mass/(3*boltz) * (sampData.aveT /nsamp) -

mass/(3*boltz) * aveu(:,1).*ave-u(:,l)

mass/(3*boltz) * aveu(:,2).*aveu(:,2)-...

mass/(3*boltz) * aveu(:,3).*aveu(:,3);

% Plot average density, velocity and temperature; optional

figure(l); clf;

xcell = ((1:ncell)-0.5)/ncell * L;

plot(xcell,aven); xlabel('position'); ylabel('Number density');
figure(2); clf;

APPENDIX A. MATLAB IMPLEMENTATION CODE58

A.2. DSMC SPECIFIC FILES

plot(xcell,ave-u); xlabel('position'); ylabel('Velocities');

legend('x-component','y-component','z-component');

figure(3); clf;

plot(xcell,aveT); xlabel('position'); ylabel('Temperature');

%Extract important data and save to data structure.

data.Volume = Volume;
data.effnum = eff-num;

data.ncell = ncell;

data.aven = ave_n;
data.aveu = aveu;
data.aveT = aveT;
data.xcell = xcell;

data.npartStart = npart;

data.npartEnd = npartEnd;

data.nsamp = nsamp;

if strcmp(saveFilePrefix,'truth');

saveFilePrefix = [saveFilePrefix ''];

gap = 1;
end

data.gap = gap;

data.tauFactor = tauFactor;

%Save Data into new .mat file.

filename = [fileprefix '_' saveFilePrefix num2str(gap) '.mat'];

save(filename, 'data');

disp(['Data converted into data structure and saved in: ' filename]);

A.2 DSMC specific files

A.2.1 Main DSMC wrapper - Truth.m

function Truth

% This is a program to simulate a dilute gas using a DSMC algorithm

% This version simulates planar Couette flow of gaseous argon.

% We will use the results at truth data to compare GT-DSMC results

% to.

% Modified from A. Garcia's program dsmcne, publically avaliable

% at: http://www.algarcia.org/nummeth/Programs2E.html

clearvars -except ; help Truth; % Clear memory and print header

setup; % Initialize constants and info, identical to GT case

effnum = density*Volume/npart; % Calculate effective number

59

APPENDIX A. MATLAB IMPLEMENTATION CODE

x = L*rand(npart,l); % Assign random positions to particles

% Assign thermal velocities using Gaussian random numbers

v = sqrt(boltz*T/mass) * randn(npart,3);

% Add velocity gradient to the y-component

v(:,2) = v(:,2) + 2*vwall*(x(:)/L) - vwall;

% Initialize variables for evaluating collisions, much of this done

% during setup.

coeff = 0.5*effnum*pi*diam^2*tau/(Volume/ncell);

%* Declare structure for lists used in sorting
sortData = struct('ncell', ncell, ...

'npart', npart, ...
'cell_n', zeros(ncell,l),

'index', zeros(ncell,l), ...

'Xref', zeros(npart,l));

for istep = 1:nstep

% Move all the particles

[x, v, strikes, delv] = mover(x,v,npart,L,mpv,vwall,tau);
strikeSum = strikeSum + strikes;

% Sort the particles into cells

sortData = sorter(x,LsortData);

% Evaluate collisions among the particles

[v, vrmax, selxtra, col] = ...
colider(v,vrmaxtau,selxtra,coeffsortData);

colSum = colSum + col;

% After settle time, accumulate statistical samples, our sampler

%is slightly different than the original; see sampler for details.

if(istep > nstep/10)

sampData = sampler(x,vnpart,L,sampData);
dvtot = dvtot + delv;
dverr = dverr + delv.^2;
tsamp = tsamp + tau;

end

% Periodically display the current progress

if(rem(istep,1000) < 1)
fprintf('Finished %g of %g steps, Collisions = %g\n',...

istep,nstep,colSum);

fprintf('Total wall strikes: %g (left) %g (right)\n',...

strikeSum(l),strikeSum(2));

end

end

%Saving raw results.

npartEnd = npart; %fluff

60

A.2. DSMC SPECIFIC FILES

gap = 1; %fluff

saveFilePrefix = 'truthshear_';
filename = ['raw_' saveFilePrefix '.mat'];

save(filename);

disp(['Results saved in ' filename]);

A.2.2 Particle movement routine - mover.m

function [x,v,strikes,delv] = mover(x,vnpart, ...
L,mpv,vwall,tau)

% mover - Function to move particles by free flight

% Also handles collisions with walls

Inputs

x

v

npart

L

mpv
vwall

tau

Outputs

x,v

strikes

delv

Positions of the particles

Velocities of the particles

Number of particles in the system

System length

Most probable velocity off the wall

Wall velocities

Time step

Updated positions and velocities

Number of particles striking each wall

Change of y-velocity at each wall

% A. Garcia's particle moving code, unmodified for J.Armour thesis.

% Publically avaliable, version can be downloaded from:

% http://www.algarcia.org/nummeth/Programs2E.html

%* Move all particles pretending walls are absent
x_old = x; % Remember original position

x(:) = x_old(:) + v(:,l)*tau;

%* Loop over all particles

strikes = [0 0]; delv = [0 0];

xwall = [0 L]; vw = [-vwall vwall];

direction = [1 -1]; % Direction of particle leaving wall

stdev = mpv/sqrt (2);

for i=l:npart

%* Test if particle strikes either wall

if(x(i) <= 0)
flag=1; % Particle strikes left wall

elseif(x(i) >= L)
flag=2; % Particle strikes right wall

else

flag=0; % Particle strikes neither wall

end

61

APPENDIX A. MATLAB IMPLEMENTATION CODE

%* If particle strikes a wall, reset its position

% and velocity. Record velocity change.

if(flag > 0)
strikes(flag) = strikes(flag) + 1;

vyInitial = v(i,2);

%* Reset velocity components as biased Maxwellian,

% Exponential dist. in x; Gaussian in y and z

v(i,l) = direction(flag)*sqrt(-log(l-rand(l))) * mpv;
v(i,2) = stdev*randn(l) + vw(flag); % Add wall velocity

v(i,3) = stdev*randn(1);

% Time of flight after leaving wall

dtr = tau*(x(i)-xwall(flag))/(x(i)-xold(i));
%* Reset position after leaving wall
x(i) = xwall(flag) + v(i,l)*dtr;

%* Record velocity change for force measurement

delv(flag) = delv(flag) + (v(i,2) - vyInitial);

end

end

A.3 Dual Bounce implementation files

A.3.1 Main GT-DSMC wrapper - GT2.m

function [filename]=GT2(gap,saveFilePrefix)

%function [filename, time]=GTwWallReset(gap,saveFilePrefix)

% GTwWallRest- Program to simulate a dilute gas using DSMC algorithm

% with gap tooth implementation
% This version simulates planar Couette flow

% Usage: GTwWallRest(gap,saveFilePrefix)

if nargin < 1

gap = 2;

end

if nargin < 2

saveFilePrefix = 'gap-wb_';

end

clearvars -except gap saveFilePrefix; help GTwWallReset;

setup;

%* Assign random positions and velocities to particles
%rand('state',l); % Initialize random number generators

62

A.3. DUAL BOUNCE IMPLEMENTATION FILES 63

%randn ('state', 1);
x = L*rand(npart,l); % Assign random positions

% Code added here to only keep those particles initially assigned in
% the teeth.
walls = linspace(O,L,ncell+1);
cell = ceil(x/L*ncell);

a = find(mod(cell-1,gap) == 0);

x= x(a);
npart = size(x,1);

if gap > 1
usedcells = floor(ncell/(gap))+1; %calc number of cells with parts

else
usedcells = ncell;

end
effnum = density*(Volume/ncell*usedcells)/npart;
fprintf('Each simulation particle represents %g atoms\n',effnum);

% Assign thermal velocities using Gaussian random numbers
v = mpv*sqrt(-log(l-rand(npart,3))).*cos(2*pi*rand(npart,3));

%%IF you want to run equilibrium conditions, uncomment the following.
%vwall = 0;

% Add velocity gradient to the y-component
v(:,2) = v(:,2) + 2*vwall* (x(:)'/L) - vwall;

%* Initialize variables used for evaluating collisions
coeff = 0.5*effnum*pi*diam^2*tau/(Volume/ncell);

%* Declare structure for lists used in sorting
sortData = struct('ncell', ncell, ...

'npart', npart, ...
'celln', zeros(ncell,l),
'index', zeros(ncell,l), ...
'Xref', zeros(npart,1));

disp(['Starting with npart: ' num2str(npart)]);
disp(['So, ' num2str(npart/usedcells) ' particles per cell.']);

for istep - 1:nstep

%* Move all the particles
[x, v, strikes, delv] = GT2mover(x,v,L,mpv,vwall,tau,gap,ncell);
strikeSum = strikeSum + strikes;

%* Sort the particles into cells
sortData = sorter(x,L,sortData);

%* Evaluate collisions among the particles

[v, vrmax, selxtra, col] = ...
colider(v,vrmax,tau,selxtra,coeff,sortData);

colSum = colSum + col;

%* After initial transient, accumulate statistical samples
if(istep > nstep/10)

sampData = sampler(x,v,npart,L,sampData);
dvtot = dvtot + delv;
dverr = dverr + delv.^2;

tsamp = tsamp + tau;

end

%* Periodically display the current progress
if(rem(istep,1000) < 1)

fprintf('Finished %g of %g steps, Collisions = %g\n',
istep,nstep,colSum);

fprintf('Total wall strikes: %g (left) %g (right)\n', ...
strikeSum(l),strikeSum(2));

%plottingLocations;
end

end

%Check that end number of particles in teeth equals initial number of
%particles in teeth: this only works for relative gaps > 0....
cells = ceil(x/L*ncell);

a = find(mod(cells-1,gap) == 0);

xEnd= x(a);
npartEnd = size(xEnd,1);

disp(['Ending with npart == starting npart: ' num2str(npartEnd)]);
if npartEnd -= npart

disp('NUMBER OF PARTICLES HAS CHANGED!!!!');
end

%Save data
filename = ['raw_' saveFilePrefix num2str(gap) '.mat'];
save(filename);
disp(['Data saved in ' filename]);
end

A.3.2 GT particle movement routine - GT2mover.m

function [x,v,strikes,delv] = GT2mover(x,v,L,mpv,vwall,tau,gap,ncell)
% GT2mover - Function to move particles by free flight
% Also handles collisions with walls thermal walls
% Inputs
% x Positions of the particles
% v Velocities of the particles

64 APPENDIX A. MATLAB IMPLEMENTATION CODE

% L System length

% mpv Most probable velocity off the wall

% vwall Wall velocities

% tau Time step

% gap relative gap size + 1
% ncell number of cells in the system

% Outputs

% x,v Updated positions and velocities

% strikes Number of particles striking each wall

% delv Change of y-velocity at each wall

%* Move all particles pretending walls are absent
x_old = x; % Remember original position
dx = v(:,l)*tau;

x(:) = xold(:) + dx;

m = sign(dx);

cell = ceil(x/L*ncell);

cellold = ceil(xold/L*ncell);
r = m > 0;

walls = linspace(0,L,ncell+l);

dxwall = walls (cellold + r)' - x-old;
a = abs(dx) < abs(dxwall);
dxin = a.*dx + ~a.*dx_wall;

dxout = dx - dx_in;

%* Loop over all particles
strikes = [0 0]; delv = [0 0];

xwall = [0 L]; vw = [-vwall vwall];

direction = [1 -1]; % Direction of particle leaving wall
stdev = mpv/sqrt (2);

%% 1.6 times faster with function "move.m" embedded in code. Still

%% need move.m, in case particle indeed needs to move recursively!

%%Vectorized vs for-loop flag assignment. 60 times faster as vector
%%for 10000 particles... :-)
left = find(x <= 0); % Particle strikes left wall

right = find(x >= L); % Particle strikes right wall

% otherwise, Particle strikes neither wall

flag = zeros (size(x));

flag(left) = 1; % Particle strikes left wall, set flag 1

flag(right) = 2; % Particle strikes right wall, set flag 2

% otherwise, Particle strikes neither wall, set flag 0

%find particles in the wall cells moving away from the wall that leave
%the cell. We will subject these to the extra initialization step when
%if they loop back into the wall cell when moved.

extraBounce = find((cell old == 1 & dxout > 0) ...
I (cellold == ncell & dxout < 0));

A.3. DUAL BOUNCE IMPLEMENTATION FILES 65

APPENDIX A. MATLAB IMPLEMENTATION CODE

temp = m(extraBounce);

tempB temp > 0;

tempC = tempB + ~tempB*2;

flag(extraBounce) = tempC;

neither = find(x>0 & x<L & ~((cell-old == 1 & dxout > 0)...

I (cellold == ncell & dxout < 0)));

for j = 1:size(left,l)

i = left(j);

%either hit wall and bounce off or loop around

itest = rand(l);

alpha = 1/(gap);

if itest >= alpha

%stay

%reenters the cell at the right edge!

if abs(dxout(i)) > L/ncell
m(i) = sign(dx-out(i));

dxout(i) = dxout(i) - m(i)*(L/ncell);

delta_t = (dxin(i)./abs(v(i,l))) + ((L/ncell)/abs(v(i,1)));

dtr = tau - deltat;

bounce; %recursion

else

x(i) = (0 + L/ncell) + dx_out(i);
end

else

%"move" to next cell, so bounce off wall!

%* If particle strikes a wall, reset its position

% and velocity. Record velocity change.

deltat = abs(dxin(i)./abs(v(i,l)));
dtr = tau - deltat; % Time of flight after leaving wall

strikes(flag(i)) = strikes(flag(i)) + 1;

vyInitial = v(i,2);

%* Reset velocity components as biased Maxwellian,
% Exponential dist. in x; Gaussian in y and z

v(i,l) = direction(flag(i))*sqrt(-log(l-rand(l))) * mpv;

v(i,2) = stdev*randn(l) + vw(flag(i)); % Add wall velocity

v(i,3) = stdev*randn(l);

%* Reset position after leaving wall
dxout(i) = v(i,l)*dtr;

if abs(dxout(i)) > L/ncell
m(i) = sign(dxout(i));
dxout(i) = dxout(i) - m(i)*(L/ncell);

move;

else

x(i) = xwall(flag(i)) + dx_out(i);
end

%* Record velocity change for force measurement
delv(flag(i)) = delv(flag(i)) + (v(i,2) - vyInitial);

end

66

end

for j=l:size(right,l)

i = right(j);

%either hit right wall or loop around

itest = rand(1);
alpha = 1/(gap); %replace with function of b

if itest >= alpha

%stay

if abs(dxout(i)) > L/ncell
m(i) = sign(dx-out(i));

dx-out(i) = dxout(i) - m(i)*(L/ncell);

deltat = (dxin(i)./abs(v(i,l))) + ((L/ncell)/abs(v(i,1)));

dtr = tau - delta-t;

bounce; %recursion

else

x(i) = (L - L/ncell) + dx-out(i);
end

else

%move

%* If particle strikes a wall, reset its position

% and velocity. Record velocity change.

deltat = abs(dx_in(i)./abs(v(i,l)));
dtr = tau - deltat; % Time of flight after leaving wall

strikes(flag(i)) = strikes(flag(i)) + 1;

vyInitial = v(i,2);

%* Reset velocity components as biased Maxwellian,

% Exponential dist. in x; Gaussian in y and z

v(i,1) = direction(flag(i))*sqrt(-log(l-rand(l))) * mpv;
v(i,2) = stdev*randn(l) + vw(flag(i)); %Add wall velocity bias

v(i,3) = stdev*randn(1);

%* Reset position after leaving wall
dxout(i) = v(i,1)*dtr;
if abs(dxout(i)) > L/ncell

m(i) = sign(dxout(i));
dxout(i) = dxout(i) - m(i)*(L/ncell);

move; %recursion

else

x(i) = xwall(flag(i)) + dx_out(i);
end

%* Record velocity change for force measurement

delv(flag(i)) = delv(flag(i)) + (v(i,2) - vyInitial);

end

end

%moving internal particles

for j = 1:size (neither,1)

i = neither(j);

if cell(i) ~= cell old(i)
itest = rand(l);

alpha = 1/gap;

A.3. DUAL BOUNCE IMPLEMENTATION FILES 67

r = m(i) > 0;
if itest >= alpha

%stay

if abs(dxout(i)) > (L/ncell)

m(i) = sign(dxout(i));
dxout(i) = dx-out(i) - m(i)*(L/ncell);

move;

else

x(i) = walls(cellold(i)+~r) + dx_out(i);
end

else

%move

if abs(dxout(i)) > (L/ncell)

m(i) = sign(dx-out(i));

dxout(i) = dxout(i) - m(i)*(L/ncell);

move;

else

x(i) = walls (cellold(i)+~r) + (m(i)*gap/ncell*L) + dx_out(i);

end

end

end

end

%moving particles in wall cells. seperate from above routine to aid in

%implementation of extra bounce.

for j = 1:size(extraBounce,l)

i = extraBounce(j);

if cell(i) ~= cellold(i)
itest = rand(l);

alpha = 1/gap;

r = m(i) > 0;

if itest >= alpha

%first make note of time passed

deltat = (abs(dxin(i))./abs(v(i,l))); %time to move to wall.
dtr = tau - deltat;

%THIS PART IS DIFFERENT. Has reinitialization of parts step!

vyInitial = v(i,2);

%* Reset velocity components as biased Maxwellian,
% Exponential dist. in x; Gaussian in y and z

v(i,l) = direction(flag(i))*sqrt(-log(l-rand(l))) * mpv;

v(i,2) = stdev*randn(l) + vw(flag(i)); % Add wall velocity

v(i,3) = stdev*randn(l);

%* Reset position after leaving wall
dx-out(i) = v(i,l)*dtr;

if abs(dx-out(i)) > L/ncell
m(i) = sign(dxout(i));
dxout(i) = dx-out(i) - m(i)*(L/ncell);

moveExtra;

else

x(i) = xwall(flag(i)) + dx_out(i);
end

APPENDIX A. MATLAB IMPLEMENTATION CODE68

A.3. DUAL BOUNCE IMPLEMENTATION FILES

else
%THIS IS THE SAME AS ABOVE LOOPS

%move
if abs(dxout(i)) > (L/ncell)

m(i) = sign(dxout(i));

dxout(i) = dxout(i) - m(i)*(L/ncell);

move;

else

x(i) = walls(cellold(i)+~r) + (m(i)*gap/ncell*L) + dx-out(i);
end

end

end

end

A.3.3 Recursive particle movement routine 1 - move.m

%move- recursive movement, given some dx_out(i) value...

itest = rand(1);

alpha = 1/gap;

r = m(i) > 0;

if itest >= alpha

%stay

if abs(dxout(i)) > (L/ncell)

m(i) = sign(dxout(i));

dxout(i) = dx_out(i) - m(i)*(L/ncell);

move;

else

x(i) = walls(cellold(i)+~r) + dxout(i);
end

else

%move

if abs(dx-out(i)) > (L/ncell)

m(i) = sign(dxout(i));

dxout(i) = dx_out(i) - m(i)*(L/ncell);

move;

else

x(i) = walls(cellold(i)+~r) + (m(i)*gap/ncell*L) + dx-out(i);

end

end

A.3.4 Recursive particle movement routine 2 - moveExtra.m

itest = rand(1);

alpha = 1/gap;

r = m(i) > 0;

if itest > alpha
%first make note of time passed

69

delta-t = (L/ncell)/abs(v(i,l)) + delta-t; %time to move to wall.
dtr = dtr - delta-t;

%THIS PART IS DIFFERENT. Has reinitialization of particles step!
vyInitial = v(i,2);

%* Reset velocity components as biased Maxwellian,
% Exponential dist. in x; Gaussian in y and z

v(i,1) = direction(flag(i))*sqrt(-log(l-rand(l))) * mpv;
v(i,2) = stdev*randn(l) + vw(flag(i)); % Add wall velocity

v(i,3) = stdev*randn(1);

%* Reset position after leaving wall
dxout(i) = v(i,1)*dtr;

if abs(dx-out(i)) > L/ncell
m(i) = sign(dxout(i));
dx-out(i) = dxout(i) - m(i)*(L/ncell);

moveExtra;

else

x(i) = xwall(flag(i)) + dx-out(i);
end

else

%move

if abs(dx-out(i)) > (L/ncell)

m(i) = sign(dxout(i));
dx-out(i) = dxout(i) - m(i)*(L/ncell);

move;

else

x(i) = walls(cellold(i)+~r) + (m(i)*gap/ncell*L) + dx_out(i);
end

end

A.3.5 Recursive particle bounce routine - bounce.m

%bounce.m - for case when particle loops around and THEN recursively
%bounces.

itest = rand(l);
alpha = 1/(gap);

if itest >= alpha

%stay (ie loop around and reenter)

if abs(dxout(i)) > L/ncell

m(i) = sign(dxout(i));

dxout(i) = dxout(i) - m(i)*(L/ncell);

bounce; %in case of recursive bouncing.

else

if cell_old(i) == ncell

x(i) = (L - L/ncell) + dx_out(i);
%(L- L/ncell) is right hand wall of last cell

else

x(i) = 0 - dx-out (i);
end

end

70 APPENDIX A. MATLAB IMPLEMENTATION CODE

A.3. DUAL BOUNCE IMPLEMENTATION FILES

else
%move
%* If particle strikes a wall, reset its position

% and velocity. Record velocity change.

strikes(flag(i)) = strikes(flag(i)) + 1;
vyInitial = v(i,2);
%* Reset velocity components as biased Maxwellian,

% Exponential dist. in x; Gaussian in y and z

v(i,l) = direction(flag(i))*sqrt(-log(l-rand(l))) * mpv;
v(i,2) = stdev*randn(l) + vw(flag(i)); % Add wall velocity bias

v(i,3) = stdev*randn(1);

%* Reset position after leaving wall
dxout(i) = v(i,l)*dtr;
if abs(dxout(i)) > L/ncell %if particle passes right through cell

m(i) = sign(dxout(i));
dx-out(i) = dxout(i) - m(i)*(L/ncell);

move; %recursively move
else

x(i) = xwall(flag(i)) + dxout(i);
end
%* Record velocity change for force measurement

delv(flag(i)) = delv(flag(i)) + (v(i,2) - vyInitial);

end

71

72 APPENDIX A. MATLAB IMPLEMENTATION CODE

Bibliography

[1] F. J. Alexander and A. L. Garcia. The direct simulation Monte Carlo method.
Computers in Physics, 11(6):588 593, 1997. doi: 10.1063/1.168619. URL http:
//link.aip.org/link/?CIP/11/588/1. 14,22,23,24,25

[2] F. J. Alexander, A. L. Garcia, and B. J. Alder. A consistent Boltzmann algo-
rithm. Phys. Rev. Lett., 74:5212 5215, Jun 1995. doi: 10.1103/PhysRevLett.74.
5212. URL http://link.aps.org/doi/10.1103/PhysRevLett.74.
5212. 13

[3] F. J. Alexander, A. L. Garcia, and B. J. Alder. Cell size dependence of transport
coefficients in stochastic particle algorithms. Physics of Fluids, 10:1540 1542,
June 1998. doi: 10.1063/1.869674. 20

[4] L. L. Baker and N. G. Hadjiconstantinou. Variance reduction for Monte Carlo
solutions of the Boltzmann equation. Physics of Fluids, 17(5):051703, May 2005.
doi: 10.1063/1.1899210. 13, 52

[5] G. Bird. Molecular gas dynamics. Oxford engineering science series. Clarendon
Press, 1976. ISBN 9780198561200. URL http: //books. google. com. pe/
books?id=OAgpAQAAMAAJ.13

[6] G. A. Bird. Approach to translational equilibrium in a rigid sphere gas. Physics
of Fluids, 6:1518, 1963. 13

[7] I. D. Boyd, G. Chen, and G. V. Candler. Predicting failure of the continuum
fluid equations in transitional hypersonic flows. Phys. Fluids, 7:210 219, 1995.
14

[8] C. Cercignani. The Boltzmann equation and its applications. Applied math-
ematical sciences. Springer-Verlag, 1988. ISBN 9780387966373. URL http:
//books.google.com/books?id=fnAyzbpYq71C. 14

[9] C. W. Gear and I. G. Kevrekidis. Boundary processing for Monte Carlo simula-
tions in the gap-tooth scheme. ArXiv Physics e-prints, Nov. 2002. 17

BIBLIOGRAPHY

[10] C. W. Gear, J. Li, and I. G. Kevrekidis. The gap-tooth method in particle
simulations. Phys. Lett. A, 316:190 195, 2003. 15, 17, 26, 27, 29, 52

[11] N. G. Hadjiconstantinou. Analysis of discretization in the direct simulation
Monte Carlo. Physics of Fluids, 12:2634 2638, Oct. 2000. doi: 10.1063/1.
1289393. 20

[12] N. G. Hadjiconstantinou. The limits of Navier-Stokes theory and kinetic exten-
sions for describing small-scale gaseous hydrodynamics. Physics of Fluids, 18
(11):111301, Nov. 2006. doi: 10.1063/1.2393436. 13, 14, 22

[13] N. G. Hadjiconstantinou and I. G. Kevrekidis. Gap-tooth DSMC: an efficient
molecular simulation method for dilute gases. Unpublished, 2002. 17, 26

[14] N. G. Hadjiconstantinou, A. L. Garcia, M. Z. Bazant, and G. He. Statistical error
in particle simulations of hydrodynamic phenomena. Journal of Computational
Physics, 187:274 297, May 2003. doi: 10.1016/S0021-9991(03)00099-8. 52

[15] I. G. Keverekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, 0. Runborg, and
C. Theodoropoulos. Equation-free multiscale computation: enabling microscopic
simulators to perform system-level tasks. Comm. Math Sci., 1, 4:715 762, 2003.
15, 16

[16] I. G. Kevrekidis and G. Samaey. Equation-free multiscale computation: algo-
rithms and applications. Annual Review of Physical Chemistry, 60:321 344, 2009.
URL https://lirias.kuleuven.be/handle/123456789/198365. 16

[17] G. A. Radtke, N. G. Hadjiconstantinou, and W. Wagner. Low-noise Monte Carlo
simulation of the variable hard sphere gas. Physics of Fluids, 23(3):030606, Mar.
2011. doi: 10.1063/1.3558887. 13, 14

[18] W. Wagner. A convergence proof for Bird's direct simulation Monte Carlo
method for the Boltzmann equation. Journal of Statistical Physics, 66:1011 1044,
1992. ISSN 0022-4715. URL http: //dx.doi.org/10. 1007/BF01055714.
10.1007/BF01055714. 14, 27

*Note that the blue numbers displayed at the end of each reference are pages
within this document where the reference has been cited.

74

