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Abstract

An Integrated Assessment of Air Pollutant Abatement Opportunities in a Computable
General Equilibrium Framework

By
Caleb J. Waugh

Submitted to the Engineering Systems Division on
May 14, 2012 in partial fulfillment of the requirements

for the degree of Master of Technology and Policy

Air pollution and anthropogenic greenhouse gas emission reduction policies are desirable
to reduce smog, tropospheric concentrations of ozone precursors, acid rain, and other
adverse effects on human health, the environment, and the economy. While reduction of
both air pollution and greenhouse gas emissions is often attained through economic
instruments such as taxes, caps, and other regulation, emission controls in both developed
and developing countries often achieves reduction through policies that target air pollution
and greenhouse gases separately. However, because the emissions of both air pollution and
greenhouse gases are often intrinsically linked to the same sources, any attempt to design
policies to optimally achieve desired reduction goals must consider the complex
socioeconomic interactions that produce both kinds of emissions as they collectively react
to regulatory constraints.

Integrated assessment models have often been used as tools to inform policy design by
representing the interactions between technology, economics, policy, and the environment
within a self-contained framework. Many contemporary integrated assessment models
consider emissions of greenhouse gases while others also consider air pollution emissions.
While greenhouse gas reduction opportunities are often represented endogenously in the
models through the availability of backstop technologies such as carbon capture and
storage or by shifts away from carbon intensive to less carbon intensive production,
representation of air pollutant reduction has largely been represented within integrated
assessment models exogenously based on empirically observed trends. By treating air
pollution reduction opportunities exogenously, such models are unable to represent many
key considerations important to policy design including the true economic impact of air
pollutant reduction policy, the impact such policies may have on the market penetration of
backstop energy production technologies, and the ancillary co-benefits of air pollution
policy on greenhouse gas emission reduction.

To overcome current limitations imposed by exogenous representation of air pollution
abatement, I develop a new method for representing air pollutant abatement opportunities
endogenously within an integrated assessment model designed using a computable general
equilibrium (CGE) framework. CGE models are often used to simulate macroeconomic
activity based on microeconomic theory and are well suited for emission policy analysis
because of their ability to represent the interactions between multiple economic regions
and sectors, to connect emission sources to economic activity, and to accommodate a large
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degree of technological detail not captured by other macroeconomic models. Using this
new method, I demonstrate how the parameters needed to represent the abatement
opportunities are derived from engineering data on specific abatement technologies
available within each economic sector and for distinct fuel types as air pollution is largely
generated through the combustion of hydrocarbon fuels. With both the methodology and
parameterization established, I represent sulfur dioxide and nitrous oxide abatement
opportunities in the MIT Emissions Prediction and Policy Analysis (EPPA) model and
compare model results with previous representations of air quality pollutant reduction
methodologies based on exogenous trends. An example of how the model predicts co-
benefits for C02 reduction and policy costs in China is then presented. Overall, the new
model demonstrates the ability to fully capture important effects relevant to policy design
not captured in integrated assessment models where air pollution abatement is
exogenously represented.

Thesis Supervisor: John Reilly
Title: Co-Director of the Joint Program on the Science and Policy of Global Change
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1 Introduction

Over the last 200 years the movement toward industrialized economies in many countries

has had an unprecedented effect on economic development and change in societal

structure. Of particular significance, the movement toward industrialization has had a

profound impact on short and long term trends in population growth, the increase in

demand for transport of goods and the availability and ease of international transportation,

the expansion of manufacturing as a key component of economic development, the increase

in life expectancy, the organization of labor and the ethics regarding treatment of workers,

urbanization and the migration of populations toward large metropolitan areas, and

improvements in standards of living and overall societal welfare. While much has been said

and argued regarding both the beneficial and adverse aspects of industrialized economic

activity, what remains certain is that current trends indicate an increase in future industrial

growth in developed and developing economies that see industrialization as key to

improving economic productivity and prosperity.

One of the major challenges introduced by the continued expansion of industrialization,

and in particular the shift towards more manufacturing based and energy intensive

economies in developing countries, has been the identification, management, and control of

the many adverse effects of industrialization on human health and the environment

(Grosman and Krueger 1995). Byproducts of processes used in mining, manufacturing,

transportation, chemical use and production, and energy generation and consumption,

have led to unprecedented levels of air and water contamination. More recently,

anthropogenic emissions of greenhouse gases and the potential for catastrophic risks

associated with climate change introduce additional risks to human health, the

environment, and economic prosperity that are intrinsically complex in nature with much

remaining to be understood (Solomon, et al. 2007). Often referred to as externalities, these

adverse effects of industrial activity result in additional costs to society that are not

incurred, priced, or valued by the agents that produce them and diminish from many of the

societal and economic benefits that increased industrialization is intended to achieve.
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In order to reduce the negative impact of industrial externalities on the environment

and human health, policy controls have been put in place in many developed and

developing countries to reduce levels of pollution associated with industrial economic

activities. However, to fully reap all the benefits of industrialized economic growth, while at

the same time minimizing the adverse effects of industrial externalities, policy instruments

must be designed carefully. One the one hand, policy controls should be stringent enough

to reduce external costs of pollution by mitigating adverse effects as much as possible,

however, if policy controls are too stringent, the cost of the policy in terms of reduced

economic activity and production may greatly exceed the benefits of reduced external costs

and can be just as damaging as the externalities themselves. Ideally, policy to mitigate

externalities caused by industrial activity should strike an optimal balance between both

extremes, however, this is often challenging to achieve in practice. In order to attain

optimal policy solutions that meet the required policy objectives while at the same time

minimizing the associated impact on economic activity and growth, the availability of tools

capable of providing rigorous policy analysis to compare benefits and tradeoffs of different

policy options has become increasingly important (Sanstad and Greening 1998).

As the identification and understanding of specific adverse pollution-related

externalities of industrialization has improved, so has the realization that the interactions

between the corresponding industrial activities, and the various human health and

environmental policy controls designed to mitigate adverse effects, are increasingly

complex. While some interactions are well defined and fall well within the confines of a

single discipline or methodology (epidemiology, atmospheric chemistry, ecology,

economics, oceanography, etc.), other interactions are much more far reaching and extend

beyond a single framework of analysis or area of expertise. It is the policy considerations

affected by these more interdisciplinary kinds of interactions that are often of most

importance but are also the most difficult to analyze and understand. To better address this

category of policy considerations, integrated assessment methodologies spanning multiple

disciplines have been developed and are increasingly used to inform policy decision

making and evaluate the effectiveness and tradeoffs of various policy designs.
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While most of the work in the integrated assessment modeling community over the last

few decades has focused on climate change and understanding and quantifying the

interrelated effects associated with greenhouse gas reduction policy controls, greenhouse

gas emissions, energy technology mix, energy costs, economic impact on welfare and GDP,

and the corresponding impact on various earth systems and the environment; significantly

less work focused on how the more traditional non-greenhouse gas air pollutants affect

these interactions and are effected by climate policy (Rotmans and van Asselt 2003).

Considering the interactions of policies aimed at the so-called traditional air pollutants

is important for multiple reasons. First, since non-greenhouse gas air pollution is largely

emitted from the same processes and same sources that emit carbon and other greenhouse

gases, greenhouse gas and air pollution policy is intrinsically linked and the stringency of a

policy control on one species of pollutant can have a significant impact on the others. Any

policy analysis that evaluates greenhouse gas and air pollution policy in isolation will not

be capable of capturing how the policies interact and how the economy responds to the

controls associated with each policy. Second, much of the policy consideration regarding

permissible levels of air pollution is determined by weighing the benefits of less pollution

on human mortality and morbidity against the technology costs due to investment in air

pollution abatement for existing pollution intensive activities, or the loss in productivity

incurred by shifting to less pollution intensive activities. As these considerations span

multiple disciplines, the questions of most interest in informing air pollution policy are

inherently integrated. Finally, as will be shown shortly in an overview of the traditional air

pollutants, since the costs of externalities associated with traditional air pollutants are

currently much better understood and involve significantly less uncertainty than the

damage costs of global warming externalities, the benefits of air pollution policy are more

readily quantifiable. In the event policy that reduces greenhouse gases provides significant

ancillary benefits for air pollution reduction, the argument for more stringent air quality

regulation can provide a strong argument for the benefits of climate policy while the

benefits and costs of damages from climate change remain less quantifiable and remain

subject to greater uncertainty. This may especially be the case in developing countries such
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as China that increasingly are placing a higher premium on air quality as standards of living

improve.

Because many of the more important considerations regarding air pollution policy can

only be addressed in a multidisciplinary manner, in this thesis I address the development

of sound methodologies for properly analyzing the interrelated effects of air pollution on

the environment and economy, and the interaction among policies that target both

greenhouse gas and traditional air pollution species. Of critical importance in capturing

these interrelated effects are a sound understanding and representation of the

opportunities and costs of air pollution emission reduction technologies that are available

for various kinds of industrial activities. As previously stated, while much integrated

assessment work recently has been done to assess costs and interactions associated with

greenhouse gas emissions and climate change, less work has been done to represent the so

called traditional air pollutants in the same kind of interrelated framework providing a rich

opportunity for improvement in this area. While some methodologies have been proposed,

as will be shown, many contain drawbacks that limit their ability to fully represent the

underlying economics and nonlinear feedback effects that can dominate the economic

response to shocks induced by air pollution controls.

To provide researchers and policymakers with better tools when considering the

interrelated impacts of air pollution on energy, the economy, human health, and the

environment, I present a new methodology that seeks to overcome many of the limitations

of previous methodologies. The motivation of the new method is to provide a "bottom-up in

a top-down" framework that directly accounts for "bottom-up" individual technical detail of

specific abatement technologies that are crucial to proper representation of air pollution

control opportunities, but does so in a way that can be utilized in a larger "top-down"

integrated assessment modeling framework that shines light on many macro-level effects

such as total pollution emissions, change in the energy technology mix, and GDP.

In the remainder of Section 1, I give an overview of the impact of traditional air

pollutants on human health and the environment and in so doing establish the argument

for why a strong policy response to air pollution is desirable. I then consider the role of

integrated assessment as a tool to inform particular considerations of air pollution policy
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decision making. I then consider a specific kind of integrated assessment framework-

computable general equilibrium-and evaluate the appropriateness of the framework for

the kinds of policy questions of interest and identify the kinds of questions computable

general equilibrium is most adept at analyzing. Limitations when using computable general

equilibrium for policy analysis are then considered and some of the caveats of the

methodology are identified. The kinds of air pollution policy questions that are most

appropriate using the new methodology, and that would be difficult to address under any

other kind of framework, are also considered. I then introduce a specific model that

employs the computable general equilibrium framework-the MIT Emission Prediction

and Policy Analysis model-which is later used as the primary tool for implementing the

proposed new air pollution methodology.

In Section 2, I present an overview of previous approaches to represent the traditional

air pollutants in an integrated assessment framework and identify some of the advantages

and weaknesses of the methodologies. A variety of approaches for representing air

pollutants in the MIT Emission Prediction and Policy Analysis model are then considered

and specific shortcomings are identified that the new methodology is able to overcome. In

Section 3, I provide a rigorous derivation of the new methodology as implemented in the

computable general equilibrium framework and give an overview of key considerations for

parameterizing the methodology for representation in any computable general equilibrium

model. Parameters for representing S02 and NO. specifically for the MIT Emission

Prediction and Policy Analysis model are then derived, but the approach used can be

applied generally to any computable general equilibrium integrated assessment model

where the primary difference between EPPA and such models is the level of aggregation of

the regions, sectors, and energy production mix. I also identify some of the shortcomings of

the proposed methodology and suggest a series of improvements for future work. In

Section 4, I present the results of an air pollution policy scenario run in EPPA using the new

air pollution representation and compare specific interconnected effects predicted by the

new methodology with some of the previous methodologies for representing air pollution

in EPPA. An analysis using the new methodology to evaluate the potential for co-benefits of

air pollution policy in reducing greenhouse gas emissions in China and the USA is then
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presented. This provides an example of the kinds of analysis and policy relevant questions

that can be explored using the new methodology in an integrated assessment framework

that cannot be done using methodologies that treat the economy, greenhouse gas

emissions, energy generation mix, air pollution emissions, abatement opportunities and

technologies, and policy mechanisms in isolation.

In Section 5, I conclude by recapitulating the value of this work in improving integrated

assessment tools used to inform air pollution related policy analysis and summarize the

primary improvements that have been made. A number of next steps for representing air

pollution reduction opportunities in a computable general equilibrium framework are then

discussed that have been identified and are necessary to build on the improvements made

in this thesis going forward.

1.1 Impact of Air Pollution on Human Health and the Environment

The motivation for policy controls aimed at reducing traditional air pollutants, also

commonly referred to as urban pollutants, has come from an extensive body of studies that

collectively provide strong evidence of many adverse effects on human health and the

environment due to air pollution. While the definition of an air pollutant can be very broad

and can include anything from fluorinated greenhouse gases to dust, in this work we define

air pollutants as the subset currently regulated in the United States by the Environmental

Protection Agency (EPA) under the National Ambient Air Quality Standards. This subset of

air pollutants includes tropospheric ozone (03), particulate matter (PM), carbon monoxide

(CO), nitrogen oxides (NOx), sulfur dioxide (S02), and lead (Pb) (U.S. EPA 2011). These

pollutants are widely referred to as the criteria pollutants since the level of allowable

atmospheric concentrations, and consequently the level of allowable emissions, is

determined by permissible levels of exposure as identified by human-health based

epidemiological studies and other scientific criteria. Extensive epidemiological studies have

evaluated the effects of air pollutants on human mortality and morbidity while ecological

studies have affirmed negative impacts of air pollution on the environment. We will now

consider the primary sources of these pollutants from industrial economic activities and

the impact of these pollutants on human health and the environment. In so doing we
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establish the argument for why reducing emissions of these pollutants is desirable from a

policy standpoint.

Ozone (03)

Although ozone plays an important role in the stratosphere by absorbing high

frequency ultraviolet light, in the lower troposphere it is highly undesirable. Produced

largely by the reaction of other pollutants known as ozone precursors-primarily NO., CO,

and volatile organic compounds (VOCs)-ozone has been shown to harm human health by

causing significant disturbances to the respiratory system including coughing and throat

irritation, reduced lung function, aggravation of asthma with heightened sensitivity to

allergens, increased susceptibility to respiratory infections, inflammation and damage to

the lining of the lungs, and exacerbation of other respiratory illnesses. While some of the

adverse effects are acute, others can be chronic and lead to increased mortality rates in

highly populated urban areas. Using data for the National Morbidity, Mortality, and Air

Pollution Study for 95 large urban U.S. communities from 1987-2000, Bell et al. (2004)

estimate the national average relative rate of mortality that can be associated with

exposure to tropospheric ozone (Bell, et al. 2004). The study finds that a 10 part per billion

(ppb) increase in tropospheric ozone results in a 0.52% increase in daily mortality and a

0.64% increase in cardiovascular and respiratory mortality. Other studies estimate that

future global health and economic impacts of ozone could results in additional health costs

of $580 billion (2000 USD) and mortalities from acute exposure exceeding 2 million by the

year 2050 (Selin, et al. 2009).

In addition to adverse effects on human health, tropospheric ozone has also been found

to reduce agricultural crop and commercial forest yields and increase the likelihood of

various kinds of plant disease. Using a global 1' x 1 2-way atmospheric chemical transport

model, Van Dingenen et al. estimate the annual loss in crop yield in 2000 due to

tropospheric ozone to be between 7% and 12% for wheat, 6% and 16% for soybeans, 3%

and 4% for rice and 3% to 5% for maize (Van Dingenen, et al. 2009). The worldwide annual

economic cost of lost agricultural yield in 2000 is estimated to be between $14-$26 billion

(2000 USD).
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Particulate Matter (PM)

Adverse health effects from particulate matter (PM) are similar to ozone. For the

respiratory system, common health effects include coughing, difficulty breathing and

irritation of the airways, decreased lung function, aggravation of asthma, and development

of chronic bronchitis. For the cardiovascular system, PM exposure can lead to irregular

heartbeat, heat attacks, and premature death in people with heart or lung disease. An

overview of many the adverse health effects associated with inhalation of (PM) is provided

by Pope and Dockery and is given in Figure 1.1 (Pope III and Dockery 2006).

Lmnp
Hwrt

9yRtistm

9 --dssoa e
F A~ bexpo s

s'h-

(PM). (As given in Pope and Dockery 2006.)

While PM generally refers to any particulate pollution, anthropogenic PM is largely

comprised of sulfates originating from S02 emissions from sulfur in coal and oil

combustion, nitrates originating from NOx formation from the combustion of hydrocarbons,

black carbon (BC) from incomplete hydrocarbon combustion, organic carbon (OC), trace

metals from fossil fuel combustion and smelting, and other minerals and dust from soil
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disruption occurring from agriculture and forest-related activities. The relation between

exposure to increased concentrations of PM and human mortality has been studied

extensively over the years and has been shown to be strongly correlated. In their original

landmark 1993 paper "An Association between Air Pollution and Mortality in Six U.S.

Cities," Dockery et al. track PM pollution concentrations and the survival rate of a random

selection of adults over a 16 year period in six U.S. cities with varying concentrations of PM.

The study demonstrates that although mortality rates from PM are most strongly

associated with cigarette smoking, after compensating for smoking and other confounding

risk factors, the adjusted mortality-rate ratio (RR) for the most polluted cities considered in

the study compared with the least polluted was 1.26 (the mortality-rate ratio is defined as

the ratio of observed deaths to expected deaths in an epidemiological study). From this

Dockery et al. conclude that air pollution is positively associated with death from lung

cancer and cardiopulmonary disease (Dockery, et al. 1993).

Since the original Harvard Six Cities study, there has been an extensive body of

literature that has expanded the investigation of PM health effects to other cities and has

increased the sample sizes of the epidemiological studies in an attempt to more robustly

quantify the relationship between mortality and increased PM exposure. In the most recent

direct follow up to the Harvard Six Cities study, Laden et al. revisit the original six U.S. cities

but extend the period of consideration from 1989 through 1998 to observe mortality

effects in a period where PM concentrations are decreasing (Laden, et al. 2006). Over the

initial period of increasing PM concentrations from 1974-1989, Laden et al. reaffirm an

increase in mortality associated with each 10tg/m 3 increase in PM2.s concentrations and

calculate an RR of 1.27 for lung cancer and an RR of 1.28 for cardiovascular deaths. These

numbers are consistent with the 1.26 total RR for a 10 Ig/m3 increase in PM2.s as shown in

the original six cities study. However, in the second period from 1990-1998 where

atmospheric sampling of PM2.s showed a decrease in concentrations-largely due to more

stringent National Ambient Air Quality Standards- Laden et al. demonstrate that overall

mortality actually improved showing a 0.73 RR for a 10 pg/m 3 reduction in PM2.5. This

demonstrates that while an increase in PM2.5 concentration led to increased mortality, a

reduction in PM2.5 concentrations reduced mortality.
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Greatly expanding the epidemiological study beyond the original six cities, Pope et al.

consider the effect of decreased PM exposure on mortality in over 211 counties in 51 major

U.S. metropolitan areas. The study concludes that a decrease of 10 ug/m 3 in the

concentration of PM 2.s resulted in an increased life expectancy of 0.61+/-0.20 year and that

the reduction in PM 2 .s air pollution accounted for as much as 15% of the overall increase in

life expectancy in some of the study areas (Pope III, Ezzati and Dockery, Fine-particulate

Air Pollution and Life Expectancy in the United States 2009). Particular segments within

the general populous may also be particularly prone to adverse health effects caused by PM

and other pollution, especially asthmatics, the elderly, and children (O'Connor, et al. 2008).

Carbon Monoxide (CO)

Carbon monoxide is formed from the partial oxidation of carbon containing compounds

when there is not enough oxygen available to form carbon dioxide. Formation of CO is

therefore common in enclosures such as internal combustion engines or coal and gas

furnaces where the availability of oxygen may be limited. As has already been mentioned,

carbon monoxide is a primary precursor to tropospheric ozone formation and therefore

contributes to all the adverse human health and environmental externalities associated

with ozone as were given previously. In addition to being an ozone precursor, CO can also

cause direct damage to human health by reducing the oxygen-carrying capacity of the

blood. This in turn reduces the delivery of oxygen to vital bodily organs-such as the heart

and brain-and to other tissues. At extremely high concentrations, respiration of CO can be

fatal.

Nitrous Oxides (NO)

Various species of nitrogen oxides (such as NO, N02) are formed when nitrogen is

present during combustion at high temperatures. Since nitrogen is plentiful in the

atmosphere, NOx emissions are common with any fossil fuel combustion regardless of the

purity of the fuel. As has already been shown, NOx is both an ozone precursor and leads to

the formation of nitrate particulates and is therefore indirectly associate with all the

adverse health and environmental effects already considered from exposure to ozone and

PM. Independently, epidemiological studies suggest a positive association between
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increased NO. concentrations, acute respiratory disease, and decreased pulmonary

function (Kagawa 1984). NOx is also the main precursor to the formation of nitric acid in

the atmosphere which, when precipitates, leads to acidic rain, snow, and fog. Over an

extended period of time, acid rain can cause significant damage to buildings and other

structures, can damage trees and vegetation, and can cause acidification of bodies of water

making them unsuitable for sustaining fish and other wildlife. NO. emissions can also lead

to large concentrations of nitrogen in bodies of water. Since nitrogen is a natural fertilizer,

this can cause eutrophication where the nitrogen accelerates the growth of algae blooms.

Such unnatural growth of algae has been shown to harm and kill fish and other marine life,

throw off natural plant and animal diversity, and make recreational bodies of water

unsuitable for human activities.

Sulfur Dioxide (S0 2 )

Atmospheric concentrations of S02 stem largely from the combustion of fossil fuels that

contain small traces of sulfur and other impurities. When fossil fuels burn, the sulfur reacts

with oxygen in the atmosphere creating S02. Similar to NO., SO2 is also a major precursor of

fine particulate matter and leads to atmospheric particulate sulfates. Epidemiological

studies suggest a positive association between increased concentrations of SO2 and

increased daily mortality, prevalence and persistence of cough and phlegm, morbidity and

bronchial asthma, the symptomatic severity of asthma, and respiratory infection (Kagawa

1984). Atmospheric SO2 also leads to the formation of sulfuric acid, and the associated

damage caused by sulfuric acid rain.

Lead (Pb)

Historically, atmospheric concentrations of lead originated largely from the release of

lead during the combustion of leaded gasoline. Due to more stringent regulatory controls

by the EPA and the subsequent removal of Tetraethyl lead as an additive, leaded gasoline

has almost entirely been phased out in the U.S. and concentrations of atmospheric lead in

the U.S. have decreased by 94% between 1980 and 1999 (U.S. EPA 2011). Other sources of

atmospheric concentrations of lead include metal processing-ferrous and nonferrous

smelters-and battery manufacturing. The negative health effects associated with lead are
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well understood and include blood related disorders including damage to the kidneys and

liver, heightened risk for neurological and brain disorders such as seizures and mental

retardation, and other behavioral disorders. Young children and fetuses are especially

susceptible to lead poisoning and damage to the nervous system.

1.2 Integrated Assessment as a Tool to Inform Policy Decision Making

As illustrated by the overview just presented of the many adverse health and

environmental effects caused by traditional air pollutants, many important considerations

that are of most interest when evaluating air pollution policy are multidisciplinary in

nature and are not well confined to a single area of expertise or methodology. Of particular

interest from a policy standpoint are: (1) how air pollution controls affect the energy

generation mix as firms weigh the tradeoffs between paying for additional abatement from

pollution intensive energy production, increasing input of less emission intensive energy

production, moving to new non-emission intensive backstop generation technologies that

do not clear the market in the absence of policy controls, or reducing energy as a primary

input to production altogether; (2) how regional air pollution controls affect regional

emissions; (3) the impact of air pollution controls on overall welfare and GDP; (4) the

ancillary benefits of controls on certain species of pollutants on the reduction of emissions

from other species (e.g the effect of S02 controls on carbon emissions); and (5) the effect of

air pollution controls on adverse health impacts.

To help provide a structured framework within which expertise from various

disciplines can be combined and inform policy decision making, integrated assessment

models (IAMs) have become increasingly used over the last four decades. While most

recent integrated assessment models have largely focused on global warming and climate

change impacts, the definition of what an integrated assessment model entails remains

fairly broad. One general definition given by William Nordhaus, considered by some to be

one of the fathers of integrated assessment modeling of climate change impacts, is that,

"Integrated Assessment Models can be defined as approaches that integrate knowledge

from two or more domains into a single framework. These are sometimes theoretical but

are increasingly computerized dynamic models of varying levels of complexity" (Nordhaus
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2011). A second definition given by Parson and Fisher-Vanden is that, "Integrated

assessment models seek to combine knowledge from multiple disciplines in formal

integrated representations; inform policy-making, structure knowledge, and prioritize key

uncertainties; and advance knowledge of broad system linkages and feedbacks, particularly

between socioeconomic and biophysical processes" (Parson and Fisher-Vanden 1997).

This second definition is a bit more instructive in that it lays out some of the

motivations and benefits of integrated assessment. First, in informing policy decision

making, integrated assessment models can ultimately lead to recommendations regarding

sound policy responses to complex problems; however, even if no straightforward

recommendations are obtained, the process of going through an integrated assessment is

still of great value as it helps guide policy makers in how to frame the policy evaluation

process and identify the most important questions that should be considered regarding the

complex problem at hand. Second, in structuring knowledge, integrated assessment models

provide a coherent framework that can be used by both researchers and policy makers.

Integrated assessment models help to organize an otherwise complex problem in the

broader context of other policy relevant problems and can aid in exploring interconnected

effects of a specific problem with other factors. This can be beneficial because it helps both

policy makers and researchers from specific disciplines think more systematically about

the interrelated elements of complex policy issues, and provides a format for identifying

and quantifying key parameters. Third, in prioritizing key uncertainties, integrated

assessment models help identify, clarify, and illuminate key kinds and sources of

uncertainty and can help establish a better understanding of cause and effect chains within

a large complex problem. Once the interdisciplinary components have been structured into

a single system, key parameters can be evaluated to study the sensitivity and uncertainty in

the overall model projections. Quantitatively looking at and evaluating complex problems

using an integrated assessment model also helps to present the policy problem properly in

terms of analyzing risk and highlights the importance of decision making under uncertainty

as a key component of managing and reducing potential risks. In the case of climate change,

this can lead to a proper formulation of the problem in terms of risk management and risk

mitigation (Waugh 2011). Finally, in an effort to better understand causal connections,
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integrated assessment models provide insight into important linkages and feedbacks. This

can aid both policy makers and researchers in setting priorities for future research and

allocating resources to address the most pressing gaps in knowledge surrounding the

complex problem.

The framework and methods used in integrated assessment have progressed

significantly over the last four decades. Although most contemporary integrated

assessment models focus on energy and climate change interactions, one of the first truly

integrated assessments was the Climatic Impacts Assessment Program (CIAP) which was

used to assess various impacts of stratospheric supersonic flight including jet engine

design, atmospheric chemistry and radiation, and biological, economic, and social impacts

(Grobecker, Coroniti and Cannon 1974). Around this same time, the first integrated

assessment models of climate change began evolving from energy models that were used to

explore ways of meeting energy demand by diversifying the U.S. energy technology mix and

lessening dependence on oil and gas imports (Nordhaus 2011). One of the earliest energy

models used for this purpose was the Energy Technology Assessment (ETA) model which

was among the first to use non-linear computer algorithms to explore the economics of

alternative fuels and electricity generation mix including synthetic fuels from coal, light

water and fast breeder nuclear reactors, hydrogen from electrolysis, nuclear fusion, and

central station solar power (Manne 1976). The introduction of mathematical programming

models to study non-linear interconnected effects of both own and cross-price elasticities

of demand on energy was particularly innovative and set the stage for the general

computer-based approach of almost all integrated assessment models that have followed.

Manne was also instrumental in developing some of the first energy and environmental

models which were largely energy models with an emissions component. In these early

models we see the first introduction of fuel-specific CO2 emission coefficients which

continue to play a central role in coupling greenhouse gas emissions to energy sources in

contemporary integrated assessment models of climate change but are also widely used by

the United Nations Framework Convention on Climate Change (UNFCCC) for greenhouse

gas emissions reporting. A detailed overview of emission coefficients is given later in

Section 2.1.
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Building on these early developments, Nordhaus is credited with developing one of the

first integrated assessment models to study the costs and benefits of climate policy

response beyond mere emissions reporting that was done in the earlier energy/emissions

models (Nordhaus 1977). In his earliest model, Nordhaus couples a very simple energy

systems model based on macroeconomic theory that takes energy resources, income and

population as inputs, and gives energy prices, energy consumption, and C02 emissions as

outputs. The C02 emissions are then fed into a very simple atmosphere and climate model

which determines the effect of C02 emissions on radiative forcing and global warming.

Other early models used to project CO2 emission pathways and the cost of meeting

emissions constraints from particular energy scenarios include the Edmonds Reilly Model,

which produced long-term C02 emission forecasts through disaggregation of fuel types, and

by including regional detail, energy balance, and C02 energy flow accounting (Edmonds

and Reilly 1983), and a linear input-output model built by the International Institute for

Applied Systems Analysis (IIASA) (Hafele 1981).

While with earlier integrated assessment models, much of the focus was on maintaining

transparency and simplicity so the models did not become "black boxes" that were

convoluted and difficult to understand, starting in the late 1980's, we see integrated

assessment models of climate change begin to grow in complexity as additional features

were added in response to increased interest in the field, growing availability of funding for

climate research, increased computing power, and most notably, the belief that managing

climate change required a more detailed and in-depth understanding of the interactions

among biophysical and socioeconomic domains. Among the most notable advances during

this time are the inclusion of the non-C02 greenhouse gases (methane, nitrous oxide, and

fluorinated gases) as first given in the Model of Warming Commitment (Mintzer 1987), and

more advanced environmental impacts models that in addition to radiative forcing began

modeling other biophysical warming effects, such as sea-level rise as first given in the

Integrated Model for the Assessment of the Greenhouse Effect (IMAGE) (J. Rotmans 1990).

Since these developments, integrated assessment models of climate change have

continued to grow in their level of complexity as computing power has become more

readily available and methodologies for integrating earth and human systems has
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improved. With additional computing power, the earth systems component of integrated

assessment models have become increasingly detailed with some of the more advanced

models containing coupled atmosphere-ocean-land surface sub-models with non-linear

atmospheric chemistry representation of the interactions among gas species, three

dimensional ocean representation, and a detailed terrestrial global sub-model of

biogeophysical, ecological, and natural biogeochemical flux components (Sokolov, et al.

2005). These advanced model features have enabled integrated assessment models to

address detailed ecological impacts of climate change beyond the simple "damage

functions" invoked in simpler models such as the Dynamic Integrated Climate Economy

(DICE) model developed by Nordhaus (Nordhaus 1993). With grid-level representation of

the globe often approaching 0.5*x0.5*, or even 0.1*x0.1* spatial resolution in the most state

of the art models, these advanced earth systems models directly represent in high

resolution, both temporally and spatially, the policy implications of sea level change,

acidification and the carbon cycle in oceans, land use change, impacts on hydrology and

water resources, impacts on agriculture, forestry, bio-energy, ecosystem productivity, three

dimensional atmospheric chemical and dynamic processes, three dimensional dynamics

and biological and chemical impacts in the oceans, latitudinal and longitudinal temperature

variation and precipitation, and various human health effects. A flow chart of the

interconnected feedbacks of one of the more advanced earth system integrated assessment

models, the MIT Integrated Global System Model (IGSM), is given in Figure 1.2.

The primary difference among the various contemporary integrated assessment models

of climate change largely involves the level of regional and sectoral aggregation of emission

species, economic sectors, and energy production technologies, the level of detail and

complexity of the earth system component of the model, the time horizon for model

projections, and the methodology chosen to represent the socioeconomic sub-model used

to predict emission pathways in response to policy constraints, and the availability and cost

of advanced fuels and energy generation.

As observed by Boulanger (2005), the socioeconomic component of contemporary

integrated assessment models largely takes on a variety of forms including: neo-Keynesian
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macroeconomic models, computable general equilibrium models, centralized optimization

models, and system dynamic models.
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Figure 1.2. An advanced earth systems integrated assessment model, the MIT
Integrated Global System Modeling (IGSM) framework.

Macroeconomic models involve a simulation system of simultaneous equations that are

empirically calibrated by time-series or cross-sectoral data, and that deal with macro-level

parameters such as GDP, price indices, output, and consumption. Because they do not

model actions of individual agents the way microeconomic models do, the energy

production representation of macroeconomic integrated assessment models is very simple

and highly aggregated. In contrast, computable general equilibrium models are based on

neo-classical economic theory that assumes an efficient market equilibrium where firms
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and consumers are profit and welfare maximizers respectively. Because of their ability to

represent firm-level decision making regarding inputs to production, computable general

equilibrium models have the potential to accommodate a larger degree of technological

detail in production and energy sectors than macroeconomic models. Since prices and

quantities of goods produced are solved for endogenously based on an original endowment

of resources, general equilibrium models are capable of accounting for interconnect effects

and shocks to the economy that can occur under a regulatory constraint. Centralized

optimization models primarily focus on representing the decision-making on technology

choice based on technology availability, cost, and other influencing parameters and are

usually simple accounting frameworks. The technology mix is chosen so as to attain a given

policy goal (e.g. reducing carbon emissions) in such a way that minimizes overall costs.

Finally, systems dynamics models take on a form that does not fit into traditional economic

theory but is designed to represents interactions generally in any complex system through

the use of stocks, flows, and feedback loops. Because of the particular emphasis on

feedback loops, system dynamic models are well suited for representing nonlinear

interconnected effects and uncertainty.

Another important distinction in addition to what kind of methodology is used for the

socioeconomic component of the model is whether the model is a policy optimization or

policy evaluation model. As classified by Weyant et al. (1996), policy optimization models

endeavor to "optimize key policy variables such as carbon emission control rates and

carbon taxes, given certain policy goals (such as maximizing welfare or minimizing the cost

of climate policy)." Policy optimization models tend to be less complex and are used

primarily for cost-benefit or cost-effectiveness analysis to help identify optimal policy

pathways over extended time periods usually on the order of hundreds of years. When

used as cost benefit tools, such models are highly sensitive to the cost ascribed to, and the

discount rate placed on, future economic and environmental damages making true cost-

benefit analysis challenging (Weitzman 2007).

In contrast, policy evaluation models "try to evaluate the environmental, economic and

social consequences of specific policy strategies" (Weyant, et al. 1996). In order to capture

all the ways that a policy may affect the socioeconomic and biophysical systems, policy
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analysis models tend to be significantly more complex. The socioeconomic component can

be as simple as a macroscopic Ramsey-type optimal growth model with highly aggregated

detail of the energy and agricultural sectors, to a full-fledged computable general

equilibrium model with comparatively much more disaggregated regional, sectoral, and

technological detail. A summary of some of the most prominent contemporary integrated

assessment models is given in Table 1.1.

Despite the significant progress made in integrated assessment modeling methodology

over the last four decades, some of the ongoing challenges with integrated assessment

include properly identifying what effects the model is and is not accurately representing,

understanding what questions are most appropriate for assessment using an integrated

modeling framework, and understanding the impact of sensitivity and uncertainty both

within the model structure and architecture and among model parameters. Despite best

efforts to represent all key influences, even the most thorough models do not correspond to

reality and great care must be taken when interpreting results to acknowledge both what

and how physical and socioeconomic process are being represented. As stated well by J.

Rotmans, one of the early developers of the IMAGE model, "any attempt to fully represent a

complex issue and its numerous interlinkages with other issues in a quantitative model is

doomed to failure. Nevertheless, even a simplified but integrated model can provide a

useful guide to complex issues and complement highly detailed models that cover only

some parts of complex phenomena" (Rotmans and van Asselt 2003). In other words, while

"top-down" integrated assessment models are highly valuable in informing certain key

considerations of a complex policy question, highly detailed "bottom-up" models are

equally important in understanding less interconnected problems with a smaller scope that

are highly sensitive to key disaggregated detail. Rotmans goes on to list several strengths

and weaknesses of integrated assessment models. Among the strengths Rotmans notes that

integrated assessment models (1) allow for the exploration of interactions and feedbacks

which studies limited to a single discipline or have a much narrower scope cannot offer, (2)

provide flexible and rapid simulation tools that can be used to prototype modeling

implementation of new concepts and scientific insights, (3) provide a self-consistent

framework that helps in identifying critical uncertainties and gaps in knowledge of the
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complex problem, and (4) integrated assessment models provide a tool for researchers and

policy analysts to communicate risk and the policy options posed by a complex problem.

Table 1.1. Prominent Integrated Assessment Models Used to Inform Policy Design

Model Regions Greenhouse Timeline; Socioeconomic Earth Systems Source
Gases Time Step Model Modell

EPPA/ 16 C02, CH4, 2100; 5 Computable Advanced Paltsev et al.
IGSM N20, PFCs, year General (2005), Sokolov

HFCs, SF6  Equilibrium et al. (2005)

IMAGE 2  26 C02, CH4, 2100; 10 Macroscopic Advanced Bouwman et al.
N20, PFCs, year Energy Demand (2006)
HFCs, SF6

MESSAGE 11 C02, CH4, (Variable); Systems Basic Messner et al.
N20, PFCs, 10 year Engineering (1995)
HFCs, SF6  Optimization

AIM 21 C02  2100; 10 Computable Advanced Kainuma et al.
year General (2008)

Equilibrium
GCAM 14 C02, CH4, 2095; 15 Macroeconomic Basic GCAM (2006)

N20, PFCs, year Market
HFCs, SF6  Equilibrium

ReMIND 11 C02. CH4, 2100; 5 Macroeconomic Basic Potsdam
N20 year Ramsey-type (2008)

Optimal Growth
GEM-E3 21 CO2  2030, 1 Computable Basic Leuven et al.

year General (2008)
Equilibrium

MERGE 9 C02, CH4, 2150; 10 Computable Basic MERGE (2004)
N20 year General

Equilibrium
WITCH 12 C02, CH4, 2100; 5 Macroscopic Basic Bosetti et al.

N20, PFCs, year Ramsey-type (2010)
HFCs, SF6 Optimal Growth

1Earth system components involve significant variation in structure and from. Here we give a very general relative

comparison between earth system components as either being more basic or more advanced.

2 IMAGE consists of multiple sub-models (PHOENIX, TIMER, GTAP, HYDE, FAIR, etc.) with various time-steps. The

time step recorded here is for HYDE.
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With respect to the weaknesses of integrated assessment models, Rotmans observes

that (1) many models often suffer from high levels of aggregation in both the

socioeconomic and biophysical sub-models so that important micro-level phenomena is

often unaccounted for, (2) because of the complexity and intensity of computer resources

required to run the model, proper treatment and analysis of uncertainty is often

inadequate and understudied, (3) while most natural and socioeconomic processes are

inherently probabilistic, most models are deterministic in nature and lack the stochastic

representation to properly analyze the effect of uncertainty in model parameters on long-

term outcomes, and (4) because of the enormous number of parameters involved in

benchmarking a large complex model, the amount of focus placed on proper calibration

and validation of model parameters to empirically obtained variables and parameters is

challenging when data is limited. Among these weaknesses the first and forth are

intrinsically linked and require an important design tradeoff when constructing a model.

Greater disaggregation and representation of important micro-level phenomena and detail

requires increased parameterization and greater data requirements. However, because of

limitations on the availability of the data required to represent micro-level phenomena,

model design is often forced to aggregate over important details. As a result, models can

often take on a more aggregated form that is indicative of the level of aggregation of the

data that is available to benchmark the model.

1.3 Computable General Equilibrium Models

As illustrated by the major integrated assessment models used to inform climate policy

decision making in Table 1.1, the computable general equilibrium (CGE) framework is

commonly used for the socioeconomic component. In a paper addressing the

appropriateness of CGE models for sustainability impact assessment, Bohringer and

Loschel (2006) go as far as suggesting that CGE models are well structured to serve as a

backbone tool for assessing simultaneous impacts of policy on economic performance,

environmental quality, and social development in energy-environment-economic (so called

E3) models. Bohringer and Loschel argue that one of the key strengths captured by the CGE

framework is the ability to provide ex ante comparisons of different policy pathways by
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assessing possible outcomes both with a control in place as well as what would have

happened if a policy instrument had not been implemented. As a result, "The main virtue of

the CGE approach is its comprehensive micro-consistent representation of price-dependent

market interactions" (Bohringer and Loschel 2006). In addition, as CGE models are able to

incorporate several key indicators into a single micro-consistent framework, CGE models

are able to provide a platform for systematic and rigorously quantitative tradeoff analysis

between socioeconomic and environmental factors. Finally, due to the wide array and

diversity of model outputs, CGE models can be readily implemented as a socioeconomic

sub-model that interacts with other sub-models that are better suited for representing

other effects of interest, thus expanding the integrated assessment framework to areas

beyond CGE core strengths.

As a rebuttal to Bohringer and Loschel, Scrieciu (2007) argues against the use of CGE

models as a backbone tool for the integrated assessment models of sustainability and

caution against the "inherent dangers" of computable general equilibrium models for

sustainability impacts assessment (Scrieciu 2007). Of the critiques relevant to

developments made in this thesis, Scriecui argues first that general equilibrium theory

assumes economic activity is based on decisions of profit and welfare maximizing agents

where trade occurs under market clearing conditions that result in a Pareto efficient

economic outcome. In reality, economies are never in equilibrium but are subject to a never

ending process of changing and dynamic forces. Because in reality economies are never in

equilibrium, Scriecui concludes that the theory underpinning the CGE framework is

incorrect. Second, Scriecui points out that CGE models solve for future time steps

recursively as opposed to using time-series data, and are benchmarked entirely on

parameters for the base year of the model where the market is assumed to be in

equilibrium. However, methods for benchmarking the model are not falsifiable, making it

difficult to validate the parameters in a traditional macroeconomic sense using time-series

data. This is often referred to as the "econometric critique" of computable general

equilibrium models. Third, vital to performing energy-economic-environmental analysis is

the representation of the dynamics of endogenous technical change. CGE models, however,

often assume exogenous technical change and for the few instances that technological
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change is implemented endogenously in a CGE model, it is done so in a very limited and

restrictive fashion. Fourth, in dealing with at times highly aggregated data, CGE models risk

over generalizing and homogenizing over different economic sectors and regions and

therefore fail to account for key regional, sectoral, and technical change unique to specific

regions. Due to the unique way that individual regional economies are structured, we

would expect regions to react differently to external shocks which would suggest different

implications for policy design from region to region. Fifth, Scriecui argues that CGE models

are often quite primitive in capturing environmental effects such as complex localized

environmental indicators such as air pollution. Sixth, is the common "black box" critique of

all complex integrated assessment models, that modelers often fail to make their models

transparent and do not explicitly indicate the methods and factors driving their results.

Finally, the most crucial parameters to a CGE model other than the parameters used to

benchmark the model in the base year are the elasticities of substitution between different

inputs to production. Scriecui argues that in calibrating CGE models there is high

uncertainty regarding the values of substitution elasticities and as CGE models are highly

sensitive to these values, it is easy for modelers to highly influence model outcomes

through slight tweaking of substitution elasticity values.

While some of the critiques of CGE modeling that Scriecui presents are reasonable,

many are more of a critique of the way in which some CGE models can designed or perhaps

have manipulated model parameters, but are not strictly a critique of the CGE framework

itself. In response to the first critique that economies usually are not in equilibrium and

therefore the equilibrium assumption of CGE models does not hold, the issue is more of a

question regarding the magnitude or degree of disequilibrium. Most would agree with

Scriecui that the economy is not always in a perfect equilibrium, however, if to the first

order the economy was largely in equilibrium and the second and third order effects of

disequilibrium were not influential to the overall outcome, then the fact that the economy

is not always in perfect equilibrium really isn't an issue. Additionally, as stated by

Bohringer and Loschel, the primary strength and CGE models is in studying ex ante

comparisons of different policy pathways. If the policy questions of interest are focused on

the comparative effects between different model scenarios as opposed to the absolute
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response of a single model result, any effects of disequilibrium would be less important as

they would be present in both scenarios being compared and first order disequilibrium

effects would cancel out. In comparative analysis of policy effects what is of most interest is

isolating the shock to the model due to the policy constraint and not necessarily the

absolute prediction of future outcomes.

Concerning the second "econometric critique," that CGE models are not based on time-

series data and are benchmarked in base year data that is not falsifiable and difficult to

validate, this is largely a failure to recognize that the kinds of questions CGE models are

used to address are once again ex ante comparisons of different policy pathways and not

predictions of future behavior. In other words, the utility in a CGE model is not in giving a

robust prediction of future economic activity and environmental impacts, but rather in

providing a framework to systematically study how policy can affect future outcomes in

different ways. As predictions of future outcomes from time-series data are based on

extrapolation from historical empirical observations they do not lend themselves to studies

where it is the counterfactual effects of different policy pathways that are of interest. In

addition, just because it may be the case that some CGE models are benchmarked in

datasets that are not well validated by empirical evidence does not mean that all CGE

models necessarily cannot be benchmarked in data sets that are highly representative of

the major economic indicators for a given region in a certain year. As CGE models have

grown in complexity and efforts to move to more and more disaggregated representation

has continued, much work has be made to improve the quality and accuracy of the datasets

used to benchmark models. One particular example of an enormous undertaking in this

regard is the GTAP database which provides worldwide base year data for 129 regions and

57 different economic sectors by combining major datasets from organizations like the

World Bank, as well as hundreds of sources from various statistic bureaus and banks in

individual countries (Aguiar, McDougall and Narayanan 2012).

The third critique that CGE models do a poor job representing endogenous technical

change is reasonable; however this is a challenge not limited solely to CGE modeling but is

a well-recognized challenge outside the CGE community as well (Weyant, et al. 1996).

Despite the challenge, since understanding the role of technical change and the nature of
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technological response to policy instruments plays a major role in determining

counterfactual future responses, much work has been done to improve CGE models in this

regard (Gillingham, Newell and Pizer 2008). Since future air pollution reduction

opportunities are heavily influenced by the endogenous response of abatement

technologies, improving CGE models' ability to represent technical change of air pollution

abatement technologies endogenously is a major goal for the present work. Therefore this

thesis directly contributes to addressing this critique.

The fourth critique that CGE models over-generalize and homogenize economic regions

and sectors is entirely a criticism of how some CGE models may have been designed but in

no way does this critique undermine the core methodology. Provided that the appropriate

databases are available and used, CGE models are more than capable of representing the

unique conditions specific to different economic sectors and among individual countries

and regions. As more detailed datasets with which to parameterize CGE models become

available, such as the GTAP database, CGE models are increasingly able to represent the

heterogeneity between economic regions and sectors and are well equipped to capture

some of the key differences in policy responses especially among developed and

developing economies.

The fifth critique that CGE models are very primitive when it comes to capturing

environmental concerns such as complex localized environmental indicators like air

pollution fails to recognize that CGE models are usually only one component of an overall

integrated assessment model. It is because many integrated assessment modelers

understand that CGE models are not as well equipped for representing biophysical and

environmental interactions, the component of the integrated assessment model that

represents the earth system usually takes on a much different form that is more conducive

to capturing relevant biophysical processes. In addition, most CGE modelers understand

that extremely localized questions that require significant detail, where the study of

interrelated effects is not the primary focus, are questions that CGE models are not

generally applied to and naturally belong to models with much more detail and narrower

scope.
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The sixth critique that CGE models are black boxes and non-transparent is more a

critique of how individuals or groups of researchers treat and document their models and

is not indicative of the CGE framework itself. CGE models and the methods used are

inherently complex, not out of desire to hide processes, but rather out of necessity because

the underlying interactions between socioeconomic and earth systems are complex

themselves. Because of the complexity, researchers should be as open and transparent in

their methods as they can, but at the same time critics or policy makers using results from

CGE models must recognize that understanding the intricacies of a CGE model can require a

good deal of training and expertise.

Finally, the seventh critique that there is a large degree of uncertainty in the

substitution elasticities and that slight variations in the elasticity values can heavily

influence the nature of the results is legitimate. While generally elasticities are sought that

have some kind of empirical grounding, precise calibration of substitution elasticities

remains a challenge. In this thesis we directly address this challenge when representing air

pollution abatement opportunities by exploring different methods for benchmarking

elasticities of substitution using empirical or engineering based data on available

abatement technologies.

Despite the many critiques raised, Scrieciu does properly acknowledge that "CGE

models do present powerful simulation devices for policy analysis based on a rigorous and

consistent theoretical framework, and address the workings of the economy as a whole,

allowing for economy-wide inter-sectoral interactions, macro-economic feedback and

spillover effects. They may be helpful particularly in the context for which they have been

initially developed, e.g. medium term comparative impacts of policy shocks on changes in

relative prices, factor reallocation, and the redistribution of sectoral output. The numbers

they provide may also prove useful when aggregate estimates are needed, and only when

these are used to give a sense of the significance and the relative order of the magnitude of

potential policy induced impacts" (Scrieciu 2007).

As the primary goal of this thesis is to develop tools with which to study the ex ante

comparisons of counterfactual policy pathways and how they impact various integrated

policy questions concerning energy generation mix, regional air pollutant emissions,
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regional welfare and GDP, ancillary emission benefits on other gas species, health impacts,

and impacts on earth systems and the environment, we conclude the CGE framework is the

most appropriate for representing the interconnected effect of interest and that the many

of the critiques of the methodology although reasonable are not insurmountable but rather

identify rich opportunities for improvements in model methodology and parameterization.

1.4 The MIT Emissions Prediction and Policy Analysis Model

To establish a framework within which to study the air pollution policy questions of

interest, we implement the proposed methodology for representing air pollution reduction

opportunities using the fifth version of the MIT Emission Prediction and Policy Analysis

(EPPA) Model. EPPA 5 is a dynamically recursive multiregional general equilibrium model

of the world economy that is used largely to study the effects of energy and environmental

policy on the economy and on anthropogenic emissions of greenhouse gases and

traditional air pollutants, but also consists of modified versions for looking at health effects,

household transportation, and advanced energy generation technologies (Paltsev et al.,

2005). As a multiregional model, EPPA simulates the world economy by dividing the world

into 16 regional economies that represent individual countries or groups of countries. Each

regional economy is then permitted to trade with the other economies where most goods

are treated using the Armington convention where imported goods are not perfect

substitutes for domestic goods. As a general equilibrium model, EPPA simulates each

regional economy through the circular flow of goods and services between households and

producers. Households receive payments from the production sectors for the labor and

capital services they provide and in return, households use the income they receive to pay

production sectors for the goods and services consumed. In its base form, EPPA 5 contains

14 sectors with additional technological detail and disaggregation in the energy and

agricultural sectors as these are most important to greenhouse gas and air pollution

emission effects. A map of the EPPA 5 regions along with a table of the economic sectors

and their abbreviation is given in Figure 1.3. For each region, sectoral output is used for

intermediate use, final use, investment, and exports.
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Like all computable general equilibrium models, EPPA solves as a Pareto efficiency

optimization model where producers and consumers seek to optimize profits and welfare

respectively. Therefore, one of the fundamental features that is captured in EPPA, and what

makes it such a powerful tool for studying counterfactual ex ante comparisons of different

policy pathways, is its ability to represent the ability of consumers and producers to make

decisions and change consumption habits or input factors to production in response to a

shock on the economy caused by a policy constraint.
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Figure 1.3. The MIT Emissions Prediction and Policy Analysis verion 5 regions and
sectors.

Also consistent with the CGE modeling framework, EPPA is benchmarked to a base year

where the economy is assumed, at least to the first order, to be in equilibrium. The critical

data used to benchmark EPPA are contained in Social Accounting Matrices (SAMs) and

represent a snapshot of the world economy for the EPPA 5 base year of 2004. The SAMs are

obtained from the Global Trade Analysis Project (GTAP) database version 7 (Badri and

Walmsley 2008). In addition to the SAMs for benchmarking economic data, EPPA also

benchmarks an inventory of both greenhouse gases and traditional air pollutants for the

base year. For EPPA 5, the greenhouse gases carbon dioxide (C02), methane (CH4), nitrous

oxide (N20), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride

(SF6) are benchmarked using data from the Emissions Dataset for Global Atmospheric

Research (EDGAR) version 4.1 (van Aardenne, et al. 2009). Similarly, the dataset used to
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benchmark the traditional air pollutants carbon monoxide (CO), sulfur dioxide (SO2),

nitrous oxides (NOx), ammonia (NH3), black carbon (BC), organic carbon (OC), and non-

methane volatile organic compounds (NMVOCs) were obtained using the EDGAR-HTAP

dataset (HTAP 2009). As many data sets for creating emission inventories are available, a

complete discussion regarding the decision criteria that went into choosing the EPPA 5

emission inventories is given in Waugh et. al (2011).

As a dynamically recursive model, EPPA solves recursively from the base year in five

year intervals producing projections of gross domestic product, final demand, energy

consumption, and emissions of GHGs and traditional air pollutants. The timeline for policy

analysis can vary depending on the specific questions that are being studied; however,

typical climate policy analysis tends to go through 2100. Since what is of most interest are

the ex ante counterfactual effects of different policy pathways, simulations run with a shock

to the economy due to a policy constraint are always compared to a baseline business as

usual scenario where no shock is present. In addition to running as a standalone model,

EPPA can also run jointly with the MIT Integrated Global System Model (IGSM) to study

how changes in anthropogenic emissions impact various earth systems and the

environment (Sokolov et al., 2005). By coupling the CGE model with a separate highly

advanced earth systems model, EPPA is able to take advantages of the benefits of

computable general equilibrium for representing the socioeconomic interactions but also

represent significant detail in biophysical processes and the earth system that other

integrated assessment models with less developed earth systems components are unable

to account for.

While EPPA has largely been used to study the effects of climate policy, work has also

been done to represent the traditional air pollutants; however, in its current form, the

representation largely consists of exogenous forcing of the emission intensity of air

pollution emitting sectors and therefore does not capture the endogenous response to a

policy shock that should occur. Also, the way traditional air pollutants are currently

integrated into the production sectors as being used in fixed proportion with fuel use and

other pollutants is not conducive to capturing the interconnected effects that constraints

on one pollution species may have on other species (e.g. the way constraints on S02 will
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effects emissions of NOx and C02, etc.). Before presenting the proposed solution to how

these deficiencies can be overcome, we first consider previous methodologies that have

been used to represent air pollution reduction opportunities in a CGE framework.
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2 Previous Methods for Modeling Air Pollution Abatement

Several methods have been developed and implemented to represent air pollution

abatement opportunities in a CGE framework allowing integrated assessment models the

capability to represent future emission levels based on the economic response of air

pollution reduction policy. As already mentioned, many of these methods represent

abatement opportunities as a change in the level of emissions per unit of economic activity

in each sector through exogenously determined trends. Other methods represent

abatement opportunities endogenously by including emissions as an input to production.

The advantage of the endogenous approach is that it allows models to capture

interconnected economic effects such as total abatement cost, change in energy technology

production mix, change in energy cost, and the overall policy impact on welfare and GDP.

In this section, many of the previous methods used to represent urban pollutant

abatement opportunities in a CGE framework are given, along with an overview of the

advantages and disadvantages of each method. Upon evaluating these existing methods,

several important limitations are observed that show how integrated assessment models

built on these methods may not fully represent the true economic impact of policies aimed

at reducing air pollutant emissions. Due to these limitations in existing methods, new

methodologies will be required to expand integrated assessment models as a tool for

evaluating the interconnected environmental and economic impact of various air pollutant

related policies. Once the previous methods have been considered, the proposed method

for improved representation of abatement costs within a CGE framework is then given in

Section 3.

Many methods currently exist to evaluate air pollution related policy by modeling the

effects or air pollutant abatement technologies on emissions reduction, fuel consumption,

economic output, and welfare. The methods available can generally be divided into two

categories of representation: 1) representation of abatement as a change in the level of

emissions per unit of activity within a specific sector of the economy, and 2) representation

of abatement where emissions are treated as an input instead of as an output to production

processes. Representation of abatement as a change in the level of emissions per unit of
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economic activity is often represented within integrated assessment models exogenously

where the emission intensity of a sector is derived from empirically observed time-trends

quantified from historic emissions reduction. On the other hand, representation of

abatement costs by treating emissions as an input to production, fits extremely well into

CGE frameworks comprised of nested constant elasticity of substitution (CES) production

functions and allows abatement to be treated endogenously. Representing emissions as an

input to production has the advantage of capturing many of the interconnected influences a

policy constraint may have on the energy technology mix and policy costs; these effects are

not captured by models that represent abatement opportunities exogenously. One

disadvantage, however, of treating emissions as inputs to production is that the parameters

needed for endogenous representation can be more difficult to come by, especially if the

goal is to have a more disaggregated and heterogeneous representation that identifies

abatement opportunities unique to specific regions and sectors within the model. Methods

based on exogenous representation of air pollution emission will now be considered.

2.1 Emissions Coefficients Approach to Modeling Pollution and Abatement

One of the more common methods for representing anthropogenic emissions is by

multiplying the total economic activity of a given sector by an emissions coefficient that

gives the quantity of emissions per unit of economic activity and represents the emissions

intensity of the sector. As mentioned previously in our discussion of the early energy and

environmental models-such as the ETA model developed by Manne-emission

coefficients date back to the early days of energy emissions modeling and today are used as

the fundamental framework of the Intergovernmental Panel on Climate Change (IPCC)

three-tier methodology for greenhouse gas emissions reporting (IPCC 2011). The IPCC

three-tier framework provides guidelines for establishing emission coefficients based on

varying degrees of aggregation in the data available for parameterization. In the framework

each subsequent tier provides improved and increasingly less aggregated emission

coefficients by accounting for sectoral variation from region to region as well as region and

sector specific technological detail. Tier one is characterized by high aggregation and

relatively less restrictive data requirements, whereas tier three is highly disaggregated but
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requires particularly detailed data for coefficient parameterization. Although these more

detailed emission coefficients provide more accurate representation of pollution sources

and specific abatement opportunities, the data required must have significant detail and is

often hard to obtain, especially for many of the developing countries with less well

established statistics bureaus. The choice of tier is therefore largely a function of the

availability of data with which to benchmark the emission coefficient parameters.

The tier one representation of the IPCC methodology is the simplest of the three and is

the least intensive in terms of data required, but also contains the highest level of

aggregation. The method involves multiplying the total amount of activity in a given

economic sector by an emission factor that is assumed to be globally constant for activity in

the sector being considered. For example, if one wanted to calculate the total amount of S02

emissions in the United States from electricity production, one would multiply the total

output of the electricity sector in the US by a globally determined emissions factor that

gives the quantity of S02 emitted per unit of electricity produced. Using the tier one

method, the emissions from pollutant i in region j for sector k are expressed using a global

sectoral emission factor as given by Equation 2.1:

Emissions ijk(kg) = Emission Factor k (k uit x Activity ,k(unit (2.1)

The activity unit varies by activity type. For fossil energy production the unit is typically

the energy content of the fuel (e.g. the energy content of coal in gigajoules, GJ).

Tier two methodology differs from tier one only in that emission factors are no longer

assumed to be constant globally but account for heterogeneity among regions. This is done

to account for the fact that inputs to economic activity and the emission intensity of the

activity can vary among regions due to technological variation of energy production, the

composition of the regional economy, and the stringency of regional emission controls that

influence abatement. For example, the emission intensity of any pollutant-S02, NOx, Hg,

BC, from the electric sector in Norway would be much less than in China due primarily to

technological variation; Norwegian electricity is generated almost entirely from

hydroelectric power plants which generate no air pollution while -80% of Chinese

electricity generation comes from coal-fired plants. For the tier two methodology, the
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emissions of pollutant i in region j for sector k are expressed using a sector and region

specific emissions factor as given in Equation 2.2:

Emissions ijk(kg) = Emission Factor k it x Activity j, unit) (2.2)

Tier three methodology involves the lowest level of aggregation and is based on either

taking direct measurements of emissions from the source-e.g. an S02 monitor on a coal-

fired power plant, or detailed emissions modeling that takes into account specific

technologies or conditions under which an activity is conducted within a region and sector.

For example, Tier 3 methodology would account for the difference in the sulfur content of

different grades of coal being burned in a given region and sector. The overall coal used in

the sector would be disaggregated by type and a grade specific emissions coefficient would

be used for each grade of coal. In addition, S02 emissions from coal may also vary within a

region and sector due to other technological variation such as the cost of abatement

technologies like scrubbers and electrostatic precipitators, and the stringency of emission

controls in the region. In this case, the emissions factor becomes a technology specific

factor accounting for all the individual technologies within a given region and sector. For

tier three methodology, the emissions of gas i in region j for sector k using technology t is

expressed in Equation 2.3 as:

Emissions i,j,k(kg) = Emission Factor k nit Activiyj,k,t (unit) (2.3)

As has been seen, the substantive difference between the different tiers is largely the

level of disaggregation. The underlying assumption is that a more precise description of

the activity will result in a more precise estimate of the emissions factor and hence less

potential error introduced by virtue of the fact that more grossly determined average

emission factors inadequately represent the variation of sub-types of activities in different

regions. Often the determining factor for which tier is used lies in the level of

disaggregation of the available data. While the third tier provides the least aggregated

representation, tiers one or two may be invoked out of necessity when less aggregated data

for benchmarking emission factors is unavailable. Once a tier level and the corresponding
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emission coefficients are determined from a given data set, those coefficients can be used

to benchmark the emission intensity of a given production sector in the base year of a CGE

model (e.g. benchmark the amount of S02 that is emitted from coal used in the electricity

production sector). However, the emission intensity of an activity, and therefore the

emission coefficients, are not static and change over time. We will now consider two

methods used to address the change in emission intensity and emission coefficients

exogenously.

2.1.] Income-related Representation Emission Coefficient Trends

Once base year emission coefficients are determined based on the level of aggregation of

available data, one must consider how the emission coefficients will change over time and

vary from their initial values. Factors that influence the change in emission coefficients

include change in the sectoral composition of the economy (e.g. over time economies tend

to shift away from or towards certain emission intensive activities), technological

improvements that reduce the emissions intensity, changes in consumer preferences,

government policy and regulation aimed at emission reduction, and the autonomous

energy efficiency improvement (AEEI) that has been empirically observed as a voluntary

improvement in energy efficiency that is not driven by market mechanisms.

Selden and Song argue that in general, the behavior of emission trends exhibit an

inverted-U or "Kuznets" curve where emissions increase while an economy is

industrializing and agricultural modernization occurs, but over time decrease due to

"positive elasticities for environmental quality; changes in composition of production and

consumption; increasing levels of education and environmental awareness; and more open

political systems" (Seldon and Song 1994). These trends are observed for traditional air

pollutants such as S02, NOx, lead, and chloroflourocarbons. Selden and Song go on to derive

an empirically based negative relationship between GDP per capita and the emission

intensity of economic activity. Their work suggests that emission coefficients are income-

related and decrease over time as GDP per capita increases. A similar result is also

observed by Grosman and Kruger (Grosman and Krueger 1995). Although the

environmental Kuznets curve hypothesis has shown reasonable agreement with trends in
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traditional air pollutants, critics claim that it may not necessarily be an appropriate theory

for other pollutants such as carbon where it is uncertain at what income level abatement

will take precedence over economic growth.

Using the environmental Kuznets curve hypothesis, Mayer et al. presents a method for

representing urban pollutant emissions in a computable general equilibrium framework by

benchmarking the model to baseline emission coefficients that then changes over time as

the model predicts future changes in per capita GDP (Mayer, et al. 2000). By fitting

emissions, population, GDP, and economic output data to exponential and power functions,

negative relationships between emission coefficients and GDP per capita are derived for

electric power generation, energy intensive industry, household consumption, and

agriculture. A sample of one of the relationships is given in Figure 2.1 which shows the

emission factor (defined here as the emission coefficient of a given year normalized to the

benchmarked emissions coefficient of the base year) for coal used in electricity production.
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Figure 2.1. Income-related trend in emission factors for coal used in electricity
production for major regions. The emission factor in this case is defined as the
emission coefficient of a sector normalized to the base year coefficient (as given
by Mayer et al., 2000).
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The emission factor remains higher for developed economies, such as Japan, Europe and

the United States compared to developing economies like China and India.

In a CGE framework, implementing this approach to represent time evolving emission

coefficients based on the Kuznets curve is straight forward. As the CGE model solves

recursively for each subsequent time step beyond the base year, the previous period's

population and GDP parameters are used to compute the new period's emissions factor

using empirically derived emission factor-GDP exponential and power functions. The

resulting formula for the case of coal emissions is given by Equation 2.4 as:

Er,s,t = Frs -a - GPo R,t (2.4)
(Population R,t

where E,. ,is the emissions factor at time t, F is the initial benchmarked emission

coefficient per region and sector for the base year, and a and p are parameters obtained

by regressing the power function to empirically obtained emissions, GDP, and population

data in the base year. Of these parameters, Fors a,8p, and PopulationR,t are imposed

exogenously. Only GDPRt is provided endogenously within the model. Although this

method provides some level of endogenizing the emission coefficients within the model-

based on the Kuznets hypothesis-that leads to an empirically observed reduction in

emission intensity as GDP increases, the representation does not account for the cost of

emissions reduction and abatement opportunities pursued, and therefore limits the

integrated assessment in its ability to illuminate policy considerations affected by the cost

of emission policy controls.

2.1.2 Time-related Representation of Emission Coefficient Trends

An argument against using the environmental Kuznets curve hypothesis for representing

trends in emission coefficients is that the reductions in emissions are more appropriately

represented as being time-related rather than income-related. Stern and Common argue

that many studies that derive environmental Kuznets curves for emissions mainly

considered only high-income countries and do not account for middle to low-income
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countries in their analysis. If accounted for, Stern and Common show a stronger

relationship between emissions reduction and time than for per capita GDP as suggested by

Selden and Song (Stern and Common 2001). Stern and Common go on to argue, based on

empirical observations, that trends in sulfur emissions have reversed and are declining and

that most countries over time are gradually converging towards a best practice technology

frontier that takes advantage of all available abatement technologies (D. I. Stern 2005).

Stern then provides estimates of future emissions, based on past emission reduction

trends, for how long it will take certain countries to reach a best practice frontier.
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Figure 2.2. Time-related trends in urban pollutant emission factors for coal as an
input to electricity production (as given by Webster et al., 2008).

In a CGE framework, the time-related emissions coefficient as proposed by Stern can

also readily be implemented by allowing the emissions factor to vary over time based on

historical empirically observed time trends. By extrapolating for future emission

coefficients based on historical trends, M. Webster presents a method for representing

urban emissions within a CGE framework by imposing exogenously time varying changes

to emission coefficients (Webster, et al. 2008). This representation retains a similar form to
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the per capita GDP trends given by M. Mayer in Equation 2.4, however, the fitted function

becomes a time dependent decaying exponential. This representation is given in Equation

2.5.

Erst = F0 rs -e (2.5)

An example of the relationship showing a reduction in emission intensity over time derived

by Webster for S02, NOx, CO, BC, OC, VOCs and ammonia is given in Figure 2.2. All three

plots show a decrease in emission factors over time with the greatest reduction coming for

SO2, BC, and OC. Although the benchmarked emission coefficient is region specific, the

emission factors are not.

2.2 Modeling Pollutants Endogenously as Inputs to Production

One of the primary limitations of using exogenously determined trends-both income-

related and time-related trends-in emission coefficients to represent abatement in a CGE

framework is the inability to capture many of the economic interactions that occur when an

emissions constraint is imposed, such as the firm level decision between paying for

additional abatement technologies, paying the regulatory cost for emitting, or shifting away

from emission intensive inputs to production. While the exogenous methods that utilize

emission coefficients may accurately capture the change in emission intensity within a

sector over time, and therefore do a reasonable job capturing long term projections of

future emissions due to changes in economic activity, exogenously changing emission

coefficients do not directly capture the costs incurred for abatement and therefore are

unable to represent the true economic impact of air pollution policy. The inability to

capture abatement costs limits the scope of questions that can be addressed using CGE

models that use exogenous trend-based methodologies and consequently cannot provide a

complete picture of the overall economic impact when comparing multiple policy

pathways. This limitation is an important one as policy costs are often one of the key

considerations when considering air pollution policy options.

As an alternative to representing change in emission intensity through exogenous

trends, several methods for representing abatement endogenously within the CGE
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framework have been proposed to capture the abatement costs for non-C02 greenhouse

gases. One such approach is to create a "clean-up" sector within each regional economy that

takes capital, labor, and other inputs and produces emissions reduction as output. Under a

policy constraint, emission producing sectors can purchase abatement from the clean-up

sector to meet regulatory constraints. This approach captures both the empirically

observed improvement in emission intensity over time as well as cost effects. However, the

drawback is that since abatement opportunities are technology specific, a separate clean-

up sector is needed to represent the cost and pollution removal efficiency associated with

each individual abatement technology. With many abatement technologies available across

different regions and sectors, implementing clean-up sectors for all abatement technologies

would be non-trivial and would require significant modification to existing model

frameworks. In addition, each technology specific clean-up sector would have to be

specified for the sector(s) in which it can be utilized since abatement technologies are

largely sector specific, e.g. multiple clean-up sectors from SO2 for coal used in electricity

production would need to be included to represent abatement through different

technologies such as scrubbers and electrostatic precipitators, while

hydrodesulphurization would only be available for sulfur removal in refined oil and natural

gas.

A second method for implementing abatement costs endogenously within a CGE

framework is to create alternative production sectors that produce the same goods as the

originals, but are less emission intensive and take into account the additional costs of

abatement. Constraints imposed on emissions will push production away from the more

emission intensive sectors with lower production cost to the less emission intensive sector

with higher production cost. This method is already widely applied in the MIT EPPA model

to represent alternative electricity generation technologies. For example, one electricity

production sector could represent current levels of abatement and emissions while

alternative electricity production sectors would be available with each additional sector

incrementally including more and more abatement opportunities while increasing costs

and decreasing emissions. When there is only one or two alternative production sectors

this method works quite well. However, when there are numerous abatement technologies
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to be represented, this approach has the similar limitation as the clean-up sector approach

in that many alternative production sectors would be required to represent the gamut of

available air pollution abatement technologies. Preferably whatever method that is used to

represent abatement opportunities endogenously should require minimal change to the

existing model structure to reduce the effort of implementation.

2.2.1 Modeling Non-CO2 Greenhouse Gas Emissions as Inputs to Production

A third approach for endogenizing pollution abatement opportunities, that does not

require the introduction of multiple technology specific clean up sectors nor alternative

production sectors with varying degrees of emission intensity, but rather builds on the

existing sector infrastructure, was developed for non-C02 greenhouse gas emissions

(methane, nitrous oxide, hydrofluourcarbons, perfluourcarbons, and sulfur hexafloride) by

Hyman et al., 2002. In this approach, instead of being treated as outputs, emissions are

treated as inputs to production with an associated quantity and price. Any sector using an

emission intensive input to production must also "purchase" the emissions corresponding

to that input as an additional input. Although representing emissions as an input may seem

counterintuitive since emissions are generally viewed as environmental externalities that

are byproducts of primary outputs of production, the representation is effectively

equivalent, (i.e. restricting emissions as an output of production has the exact same

response within the model in terms of quantity of pollutant and cost as what would occur

by restricting emissions as an input to production). This representation also fits well with

the manner in which policy instruments are implemented within the CGE framework.

Under a policy constraint, regional and sectoral emissions are restricted by either a cap or a

tax or some other control scheme such as an energy portfolio standard. If the policy

instrument were a cap, then within the CGE framework there would be an initial

endowment of pollution permits available for producers that use emission intensive

sources for production and the emissions within each sector would be limited by the

quantity of permits the sector purchases. Similarly, a tax can also be implemented within

the CGE framework by increasing the price of emissions relative to the market value at

equilibrium.
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Treated as an input to production, Hyman et al. place the pollutant as an input in the

upper-most nest of each nested constant elasticity of substitution (CES) production block.

Under this representation, a rise in the price of emitting a pollutant will cause a shift away

from using the pollutant as an input to production and towards all other conventional

inputs. This implies that abatement technologies require a proportional increase in all

inputs that relate to the production of the good.

These conventional inputs include value added (capital and labor), as well as resource-

intensive inputs (land, intermediate inputs from other sectors, and energy inputs such as

electricity, coal, oil, refined oil and gas). With a greater demand for conventional inputs

under a policy constraint, overall production costs increase.
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Figure 2.3. Endogenous representation of pollutant as input to production for non-
CO2 greenhouse gas emissions (as given by Hyman et al.). Under a constraint,
production shifts away from the pollutant and towards other conventional inputs.

This increase in cost is interpreted as representing the additional cost the sector incurs for

paying for pollution abatement under the constraint with the abatement being represented

indirectly under the conventional input bundle. An illustration of the nested production

block with the pollutant as an input to production at the top of the nest, along with the

conventional inputs to production, is given in Figure 2.3.

This representation is readily implemented in the CGE framework as a nested CES

production function. The pollutant is placed in the upper-most CES nest and initial input
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shares for both the pollutant and conventional inputs are given along with the elasticity of

substitution between the pollutant and conventional inputs. The CES production function

for the topmost nest in Figure 2.3 is given in Equation 2.5 as,

X0 =95#-X, + (1-#)-X C o (2.5)

where X 0 is the production output of the sector, X, is the pollutant expenditure input,

Xc is the conventional input nest, # is the value share of the pollutant, and Polutant (or just

a- for simplicity) is the elasticity of substitution between the pollutant and other

conventional inputs. In the CES production function, X 0 , XP and Xc are determined

endogenously by the model while # and -are exogenously specified parameters. In this

case, future abatement opportunities are primarily captured in the elasticity of substitution

parameter a. If many abatement opportunities exist, o- will be very elastic, allowing the

sector to easily shift away from emitting and towards abatement. On the other hand, if few

abatement opportunities exist, a- will be very inelastic, and the sector will be less capable

of shifting toward abatement.

For the case of non-C02 greenhouse gases, Hyman et al. assume that few abatement

opportunities have been utilized and that in the base year there are few policy constraints

on GHG emissions. Under these assumptions the initial price of the pollutant is zero

resulting in a zero value share for emitting. In practice, the value share must be nonzero for

the numerical model to solve so the value is set to an arbitrarily small quantity. The

elasticity of substitution is obtained based on the relation that the supply of abatement

opportunities, as given by an empirically obtained marginal abatement cost (MAC) curve, is

the inverse of the demand for abatement. Once the price elasticity of demand for emitting,

6D E, is determined from the MAC, Hyman et al. show that for non-CO2 greenhouse gases, a-

is given as:

o- = -eDE (2.6)
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Because of heterogeneity in economic composition among regions, we would expect

abatement opportunities for non-C02 greenhouse gases to vary from region to region. For

example, abatement opportunities for CH4 and N20 in Brazil, with an economy that has a

large share of agricultural production, would be quite different than abatement

opportunities in Japan with little agricultural production. Likewise, abatement

opportunities within a region will also differ among sectors; the abatement methods used

to limit methane emissions from coal, oil, and natural gas production are different than

those used to reduce methane from enteric fermentation in livestock. This is an important

consideration and speaks to the critique given earlier by Scriecui that CGE models often

homogenize and generalize over regional and sectoral detail. To accurately capture

abatement opportunities through Hyman's method using elasticities of substitution, unique

elasticities must be determined for emissions used as inputs in individual regions and

sectors. Using MAC data on abatement opportunities provided by the U.S. Environmental

Protection Agency and the International Energy Association, Hyman et al. derive unique

elasticity of substitution parameters for several individual sectors and regions.

2.2.2 Modeling Air Pollutant Emissions as an Input to Production

In his PhD thesis, M. Sarofim expands on the methodology of Hyman et al. to represent air

pollutant abatement opportunities for SO2, NOx and BC using a similar structure with air

pollution represented as an input to production in the upper-most nest of the production

function (Sarofim 2007). Sarofim then uses MAC abatement opportunity data from the

Regional Air Pollution Information and Simulation (RAINS) model to benchmark the

elasticities of substitution between pollution and other conventional inputs. Although, as

was mentioned previously, we expect heterogeneity among abatement opportunities in

specific regions and sectors, the RAINS model at that time only contained abatement

opportunity data for Europe and China (International Institute for Applied System Analysis

(IIASA) 2003). Under this limitation, Sarofim assumes that unlike non-C02 greenhouse

gases, urban pollution abatement opportunities are more homogenous across regions and

that the primary influence on the availability of future abatement options is the stringency

of existing air pollution emission constraints. For example, in regions with existing policy
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that is relatively stringent, many abatement technologies will have already been

implemented to meet policy requirements so that few additional abatement options may be

available. In regions with less stringent or no policy, no abatement technologies will have

been implemented so that all abatement options are still available. Since the stringency of

existing air pollution controls are a strong function of whether a regional economy is

developed or developing, Sarofim uses the elasticities of substitution obtained for Europe

to be representative of abatement opportunities of developed countries, while elasticities

of substitution from China are used to represent abatement opportunities in developing

countries.

Despite homogenizing over developed and developing regions using substitution

elasticities for Europe and China respectively, Sarofim acknowledges that due to different

existing air pollution reduction policies and abatement opportunities, parameters are much

more likely to be heterogeneous across regions. He says, "Ideally, each pollutant in each

sector in each region would be given a separate elasticity. However, the estimation

problem is large: 6 major pollutants (CO, VOCs, BC, OC, SO 2, and NOx) multiplied by sixteen

sectors plus eleven electric generation technologies with relevant emissions possibility

including different fuels for each sector would mean over a hundred different elasticities to

estimate, and then attempting to make estimates for each of the sixteen regions would

make the problem completely unmanageable." Another consideration is that unlike the

non-C02 greenhouse gases, air pollutants are largely associated with fossil fuel

consumption and may not necessarily respond to a policy control in the same way as non-

C02 greenhouse gases. In the CGE framework, fossil fuels are included as inputs under the

resource-intensive bundle in the production block nest. As shown in Figure 2.4, as air

pollution emissions are constrained under the Hyman representation, production will shift

away from the pollutants toward greater demand for conventional inputs. However, the

conventional inputs nest includes the resource-intensive bundle and subsequently fossil

fuels. This leads to a model response where fuel consumption increases as emissions are

constrained. This behavior can occur in the case where abatement technologies decrease

the efficiency of production. For example, scrubbers used in a coal-fired power plant

decrease the overall plant efficiency and more coal is needed for the same amount of
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electricity production without the scrubbers. However, when policy controls become

increasingly stringent, we would eventually expect firms to shift away from certain fuels as

a production inputs when abatement and policy costs become exorbitant and towards less

emission intensive inputs.

Production Output

C*Pollutant

Pollutant Conventional
in ts

F

UERVA

Resource - ntensive Bundle Value Added

Land Energy - M erials Bundle

Intermediate Inputs Bundle Energy gregate

ELEC Non - ELEC

COAL OI1L GAS ROIL

Figure 2.4. Using non-CO2 greenhouse gas representation of abatement opportunities
leads to unrealistic result: tighter emissions controls leading to increased fuel
consumption.

In contrast to air pollution emissions, the reason this representation works for Hyman

et. al is that non-C02 GHGs are largely not associated with fuel consumption and therefore

placing non-C02 greenhouse gas emissions in the top nest does not result in the same

model response. For example, methane and nitrous oxide emissions are largely associated

with agriculture, industrial production, and fugitive emissions from natural gas, coal, and
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oil production. Additionally, the fluorinated gases (HFCs, PFCs and SF6) are the products of

various industrial processes and do not derive from fuel consumption.

A variation of the method by Hyman et al. that continues to treat emissions as inputs to

production, but accounts for air pollution largely being associated with fossil fuel

consumption, is presented by de Masin for black carbon (BC) emissions (de Masin 2003).

The formulation used is largely the same as that of Sarofim except that BC emissions from

non-fuel related sources and fossil fuel combustion are treated separately in the production

block. Non-fuel related emissions continue to be treated as an input in the upper-most nest

of the CES block; however, emissions associated with fuel use are given as inputs to

production in the same nest as the fuel. The original aggregate energy bundle under this

representation is given in Figure 2.5(a) while the modified bundle with BC from fuel

combustion as an input to production is given in Figure 2.5(b).

Energy Aggregate

Energy Aggregate
ELEC Non - ELEC

ELEC Non- ELEC

"Dirty" OIL GAS "Dirty"
COAL ROIL

COAL OIL GAS ROIL
aBC -Coal 1 

7
BC-Rol,

BC Clean BC Clean
COAL ROIL

(a) (b)

Figure 2.5. (a) The Energy Aggregate bundle without BC emissions as an input to
production. (b) The Energy Aggregate bundle with BC emission as an input to
production for both coal and refined oil.

In the modified bundle, fuel-related BC emissions are separated between emissions

stemming from coal combustion and emissions from refined oil (abbreviated in the figure

using the EPPA notation ROIL). As the price of BC increases, production in both the coal and

refined oil nests will shift production away from emitting BC and towards "cleaner" coal

that has been produced with additional BC abatement technologies. de Masin goes on to

obtain the fuel related elasticities of substitution for coal and refined oil using fuel specific
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MACs from the Regional Air Pollution Information and Simulation (RAINS) model.

However, as was the case with Sarofim, since the RAINS model only provides abatement

data for Europe and China, de Masin makes the same assumption as Sarofim that European

and Chinese elasticities of substitution are representative of all developed and developing

countries respectively.

Although de Masin's representation of abatement opportunities in a CGE framework

properly distinguishes between fuel and non-fuel related air pollutant emissions, and

therefore provides an improvement over Sarofim's representation, the structure of the nest

de Masin invokes makes it difficult to represent multiple air pollutants in addition to BC

that are also associated with coal and refined oil and that would also be constrained under

air pollution policy. Thus one of the integrated analysis goals identified earlier of

understanding the interconnected effects that policy controls on one pollution species have

on other species are not attainable using de Masin's framework. For example, the way in

which de Masin separates "dirty coal" from "clean coal" and then allows substitution

between BC and clean coal can only capture substitution between a single pollutant and

"clean coal" and is not expandable to cover additional pollutants from coals. In order to

represent multiple pollutants within a single framework and therefore represent

comprehensive air pollution policy, approaches similar to de Masin's method but with

multiple pollutant representation would need to be made to consider policy impacts on

emissions of S02, NOx, CO, Hg, lead, and other particulate matter that are also associated

with fossil fuel consumption.

2.3 Need for Improved Representation of Abatement Opportunities

We have now reviewed many of the approaches for representing air pollution abatement

within a CGE framework and have discussed some of the advantages and limitations of

existing methods. While modeling the change in emission intensity through either GDP per

capita or time related trends in emission coefficients can account for some abatement

effects including changes in consumer preference, shifts in economic activity away from

emission intensive production, and the autonomous energy efficiency improvement;

representing abatement opportunities in this manner is incapable of fully capturing
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abatement costs and subsequently a proposed air pollution control policy's overall impact

on welfare and GDP. Therefore, while exogenously determined emission coefficient trends

may be adequate for predicting future emissions, their application for integrated

assessment models aimed at policy analysis is limited as regulatory costs and economic

outcomes are key considerations when considering multiple policy pathways.

While many methods have also been developed to represent air pollution abatement

endogenously as an input to production, improvements on these existing methodologies,

and/or the implementation of such methodologies, are needed for a complete

representation of multiple air pollutants associated with fuel and non-fuel related sources.

Of these representations, the method proposed by Sarofim, which builds on the method

used previously by Hyman for non-C02 greenhouse gases, has abatement requiring a

proportional increase in all inputs for the same level of production output without a policy

control. As abatement technologies are not necessarily produced using an increase in all

inputs, we would like a method that provides greater flexibility in the mix of inputs

associated with abatement. In addition, as air pollutants are much more strongly associated

with fuel consumption, we would also like a method that provides greater flexibility in

treating fuel and non-fuel related emissions separately as the model response may be

different than for non-C02 greenhouse gases that are not directly associated with fossil fuel

use. The method proposed by de Masin builds on the earlier developments by Hyman and

Sarofim by providing a framework in which fuel and non-fuel related emissions can be

treated separately, however, de Masin limited his investigation to a single pollutant and we

would like to have a method that is capable of representing multiple pollutants

simultaneously. In the end, the goal is to build on these earlier developments to create a

new methodology, with sufficiently disaggregated technical data for heterogeneous

representation of abatement opportunities, to represent multiple pollutants

simultaneously and endogenously within the same framework. A proposed methodology

that largely accomplishes these goals and its implementation will now be considered.
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3 Air Pollutant Abatement Opportunities in a CGE Framework

In this section a new method for representing air pollution abatement is proposed that

addresses many of the limitations of the previous methods considered. Full

implementation of the methodology within the EPPA model version 5 is also presented.

The method proposed is similar to the approach of Hyman et al., Sarofim, and de Masin, but

advances these approaches by simultaneously 1) treating abatement opportunities for fuel

and non-fuel related emissions separately, 2) providing a framework capable of

representing abatement opportunities for multiple air pollutants, 3) providing regional and

sector specific representation of available abatement technologies, and 4) accounting for

the fact that existing policy constraints on air pollutants in many countries have already

achieved significant level of emissions reduction while little or no air pollution control

policy exists in other regions, particularly in developing countries. This fourth criterion is

significant because unlike climate policy which has yet to establish meaningful reduction in

GHGs in most countries, significant air pollution reduction controls are already in place.

Because of this, knowledge of the level of abatement already occurring under existing

controls is required in addition to knowledge of available abatement technologies. The

importance of this distinction is discussed in detail later when we consider the derivation

of model parameters from MACs. The abatement opportunities identified, therefore, must

be abatement opportunities available above and beyond the level of abatement already

obtained through existing controls.

3.1 Representation of Abatement Opportunities

For nonfuel-related air pollution, we adapt the structure of Hyman et al. by treating urban

emissions as an input to production in the upper-most nest of the CES production block as

shown previously in Figure 2.3. Just as in the non-C02 GHG case, as policy constraints

become increasingly stringent, production will shift away from emitting and towards the

other conventional inputs. For fuel-related pollution, we adopt a simplified version of the

"clean-up" sector approach where only capital is used as an input. This is reasonable as

abatement is largely achieved through capital investment in abatement technologies
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although other inputs to abatement production could be used as well. The major difference,

however, between the proposed approach and the more traditional clean-up sector

approach is that instead of creating a clean-up sector for the gamut of every available

abatement technology, we create a single clean-up sector that provides capital for

abatement that is then provided to fuel consuming sectors. The technological detail of

abatement opportunities is then contained within the fuel consuming production sectors

using elasticities of substitution that allow production to shift away from emitting.

We also make use of the fact that air pollution on average is typically produced in fixed

proportion with the quantity of fuel consumed. While this is not strictly the case as

different fuel types can have different concentrations of pollution causing impurities (e.g.

various concentrations of sulfur and mercury content in different grades of coal lead to

different levels of emission intensity), we can account for the different pollution

concentration in different fuel grades as part of the technology mix of abatement

opportunities in the MAC. We implement the relationship for fuel-related pollution into the

CES nest structure using a Leontief production function which takes as inputs fuel and

pollution, but has zero elasticity of substitution so that the inputs are always used in fixed

proportion according to the value share. By using a Leontief block for the first nest, we

establish the total amount of fuel-related pollution as constant. In the absence of emission

controls there will be no cost for emitting and no abatement opportunities will be pursued;

all of the pollution will be emitted. On the other hand, when policy constraints are imposed,

abatement opportunities are implemented so that part of the pollution is abated with the

rest being emitted. What determines the quantity of pollutant abated vs. quantity emitted is

the availability and cost of abatement technologies as well as the stringency of imposed

emissions constraints. As policy becomes more stringent and the quantity of allowable

emissions is reduced, production will either be forced to reduce fuel as an input to

production since total pollution is used in fixed proportion with fuel consumption, shift to

other less pollution intensive fuels, or pay for additional abatement technologies to meet

emissions reduction targets. The tradeoff between reducing fuel as a production input and

shifting away from emitting towards greater abatement can easily be represented in the
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CES nest structure by allowing production to substitute between pollution emitted and

pollution abated.

Figure 3.1 shows the modified fuel-emissions bundle for a single fuel type (e.g. coal, oil,

gas, or refined oil) where XF is the fuel input expenditure, X, is the expenditure on total

pollutant associated with fuel combustion, XA is the expenditure on pollutant abated, XE

is the expenditure on pollution emitted, and afuel is the elasticity of substitution between

emitting and abating fuel-related pollution. Each expenditure is given as the quantity of the

good times the price (e.g. XE=PE*XE where PE is the price of emission and xE is the quantity

of emissions, XA=MCA*xA where MCA is the marginal cost of abatement and xA is the

quantity of abatement).

Fuel - Emission Bundle (OLD) Fuel - Emission Bundle (NEW)

I_ II_
XF XP XF

(fuel

XA X E (Fuel-related)

(a) (b)

Figure 3.1. (a) Previous fuel-emissions bundle representation in EPPA, (b) new fuel-
emissions bundle in EPPA with pollution abatement opportunities. XF is the fuel

input expenditure, X, is the expenditure on total pollutant associated with fuel

combustion, XA is the expenditure on pollutant abated, XE is the expenditure on

pollution emitted, and crue is the elasticity of substitution between emitting and

abating fuel-related pollution

In this formulation, the availability of abatement technologies is directly represented by

the afuel term. As more abatement technologies become available for reducing emissions,

7fuel becomes more inelastic and it becomes easier for production to substitute abating

pollution for emitting. If less abatement technologies are available, aue, becomes more

inelastic and it becomes more difficult for the firm to make the substitution.
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The primary advantage of this method over the method proposed by Sarofim is that by

representing fuel-related emissions in the fuel bundle, instead of in the top most nest of the

production block, we avoid the unrealistic result that more stringent urban pollution

emission controls will lead to an increase in fuel consumption. In addition, the method

offers a significant advantage over the method proposed by de Masin. Since all pollution is

generated in fixed proportion with fuel consumption, the existing fuel-emissions block

(Figure 3.1a) that is contained within the resource-intensive bundle in the nested CES

production block (Figure 2.4) can easily be expanded to represent multiple pollutants

within a single Leontief nest with minimal change in the existing model structure. A fuel-

emissions bundle illustrating how multiple pollution abatement opportunities can be

represented using this approach is given in Figure 3.2 and can be expanded to represent

any number of pollutants. While only S02, NOx, and BC are given, the block can easily be

expanded to include additional pollutants of policy interest such as CO, mercury, or

ammonia that are also emitted relatively in fixed proportion with fuel consumed. Using this

representation, SO, SQ2 E, NOA, NOE, BCA, BCE are the input abated and emitted

pollutants and aSocoal, ~NOx -Coal, and 0"BC-Coal are the pollutant specific elasticities of

substitution between emitting and abating for SO2, NOx, and BC respectively.

COAL - Emission Bundle

_ aso coal UNOX-Coal UBC -Coal

COAL

SO" SO2E NO NO BC BC
12E xA xE AF

Figure 3.2. Fuel-emissions bundle for coal with S02, NO. and BC.

Combining the new fuel-related emissions representation with the nonfuel-related

representation gives the overall modified production nest shown in Figure 3.3. As can be

seen, nonfuel-related emissions are given in the very top nest of the production block

similar to the nest in Figure 2.3, with corresponding elasticities of substitution between

emission species (in this case S02, NOx, and BC) and the other conventional inputs.
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Figure 3.3. Overall production block with fuel and non-fuel related emissions and
abatement opportunities.

Emissions of S02, NO., and BC related to consumption of coal, gas, oil and refined oil (ROIL)

are given in the non-electricity energy aggregate bundle which is shown in the figure as

"Non-ELEC." Within the energy aggregate bundle, abatement opportunities for pollutants

stemming from each fuel type are represented as a substitution between pollutant emitted

and pollutant abated with the total pollution (abated and emitted) occurring in fixed

proportion with the quantity of fuel consumed.

With this new representation, we satisfy the first two objectives of the new methodology

which were to 1) separate fuel and non-fuel related emissions and 2) provide a framework

capable of representing abatement opportunities for multiple air pollutants. The next two

criteria, 3) providing regional and sector specific representation of available abatement

technologies, and 4) accounting for the varying degree in which existing policies already

constrain air pollutants, are dependent on the level of disaggregation and detail of the data

used to determine CES parameters. We will later introduce a data set which allows for the

needed level of disaggregation and has sufficient detail to determine existing levels of

abatement under existing policy constrains, but for now will assume the data is available.

With this framework in place we now turn to the task of deriving the parameters that must

be specified exogenously to represent abatement opportunities using a CES function. As
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mentioned previously, these parameters include the value share of one of the inputs to

production and the elasticity of substitution between inputs.

As has already been discussed, one of the challenges of designing integrated assessment

models is that you are often seeking to inform macro-level questions concerning policy

effects but whose outcome is highly dependent on micro-level detail. The challenge then is

to create a framework that is sufficiently disaggregated to represent the crucial micro-level

detail without making the model too detailed so that the level of disaggregation in the

required data is unattainable or that the model is too complex for numerical methods to

solve. In the current case of representing available abatement opportunities within a CGE

framework, we would like to represent the micro-level detail of the gamut of abatement

technologies available in every region and sector, but in doing so, are seeking to answer

questions regarding the macro-level effects of air pollution policy constraints. Given that

we've already constrained the integrated assessment model to a CGE framework which is

built on nested CES production functions, the proposed methodology must represent the

aggregate of abatement technologies within all regions and sectors by means of a value

share, $, and elasticity of substitution, o-, in accordance to the form of Equation 2.5.

A novel approach for bridging the gap between representing individual abatement

technologies unique to a region and sector, and the CES form which requires a value share

and elasticity of substitution, can be derived from the price elasticity of demand for

emitting, 6 DE , using basic microeconomic theory. In the derivation, the price elasticity of

demand for emitting is shown to be equivalent to the price elasticity of supply for abating,

,SA which in turn is shown to be readily obtainable from region and sector specific

marginal abatement cost curves of available abatement technologies. We now turn to the

task of deriving the relationship between a and ED from microeconomic theory.

3.1.1 Elasticity of Substitution from Price Elasticity of Demand

As will now be shown, the relationship between the elasticity of substitution, a, and price

elasticity of demand for pollution emitted, EDE, can be derived from basic microeconomic

theory where firms seeks to maximize profit subject to a budget constraint. The
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relationship between a- and EDE will then be used to determine a firm's ability to

substitute between abating and emitting urban pollutants in the presence of a policy

constraint. As will be shown later on in section 3.1.3, price elasticities of demand for

abatement can be obtained from a log-linear regression on marginal abatement cost (MAC)

curves which can be derived from detail rich engineering data consisting of sector and

region specific abatement technologies. While the relationship between a- and EDE in this

derivation is given specifically for the case of fuel-related pollution where emissions and

abatement are inputs to production, the relationship also holds for the nonfuel-related CES

nest at the top of the production block where the two inputs are emissions and all other

conventional inputs.

We start the derivation of the fuel-related case with the CES production function for

pollution as depicted previously as being nested in a Leontief with fuel as shown earlier in

Figure 3.1(b). The mathematical form of the nest is given by Equation 3.1:

X, = #OXE a +(1-#)XA o (3.1)

where y is the efficiency parameter that sets the returns to scale of production, # is the

distribution parameter that establishes the initial share distribution between pollution

abated and pollution emitted as inputs to production, X, is the total pollution expenditure

associated with consumption of fuel X,, XE is the emitted pollution expenditure as an

input to production, XA is the abated pollution expenditure as an input to production, and

- is the elasticity of substitution between XE and XA . Although y in the end will have no

impact on the final relationship between EDE and a-, this is not immediately apparent so we

include the term in the derivation for completeness. At the level of the firm, total

production is limited by a budget constraint given by the cost function in Equation 3.2:

C,= XEPE +XAPA (3.2)
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where Cp is the total cost of pollution associated with fuel consumption, PE is the price of

emitting the pollution as determined by existing policy controls, and P4 is the price of

abating pollution as determined by the marginal costs of abatement. From this we seek to

derive a production function for Xp in terms of PE , PA, and Cp from which we will

eventually establish the relationship between CDE and a. The first step in this process will

be to derive the demand functions for XE and XA in terms of PE, PA, and Cp.

The firm's response to a policy constraint can be thought of in two different ways: the

firm can seek to minimize total cost subject to a pollution constraint (i.e minimize 3.2

subject to the constraint imposed by 3.1), or the firm can seek to purchase as much

pollution as possible subject to a cost constraint (i.e. maximize 3.1 subject to the constraint

imposed by 3.2). Mathematically this end up being the same problem and for this

derivation we solve the second of the dual problem. Under profit maximization then, the

firm will seek the appropriate quantities ofX and XA so as to maximize its total pollution

output subject to the constraint imposed by the cost function. We therefore seek to

optimize (3.1) as the objective function subject to the constraint imposed by (3.2). The

optimization problem is given by Equation 3.3.

max X, =7($X{ a (1# -)XA s.t. CP = XEP + XAPA (3.3)

To solve for the demand functions for XE and XA, we use the method of Lagrange with

Lagrangian multiplier A and define the Lagrangian as given in Equation 3.4.

a-

L=7{$XEa +(1$)X j + (CP -XEPE +XAPA) (3.4)

Taking the first order conditions for XEand XA results in the marginal products of both

inputs which, when set equal to zero, gives Equations 3.5a and 3.5b which are
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represented here in terms of the Lagrangian multiplier. The third first order condition

given by Equation 3.5c results in the same budget constraint shown previously in (3.2).

8L
aXE

aL
aXA

0 - &= XE
PE I(

(3.5a)

(3.5b)

(3.5c)

0 -+ XA #XE a

aL=0 - C = X E +X PA
N2 P E E

From here we set (3.5a) equal to (3.5b) and solve for the demand functions of both the

abatement and emission inputs in terms of the other input. This results in Equations 3.6a

and 3.6b.

XE _ E XA (3.6a
#( PA

XA =
1- P X

,p JE

i)

(3.6b)

Although this provides demand functions forXEand XA , a firm's production capability

is limited by the total cost of production as given by the third first order condition, so we

would like to express both demand for XE and XA in terms of Cp. This is done by

substituting (3.6a) and (3.6b) back into (3.2) and solving for XE and XA . Doing so produces

the demand functions given by Equations 3.7a and 3.7b.

XE CP E +

XA = C PA +

10E 
PA

PA )

PE PE

# PA)

(3.7a)

(3.7b)
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With demand functions for XEand XA, in terms of P, PA, and C, we derive the

production function of pollution, X, in terms of PE , PA, and Cp by substituting (3.7a)

and (3.7b) back into the original production function (3.1).

XP 0CP[PE+ EPAJK PA) E J (3.8)
0 PA) I\ PA )

After a somewhat tedious algebraic exercise, the production function of pollution-as a

function of total pollution cost, price of abatement, and price of emitting-reduces to a

much simpler form given by Equation 3.9 which we also express for future use in terms of

the budget constraint by the form given by Equation 3.10.

X,=,{"P"(-)P- (3.9)

C= X, (apE + (1 - Y pA )(310)

With an expression for production in terms of the budget constraint, C,, and the price of

abatement and emitting, PE and P, we now derive the conditional factor demand function

for the inputs solely in terms of the budget constrain and input price. We do this using

Shepard's Lemma which is given as:

Xi = -p- (Shepard's Lemma)
8P

After taking the partial derivative of C, , as expressed in (3.10), with respect to PE and P,

we obtain the conditional factor demands for emitting and abating given in Equations

3.11a and 3.11b:
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(3.11a)

(3.11b)<NJ

We pause now to recall the definition of the price elasticity of demand which gives the

percent change in quantity demanded in response to a one percent change in price:

E E

E E E

(Def. Price Elasticity of Demand)

Using this definition we derive the price elasticity of demand for emitting by substituting

(3.10) back in to (3.11a) and then take the partial derivative of (3.11a) with respect toPE:

OXE
aE a $ 0Ci1; where, Cp = > $PE ()A

E XP E }

Although a bit tedious to work out algebraically, this eventually reduces to the partial

derivative expression given by Equation 3.13:

OX - o- 2- E - - -X E + -X E

aPE E P

At this point we see that OXE / aPE is independent of y. From here we simply multiply

(3.13) by PE /XE to get the price elasticity of demand of emitting:

DE XE E EF
= H-TXE

E
E

+r XE2 E
P ) XP

3.*12)

3.13)

,.3.14)

Rearranging the terms leads to the desired relationship between the elasticity of

substitution and price elasticity of demand for XE which is given by Equation 3.15.
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- E (3.15)
X EE

CP

Upon closer inspection, the relationship can be simplified further. Since C, = XEPE ± XAPA

, the right hand term in the denominator is simply the value share of pollution emitted as

an input to production (OE). This allows o- to be expressed solely in terms of 6
D and E as

given in Equation 3.16.

(-= D E ,Ewhere OE = EE EE (3.16)
1-E CP XEPE +XAP

In their models, Hyman, Sarofim, and de Masin assume that that 0 E << 1 so that

Cy -EDE . This was shown previously in Equation 2.6. Hyman is able to assert this on the

basis that since there are currently few regulatory constraints of greenhouse gas emissions,

the control costs of non-C02 greenhouse gases are a small share of the total production

costs of all the other conventional inputs. The value share of emissions in this case is

effectively zero. Sarofim and de Masin assume that even though significant policy

constraints are in effect for air pollution emissions, control costs are still comparatively low

when compared to the costs of all other conventional inputs. For the nonfuel-related air

pollution emissions, this is most likely the case and we accept the assumption that control

costs are a small fraction of overall production costs. For nonfuel-related emissions (3.16)

reduces to:

-= -E (nonfuel - related emissions) (3.17)

However, for fuel-related air pollution, we know that stringent policy controls are already

in effect in many regions-particularly in developed countries-so that substantial

emissions reduction and capital invested in pollution abatement has already occurred.

Since, at the fuel-related level, the substitution is between abated and emitted pollution, the

simplification that E << 1 does not hold and the a - 6 DE assumption becomes invalid.
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Under market equilibrium, firms would only adopt abatement technologies up until the

point where the cost for additional abatement opportunities is equal to the cost of

regulatory compliance. Therefore, under market equilibrium subject to a regulatory

constraint, the price of emitting, PE , will equal the price of abating, PA. Taking into account

emission controls and abatement costs under equilibrium reduces the value share of

emissions, OE , to simply the percentage of overall pollution emitted as given in Equation

3.18:

X P X
OE _ E , since PE = PA OE _ E -%Emitted (3.18)

XEE +AXP XE +X

Combining Equations 3.18 and 3.16 gives the final relationship between a and EDE for the

fuel-related emissions case:

-= DE 6
DE (fuel -related emissions) (3.19)

1- %Emitted %Abated

Despite the length of the derivation, the resulting functional forms given by Equations

3.17 and 3.19 are remarkably simple and capture the fundamental endogenous feedbacks

of what we would intuitively expect to observe. Initially, in the absence of any policy, the

ability to substitute between emitting and abating will be fixed according to the

opportunities allowed by abatement technologies. In the presence of existing emission

policy controls, a certain level of abatement will already have been realized and

opportunities for further abatement will be limited to those technologies that have yet to

be implemented. As the percentage of total abated pollution (%A bated) increases,

substitution away from emitting becomes more difficult since many of the previously

available abatement opportunities will have already been realized. Over time, this causes

the elasticity of substitution to become increasingly more inelastic. When this occurs, firms

will be forced to resolve to other ways to comply with air pollution reduction policies such

as substituting to less emission intensive fuel types and production, or reducing fuel

consumption altogether.
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3.1.2 Emitting Price Elasticity of Demand from Abating Price Elasticity of Supply

With a relationship between o- and cD, we now look to establish a relationship between

EDE and the abating price elasticity of supply, ESA - Once this relationship is established EsA

can be obtained from MAC derived from the engineering and cost details of specific

abatement technologies.

We recall from (3.11a) in the previous derivation the conditional factor CES demand

function for emitting:

XE= X y C'

y X, PE
(3.20)

Solving (3.20) for the price of emitting in terms of quantity of pollution emitted results in

Equation 3.21:

PE=O.C j XE c7 (3.21)
(X,

Since #, C,, X,, y, and o are constant, we can reduce the overall demand function to an

expression with only two parameters:

PE=aE XE 18E where aE=*CP , and PE -

Similarly we obtain a two term parameterized expression for the conditional factor

demand function for abating in terms of aA and pA:

PA =AXA |, where aA =(1-#)-CP r ,and P = .
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With aA > 0, aE > 0,/E = BA < 0, the demand curves for Equations 3.22a and 3.22b take

on the familiar microeconomic demand curve shape where demand for emitting and

abating increases as prices decline. The resulting curves for demand of emissions and

abatement are given in Figures 3.4a and 3.4b respectively:

P=a PE =a P "AX~
E E EE PA A AX A

XE X

(a) (b)

Figure 3.4. (a) Emitted pollution parameterized demand function and curve, (b)
abated pollution parameterized demand function and curve.

We now look at the case of fuel-related pollution. In the proposed method, we recall

that the total pollution is produced in fixed proportion with the total fuel consumed as

represented by a Leontief production block where the elasticity of substitution is perfectly

inelastic. A block diagram of this representation was given earlier in Figure 3.1b. Since

substitution between the fuel and pollution is perfectly inelastic, the quantity of pollution

required is constant for a given quantity of fuel demanded regardless of the price.

On the pollution abated and emitted demand curves, this is shown as a vertical line as given

in Figures 3.5a and 3.5b. When total pollution is completely inelastic, the pollution

required for a fixed quantity of fuel consumed is just the sum of the quantity of pollution

emitted and pollution abated:

X, = XE + XA (3.23)
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(a) (b)

Figure 3.5. (a) Emitted pollution demand curve with inelastic pollution demand, X,
(b) abated pollution demand curve with inelastic pollution demand, X, .

Because this is always the case for completely inelastic demand of X, we can

superimpose the pollution abated and pollution emitted demand curves by rotating the

pollution emitted curve about the vertical axis and then fitting the axis to the vertical total

pollution, Xp, line as shown in Figure 3.6. For the base year, the firm is indifferent

between emitting and abating pollution and the price of pollution emitted, PE', equals the

price of pollution abated, PA , leading to an economically efficient outcome. The quantity of

pollution emitted and pollution abated in equilibrium are given by XEo and XA

respectively.

In the presence of an emission control that is more stringent than that of the base

year, the same amount of total pollution for fuel consumed is constant-i.e. the demand for

total pollution is inelastic- resulting in an increased demand for abatement and a

decreased demand for emitting. This has the effect of shifting the demand for emitting to

the left in Figure 3.6 and up the DE curve resulting in an increase in price. However, since

X, is perfectly inelastic, any decrease in emitting must be met by an equal increase in

abatement so that the demand curve for emitting is in effect equivalent to the supply curve

for abating. Put another way, if we know what the supply curve is for abatement, we

79



simultaneously know what the demand is for emitting since, due to total pollution being

constant, all pollution not abated must be emitted and vice versa.

PE

P

PA

A4

4 X XEo Ao

Figure 3.6. (a) Emitted pollution demand curve with inelastic pollution demand,
flipped vertically and superimposed on the abated pollution demand curve.

For the non-fuel related emissions, this does not entirely hold since the top most nest in the

production block is not Leontief; however, since we expect the cost of other conventional

inputs to greatly exceed the costs of non-fuel related emissions, the relationship still serves

as a good approximation.

3.1.3 Abating Elasticity of Supply from Marginal Abatement Cost Curves

With a relationship between DE and ES .we now turn to deriving SA from technologically

rich abatement engineering data. It is in this step that we make the connection by

parameterizing the "top-down" price elasticity of supply parameters using rich "bottom-

up" technological detail. As has been shown previously, the abating elasticity of supply is

readily obtained from marginal abatement cost (MACs) curves which provide an overview
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of the technical opportunities available for emission reduction. For air pollution reduction

technologies, the MAC is obtained from technology specific engineering data that provides

an estimate of the additional abatement opportunities the technology affords along with

the marginal cost of the technology. Placing the abatement opportunities afforded by each

technology in order of increasing marginal cost gives the overall MAC. In essence, the MAC

gives the supply curve for abatement, ESA . An example of a MAC for abatement of SO2 from

refined oil (ROIL) used in the USA for 2005 is given in Figure 3.7.

Abatemen Limit

toNseuiui

Process Emissions

L]Low SulfurFuel ONl
Q~ Process Emissions

(Stage 2 Control)
Process Emissions
(Stage 3 Control)

Low SulfurDiesel Od (0.2% 5)

Low sulfur iesel 01
(0.045%S)

0

000% 1000% 2000% 3000% 4000% 5000% 6000% 7000% 0.00% 9000% 10000%

% Abafement from Current Regulation

Figure 3.7. Marginal abatement cost curve (MAC) for SO2 emissions from refined oil
products (gasoline and diesel) used in the USA in 2005.

In the curve, the technology specific abatement opportunities include a wide range of

fuel desulfurization technologies and process emission controls for stationary combustion.

According to the MAC, 2005 abatement technologies are capable of reducing emissions by

up to an additional 65% on top of what has already been achieved under existing policy
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controls. Once the 65% mark is reached all abatement opportunities are exhausted so that

any additional emissions reduction will have to come from a reduction in refined oil use

and potentially a shift towards other less sulfur intensive energy sources (e.g. compressed

natural gas or electric vehicles in the transportation sector).

With the technology specific abatement opportunities given by the MAC, the price

elasticity of supply for abatement is obtained by performing a log-linear regression using

the conditional factor CES demand function for emitting given previously in Equation 3.22a.

However, since the demand curve for emitting is the same as the supply curve for

abatement, the demand price of emitting and supply price for abating are the same, PE =A

, and since demand for pollution is inelastic with fuel consumption, the quantity of

emissions equals the total pollution minus pollution abated, XE X - X,. Substituting

this into Equation 3.22a, we obtain the functional form of the MAC as given by Equation

3.24.

P = a -(Xp - XAJ (3.24)

We see that the log-linear regression is an appropriate form to regress against the

functional form of the MAC as it can be expressed in a log-linear form as given by Equation

3.25.

PA = a -(X, - XA) - 1og(P)= 1og(a)+, - log(X, - XA) (3.25)

In logarithmic form, the price elasticity of demand is defined as:

Blog(X )
6

D E (Definition of Price Elasticity)
E alog(PA)

Since log (a) is constant, taking the total partial derivative of (3.25) leads to the desired

expression for sD

alog(XE 1
D (3.26)a log (PA) 6
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From this we see that the price elasticity of demand for emitting is simply 1/ p from the

Poisson regression on the MAC. The elasticity of substitution is obtained from this as

shown previously using Equation 3.19.

Although the method for obtaining the price elasticity of supply for abatement is

straightforward, there are a number of important considerations to be made when using

parameters derived from a MAC in order to properly interpret the data when

benchmarking a CGE model. First, the availability of future abatement opportunities will be

subject to how much abatement has already been realized under existing policy controls.

This is particularly important when considering abatement of air pollution since, unlike

with carbon and other greenhouse gas policy, relatively stringent controls to limit air

pollution emissions are already in place in many countries. Recognizing the effect of

existing policy controls on present abatement leads to two conceptually different MACs, the

theoretical no-control curve that includes the marginal cost of past abatement already

realized, and the control curve that only considers abatement opportunities above and

beyond what has already been achieved through existing policy. Both curves are given in

Figure 3.8.

Future Abatement
Frontier

P

> a(X, -XA

4 X4

Figure 3.8. Functional form of the marginal abatement cost curve (MAC) including
past abatement already realized under existing policy, and the future abatement
frontier of available abatement opportunities.
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In the figure, the theoretical no-control curve includes past abatement as well as the future

abatement frontier, whereas the curve that only accounts for abatement in addition to

existing controls begins with an initial price for abatement, PA , and then only identifies

opportunities given by the future abatement frontier. The theoretical no-control curve is

much more difficult to obtain in practice as it is often difficult to distinguish past marginal

cost of abatement already realized-shown in the figure by the shaded region-as well as

the overall quantity of pollution abated that can be attributed to existing regulation.

Another consideration is the variation of abatement opportunities among regions. This

can occur due heterogeneity in the stringency of emission controls between regions and

the availability and cost of abatement opportunities. We expect the opportunities for

abatement to be relatively the same among regions as abatement technologies such as

scrubbers and flue gas desulphurization are in general universally available regardless of

region. However, there may be some variation among regions when abatement

opportunities are identified such as switching away from fuel types with high pollution

content (e.g. switching from high sulfur to low sulfur grade coal). The variation in the level

of abatement among regions is therefore due primarily to the level of stringency of existing

policy in a given region.

With the availability of abatement technologies given uniformly among regions, and

with the stringency of emission controls acting as the main contributor to regional

variation of future abatement opportunities, we can think of abatement opportunities for

all regions lying somewhere on a global MAC where individual regions are positioned

depending on the stringency of existing controls. An illustration of a global MAC with

various hypothetical regions is given in Figure 3.9.

In the figure four regions-R1, R2, R3, and R4-are indicative of regions where various

levels of abatement have already been achieved according to existing air quality regulation.

In this case, region R1 would have the weakest emission controls, region R4 would have the

strongest, with R2 and R3 lying in between. With less stringent emission controls, R1 will

have achieved less percentage of abatement than R4 and the initial marginal cost for

additional abatement for R1, PAo(R), will be less than that of R4, P4(R4)*
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Figure 3.9. Global MAC giving four future abatement frontiers for four different
regions-R1, R2, R3, and R4- based on the stringency of existing emission
controls.

In the case that more stringent policy is implemented, R1 faces the largest future

abatement frontier and the most opportunity for additional abatement. On the other hand,

R4-starting at a point much higher up the global MAC-will have a much smaller future

abatement frontier and limited options for future abatement with the remaining abatement

options becoming increasingly costly. In general, as regions adopt stricter air pollution

regulation and increase their overall percentage of pollution abated, they gradually move

up the curve and opportunities for future abatement are incrementally exhausted while

becoming increasingly costly.

In terms of how these considerations affect selection of MACs for benchmarking

abatement opportunities within a CGE model, we note that since the stringency of policy

controls will vary among regions, we will need region and sector specific MACs to provide a

more accurate representation of the future abatement frontiers unique to each region.

Previously this was accomplished in part in the representations of Sarofim and de Masin,

with Europe and China being representative of developed and developing countries

respectively. However, even among developed and developing countries we see large

variation in air pollution standards both in terms of the quantity of pollution allowed and
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the species of pollutants that are targeted. Properly benchmarking CES production

functions within a CGE framework will therefore require region specific data to allow for

heterogeneous parameterization.

3.2 Parameterization of Abatement Opportunities

Thus far we have focused almost exclusively on representing abatement opportunities in a

CGE framework through the elasticity of substitution between emitting and abating.

However, to fully implement the method into a CGE model additional parameters are

required to benchmark the value share of emissions in the base year. To do this we

calibrate the value share using base year values for the quantity of pollution emitted, XEO

the quantity of pollution abated, X4,, the initial marginal price of pollution abated, P , and

the initial marginal price of pollution emitted, PE . As shown previously in Equation 3.18, at

the margin under equilibrium, firms will be indifferent between emitting and abating so the

value share for emitting is simply the percentage of total pollution emitted.

In implementing the new methodology into the EPPA model, we benchmark both a and

O using data obtained from the Greenhouse Gas and Air Pollution Interactions and

Synergies (GAINS) model developed by the International Institute for Applied Systems

Analysis (IIASA) (Nguyen, Wagner and Schoepp 2011). GAINS is an integrated assessment

model used to quantify the costs and environmental benefits of reducing emissions of

greenhouse gases and urban air pollutants using a bottom-up approach based on highly

detailed engineering data on emission sources and technology options. Greenhouse gases

represented in the model include C02, CH4, N20, and fluorinated gases. Air pollutants

include S02, NO., PM, CO, NMVOCs, and NH3. The regions and sectors in GAINS are far more

disaggregated than those in EPPA and with significant effort can be directly mapped to the

corresponding regions and sectors in EPPA. The data from GAINS is benchmarked to 2005

which closely corresponds to EPPA's 2004 base year. Assuming little change in abatement

opportunities, costs, and annual emissions occurred between 2004 and 2005, we use the

2005 GAINS data to benchmark the base year in EPPA.

86



Of interest in parameterizing abatement opportunities in a CGE framework, GAINS

includes estimates of marginal abatement costs, present day cost of regulatory compliance,

and emissions. Of the air pollutants, marginal abatement cost curves are only given for SO 2,

NO. and PM2.s. However, since S02, NO. and PM2.s are among the most important of the air

pollutants targeted by air pollution regulation such as the National Ambient Air Quality

Standards, this sample provides a good starting point for introducing the new methodology

within a CGE framework and for looking at interrelated policy effects among traditional air

pollution species. One caveat is that not all countries are currently represented in the

GAINS model making it incomplete to fully represent all of the regions in a global CGE

model, however, this does not affect regional studies. The countries that are represented by

GAINS along with their corresponding EPPA regions are given in Figure 3.10.

EPPA Regions and Countries
CAN R E RUS

USA EUR

JPN

MEX CHN
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BRA 

N

Figure 3.10. Regions represented in the GAINS model as mapped into the EPPA
regions. The colored regions are those for which GAINS data is available for
benchmarking SO2, NO., and PMz.s.

As can be seen, all of the largest developed economies such as the U.S., Europe, and Japan

are represented as well as key developing economies such as China, India, and other

rapidly developing economies in Asia. Missing from GAINS are all of Central and South

America, Africa, and the Middle East countries.
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The MAC provided by GAINS give control cost curves that represent future abatement

opportunities beyond reduction already achieved by existing emission controls. Therefore

MAC are for future abatement frontiers only and don't include the theoretical no-control

curves that also give the marginal cost of past abatement already realized. Since the curves

provided by GAINS do not contain any information on past abatement, the initial marginal

cost for abatement and the total abatement achieved under existing emission controls must

be obtained independently.

The initial marginal cost for abatement is obtained by introducing an additional term

into the abatement supply function given earlier by Equation 3.25. The new term, PO,

provides an additional degree of freedom in the initial price as shown in Equation 3.27.

PA= P0 + a -P(X,- XA J (3.27)

Or in the log-linear form:

log(P - P)= log(a)+ # -log(X, -XA) (3.28)

The overall initial price, PAO, that includes both a and Po is then just:

PA = P0 +a -(X,) (3.29)

With an additional degree of freedom in the log-linear regression, we solve for P0 by

optimizing the correlation coefficient of the Poisson regression of Equation 3.28 on

abatement cost data given by the GAINS model. This has the effect of providing a

reasonable estimate of the initial marginal price for abatement, P., which in turn provides

a value for p that most closely matches the abatement opportunities as given from the

engineering data in GAINS. As mentioned previously, since abatement opportunities vary

among sectors and regions, the GAINS marginal cost data is first mapped into the

corresponding EPPA regions and sectors based on the fuel type associated with the

emissions (coal, gas, oil, and refined oil). All non-fuel related abatement opportunities are

mapped into a separate MAC that is then used to parameterize the non-fuel related
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elasticity of substitution in the upper block of the production nest as illustrated previously

in Figure 2.3. In taking into account regional and sectoral heterogeneity in elasticities of

substitution mapping the abatement opportunities from the GAINS region and sectors end

up generating unique 155 abatement opportunities for SO2 abatement among the 9 EPPA

regions, and 159 opportunities for NO.. Because heterogeneous representation of SO2 and

NO. abatement opportunities in the 9 regions for which GAINS data was available required

the parameterization of 304 abatement opportunities, a Mathematica script was written to

automate the process of (1) mapping the GAINS abatement opportunities into EPPA by

region, sector and fuel type, (2) determining the value of P0 by optimizing the correlation

coefficient of the Poisson regression to the GAINS data, (3) determine P4 , , ED, and o-,

based on the value determined for P0 , and (4) formatting the benchmarked parameters so

as to readily be implemented into the EPPA modeling language GAMS. While the entire

results of all the parameterization of S02 and NO. abatement opportunities are given in

Appendix 1, an example of one of the regressions on the marginal abatement cost

opportunities provided for S02 abatement from coal used in electricity production in China

is given in Figure 3.11.
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Figure 3.11. Log-linear regression of abatement supply function on data for
abatement opportunities provided by GAINS for S02 from coal used in electricity
production in China.
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In the graph, the marginal cost per kg of S02 abated is given in 2004 USD which

corresponds to the base year in EPPA. For this case, according to GAINS, in 2005 13.5 Tg of

SO2 was emitted from coal used in electricity production in China. Of the 15.61 Tg emitted,

GAINS identified abatement opportunities from the available technologies for 13.5 Tg S02,

or 86.5% of total pollution. From the log-linear regression we find the value of the free

parameter, P0 , that optimizes the correlation coefficient to be $0.395013 (2004 USD/kg

SO2). This corresponds to a correlation coefficient of 0.9975 giving an extremely good fit to

the GAINS data.

While the marginal abatement cost data provided does not give information on past

marginal abatement costs-as would be given by a "no-control" curve, GAINS does provide

an estimate of the total current control costs of regulatory compliance by region and sector.

From this, a reasonable estimate of the current level of abatement already achieved by

abatement technologies implemented to comply with existing controls can be obtained by

dividing the total existing control cost by the initial marginal cost of abatement obtained

from the log-linear regression, P4.

Initial Total Pollution 24.1395 (Tg SO2)
Initial Emissions 15.6069 (Tg9 S2)

Initial Abatement 8.5326 (Tg SO2)
Policy Cost $3.15 Billion (2004 USD)

Initial Price (PAo) $0.395246 (2004 USD/kg SO2)
Value Share of Emissions (0) 0.6465
Price Elasticity of Demand (ED) -0.25
Initial Elasticity of Substitution (a) 0.71
a 30.0324

F -4.0070
Free Variable (PJ1 $0.395013 (2004 USD/ke SO,)

Table 3.1. Table of GAINS data and regression parameters obtained for S02
abatement from coal used in electricity production in China.
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For the case of the current level of abatement for S02 from coal used in electricity

production in China, this method predicts that 8.53 Tg S02 is currently abated or -35% of

total S02 produced. A complete list of the parameters provided by GAINS and obtained

from the abatement opportunities available for coal used in electricity production in China

is given in Table 3.1. The parameters for other abatement opportunities are also given in

Appendix 1.

With the framework to represent abatement opportunities implemented, air pollution

controls can take the form of a variety of policy instruments. These can range from region

specific air pollutions caps where regional economies are free to decide optimal reduction

pathways that limit the policies economic impact, region and sector specific caps which

require fixed reduction within specific sectors of the regional economy, Pigouvian taxes,

and a whole range of region and/or sector specific caps with permit trading schemes in

place. While all of these policy instruments can be deployed using the new methodology,

we limit our consideration in implementing the policy in EPPA to region specific air

pollution caps.

3.3 Limitations to Proposed Representation

We have now seen that the new proposed methodology offers multiple improvements over

previous approaches to representing abatement opportunities in a CGE framework. Most

notably are the ability to endogenize the costs associated with abatement, the

representation of abatement opportunities for multiple pollutants within the same

framework, and the ability to represent abatement opportunities unique to each region and

sector by fuel-type or by non-fuel related abatement opportunities. Despite these

improvements, several limitations should be considered.

The structure of CGE models assumes that the elasticity of substitution between inputs

remains constant. While this may be true of many inputs to production in general, it is not

necessarily true for abatement. As has been shown, price elasticities of supply for

abatement are benchmarked on data of currently available abatement technologies-in the

case of benchmarking the EPPA model, the abatement data used was for 2005. However,

over time as demand for abatement increases in the presence of increasingly stringent
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emission controls, we would expect a certain amount of endogenous technological change

to decrease the marginal cost of abatement due to: increased economies of scale, learning

by doing, innovation to reduce cost of existing abatement technologies, and the

introduction of new technologies currently not in existence. This limitation strikes at what

was earlier identified as a core challenge of all CGE models which is how to properly

represent induced technical change.

While methods for representing induced improvements in abatement technologies are

still being explored, one significant advantage at least of the proposed methodology is that

it decouples the effects of exhausting existing abatement opportunities from the effects due

to new abatement opportunities becoming available through induced technical change. We

recall from Equation 3.19 the relationship between the elasticity of substitution, price

elasticity of demand for emissions, and value share for emitting (i.e. the percentage of

overall pollution emitted).

o - DE (3.30)
%Abated

When eDE remains constant, we expect the percentage of pollution abated to increase over

time as emission controls become more stringent and more pollution is abated. Although

the original percent abated is benchmarked from estimations of abatement in the base

year, the exhaustion of abatement opportunities can be obtained by recalibrating the

elasticity of substitution during each time step by using the new percentage of pollution

abated generated by the model from the previous time step. This dynamic calibration then

forces the elasticity of substitution to gradually becomes more inelastic and eventually

converge to the price elasticity of demand as all abatement opportunities are realized. On

the other hand, the effect of additional abatement opportunities on the elasticity of

substitution introduce by induced technological change could be achieved similarly by

forcing the price elasticity of demand to become more inelastic overtime as a result of more

stringent policy controls. Finding a way to do this dynamically within the recursive solving

structure of EPPA would be an valuable next step for improving the methodology

proposed.

92



Thus far we have looked at emissions reduction coming largely from the

implementation of abatement technologies in the presence of increasingly stringent

emission constraints. Other significant sources of emission reduction that are non-

abatement related include the shift within a regional economy away from energy intensive

production and the autonomous energy efficiency improvement (AEEI). Shifts away from

emission intensive production can occur for a variety of reasons including loss in

competitive advantage in energy intensive production such as manufacturing, and

outsourcing of energy intensive production. In addition, the AEEI has been observed

empirically to provide a non-market incentivized decrease in energy intensity that cannot

be attributed to energy efficiency improvements motivated by policy or to change in the

economic makeup of a region. These effects have little to do with emission abatement and

are not captured explicitly under the proposed framework, but are accounted for

elsewhere in the EPPA model.

Finally, under the proposed representation, abatement opportunities are specified as

being available for a single pollutant species. Some technologies are available for S02, some

for NOx, and others for PM, etc. However, it is often the case that a given technology is

capable of reducing multiple pollutants simultaneously. Under the GAINS model, when a

technology is capable of reducing multiple pollutants, technical abatement opportunities

and costs are repeated under each of the pollutants the technology is capable of reducing.

Because of this, the costs associated with emission constraints may be partially

overestimated in the case where you have a policy that is targeting multiple pollutants that

can reduced through the same abatement technology. For example, S02 and PM can both be

reduced through electrostatic precipitators and scrubbers. However since these

technologies would be implemented separately for S02 and PM in the model, the cost of

abatement would be double counted. While ideally a more precise policy cost estimate is

desired, the methodology is still very useful. This caveat only informs the interpretation of

model results that policy cost may represent an upper limit on what the true policy costs

should be.
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4 Model Results: Co-benefits of Pollutant Policy in China and USA

With the new methodology established for representing air pollution abatement

opportunities endogenously in a CGE framework, and with the parameters derived for the

representation of S02 and NOx using the GAINS model, we consider the behavior of the new

methodology for representing abatement opportunities and costs endogenously using the

5th version of the MIT Emission Prediction and Policy Analysis (EPPA) model. We start by

comparing the new endogenous representation with the exogenous time-trend and

GDP/capita-trend representations used in previous versions of EPPA and highlight some of

the advantages of the new representation where the previous representations did not fully

capture some of the fundamental underlying economics. After contrasting the new and old

methodologies we provide an example of the kind of integrated assessment policy analysis

work related to air pollution reduction that can now be achieved using the new

methodology. The integrated assessment we consider is a quantified evaluation of potential

co-benefits of air pollution policy in China which demonstrates how current demand for

greater air pollution controls may go a long way to helping China achieve carbon mitigation

goals. Using the new representation, the integrated assessment performed by the model

illuminates the extent to which air pollution targets can lead to a reduction in C02

emissions, the impact that such policy has on GDP, the shift in the energy technology mix,

the introduction of backstop technologies that occurs in response to the shock from the

emissions constraint, and the shadow price of emissions reduction.

4.1 Comparison with Exogenous Trend-based Abatement Methods

Previously we identified multiple reasons why existing methods for representing air

pollution reduction in a CGE framework were insufficient to capture important

interconnected effects and policy costs associated with more stringent emission controls.

Exogenous trend based representation-both empirically determined GDP/capita relations

and time-trends based on historical emissions reduction-fail to fully represent the cost of

additional abatement measures and the feedback response in abatement realized under

varying degrees of stringency in emission reduction controls. Previous work to endogenize
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air pollution abatement opportunities were limited in that they were unable to distinguish

between fuel-related and nonfuel-related pollution, were unable to account for

heterogeneity in abatement opportunities unique to specific sectors in individual regions,

and were not capable of representing multiple pollutants simultaneously within the same

framework. While up until this point, we have only talked about the limitations of previous

abatement representation in a general sense, we will now consider a specific policy

scenario that illustrates quantitatively how the different methods for representing

abatement lead to significantly different projections in emission reduction, energy

consumption, change in GDP, energy technology mix, and the shadow cost of emissions.

In comparing methods, we will consider the effects of an S02 emission reduction policy

on China and the USA. We choose China and the USA since, as discussed previously, we

expect the effects of emission reduction policy to vary significantly between developed and

developing countries as they lie on separate ends of the hypothetical "global MAC" given in

Figure 3.8. Illustrating the results for China and the USA allows for direct comparison of

these differences. For the policy we set an ambitiously stringent target that requires a 10%

emission reduction every five years starting in 2010. We deliberately choose an overly

ambitious target because doing so highly constrains the model and increases the

magnitude of the effects we would like to contrast making them more immediately

observable. While the policy only targets reduction in S02, we evaluate the effects the SO2

control policy has on NOx emissions to gauge whether each methodology is accurately

capturing the interconnected effects a policy constraint on one air pollutant species may

have on another species that originates from the same source. Since the abatement

technologies for SO2 and NOx are independent of each other (e.g. sulfur is removed from

coal emission using flu gas desulphurization while NOx is reduced using staged combustion

techniques or catalytic converters).. Additionally, because the abatement technologies are

independent, a constraint on S02 should only reduce NOx emissions to the extent that it

leads to less fuel consumption.

In order to provide an ex ante comparison, we contrast a policy case that constrains the

model with an unconstrained reference case which is indicative of what would occur if

levels of abatement continue according to the abatement costs established for the base year
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of EPPA. In the analysis we consider the model results for the reference and policy

scenarios for three methodologies being considered: the exogenous time-trend emission

coefficient representation, the exogenous GDP/capita trend emission coefficient

representation, and the new endogenous abatement opportunity representation. We start

by comparing the projections in annual emissions under a policy scenario that requires a

10% reduction in S02 every 5 years starting in 2010 and evaluate the policy through 2030;

the model results for emission of SO2 and NOx under this policy are given in Figure 4.1.

25 - - - Ref. (Endogenous) --0 Ref. (Endogenous)
- -- Ref. (Time-Trend) 160 - - - Ref. (lime-Trend)

20 - - - Ref. (GDP/Capita) 140 - - - Ref. (GDP/Capita)
- Policy Policy

15 --

0 -0 d

5 40 ~

20 *

0 0 I

2005 2010 2015 2020 2025 2030 2005 2010 2015 2020 2025 2030
Year Year

(a) (b)

2 5 1500

20 - * 80 - -- e. (GDP/Lapitao
- Pol. (Endogenous)

do aA 0 04-Pol. (ime-trend) --
15 -60 Pol. GDPCapita)0

2 z
410 40

-- - Ref. (Endogenous),
5 - - - Ref. (Time-Trend) 20

- - - Ref. (GDP/Capita)
- Pol. (Endogenous)

0 0

2005 2010 2015 2020 2025 2030 2005 2010 2015 2020 2025 2030
Year Year

(c) (d)

Figure 4.1. Comparison of reference (dotted line) and policy (solid line) scenarios for

SO2 and NO. emissions in the USA and China using endogenous abatement (in
blue), exogenous time-trend (in red), and exogenous GDP/capita (in green)
abatement representation in the EPPA model.

In the figure the blue lines represent the new endogenous abatement representation

model results, the red lines give the results using the exogenous time-trend representation,
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and the green lines give the results of the exogenous GDP/capita representation. The

dotted lines represent the reference case model results while the solid lines represent the

model results under the policy constraint. In Figure 4.1 (a) we see the reference case-i.e.

the case where we are locked into current policy-S02 emissions in the USA for the three

methods. We first note that the emission levels for both the exogenous time-trend and

GDP/capita reference cases are lower than the reference case of the endogenous abatement

representation. This shows that the model is capturing the exogenous forcing that occurs in

the reference case even when no policy constraint is imposed. It is also worth noting that

the time-trend reference emission levels are lower than the emissions reduction target set

by the policy constraint over the entire 2005 to 2030 time period under consideration. This

reflects one of the primary issues with exogenous abatement representation in that

significant reduction and abatement occurs automatically without any shock or constraint

being imposed by policy controls, i.e. abatement is exogenously forced. In essence this is

assuming that future emission reduction will follow past trends and the policy needed to

achieve reduction goals will automatically be implemented without any corresponding

cost. In this case Figure 4.1 (a) shows that there would be no cost for the time-trend

representation of the policy in the USA because the emissions projections set by the time-

trend reference cases do not constrain the model, in fact they under constrain it. In

contrast, the endogenous representation reference case in Figure 4.1 (a)-the dotted blue

line-shows a gradual increase with emissions reaching 18.17 Tg by 2030 compared to the

policy case where emissions are constrained to 9.14 Tg by 2030.

In Figure 4.1 (b) we see the SO2 emissions trends for the same abatement

representations for China. Overall the growth in emissions under each methodology is

much greater than the corresponding emissions in the USA, which is to be expected from a

developing economy that is rapidly industrializing and highly dependent on energy

intensive production to fuel economic growth. Left uncontrolled, the reference case

emission levels for all methods exceed the policy target by 2015, however, the GDP/capita

and time-trend methods show that significant reduction towards the policy target already

occurs automatically compared to the endogenous abatement representation reference

emissions. Figure 4.1 (b) also demonstrates an additional limitation to both exogenous
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representations. Since the abatement opportunities were forced exogenously, there is no

feedback on the abatement response and no additional abatement can occur beyond the

fixed abatement accounted for in the trends under the reference case. This means that in

cases where the policy constraint is more stringent than the reference level emissions-

which is the case for both the GDP/capita and time-trend reference levels for China after

2015-the only way for the remaining emissions reduction to occur in order to comply

with the policy target is by reducing fuel consumption.

Figures 4.1 (c) and 4.1 (d) demonstrate the effect of the SO2 policy on NOx emissions

for the USA and China respectively. As mentioned before looking at the effects on NOx is

important since emission targets are often set for multiple pollutants coming from a single

source-e.g. burning coal releases S02, NOx, mercury, and BC-and the abatement options

for one pollutant can be different and independent from abatement options for other

pollutants coming from the same source. In Figure 4.1 (c) we see the emissions in the time-

trend method remaining the same as the reference for the policy case, which is to be

expected since the S02 policy did not constrain the model as the S02 emission targets were

already met under the reference cases. For the endogenous representation, we start to see

a slight reduction in NO, emissions in 2015 which gradually increases out to 2030. Since

the abatement opportunities for NOx and S02 are independent, the effect of S02 controls on

the reduction in NOx can be attributed to the SO2 control introducing a reduction in fuel

consumption.

In Figure 4.1 (d), NOx emissions in China are reduced compared to the reference case

under each methodology, however, the reduction for the GDP/capita and time-trend

methods are significantly more than with the endogenous representation. As just

mentioned, in China the policy targets are more aggressive then the level of abatement

achievable by the exogenous trend representations and therefore any additional reduction

beyond what is given by the trends must come by reducing fuel consumption. However, for

the endogenous abatement representation, additional abatement opportunities for S02 are

available under the more stringent target that are not available in the time-trend and

GDP/capita exogenous representations. Because of this, in the endogenous representation

less emission reduction has to come through reduced fuel consumption since more
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emission reduction is coming from abatement-i.e. with the endogenous representation

the production sectors are taking advantage of available abatement technologies and are

able to meet policy goals without as large of a reduction in fuel consumption. In addition,

because the abatement technologies of S02 are independent from the abatement

technologies for NO., policy aimed at reducing S02-such as the policy we are

considering-should have little effect on reducing NOx emissions. Only the endogenous

representation properly captures this effect. Early on in the policy, from 2010 to 2020, there

is significant reduction in S02 emissions but very little in NO., which shows that most of the

S02 emission reduction is occurring due to the implementation of abatement technologies.

From 2020 to 2030, however, we continue to see a large reduction in SO2 in compliance

with the policy, but we also start to see an increasingly significant amount of reduction in

NO.. As will shortly be shown, this is due to a reduction in fuel consumption as abatement

opportunities are exhausted under the aggressively stringent policy case.

Figure 4.2 shows the total future energy consumption in exa-joules (EJ) projected

under the different methodologies.

(a) (b)

Figure 4.2. Reference and policy energy consumption in exajoules (EJ) for the USA
and China under endogenous abatement, exogenous time-trend, and exogenous
GDP/capita abatement representation in the EPPA model.

In Figure 4.2 (a) we see that the energy consumption in the USA from the time-trend

method remaining the same as the policy reference scenario which, once again, is to be
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expected as the SO2 emissions were unconstrained compared to the non-exogenously

forced endogenous abatement reference scenario. With the endogenous and GDP/capita

representations we see a slight reduction in total energy consumption in the USA by about

10 EJ by 2030. In Figure 4.2 (b) we see the policy having a much more drastic effect on

energy consumption in China as the policy is competing with a much more rapidly growing

economy that is highly dependent on energy intensive production. From 2005 to 2030 we

see the energy consumption for the reference scenario almost quadrupling, but because the

policy scenario is so stringent, even with available abatement technologies the SO2

emissions target cannot be met without a significant reduction in energy consumption. This

reduction, although not shown in the plot, is entirely from reduction of sulfur intensive

fuels, most notably coal, oil and refined oil.

The effect of the policy on economic output is shown in Figure 4.3 which gives the

difference in gross domestic product between the reference and policy scenario under the

different methodologies.
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Figure 4.3. Change in GDP between reference and policy schenarios for endogenous
abatement, exogenous time-trend, and GDP/capita abatement representation in
the EPPA model.

In Figure 4.3 (a) we see no effect on USA GDP under the time-trend method since, as has

already been observed, the emissions criteria were met by the reference scenario and the

model was unconstrained. Under the endogenous abatement and GDP/capita
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representations we do see a slight impact with USA GDP falling by 0.6% and 0.3%

respectively by 2030 compared to the uncontrolled case. In China the impact of the SO2

policy is much stronger and reflects the country's current dependence on sulfur emitting

fossil fuels (primarily coal) to fuel energy intensive economic growth. Figure 4.3 (b) shows

significant reduction in China GDP occurring under all methodologies ranging from 10%

reduction using the time-trend methodology to 30% under the GDP/capita method. The

fact that the same policy in China is much more expensive than in the USA in terms of its

effect on reducing GDP is somewhat counterintuitive. On the one hand we might expect the

policy cost in China to be less expensive since more abatement opportunities are available

as parameterized earlier by the elasticities of substitution for abatement being more elastic

for China than the USA (e.g. the initial elasticity of substitution for abatement of coal used

in electricity production is 0.71 for China compared to 0.16 in the USA). However, the

advantage the Chinese have in terms of available abatement opportunities is overcome by

significantly faster growth in energy consumption compared to the USA (as shown

previously in Figures 4.2 (a) and (b), by a much greater dependence on energy intensive

production for economic growth, by a greater dependence on coal which is very sulfur

intensive, by the unavailability of cheap sulfur free backstops like natural gas, and by

vintaging effects that do not allow capital intensive energy infrastructure to turn over

instantly in response to extremely steep policy shocks such as the one introduced in the

current analysis.

The impact of the policy on the energy mix in the USA is illustrated in Figure 4.4 which

shows the energy inputs to electricity production under the different methodologies in

units of exa-joules of electricity generated from each source. In Figure 4.4 (a), we see the

reference case scenario with almost all growth in electricity generation coming from an

increase in coal. Figure 4.4 (b) gives the USA electricity generation energy mix for the

endogenous abatement representation. Under the policy, overall electricity consumption is

reduced by 2.17 EJ, but we see the non-SOz intensive natural gas electricity generation gain

a wider presence in the market in 2015 and grow to 1.02 EJ of production-or 7% of total

production-by 2030. We also see nuclear grow from 3.16 EJ to 3.37 EJ, hydroelectric

power grow from 0.9 EJ to 1.15 EJ, and solar/wind grown from 1.49 EJ to 1.72 EJ by 2030
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compared to the reference case. On the other hand electricity from coal generation

declines, falling from 9.50 EJ of the electricity energy mix in 2005 to 5.94 EJ of total

generation by 2030.
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Figure 4.4. Electricity generation mix in the USA under SO2 policy; (a) reference case,
(b) endogenous representation, (c) time-trend representation, (d) GDP/capita
representation.

In Figure 4.4 (c) we see the exogenous time-trend policy results which are no different

from the reference scenario in Figure 4.4 (a) since, as mentioned before, the model was

under constrained. In Figure 4.4 (d) we see the GDP/capita exogenous representation

responding to the policy constraint similar to the endogenous representation in Figure 4.4
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(b) with overall electricity production being reduced to 16.2 Tg by 2030. The electricity

generation mix, however, is noticeably different and is marked by a significant growth in

natural gas and reduction in coal compared to the endogenous representation. In the

endogenous representation firms are able to meet reduction targets with coal by taking

advantage of abatement opportunities to reduce sulfur emissions. Therefore for the

endogenous abatement representation we see more coals use and less NGCC growth. On

the other hand, with the GDP/capita representation, no abatement opportunities for coal

are available so the only way to reach reduction targets is by reducing coal consumption

and increasing generation from another source. Since natural is the next least costly

alternative based on the EPPA 2004 benchmark, we see it making up for most of the lost

coal generation. That said, in 2012 we are currently experiencing a glut in natural gas so

the cost of natural gas is exceptionally low so that if we were going by today's standards we

would see substitution towards natural gas across the board.

In China the results give a much different story compared to the USA. As we've already

seen in Figures 4.2 and 4.3, the S02 emission control caused significant reduction in overall

energy consumption and GDP and this is also evident in the electricity generation mix

under all three methodologies. In the reference case shown in Figure 4.5 (a) we see the

electricity generation mix largely dominated by coal with overall electricity production

growing to 35 EJ by 2030. The electricity generation mix under the endogenous abatement,

GDP/capita, and time trend methods are given by Figures 4.5 (b), (c) and (d) respectively,

all of which show significant reduction in electricity generation. Of all technologies in the

mix, coal is hit the hardest as would be expected since it is the most sulfur intensive. Under

each methodology we see a large number of backstop electricity generation technologies

clearing the market including coal (IGCAP), new nuclear generation, WINDBIO, and

WINDGAS. In addition, we also see the share of non-S02 intensive generation increase as

was the case in the USA. The most notable growth occurs for hydro power which goes from

1.93 EJ of generation in 2005 to 3.01 EJ by 2030.

With the energy mix graphs we also see a very strong indicator of the importance of the

endogenous abatement representation. In the electricity generation mix for the

GDP/capita, Figure 4.5 (c), and time-trend methods, Figure 4.5 (d), both plots show an
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immediate reduction in coal use as soon as the policy is implemented in 2015. However, in

Figure 4.5 (b), coal based electricity generation increases up until 2025. This is due to the

availability of abatement opportunities for coal generation provided by the endogenous

representation. Instead of having to immediately reduce coal consumption, firms are able

to continue to increase coal consumption for electricity generation for a decade longer as

they are able to continue to meet the reduction targets when using more coal by paying for

more abatement. It is only in 2025 when abatement opportunities seem to be exhausted or

too costly that it becomes cheaper to reduce consumption and depend more on other

energy generation backstops.
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Figure 4.5. Electricity generation mix in China under SO2 policy; (a) reference case,
(b) endogenous representation of abatement costs, (c) exogenous time-trend
representation of abatement, and (d) exogenous GDP/capita representation of
abatement opportunities.
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4.2 Co-benefits of Air Pollution and Climate Policy in China and the USA

Now that we have illustrated several advantages of the new methodology in capturing

many important interconnected feedback effects, we now apply the methodology by

providing an example of the kinds of policy analysis that can be done using the new

capabilities that could not be considered previously. As was mentioned in the introduction,

since the adverse effects of air pollution on human health and the environment are much

better understood and quantifiable when compared to our current abilities to quantify the

potential damages due to global warming and climate change, it has historically and in

practice been much easier to make the argument for a strong policy response to traditional

air pollution emissions. Since emissions of C02 largely stem from the same fossil fuel

sources as other traditional air pollutants, implementation of more stringent air pollution

reduction policies, that may be much easier to achieve politically, have the potential of

carrying significant ancillary benefits for the reduction of C02. This is largely achieved by

reduced consumption of fossil fuels in the presence of an air pollutant constraint, so that

both the air pollutant and C02 emissions are reduced simultaneously. This is especially true

in developing countries that are gradually placing a higher premium on clean air and are

more likely to adopt more stringent air quality controls than climate policy in the short run.

These so called "co-benefits" of air pollution policy on carbon emissions are particularly

important in China where -80% of electricity generation comes from coal, and where we

are beginning to see some progress in addressing air quality. For a more rigorous

treatment of the climate co-benefits of tighter SO2 and NO. regulations in China see

(Waugh, et al. 2012).

As an example, we consider a progressive policy beginning in 2010 that aims at

achieving a 5% additional reduction in SO2 and NOx emissions every year in comparison to

the baseline emissions scenario (i.e. compared to the baseline scenario it therefore attains a

5% reduction from baseline emissions in 2011, a 9.5% reduction in 2012, a 14.2%

reduction in 2013 etc.). The impact of this policy on SO2 and NOx emissions is given in

Figure 4.6 (a). As can be seen, the policy achieves significant reduction in both SO2 and

NOx emissions compared to the counterfactual baseline scenario. Emissions of SO2 fall from

160Tg to 70Tg and emission of NOx fall from 90Tg to 33Tg by 2030. In Figure 4.6 (b) we
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see the ancillary benefits the S02 and NO. emission controls have on carbon emissions. In

the reference case, 2030 emission of C02 are 18700 Tg but in the presence of the S02 and

NOx controls that number reduces to 13800 Tg. Although the ancillary benefits of the S02

and NO. reduction are not strong enough to lead to a reduction of carbon emissions to

achieve certain carbon concentration targets such as the 550 ppm target that many climate

policy advocates would like, the 26% reduction in carbon emissions that could readily be

achieved through a modest air pollution controls is promising.
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Figure 4.6. (a) China S02 and NO. Emissions under joint SO2 and NOx control policy,

(b) ancillary CO2 emissions under joint SO2 and NOx reduction policy

In Figures 4.7 (a) and (b) we see a sectoral breakdown showing where the reduction

in SO2 and NO. emissions come from which allows us to gain a better sense for how SO2 and

NO. policy controls could potentially effect specific sectors in the Chinese economy. In both

figures we see that the overwhelming amount of emission reduction comes from energy

intensive industry (EINT) and electricity generation (ELEC), which is to be expected as

these are the two sectors most dependent on coal and other fossil fuels. Initially we might

have expected the emissions reduction of SO2 and NOx to come more from electricity

generation than energy intensive industry, however, in the model EINT grows much faster

than ELEC resulting in a faster increase in EINT emissions as well. For the reference case,

S02 emissions from ELEC increase from 1OTg to 41Tg between 2004 and 2030 while

during the same time, SO2 emissions from EINT increase from 15Tg to 95Tg. Likewise, we
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see a similar trend for NO. with emissions from ELEC increasing from 3.2Tg to 13Tg

between 2004 and 2030 and emissions from EINT increasing from 8.4Tg to 55Tg over the

same time period. From this we see that the larger volume of emissions coming from EINT

allows for greater emission reduction than with ELEC, however, this can also be attributed

to the difference in available abatement opportunities between EINT and ELEC.

U I I 1
2015 2020 2025 2030 U CROP 2015 2020 2025 2030 M CROP

Year Year

(a) (b)

Figure 4.7. (a) SO2 sector specific emission reduction due to policy, (b) NOx sector
specific emission reduction due to policy

In figure Figure 4.8 (a) we see the sectoral breakdown of C02 emissions reduction. In

contrast to S02 and NOx, for C02 we see more emissions reduction coming from ELEC than

EINT. Initially this can be interpreted as being caused by greater availability of SO2 and NOx

abatement opportunities for EINT than for ELEC, and upon closer inspection of the

abatement opportunities and parameters derived from GAINS given in Appendix 1, this

interpretation is confirmed. In the regression on the GAINS data, more abatement

opportunities are identified for EINT than for ELEC and the substitution elasticities for

EINT tend to be more elastic compared to ELEC (for example, the substitution elasticity for

abatement of coal is 0.85 for EINT compared to 0.71 for ELEC). What this tells us is that

emissions of EINT are reduced more through abatement opportunities than through

reduced fuel consumption. In contrast, since less abatement opportunities are available for

ELEC SO2 and NOx emissions, more fuel reduction must occur to achieve the level of
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emissions reduction needed to meet the policy constraint. Since reduction in C02 emissions

is entirely due to reduced fuel consumption-i.e. no SO2 or NOx abatement technologies

reduce emission of C02-greater CO2 reduction is achieved from ELEC than for EINT.
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Figure 4.8. (a) CO2 sector specific emission reduction due to S02 and NO. controls.

In Figure 4.9 (a) we see the important cost impact effects of the policy on the overall

economy with GDP loss beginning in 2015 and rising to 6.1% by 2030. In Figure 4.9 (b)

overall production losses as well as a breakdown of production losses in individual sectors

are given and illustrates the interconnected distributional effects that the air pollution

policy has on economic productivity. Overall loss in production starts gradually with an

estimated $53 billion (2004 USD) loss coming in 2015, but then grows significantly to $2.1

trillion (2004 USD) by 2030. Hit hardest by the policy is EINT and OTHR production,

however, all sectors are adversely effected except for natural gas (GAS) which, although not

distinguishable in the figure, experiences a small amount of growth. While we may expect

to see significantly more growth in natural gas as a sulfur-free coal substitute in the

presence of the S02 constraint, growth in natural gas is restricted due to limited Chinese

natural gas resources. The insight gained on how air pollution emissions can effect sectoral

production is an extremely important consideration for Chinese policy makers as the

Chinese economy is heavily dependent in energy intensive industrial activities and
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manufacturing for economic growth. Even among non-energy intensive production such as

OTHR, the impact that a SO2 and NO. constraint has on energy costs effects all sectors in the

economy so that air quality reduction targets will have to be set carefully to meet human

health and environmental criteria with minimal impact on economic growth.
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Figure 4.9. (a) Overall percent loss in GDP due to S02 and NO. reduction policy, (b)
sector specific production loss due to S02 and NO. reduction policy.

In Figure 4.10 (a) and (b) the resulting electricity generation technology mix for the

reference case and policy scenarios are given respectively. In comparison to the SO2 policy

considered in the previous section that required a 10% decrease from 2010 emissions

every 5 years, the model under the current less stringent policy controls is much less

constrained. While overall electricity output dips some-from 35.4 EJ to 28.3 EJ by 2030-

the reduction in electricity generation isn't nearly as drastic as what was required to meet

the stringent policy targets shown in Figure 4.5 (b). As would be expected, most of the

reduction in electricity generation is due to the reduced expansion of coal power plants.

That fact that coal generation continues to grow between 2015 and 2030 even though S02

and NO. emissions remain relatively flat over this time-as shown earlier in Figure 4.6

(a)-is particularly insightful as it shows that even in the presence of tighter controls on

SO2 and NO., by taking advantage of abatement opportunities coal continues to be

competitive. Although we see some growth in hydroelectric power, nuclear, and wind and
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solar, these contributions still remain small when compared to the continued growth of

coal generation. Even more telling is the absence of any other backstop energy generation

technologies clearing the market. Under the stringent constraint in Figure 4.5 (b), we see a

whole host of backstop generation come online which we do not see in Figure 4.10 (b). This

suggests that the role of alternative electricity generation technologies may be limited in

China, even in the presence of significant air quality regulation, as abatement opportunities

for coal generation are still widely available.

0 0
2005 2010 2015 2020 2025 2030 2005 2010 2012ea 020 2025 2030

Year i200 Yer

(a) (b)

Figure 4.10. (a) Baseline electricity technology generation mix with output in
exajoules (EJ), (b) electricity technology generation mix output under SO2 and
NO. policy constraint.
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5 Conclusion

In summary, we have seen that in addition to improvements in economic activity, societal

welfare, improved standards of living, and increased life expectancy, the movement over

the last 200 years towards industrialization has had an unprecedented impact on air and

water pollution and the negative external costs associated with damages to human health

and the environment. In order to best identify, manage, and control these industrial

externalities, air pollution policy must be designed carefully to reduce adverse effects

without heavily impacting economic growth. As many of the considerations of most

interest in achieving optimal air quality policy design are multidisciplinary in nature,

frameworks for structuring and analyzing the interconnected effects and feedbacks of

different policy pathways play an important role in informing the policy-making process.

Over the last four decades, integrated assessment models have grown from simple

energy models used to study ways of diversifying the US electricity generation mix to

highly complex models covering the global non-linear effects of socioeconomic and

biophysical earth systems in a coupled and integrated framework. Although much of the

focus of these models has been on addressing climate change impacts and global warming,

some work has been done to study interrelated effects of air pollution policy. Among such

models, computable general equilibrium has been extensively used to model the

socioeconomic interactions. While some critiques of the CGE modeling framework and

criticisms of poor practices among CGE modelers may be reasonable, many of these

critiques can be overcome by following best practices in model design and implementation

while other critiques are well taken and present rich opportunities for improvement of

current CGE methods. Overall the structure of CGE models best lends them as powerful

tools for studying counterfactual ex ante comparisons of multiple policy pathways

In this thesis I have argued for the importance of sound methods for exploring the

interconnected effects of air pollution policy within an integrated framework. Since

traditional air pollutants are largely emitted from the same sources that emit carbon, air

quality and climate policy are intrinsically linked and the stringency of a policy control on

one pollution species can significantly affect emissions of other species. Any policy analysis

112



of pollution species in isolation will not capture these effects. Also, many policy

considerations regarding permissible levels of air pollution weigh the benefits of air

quality, as determined from epidemiological and other environmental impact studies, with

the economic costs of emission controls. As these considerations span multiple disciplines,

the questions of most interest regarding policy benefits and costs are inherently integrated.

To provide researchers and policy makers with better tools when considering multiple

policy pathways I designed and implemented a new methodology that overcomes many of

the limitations of previous methodologies. Among the limitations of previous

methodologies include: representing air pollution abatement opportunities exogenously,

which fails to account for abatement costs and does not capture key economic feedbacks to

policy shocks; and among endogenous representations, the new methodology overcomes

failures to properly distinguish between fuel related and non-fuel related emissions and

inabilities to provide a framework capable of representing multiple pollution species

simultaneously.

Central to the new framework is representation of air pollution abatement

opportunities that firms can pursue in the presence of stringent policy controls. These

opportunities can be represented in constant elasticity of substitution (CES) production

nests within existing CGE models by benchmarking elasticity of substitution and value

share parameters on technology, sector, and region-specific abatement opportunities as

specified by detail-rich engineering data in marginal abatement cost curves. Using this

approach addresses one of the main critiques of CGE models-that they tend to overly

aggregate and homogenize over important details-by providing "bottom-up" technical

detail within a "top-down" integrated assessment framework. The theory underpinning the

representation was derived in detail from microeconomic theory and important

considerations regarding other parameters were considered. Finally, the new method was

implemented into the 5th version of the MIT Emissions Prediction and Policy Analysis

Model for SO2 and NOx using engineering data from the Greenhouse Gas and Air Pollution

Interactions and Synergies model. In total 314 opportunities for SO2 and NOx were

parameterized and implemented.
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A comparison between the new methodology and previous exogenous methods for

representing air pollution controls in EPPA was also given and demonstrated many key

advantages. As an example of the kinds of policy analysis questions that can be explored

using the new methodology, I presented a brief analysis of the co-benefits of a S02 and NO.

reduction policy on reducing C02 emissions in China. For the specific policy considered, we

saw that air pollution controls can play a significant role in reducing carbon emissions, that

carbon emission reductions due to air pollution controls may largely come from decreased

coal consumption in electricity generation, that future cost impacts of air pollution controls

on the Chinese economy can be significant, and that significant abatement opportunities for

reducing SO2 and NO. emissions from coal powered electricity generation may leave few

opportunities for adoption of other air pollution neutral energy technologies in the

electricity generation mix.

Notwithstanding the improvements made in this thesis in representing abatement

opportunities for air pollutants, many challenges remain. First, representation of induced

technological change of abatement opportunities remains underdeveloped and next steps

should explore ways of representing induced change endogenously in the model by

dynamically adjusting the price elasticity of demand for emitting. Second, currently the

only policy instruments that have been implemented in EPPA are region-specific emission

caps. Further work should be done to represent other policy instruments including region

and sector specific emission caps and Pigouvian taxes. Finally, as this thesis has focused

almost entirely on methodology development and parameterization of abatement

opportunities, careful consideration of uncertainty in the abatement parameters and the

sensitivity of the EPPA model results to parameter variation must be considered as small

changes in key parameters can significantly impact model results. These remaining

challenges should provide rich opportunities for the next generation of integrated

assessment modelers as we continue to develop stronger tools and methodologies to

inform air pollution policy design.
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Appendix 1: Sulfur Dioxide and Nitrous Oxide CGE Parameters

This section contains the parameterization results for representing S02 and NOx in the MIT

Emissions Prediction and Policy Analysis (EPPA) model version 5. Data used in the

parameterization was obtained from the Greenhouse Gas and Air Pollution Interactions

and Synergies model which gives marginal abatement costs and emission reduction data at

the technology specific level of disaggregation (Nguyen, Wagner and Schoepp 2011). For a

complete discussion on the derivation of these parameters see section 3.2

"Parameterization of Abatement Opportunities." The symbols used in this appendix are

consistent with the definition used throughout the thesis and are defined as follows: initial

quantity of pollutant produced in gigagrams (Xp [Gg]), initial quantity of pollution emitted

in gigagrams (XE [Gg]), initial quantity of pollution abated in gigagrams (XA [Gg]), initial

marginal price of emitting (Po [(2004 USD)/kg]), initial value share of pollution emitted

(0), price elasticity of demand for emitting (ED), initial elasticity of substitution (a), value of

regression parameter a, value of regression parameter 1, correlation coefficient (r2 ). One

should note that in many cases 0 equals 1 suggesting that no abatement is achieved using

the abatement opportunity in the base year and that the substitution elasticity is infinite.

To account for this when calibrating the base year a we set the initial 0 in these cases to .95

and then let 0 dynamically recalibrate in the model as abatement opportunities are

realized.

Table Al. SOz Abatement Opportunity Parameters

ANZ

FORS PROCESS 14.82 14.08 0.74 0.58 1.00 -0.31 0.31 3.95 -3.25 1.00

EINT COAL 27.02 25.67 1.35 2.05 1.00 -2.Q2 40.47 .2.32 -0.49 0.91

EINT OIL 61.28 39.13 22.15 0.59 0.64 -0.11 0.29 19.75 -9.44 1.00

EINT ROIL 18.11 11.42 6.69 1.56 0.63 -1.41 3.82 2.17 -0.71 0.81

EINT BOIL 3.29 3.13 0.16 6.96 1.00 -0.16 3.16 8.43 -6.32 0.94

EINT PROCESS 883.18 839.02 44.16 _0.21, 1.00, -0.10 0.10. 55.32 -10.47 0.55

TRAN OIL 9.83 9.34 0.49 0.49 1.00 -0.13 2.54 4.25 -7.87 1.00

TRAN ROILt 141.44 20:83 120.61 3.5 0.15 -1.31 1J.53 359 -0.77 0.52

ELEC COAL 1959.23 639.10 1320.13 0.54 0.33 -0.11 0.16 50.93 -9.48 0.81

FE FC OIL 38.03 22.97 15.06 0.45 0.60 -0.13 0.32 1162 -7.99 0.90
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ELEC ROIL

OIL PROCESS
FD COAL

FO OIL
FD ROIL

10.86
27.40

5.53

1.50
12.49

7.31
26.03

5.25

0.82
6.12

3.55 1.89 0.67
1.37 0.23 1.00
0.28 0.46 1.00

0.68 0.49 0.55
6.37 1.53 0.49

-1.59
-0.05
-1.09

-0.13
-0.69

4.85
0.05

21.89

0.28
1.35

1.89
37.55

0.72

-12.17
1.44

-0.63 0.75
-19.25 0.97

-0.91 0.99
-7.90 1.00
-1.45 1.00

ASI

FORS PROCESS
EINT COAL
EINT OIL

EINT ROIL
EINT BOIL

EINT PROCESS
TRAN OIL

TRAN ROIL
ELEC OIL
ELEC ROIL
ELEC BOIL

OIL PROCESS
FD OIL

FD ROIL
ELEC COAL

26.89
342.86

840.99
45.71
59.82

227.00
8.64

1388.83
589.02

37.36

18.42
117.11

89.85
112.58

5462.25

25.55

325.72
252.95

23.19
56.83

168.93
7.18

62.36
185.04

16.63
17.50

111.25
18.53
25.68

385.56

1.34 0.39 0.99
17.14 0.96 1.00

588.04 0.54 0.30
22.52 4.87 0.51

2.99 3.35 1.00
58.07 0.44 0.74

1.46 0.49 0.83
1326.47 1.60 0.04

403.98 0.51 0.31
20.73 5.42 0.45

0.92 2.54 1.00
5.86 0.16 0.99

71.32 0.48 0.21
86.90 1.51 0.23

5076.69 0.35 0.07

-0.31
-1.01

-0.30
-7.16

-0.01
-0.16
-0.13
-1.20
-0.40

-0.07
-0.02
-0.05

-0.13
-0.34
-0.13

0.31
20.16
0.43

14.54
0.14

0.16
0.75
1.26
0.58
0.13
0.30
0.05
0.16
0.44
0.14

5.47 -3.24 1.00
5.70 -0.99 0.99

15.66
2.02

567.87
25.36

3.15
3.90

10.69
16.88

186.96
66.41
16.12

9.89
39.70

-3.35 0.84
-0.14 0.78

-140.96 0.98
-6.10 0.88
-7.91 1.00

-0.83 0.75
-2.51 0.92

-13.82 1.00
-66.34 0.89
-19.49 0.99

-7.84 1.00

-2.92 1.00
-7.81 0.72

CAN

135.34 0.41 0.48

0.62 0.57 1.00
160.20 0.11 0.58

8.71 1.42 0.61
1143.95 0.07 0.39

2.57 0.49 1.00
255.73 1.67 0.14

-0.30
-0.40
-0.47

-1.32
-0.11

-0.13
-0.72

579.45 0.38 0.44 -0.19
63.18 0.45 0.76 -0.17
0.58 1.58 0.63 -1.30
0.12 4.46 1.00 -0.02

60.30 0.15 0.50 -0.05
0.04 0.43 1.00 -0.38

31.50 0.49 0.55 -0.13
52.67 1.53 0.49 -0.69

0.30
8.07
1.14

3.38
0.11

2.54
0.84
0.33

0.70
3.52
0.46

12.48

4.42
9.19
2.32

48.53
17.30
5.68

22.14

20.44

0.45
36.64

0.5 60.04
7.59 -2.13
0.28 19.67
1.35 4.51

-3.28 1.00
-2.48 0.93
-2.11 0.97

-0.76 0.86
-8.71 0.47

-7.88 1.00
-1.38 0.76
-5.41 0.77

-6.00 0.79
-0.77 0.73

-43.64 1.00
-18.61 0.91

-2.64 1.00

-7.90 1.00
-1.45 1.00

CHN

FORS PROCESS 140.78 133.74 7.04 0.39 0.95 -0.31 0.31 11.06 -3.27 1.00
EINT COAL 20334.52 9635.12 10699.40 0.48 0.47 -0.45 0.85 19.68 -2.23 0.87
EINT OIL 434.35 412.63 21.72 3.23 1.00 -0.13 2.53 35.93 -7.90 1.00
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FORS

EINT
EINT
EINT
EINT
TRAN
TRAN

ELEC
ELEC
ELEC
ELEC
OL
FD

FD

FD

PROCESS
COAL
OIL

ROIL
PROCESS
OIL
ROIL

COAL
OIL

ROIL
BOIL
PROCESS
COAL

OIL
ROIL

262.52
12.31

384.55
22.25

1866.18

51.49
298.01

1040.75
263.69

1.57
2.37

121.29
0.78

69.30
103.26

127.18
11.69

224.35
13.54

722.23

48.92
42.28

461.30
200.51

0.99
2.25

60.99

0.74

37.80
50.59



ROIL 119.43 113.46 5.97 1.51 1.00 -0.62 12.42
PROCESS 6768.18 2895.01 3873.17 0.22 0.43 -0.15 0.15
ROIL 399.25 360.79 38.46 1.96 0.90 -1.18 12.20
COAL 24139.50 15606.86 8532.64 0.40 0.65 -0.25 0.71
OIL 33.57 31.89 1.68 1.88 1.00 -0.14 2.85
COAL 1625.07 1543.82 81.25 0.44 1.00 -0.13 2.56
PROCESS 196.40 147.38 49.02 0.16 0.75 -0.06 0.06
ROIL 0.04 0.02 0.02 4.48 0.46 -0.13 0.24

412.64 0.44 0.41 -0.44 0.75
1322.38 0.56 0.19 -0.18 0.22

33.56 2.30 0.37 -1.26 2.00

12.88 8.21 0.52 -0.08 0.16
1707.47 0.41 0.25 -0.11 0.11

3091.94 3.53 0.03 -0.44 0.45
20976.71 0.29 0.19 -0.12 0.15

3195.88 0.53 0.20 -0.49 0.61
103.63 2.45 0.35 -0.09 0.14

1124.60 0.22 0.15 -0.03 0.03
37.61 0.32 0.91 -0.06 0.61

261.00 0.48 0.18 -0.13 0.16
830.94 1.60 0.17 -0.42 0.50
448.44 0.51 0.13 -0.14 0.14

7.49 0.48 0.93 -0.13 1.88

0.08 0.39 1.00 -0.30 0.30
148.34 0.70 1.00 -0.91 18.26
216.18 0.39 1.00 -3.65 72.90

4.79 1.48 1.00 -0.42 8.42
0.91 0.49 1.00 -0.14 2.70

350.23 0.43 1.00 -0.66 13.29
38.23 0.02 1.00 -0.70 14.01

1.43 1.88 1.00 -2.09 41.84
19.96 0.11 1.00 -0.25 0.25

11.93
28.75

3.20
36.37
50.10
12.01
59.82
13.06
44.97

141.26
92.04
25.54
11.19
23.87
22.40

-3.56
8.07
1.35
7.99
5.32

10.86
5.69
2.21

18.30

-2.25 0.96
-5.58 1.00
-0.80 0.70

-13.00 0.81
-8.79 0.92
-2.29 0.39
-8.46 0.60
-2.06 0.83

-11.01 0.98
-30.22 0.78
-17.45 1.00

-7.75 1.00
-2.39 1.00
-6.96 1.00
-7.87 1.00

-3.28 1.00
-1.10 0.96
-0.27 0.82
-2.37 1.00
-7.40 1.00
-1.50 0.86
-1.43 0.76

-0.48 0.70
-4.00 0.83

FD ROIL 82.38 45.62 3676 4.44 0.55 -0.14 0.32 25.16 -7.06 1.00

JPN

104.60
191.89
446.14

37.85
15.07

27.17 77.43 1.26 0.26 -0.13 0.13 20.92 -7.61 1.00

76.90 114.99 1.81 0.40 -0.32 0.54 12.79 -3.11 0.99
86.45 359.69 0.91 0.19 -0.48 0.59 9.27 -2.10 0.67

27.65 5.1 4.41 0.64 -0.13 0.80 16.17 -. 190 1.00

9.26 5.81 0.96 0.61 -0.17 0.45 10.19 -5.81 0.74
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EINT
EINT
TRAN
ELEC
ELEC
FD
OIL
ELEC

EUR

6.38
49.25

5.68
30.03
11.96
50.91
67.23

-36.16

-1.61 1.00
-6.88 0.91
-0.85 0.80
-4.01 0.99
-7.02 0.88
-7.82 1.00

-17.70 0.93
-7.88 1.00

EINT
EINT
EINT
EINT
EINT
TRAN
ELEC
ELEC
ELEC

OIL
FD

FD
FD)

FORS
TRAN

COAL

OIL
ROIL
BOIL
PROCESS
ROIL
COAL
OIL
BOIL

PROCESS
COAL
OIL
ROIL
PROCESS
OIL

699.47
1636.43

53.31
26.82

2264.24
3200.92

25881.22
3976.55

158.32
1330.00

397.78
318.35
996.46
514.21
111.09

286.83
314.05

19.75
13.94

556.77
108.98

4904.51
780.67

54.69
205.40
360.17

57.35
165.52

65.77
103.60

IND

FORS

EINT
EINT

EINT
TRAN

ELEC
ELEC
ELEC

PROCESS
COAL
OIL
ROIL
OIL
COAL
OIL
ROIL
PROCESS

1.68
2966.75
4323.66

95.89
18.14

7004.67
764.62

28.68

1.60
2818.41
4107.48

91.10
17.23

6654.44
726.39

27.25
379.26

FORS
EINT
EINT

EINT
EINT

PROCESS

COAL
OIL
ROIL

BOIL
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EINT
EINT
EINT
EINT
EINT
TRAN
TRAN
ELEC
ELEC
ELEC
ELEC
OIL
FD
FD
FD

237.43 0.41 0.54
42.59 0.54 0.93
34.78 0.56 0.94

7.50 1.56 1.00
2.15 6.61 1.00

1474.99 0.08 0.17
0.39 0.49 1.00

3494.02 1.61 0.08
23327.23 0.44 0.29

2104.12 0.45 0.20
1.51 1.75 1.00

2.89 4.38 1.00
565.75 0.11 0.48
68.57 0.43 0.44

156.56 0.49 0.35
15.59 1.50 1.00

-0.30 0.30
-0.07 1.07
-0.39 6.83
-1.71 34.18
-0.04 0.72

-0.15 0.15
-0.13 2.54
-0.86 0.93
-0.11 0.16
-0.10 0.12
-1.73 34.68
-1.51 30.25
-0.27 0.27

-0.14 0.26
-0.13 0.19
-0.59 11.89

14.83
68.80
12.48

3.35
99.40
32.53

2.44
7.06

65.62
50.47

2.50
4.13

19.75
24.01
27.53

7.05

-3.28 1.00
-13.43 0.79

-2.58 0.95
-0.59 0.76

-27.69 0.99
-6.56 0.88
-7.88 1.00
-1.16 0.84
-8.90 0.54

-00 0.81

-0.58 0.69
-0.66 1.00
-3.72 0.81
-7.02 1.00
-7.87 1.00
-1.68 1.00
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COAL
OIL
ROIL
BOIL
PROCESS
OIL
ROIL
COAL
OIL
ROIL

BOIL
PROCESS
COAL
OIL
ROIL

57.78
160.45

10.59
25.49

347.78
0.61

242.85
408.06
421.00

6.54
97.24

145.85
46.25
11.26
22.35

USA

FORS

EINT
EINT
EINT
EINT

EINT
TRAN

TRAN
ELEC
ELEC
ELEC
ELEC
OIL
FD

FD

PROCESS
COAL
OIL
ROIL
BOIL
PROCESS
OIL
ROIL
COAL

OIL
ROIL
BOIL
PROCESS
COAL
OIL
ROIL

519.08
612.41
611.42
150.03

43.07
1770.56

7.80
3783.76

32989.93
2615.72

30.25
57.79

1082.10
123.44
240.07
311.80

281.65
569.82
576.64
142.53
40.92

295.57
7.41

289.74
9662.70

511.60
28.74
54.90

516.35
54.87
83.51

296.21

46.12
106.03

5.10
24.22

134.08
0.58

44.96
282.87
321.10

3.15
92.38
73.58
43.94
10.70
10.77

11.66 0.39 0.80 -0.27 1.35
54.42 0.56 0.66 -0.31 0.90
5.49 4.36 0.48 -0.13 0.24
1.27 0.66 1.00 -2.68 53.54

213.70 0.24 0.39 -0.10 0.10
0.03 0.49 1.00 -0.13 2.53

197.89 2.31 0.19 -0.99 1.21
125.19 0.38 0.69 -0.28 0.92
99.90 0.42 0.76 -0.18 0.76

3.39 4.36 0.48 -0.13 0.24
4.86 0.56 1.00 -1.17 23.32

72.27 0.16 0.50 -0.06 0.06
2.31 0.32 1.00 -0.42 8.39
0.56 0.49 1.00 -0.13 2.53

11.58 4.36 0.48 -0.13 0.24

9.76
10.86

1.19
0.77

40,99
-14.81

4.68
12.17
19.59
-2.62
1.72

61.56

8.27
7.07

-3.68 0.91
-3.28 0.99
-7.90 1.00
-0.37 0.93
-9.84 0.92
-7.90 1.00
-1.01 0.60
-3.55 0.81
-5.52 0.90
-7.90 1.00

-0.86 0.82
-18.11 0.96

-2.38 1.00
-7.91 1.00
-7.90 1.00



Table A.2. NOx Abatement Opportunity Parameters

ANZ

0.94 0.17 1.00 -0.23 4.54 8.69
0.45 0.08 1.00 -0.33 6.53 4.02
0.57 0.43 1.00 -0.02 0.44 77.34
1.93 0.58 1.00 -0.20 3.95 13.81
1.01 0.49 1.00 -0.07 1.36 34.12
2.04 0.18 1.00 -0.41 0.41 6.91

24.78 0.17 1.00 -0.15 2.97 33.76
0.24 0.08 1.00 -0.34 6.71 1.93
0.27 0.35 1.00 -0.18 3.66 4.19
3.15 0.06 1.00 -0.25 4.96 13.61
0.32 0.40 1.00 -0.13 2.57 7.76
0.73 0.61 1.00 -0.56 0.56 4.16
0.01 0.81 1.00 -0.13 2.54 -21.48
0.20 5.11 1.00 -0.34 6.87 5.57
0.56 2.02 1.00 -0.29 5.71 8.13

9.43 0.13 1.00 -0.32 6.38 14.26
4.03 0.25 1.00 -0.39 7.86 9.63
1.67 0.54 1.00 -0.52 10.38 6.05
5.05 0.76 1.00 -0.21 4.20 18.61
5.73 0.49 1.00 -0.06 1.12 73.15
9.38 0.37 0.97 -0.14 0.14 27.91

12.03 0.07 0.82 -0.24 1.39 13.82
0.79 0.66 1.00 -1.37 27.44 1.56

11.23 0.25 0.99 -0.29 5.80 17.13
52.19 0.00 0.26 -0.01 0.01 297.01

2.20 1.05 1.00 -0.72 0.72 5.25
0.30 0.81 1.00 -0.13 2.54 6.52
2.44 4.80 1.00 -0.33 6.67 13.08
0.36 2.42 1.00 -0.28 5.67 6.81

26.48 0.13 0.98 -0.26 5.15 19.90

-4.40 0.99
-3.06 0.97

-45.43 0.85
-5.07 0.99

-14.68 0.64
-2.46 0.98
-6.74 0.96
-2.98 0.95

-5.46 1.00
-4.03 0.86

-7.78 1.00
-1.77 0.71
-7.88 1.00
-2.91 0.69
-3.50 1.00

-3.14 0.99
-2.54 0.94
-1.93 0.77

-4.76 1.00
-17.92 0.68

-7.21 0.97
-4.09 0.81
-0.73 0.59
-3.45 0.85

-106.19 0.76
-1.39 0.69
-7.88 1.00
-3.00 0.88
-3.53 1.00
-3.88 0.84

0.60 0.25 0.90 -0.13 1.22
3.79 0.18 0.92 -0.39 5.05
0.73 0.38 1.00 -0.10 1.91
4.99 0.53 1.00 -0.24 4.70
2.23 0.63 1.00 -0.13 2.54
3.33, 0.17 1.00 -0.35 0.35

690.76 0.11 0.20 -0.32 0.41

7.70

8.14

20.52

16.09
22.20

8.96
13.75

-7.79 0.99
-2.59 0.98

-10.46 0.85
-4.25 1.00
-7.88 1.00
-2.86 0.99
-3.09 0.90

127

EINT
EINT
EINT
EINT
EINT

EINT
ELEC

ELEC
ELEC

ELEC

OIL
FD

FD

FD

COAL
OIL
ROIL

GAS
BOIL
PROCESS
COAL
OIL
ROIL
GAS
BOIL
PROCESS
OIL
ROIL
GAS

18.74

8.99
11.48

38.56
20.11

40.88
495.51

4.79
5.48

63.06
6.36

14.61
0.17
4.07

11.20

17.80
8.54

10.91
36.63
19.10
38.84

470.73
4.55
5.21

6.04
13.88

0.16
3.87

10.64

ASI

EINT
EINT
EINT

EINT
EINT

EINT
ELEC
ELEC
ELEC
ELEC
OIL
FD
FD

FO
ELEC

COAL
OIL
ROIL
GAS
BOIL
PROCESS
OIL
ROIL
GAS
BOIL
PROCESS
OIL
ROIL
GAS
COAL

188.52
80.51
33.45

100.92
114.52
187.68

68.58
15.84

224.57
70.07
44.05

5.91
48.84

7.20
529.58

179.09
76.48
31.78
95.87

108.79
178.30

56.55
15.05

213.34
17.88
41.85

5.61
46.40

6.84
503.10

CAN

EINT
EINT
EINT
EINT
EINT
EINT
ELEC

COAL

OIL
ROIL

GAS
BOIL
PROCESS
COAL

5.71
49.47
14.68
99.86
44.56
66.59

865.31

5.11
45.68
13.95
94.87
42.33
63.26

174.55



133.54 0.09 0.15 -0.24 0.29
0.03 0.46 1.00 -1.57 31.35

21.64 0.18 0.82 -0.32 1.77
2.84 0.33 1.00 -0.57 0.57
0.46 0.81 1.00 -0.13 2.54
1.34 5.13 1.00 -0.41 8.11
3.33 2.02 1.00 -0.29 5.70

230.72 0.13 1.00 -0.26 5.21
11.35 0.06 1.00 -0.29 5.81
10.88 0.15 1.00 -0.04 0.71
3.31 0.09 1.00 -0.27 5.38
3.33 0.39 1.00 -0.13 2.54

22196.39 0.15 0.10 -0.14 0.14
1067.55 0.12 0.81 -0.35 1.85

1.04 0.05 1.00 -0.29 5.82
1.11 0.55 1.00 -0.13 2.54
0.37 8.84 1.00 -0.26 5.11
0.61 4.92 1.00 -0.29 5.71
3.38 0.35 1.00 -0.07 0.07
0.00 0.53 1.00 -0.13 2.54

179.80 0.19 0.38 -0.17 0.27
124.55 0.23 0.47 -0.35 0.65

5.08 0.40 0.90 -0.58 5.89
227.83 0.46 0.61 -0.23 0.61

2.42 0.48 0.97 -0.07 1.37
1594.30 0.28 0.27 -0.26 0.26
7300.02 0.21 0.18 -0.20 0.24

3572.82 0.16 0.06 -0.21 0.23
738.65 0.00 0.06 -0.10 0.10

2950.70 0.17 0.16 -0.23 0.27
263.24 0.43 0.37 -0.02 0.03
273.84 1.15 0.24 -0.51 0.51

1.02 0.93 1.00 -0.13 2.54

197.81 5.46 0.47 -0.21 0.40
674.87 2.23 0.36 -0.26 0.40

30.11
15.75

129.99
12.61
24.90
48.49
21.48
7.30

14.73
9.77
9.36

44.26
-38.29

25.96
12.09

5.74
22.90
47.15
22.25
34.77
24.28
31.32
26.14

235.98
8.88

16.45
26.19
23.42

-3.84 0.98
-3.44 0.99

-28.23 0.72
-3.71 1.00
-7.88 1.00
-7.33 0.97
-2.82 0.59
-3.44 0.94
-7.88 1.00
-3.92 0.97
-3.50 1.00

-15.17 0.93
-7.88 1.00

-5.98 0.98
-2.89 0.97
-1.73 0.93
-4.27 1.00

-14.63 0.72
-3.91 0.98
-5.07 0.93
-4.74 0.94

-10.22 0.71
-4.43 0.98

-50.15 0.93
-1.95 0.83
-7.88 1.00
-4.73 0.96
-3.88 0.99
-1.19 1.00
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ELEC
ELEC
ELEC
OIL
FD

FD

OIL
ROIL
GAS
PROCESS
OIL
ROIL
GAS

156.41
0.53

120.51
56.82

9.18
26.86
66.56

22.87
0.50

98.87
53.98

8.72
25.52
63.23

CHN

10.40
-1.21
12.75

5.84
10.01

9.62
14.38

-4.09 0.87
-0.64 0.84
-3.14 0.99
-1.74 0.87
-7.88 1.00
-2.47 0.75
-3.51 1.00

EINT
EINT
EINT
EINT
EINT
EINT
ELEC
ELEC
ELEC
FD
FD)

OIL
ELEC

COAL
OIL
ROIL
GAS
BOIL
PROCESS
COAL
OIL
GAS
ROIL
GAS
PROCESS
ROIL

4614.36
226.95
217.62

66.12
66.68

24713.99
5584.01

20.74
22.17
7.32

12.20
67.61

0.02

4383.64
215.60
206.74

62.81
63.35

2517.60
4516.46

19.70
21.06
6.95

11.59
64.23

0.02

EUR

EINT
EINT
EINT
EINT
EINT
EINT
ELEC
ELEC
ELEC
ELEC
ELEC
OIL
FD
FD
FD
FORS

COAL
OIL
ROIL
GAS
BOIL
PROCESS
COAL
OIL
ROIL
GAS
BOIL
PROCESS
OIL
ROIL
GAS
PROCESS

287.77
232.90

51.77
591.35

48.39
2170.42
8900.77
3818.94

783.76
3493.16

416.41
362.51

20.46
375.84

1052.36
0.79

107.97
108.35

46.69
363.52

45.97
576.12

1600.75
246.12

45.11
542.46
153.17

88.67
19.44

178.03
377.49

0.67

IND

EINT COAL 1243.02 1180.87 62.15 0.09 1.00 -0.31 6.16 20.60 -3.25 0.97

EINT OIL 362.11 344.00 18.11 0.21 1.00 -0.37 7.36 14.33 -2.72 0.95

0.12 3.62 0.85 -0.84 0.84 -0.21

.

.



1.84 0.57 1.00 -0.29 5.89
0.56 0.12 1.00 -0.27 5.50

24.79 0.37 1.00 -0.13 0.13
120.45 0.22 1.00 -0.23 4.63

2.30 0.16 1.00 -0.15 3.08
0.33 0.53 1.00 -0.27 5.47

13.57 0.35 1.00 -0.08 1.64
6.74 1.23 1.00 -1.06 1.06

12.41 5.53 1.00 -0.16 3.11
0.28 2.42 1.00 -0.29 5.72

223.80 0.26 0.16 -0.16 0.18
114.94 0.54 0.24 -0.28 0.38

2.98 0.60 1.00 -0.63 12.62
121.48 0.85 0.18 -0.13 0.15

0.69 0.79 1.00 -0.01 0.17
428.38 0.50 0.16 -0.26 0.26

5763.55 0.28 0.02 -0.06 0.06
2723.69 0.30 0.02 -0.09 0.09

0.17 0.51 1.00 -0.31 6.28
343.18 1.12 0.25 -0.24 0.32

2251.09 0.00 0.01 -0.04 0.04
38.85 3.76 0.40 -0.13 0.13

0.30 0.81 1.00 -0.13 2.54
5.48 5.50 1.00 -0.38 7.63
2.39 2.42 1.00 -0.29 5.71

8.49
6.49

35.97
28.27
16.14
5.09

50.86
4.81

34.82
5.83

22.67
12.05

5.89
23.43

214.66
16.36
79.12
42.24

1.00
19.96
53.79

19.98
6.66

13.88
13.41

-3.40 1.00
-3.64 1.00
-7.45 0.95
-4.32 0.92
-6.50 0.92
-3.66 1.00

-12.22 0.99
-0.95 0.66
-6.43 0.98
-3.50 1.00

-6.43 0.98
-3.52 0.92
-1.58 0.91
-7.99 0.97

116.15 0.89
-3.89 0.73

-16.67 0.70
-11.56 0.94

-3.18 0.94
-4.17 0.76

-22.89 0.97
-7.88 1.00
-7.88 1.00
-2.62 0.76
-3.51 1.00

9.63 0.11 1.00 -0.33 6.52
1.80 0.13 0.98 -0.32 6.43
0.86 0.71 1.00 -0.08 1.63
3.69 0.73 0.96 -0.25 5.07
1.96 0.49 1.00 -0.10 1.96
4.76 0.25 1.00 -0.57 0.57
8.69 0.21 1.00 -0.13 2.67

3.18 0.16 1.00 -0.23 4.60
0.09 0.66 1.00 -0.04 0.90
7.96 0.19 1.00 -0.35 7.04
1.16 1.17 1.00 -0.93 0.93
1.94 4.89 1.00 -0.34 6.72
2.66 2.42 1.00 -0.29 5.70

0.14 0.81 1.00 -0.13 2.54

13.76
8.91

25.78
14.60
26.38

5.48
29.90
12.99

4.89
12.58

3.49
12.32
13.79
0.42

-3.07 0.98
-3.11 0.93

-12.25 1.00
-3.94 1.00

-10.20 0.73
-1.75 1.00
-7.50 0.84
-4.35 0.88

-22.29 1.00
-2.84 0.84
-1.08 0.67
-2.98 0.84
-3.51 1.00
-7.88 1.00
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EINT
EINT
EINT
ELEC
ELEC

ELEC
ELEC
OIL
FD

FD

ROIL
GAS
PROCESS

COAL
OIL

ROIL
GAS
PROCESS
ROIL
GAS

36.77

12.12
495.86

2408.96
46.05

6.68
271.31
134.89
248.14

5.52

34.93

10.56
471.07

2288.51
43.75

6.35
257.74
128.15
235.73

5.24

JPN

EINT
EINT
EINT

EINT
EINT

EINT
ELEC

ELEC
ELEC
ELEC
ELEC

OIL
FD

FD

FD

COAL
OIL
ROIL

GAS
BOIL

PROCESS
COAL
OIlt
ROIL

GAS
BOIL

PROCESS
OIL
ROIL
GAS

265.54
151.71

59.54
148.98

13.81
508.27

5906.59
2766.54

3.39
459.19

2264.48
64.28

6.01
109.59
47.86

41.74
36.77
56.56
27.50
13.12
79.89

143.04
42.85

3.22
116.01

13.39
25.43

5.71
104.11

45.47

REA

EINT
EINT
EINT
EINT
EINT

EINT
ELEC
ELEC
ELEC

ELEC

OIL
FD
FD
FID

COAL

OIL
ROIL

GAS
BOIL
PROCESS
COAL
OIL
ROIL
GAS
PROCESS
ROIL
GAS
OIL

192.58
36.01
17.16
73.89
39.23
95.29

173.85
63.69

1.80
159.14

23.16
38.77
53.18

2.71

182.95
34.21
16.30
70.20
37.27
90.53

165.16
60.51

1.71
151.18

22.00
36.83
50.52

2.57
%



26.53 0.09 0.71 -0.27 0.94 12.91
13.88 0.05 0.61 -0.29 0.74 7.51
0.16 0.66 1.00 -3.17 63.40 -0.06
1.95 0.59 0.87 -0.20 1.53 9.02
0.05 0.39 1.00 -0.13 2.54
4.84 0.37 1.00 -0.18 0.18
3.67 0.21 1.00 -0.30 6.04
3.82 0.07 0.74 -0.30 1.17
0.13 0.54 1.00 -0.22 4.47
2.20 0.25 0.98 -0.35 6.98
0.52 1.25 1.00 -1.08 1.08
0.39 0.81 1.00 -0.13 2.54
0.58 5.49 1.00 -0.39 7.79
0.73 2.05 1.00 -0.29 5.71
0.02 0.33 1.00 -0.36 7.12

-7.47
17.89
11.10

5.24
3.42
8.89
2.34

8.76
7.88
9.09

-4.05

1.20 0.17 0.93 -0.14 2.11
1.63 0.14 0.94 -0.36 6.00
0.44 0.55 1.00 -0.57 11.43
3.76 0.82 0.96 -0.07 1.46
0.16 0.47 1.00 -0.19 3.80
6.53 0.34 1.00 -0.19 0.19
6.48 0.13 1.00 -0.17 3.31

- 4.97 0.03 0.94 -0.30 4.85

0.12 0.66 1.00 -0.02 0.31
37.85 0.04 0.97 -0.24 4.78
0.67 0.50 1.00 -0.04 0.72
2.25 1.13 1.00 -0.86 0.86
0.11 0.81 1.00 -0.13 2.54
0.63 4.72 1.00 -0.35 6.92
4.01 2.42 1.00 -0.29 5.71

14.77

7.10
3.11

43.11
1.93

21.50
21.70
11.15
13.97
24.30
48.53

4.48
-1.28
8.73

15.21

-7.01 0.99
-2.80 0.99
-1.75 0.86

-13.66 0.98
-5.26 0.99
-5.30 0.96
-6.04 0.91
-3.38 0.99

-65.22 0.96
-4.19 0.73

-27.92 1.00
-1.16 0.68
-7.88 1.00
-2.89 0.90
-3.50 1.00

USA

EINT COAL 173.53 162.78 10.75 0.16 0.94 -0.32 5.09 13.99 -3.17 0.96

EINT OIL 155.55 147.77 7.780.17 0.96 -0.42 8.32 10.22 -2.41 0.97

EINT ROIL 107.45 102.08 5.37 0.41 1.00 -0.09 1.88 41.98 -10.63 0.87

EINT GAS 973.26 924.60 48.66 0.25 1.00 -0.25 4.95 23.92 -4.04 1.00

EINT BOIL 182.94 173.79 9.15 0.49 1.00 -0.04 0.82 109.51 -24.34 0.85

EINT PROCESS 430.07 408.57 21.50 0.20 -1.00 -0.26 0.26 18.46 -3.78 0.98

ELEC COAL 13000.55 3705.36 9295.19 0.21 0.29 -0.35 0.49 21.96 -2.86 0.86

ELEC OIL 1776.32 176.93 1599.39 0.06 0.10 -0.22 0.24 2L03 -4.61 0.83

ELEC ROIL 10.68 10.15 0.53 0.43 1.00 -0.09 1.80 18.51 -11.10 0.88
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ROE

EINT
EINT
EINT
EINT
EINT

EINT
ELEC
ELEC
ELEC

ELEC
OIL
FD
FD

FD
ELEC

COAL

OIL
ROIL
GAS
BOIL
PROCESS
COAL
OIL
ROIL

GAS
PROCESS
OIL
ROIL

GAS
BOIL

91.95

35.19
3.22

15.13
1.09

96.79
73.34
14.72

2.59
43.94
10.42

7.82
11.65
14.65

0.37

65.42
21.31

3.06
13.18

1.04

91.95
69.67
10.90

2.46
41.74

9.90
7.43

11.07
13.92

0.35

-3.71 0.97
-3.41 0.93
-0.32 0.71
-5.09 0.98
-7.88 1.00
-5.44 0.99
-3.31 0.98
-3.29 0.85
-4.47 0.96
-2.86 0.89
-0.92 0.66
-7.88 1.00
-2.57 0.86
-3.50 1.00
-2.81 1.00

RUS

EINT

EINT
EINT

EINT
EINT

EINT
ELEC

ELEC

ELEC
ELEC
ELEC
OIL
FD

FD

COAL

OIL
ROIL

GAS
BOIL
PROCESS
COAL
OIL
ROIL
GAS
BOIL
PROCESS
OIL
ROIL
GAS

17.82
27.34

8.83
75.25

3.29
130.68
129.56
81.43

2.44
757.08

13.48
44.96

2.19
12.62
80.12

16.62
25.71

8.39
71.49

3.13
124.15
123.08

76.46
2.32

719.23
12.81
42.71

2.08
11.99
76.11



ELEC GAS
ELEC BOIL
OIL PROCESS
FD OIL
FD ROIL
FD GAS

2133.80 1108.92 1024.88 0.10 0.52 -0.25 0.53 25.32
103.42 98.25 5.17 0.50 1.00 -0.02 0.43 182.86
441.17 419.11 22.06 0.36 1.00 -0.68 0.68 7.88

31.45 29.88 1.57 0.65 1.00 -0.13 2.54 19.49
159.18 151.22 7.96 4.04 1.00 -0.37 7.44 14.89
639.82 607.83 31.99 1.51 1.00 -0.29 5.71 22.03

-3.94 0.92
-46.85 1.00

-1.47 0.86
-7.88 1.00
-4.69 0.66
-3.51 1.00
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Appendix 2: GAMS Marginal Abatement Cost Curve Calculator Code

This appendix documents the code used to generate the marginal abatement cost curve and other
parameters needed to represent that GAMS abatement opportunity data within the MIT Emission
Prediction and Policy Analysis mode. The code is written in Mathematica 8.0 script.

GAINS MARGINAL ABATEMENT COST CURVE CALCULATOR

By: Caleb Waugh, MIT Joint Program on the Science and

Policy of Global Change

Last Updated: 8/28/2011

Email: cjwaugh@mit.edu; Phone: (970) 261-5198

Description: This program calculates the parameters needed to represent urban pollution abatement

costs in the MIT Joint Program on the Science and Policy of Global Change EPPA model verison 5 with

household transport (HTRN) or EPPA5_HHTRN _PVT. The parameters include the price elasticity of

supply of abatement derived from the GAINS marginal abatement cost curves, the initial quantity of

pollutant abated, and initial price of pollutant. The price elasticity of supply of abatement is

calculated by first mapping the data from the GAINS regions, sectors, and fuels into corresonding

EPPA regions, sectors, and fuels. Afterwards the price elasticity is determined by performing an

ordinary least squares (OLS) regression on the specific technologies identified in the GAINS data

that are available for abatement within each region and sector and with each fuel type. To obtian

the best fit to the data, an additional variable for the initial price (Po) is included as a free

variable that is chosen to maximize the rA2 correlation coeffecient of the regression. All

parameters are then formatted into the GAMS format and exported as .dat files.

The code is divided into 3 sections for organization purposes:

1. READ IN GAINS INPUT FILES AND INITIALIZE GLOBAL VARIABLES

11. DEFINE LOOKUP, MAPPING AND FORMATTING FUNCTIONS

Ill. DEFINE REGIONAL MAC REGRESSION FUNCTIONS
IV. CALCULATE EPPA PARAMETERS

NOTE: The names of the GAINS input files must follow a specific format, 'GAS'_C _'GAINS Region'.txt

for all cost files, 'GAS'_E _'GAINS Region'.txt for all emissions files, and

'GAS'_P _'GAINS Region'.txt for all policy cost files. Samples of properly formatted files include,

"NOx_CBelgium.txt", "NOx_E_Macedonia", and "S02_P_ChinaHunan". The code will use the file name

to identify the file contents so any files not properly named will produce an error.

I. READ IN GAINS INPUT FILES AND INITIALIZE GLOBAL VARIABLES
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Description: Defines global variables for reading in the GAINS data input files, defines gases, GAINS
regions and sectors, EPPA regions and sectors, and a number of misc. global parameters used
throughout the code.

(*Clear all Global Variables that may have been used previously.*)
Clear[gainsSourceDataDir,gainsResultsDir,eppaDestinationDirmappingDataDir, macDataDir,
emissionsDataDir, gainsSectors, gainsFuel, gainsParameters, gases, eppaRegions,eppaSectors, eppaFuel,
anz, asi, can, chn, eur, ind, jpn, rea, roe, rus, usa, gainsRegions, printResults, numBins, precision,
nonZeroValueShare, currencyConversion];

(*Set the source directories for the GAINS data files and destination directories for the EPPA
parameters*)

gainsSourceDataDir="C:\\Users\\Caleb Waugh\\Documents\\My Dropbox\\GAINS Models\\GAINS
Data\\";
gainsResultsDir="C:\\Users\\Caleb Waugh\\Documents\\My Dropbox\\GAINS Models\\MAC Results\\";
eppaDestinationDir = "C:\\Users\\Caleb Waugh\\Documents\\Education\\MIT\\Joint Program\\GAMS
Models\\EPPA Models\\EPPA5_HHTRNPVT\\data\\";

(*Set sub-directories within source directories for GAINS data files.*)

mappingDataDir = "Mapping\\";
macDataDir="MAC Data\\";
emissionsDataDir="Emissions Data\\";

(*Read in mapping files which establish rules for mapping GAINS sectors, and fuels into EPPA*)

gainsSectors=lmport[gainsSourceDataDir<>mappingDataDir<>"GAINSSectors.csv","CSV"];
gainsFuel=lmport[gainsSourceDataDir<>mappingDataDir<>"GAINSFuel.csv","CSV"];
gainsParameters=lmport[gainsSourceDataDir<>mappingDataDir<>"GAINSParameters.csv","CSV"];

(*Gases for which to generate EPPA parameters.*)

gases={"S02","NOx"};

(*EPPA regions, sectors, and fuel*)

eppaRegions={"ANZ","ASI","CAN","CHN"," EUR","IND","JPN"," REA","ROE","RUS","USA"};
eppaSectors={"LIVE","CROP"," FORS","FOOD","EINT","TRAN","HTRN","OTHR","SERV","ELEC","OIL","SOIL
","ll'BOIL"," ROI L","COAL","GAS",."SGAS"l,"IFD"};
eppaFuel={"COAL","OIL","ROIL","GAS","BOIL","PROCESS"};

(*Gains regions regions mapped into EPPA regions*)

anz={"Australia","NewZealand"};
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asi={"IndonesiaJakarta"," IndonesiaJava","IndonesiaRestOf","IndonesiaSumatra","SouthKoreaNort
h","MalaysiaKualaLumpur","MalaysiaPeninsular","MalaysiaSarawakSabah","PhilipinnesBicolVisayas
Mindanao","Philipinnes_Luzon","PhilipinnesMetroMalina","Singapore","ThailandBangkok","Thailand_
CentralValley", "ThailandNEPlateau","Thailand_NHeighlands","ThailandSouthPeninsula"};
(*ASI still missing South Korea and Taiwan..needs to convert 2005 data.*)
can={"Canada"};
chn={"ChinaAnhui", "China_Beijing","ChinaChongqing","China_Fujian","ChinaGansu","ChinaGuangd
ong","ChinaGuangxi","ChinaGuizhou","ChinaHainan","China_Hebei" "ChinaHeilongjiang","China_H
enan ","ChinaHongKongMacau","ChinaHubei","China_Hunan","China_InnerMongolia","ChinaJiangsu
","ChinaJiangxi",
"ChinaJilin","China_Liaoning","ChinaNingxia","ChinaQinghai","ChinaShaanxi","ChinaShandong","C
hinaShanghai","ChinaShanxi","ChinaSichuan","ChinaTianjin","ChinaTibetXizang","ChinaXinjiang",
"ChinaYunnan","ChinaZhejiang"};
eur={"IAustria", P"Belgium","Bulgaria", "Cyprus","Czech Republic"," Denmark","...Estonia"," Finland"," France",.

"Germany","..Greece"," Hungary","...Iceland","Ireland"," Italy"," Latvia"," Lithuania"," Luxembourg"," Malta","..

Netherlands","Norway"," Poland"," PortugalI"," Romania ","Slovakia", "Slovenia", "Spa in","Sweden","Switze

rand","UnitedKingdom"};
ind={"IndiaAndhraPradesh","IndiaAssam","IndiaBihar","IndiaChhattisgarh","India_Delhi","IndiaGo
a","lIndiaGujarat" "India_Haryana","India_HimachalPradesh","IndiaJammuKashmir","India_Jharkhand
","IndiaKamataka" "IndiaKerala"," IndiaMadhyaPradesh","IndiaMaharashtraDadraNagar","IndiaNo
rthEast" "India_Orissa","IndiaPunjab","IndiaRajasthan","lndiaTamilNadu","IndiaUttaranchal","India
_UttarPradesh","IndiaWestBengal");
jpn={"Japan_.Total"};
rea={"Bangladesh Dhaka"," Bangladesh Rest","Bhutan"," Brunei","Cambod ia","Laos"," Myanma r"," NepalI","i

PakistanFrontProvBalu","Pakistan_Karachi","PakistanPunjab","PakistanSind","SriLanka","NorthVietm
an","SouthVietnam"}; (*REA missing North Korea...*)
roe={"Croatia","Turkey"};
rus={"RussiaEurope"};
usa={"USA"};
gainsRegions={anz,asi,can,chn,eur,ind,jpn,rea,roe,rususa}

(*Flag to display the results of the regression on the GAINS MAC cost data.*)

printResults= True;

(*Parameter used for the correlation coeffecient optimization algorithm in EdMaxLogLog and

EdMaxNormal*)

numBins=12;
precision=.000001;

(*Initializes all value shares to an initial non-zero value.*)

nonZeroValueShare=.95;

(*Sets which currency conversion value to use as specified in GAINS parameter file.*)
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currencyConversion="USD(2004)/Euro(2000)";

II. DEFINE LOOKUP MAPPING AND FORMATTING FUNCTIONS

Description: Defines a number of LOW LEVEL functions used for mapping the GAINS data into EPPA
regions, sectors and fuels.

(*Clear all function definitions that may have been used previously.*)

Clear[ContainsSub,Pair, SectorLookupCost, FuelLookupCost, FormatRawCost, SectorLookupEmissions,
FuelLookupEmissions, FormatRawEmissions, SumEmissions, SectorLookupPolicyCost,
FuellookupPolicyCost, FormatRawPolicyCost, AggregateRawPolicyCost, AggregateRawCost,
AggregateRawEmissions,GamsFormatter];

(*ContainsSubfstringsubstring]: Searches 'string' and returns true is 'substring' is found within
string. If not then retruns false.*)

ContainsSub[string_,substring_]:=Module[{charString,charSub,stringLen,subLen,contains},
charString=Characters[string];
charSub=Characters[substring];
stringLen=Length[charString];
subLen=Length[charSub];
contains=False;
Do[
If[charSub==charString[[i;;i+subLen-1]],contains=True;
i=stringLen-subLen+1],
{i,1,stringLen-subLen+1,1}];
contains
];

(*Pair[x,y]: takes an array of x values and pairs them with an equal length array of y values.*)

Pair[x_,y_]:=Module[{pairs},
pairs={};
Do[
AppendTo[pairs,{x[[i]],y[[i]]}];
,{i,1,Length[x[[All]]],1}

1;
pairs
];

(*SectorLookupCost[gainsDeg]: takes as input a GAINS 'Category/Class-Activity-Sector-Technology'
designation input and returns the corresponding EPPA sector from the GAINSSectors lookup table.*)
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SectorLookupCost[gainsDeg_]:=Module[{n,secLen,sector,end},
n=1;
secLen=Length[gainsSectors[[All]]];
sector="NoMatch";
end=True;
While[end&&n<=secLen,
if[ContainsSub[gainsDeg,"-"<>gainsSectors[[n,1]]<>"-"],
sector=gainsSectors[[n,2]];
end=False];
n++];

sector
];

(*SectorLookupPolicyCost[gainsDeg]: takes as input a GAINS 'Category/Class-Activity-Sector-Technology'

designation input and returns the corresponding EPPA sector from the GAINSSectors lookup table.*)

SectorLookupPolicyCost[gainsDeg_]:=Module[{n,secLen,sector,end},
n=1;
secLen=Length[gainsSectors[[All]]];
sector="NoMatch";
end=True;
While[end&&n<=secLen,
if[ContainsSub["-"<>gainsDeg,"-"<>gainsSectors[[n,1]]<>"-"],
sector=gainsSectors[[n,2]];
end=False];
n++];
sector
];

(*SectorLookupEmissions[gainsDeg]: takes as input a GAINS 'Category/Class-Activity-Sector-Technology'

designation input and returns the corresponding EPPA sector from the GAINSSectors lookup table.*)

SectorLookupEmissions[gainsDeg_]:=Module [{n,secLen,sectorend},
n=1;
secLen=Length[gainsSectors[[All]]];
sector=" NoMatch";
end=True;
While[end&&n<=secLen,
lf[gainsDeg==gainsSectors[[n,1]],
sector=gainsSectors[[n,2]];
end=False];
n++];

sector
(;

(* Fuel Looku pCost [ga insDeg]: takes as input a GAINS 'Category/Class-Activity-Sector-Technology'
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designation input and returns the corresponding EPPA fuel from the GAINSFuel lookup table.*)

FuelLookupCost[gainsDeg_]:=Module[{n,fuellen,fuel,end},
n=1;
fuelLen=Length[gainsFuel[[All]]];
fuel="NoMatch";
end=True;
While[end&&n<=fuelLen,
If[ContainsSub[gainsDeg,"-"<>gainsFuel[[n,1]]<>"-"],
fuel=gainsFuel[[n,2]];
end=False];
n++];

fuel
];

(*FuelLookupPolicyCost[gainsDeg]: takes as input a GAINS 'Category/Class-Activity-Sector-Technology'
designation input and returns the corresponding EPPA fuel from the GAINSFuel lookup table.*)

FuelLookupPolicyCost[gainsDeg_]:=Module[{n,fuelLen,fuel,end},
n=1;
fuelLen=Length[gainsFuel[[All]]];
fuel="NoMatch";
end=True;
While[end&&n<=fuelLen,
If[ContainsSub[gainsDeg,"-"<>gainsFuel[[n,1]]<>"-"],
fuel=gainsFuel[[n,2]];
end=False];
n++];

fuel
];

(*FuelLookupEmissions[gainsDeg]: takes as input a GAINS 'Category/Class-Activity-Sector-Technology'
designation input and returns the corresponding EPPA fuel from the GAINSFuel lookup table.*)

FuelLookupEmissions[gainsDeg_]:=Module[{n,fuelLen,fuel,end},
n=1;
fuelLen=Length[gainsFuel[[All]]];
fuel="NoMatch";
end=True;
While[end&&n<=fuelLen,
If[gainsDeg==gainsFuel[[n,1]],
fuel=gainsFuel[[n,2]];
end=False];
n++];
fuel
];
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(*FormatRawCost[rawCostData]: Constructs a table that maps the EPPA sectors and fuel types to

the GAINS marginal cost and removed emissions data.*)

FormatRawCost[rawCostData_,gas_]:=Module[{outData,outRow,conv},
outData={{"EPPASector","EPPAFuel","GAINS: Category/Class-Activity-Sector-Technology","Marginal Cost
($US (2000)/ton "<>gas<>")","Removed Emissions (kt "<>gas<>")"}};
outRow=2;
Do[
If[gainsParameters[[row, 1]]==currencyConversion,conv=gainsParameters[[row,2]]]
,{row,1,Length[gainsParameters[[All]],1}

];
Do[
If[!(SectorLookupCost[rawCostData[[row,1]]]=="NoMatch"),
AppendTo[outData,{SectorLookupCost[rawCostData[[row,1]]],FuelLookupCost[rawCostData [[row,1]]],ra

wCostData [[row,1]],rawCostData[[row,3]]*conv/1000,rawCostData[[row,4]]}];
outRow++],{row,1,Length[rawCostData [[All]]],1}];

outData
];

(*FormatRawPolicyCost[rawPolicyCostData]: Constructs a table that maps the EPPA sectors and fuel

types to the GAINS marginal cost and removed emissions data.*)

FormatRawPolicyCost[rawPolicyCostData_]:=Module[{outData,outRow,conv},
outData={{"EPPASector","EPPAFuel","GAINS: Category/Class-Activity-Sector-Technology","Cost $USD
2004/year"};
outRow=2;
Do[
If[gainsParameters[[row,1]]==currencyConversion,conv=gainsParameters[[row, 2 ]]]
,{row,1,Length[gainsParameters[[All]]],1}

1;
Do[
If[!(SectorLookupPolicyCost[rawPolicyCostData[[row,1]]]=="NoMatch"),
AppendTo [outData,{SectorLookupPolicyCost[rawPolicyCostData[[row,1]],FueILookupPolicyCost[rawPoli
cyCostData [[row,1]]],rawPolicyCostData[[row,1]],rawPolicyCostData [[row,4]]*conv* 1000000}];
outRow++],{row,1,Length[rawPolicyCostData[[All]]],1}];
outData

1;

(*FormatRawEmissions[rawEmissionsData]: Constructs a table that maps the EPPA sectors and fuel

types to the GAINS emissions data.*)

FormatRawEmissions[rawEmissionsData_]:=Module[{secAct,refRow,colLen,rowLen,outData,lookup,outR
ow},
secAct="Sector/Activity";
refRow=1;
While[rawEmissionsData[[refRow,1]] !=secAct&&refRow<= Length[rawEmissionsData[[All]]],refRow++];
colLen=Length[rawEmissionsData[[refRow,All]]]+1;
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rowLen=2;
While[rawEmissionsData [[refRow+rowLen,1]] !="",rowLen++];
outData=Array["",{rowLen,colLen}];
Do[lookup=FuelLookupEmissions[rawEmissionsData [[refRow,col]]];
If[lookup!="NoMatch",
outData[[1,col+1]]=lookup;
,outData[[1,col+1]]=""];
outData[[2,col+1]]=rawEmissionsData [[refRowcol]],
{col,1,colLen-1,1}];
outData[[1;;2,1]]=outData [[rowLen,1]]="";
outRow=1;
Do[lookup=SectorLookupEmissions[rawEmissionsData [[row,1]]];
If[lookup!="NoMatch",outData[[outRow+2,1]]=lookup;
outRow++],
{row,1,refRow+rowLen,1}];
Do[outData [[row,col]]=rawEmissionsData[[refRow+row-1,col-1]];
,{row,3,rowLen,1},{col,2,colLen,1}];
outData

];

(*SumEmissions[emissionsData]: Sums the emissions over EPPA sectors and regions and returns an
nx3 list of all emissions coming from each sector/fuel combo.*)

SumEmissions[emissionsData_,gas_]:=Module[{rowLen,colLen,outDataoutRow,sum),
rowLen=Length[emissionsData[[All]]];
colLen=Length[emissionsData[[1,All]]j;
outData={{"EPPA Sector","EPPA Fuel","Emissions (kt "<>gas<>")"}};
outRow=1;
Do[
sum=O;
Do[
If[emissionsData [[1,col]==eppaFuel[[fuel]]&&emissionsData[[row,1]==eppaSectors[[sec]],
sum+=emissionsData[[row,col]]]
,{row,3,rowLen,1},{col,3,colLen,1}];
If[sum!=,AppendTo[outData,{eppaSectors[[sec]],eppaFuel[[fuel]],sum}]]
,{sec,1,Length[eppaSectors[[All]]],1},{fuel,1,Length[eppaFuel[[All]]]}];
outData

];

(*AggregateRawCost[rawCostDataArray_:Aggregates the cost data over multiple GAINS regions and
orders all cost data from least to greatest marginal cost.*)

AggregateRawCost[rawCostArray_,gas_]:=Module[{formCostArray,heading,formCost,lenFormCost,lenFo
rmCostArray,containsheader,sorted},
heading=FormatRawCost[rawCostArray[[1]],gas];
formCostArray={heading[[1]]};
Do[
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formCost=FormatRawCost[rawCostArray[i]],gas];
lenFormCost=Length[formCost[[All]]];
Do[
contains=False;
lenFormCostArray=Length[formCostArray[[All]]];

(*Aggregate by combining like GAINS technologies then taking a weighted average of marginal
abatement costs.*)

Do[
If[formCost[U,3]1==formCostArray[[k,3]]&&formCost[U,5]] !=0&&Length[formCostArray[[All]]]>1,
formCostArray[[k,4]]=(formCostArray[[k,5]]*formCostArray[[k,4]]+formCost[[j,5]]*formCost[[j,4]])/(form
CostArray[[k,5]]+formCost[[j,5]]);
formCostArray[[k,5]]=formCost[j,5]]+formCostArray[[k,5]];
contains=True]
,{k, 1,lenFormCostArray, 1}

];

If[!contains&&formCost[j,5]]!=,AppendTo[formCostArray,formCost[[]]]];
,{j,2,lenFormCost,1}

];
,{i, 1, Length[rawCostArray[[All]]], 11

];
header={formCostArray[1]};
sorted =Sort[formCostArray[[2;;Length[formCostArray[[AII]]]],#1[[4]]<#2[[4]]&];
Do[
AppendTo[header,sorted[[i]]],{i,1,Length[sorted[[All]]],1}];
header
];

(*AggregateRawPolicyCost[rawCostDataArray]:Aggregates the policy cost data over multiple GAINS
regions.*)

AggregateRawPolicyCost[rawPolicyCostArrayj:=Module[{formPoicyCostArray,heading,formPolicyCost,I
enFormPolicyCost,lenFormPolicyCostArray,contains,headersorted},
heading=FormatRawPolicyCost[rawPolicyCostArray[[l]]];
formPolicyCostArray={heading[[1]]};
Do[
formPolicyCost=FormatRawPolicyCost[rawPolicyCostArray[[i]]];
lenFormPolicyCost=Length[formPolicyCost[[AII]]];
Do[
contains=False;
lenFormPolicyCostArray=Length[formPolicyCostArray[[Alj]];
Do[
If[formPolicyCost[j[,3]]==formPolicyCostArray[[k,3]]&&Le ngth[formPolicyCostArray[[Al]]>1,
formPolicyCostArray[[k,4]]=formPolicyCostArray[[k,4]]+formPolicyCost[j,4]];
contains=True]

140



,{k,1,IenFormPolicyCostArray,1}

];
If[!contains,AppendTo[formPolicyCostArray,formPolicyCost[[]j]];
,{j,2,lenFormPolicyCost,1}

,{i, 1,Length[rawPolicyCostArray[[All]]],1}

];
formPolicyCostArray
1;

(*AggregateRawEnissions[rawEmissionsArray_] Aggregates raw emissions data array and returns
the total emissions over all regions by sector and fuel type.*)

AggregateRawEmissions[rawEmissionsArray_,gas_]:=Module[{sumEmissionsArray,outData,outLen,sumE
missions,contains,outRow},
sumEmissionsArray=Array["",Length[rawEmissionsArray[[All]]]];
Do[
sumEmissionsArray[[i]]=SumEmissions[FormatRawEmissions[rawEmissionsArray[[i]]],gas],
{i,1,Length[rawEmissionsArray[[All]]],1}

];
outData={sumEmissionsArray[[1,1]]};
Do[
outLen=Length[outData[[All]]];
sumEmissions=sumEmissionsArray[[i]];
Do[
contains=False;
outRow=1;
While [outRow<=outLen&&!contains,
If[sumEmissions[[j,1]]==outData[[outRow,1]]&&sumEmissions[[j,2]]==outData [[outRow,2]],outData [[out
Row,3]]=outData [[outRow,3]]+sumEmissions[[j,3]];
contains=True];
outRow++];
If[!contains,AppendTo[outData, sumEmissions[[j]]]]
,{j,2,Length[sumEmissionsArray[[i,All]]],1}

];
,{i,1,Length[rawEmissionsArray[[All]]],1}

];
outData

];

(*GamsFormatter[number]: takes any number as an input and puts it in a format that can be read by
GAMS.*)

GamsFormatter[passNum_]:=Module[{meNum, numb, number,mantissa, formNum},

If[passNum<,number=-1*passNum,number=passNum];
meNum= MantissaExponent[number];
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numb=PaddedForm[meNum[[1]]* 10,{14,13}];
mantissa = meNum[[2]]-1;

formNum=Which[number>=OA10,Row[{numb,"E+",mantissa}],1OA10>number>=10,Row[{numb,"E+O",
mantissa}],10>number>=1,Row[{numb,"E+0",mantissa}],1>number>0A^10,Row[{numb,"E-
O",Abs[mantissa]}],1OA-1O>=number>O,Row[{numb,"E-",mantissa}],number==,Row[{1.,"E-",7}]];
If[passNum<O,formNum=-1*formNum];

formNum

];

(*######## #####t#################*###########################*##########

IllI. DEFINE REGIONAL MAC REGRESSION FUNCTIONS

Description: Defines the HIGH LEVEL functions used for calculating EPPA parameters
ii*########################t###########*#############################*)

Clear[EdMaxLogLog, EdMaxNormal, CalcEPPAParms, RegionalParms];

(*EdMaxLogLog[totalEmis,percentRedLct,marginalCost]: Returns the initial price Po free variable for the

log linear form of the abatement supply function. Po is chosen to maximize the correlation coeffecient

of the log linear regression on the GAINS abatement data.*)

EdMaxLogLog[totaEmis,percentReduct_,marginalCost_]:=Module[{lowerBound,upperBound,price,r2Ar
ray, bins, maxBin},

(*CorRegLogLog[totalE,percentR,marginalC,Po]: function within EdMaxLogLog that returns the

correlation coeffecient of the log-linear regression*)

CorRegLogLog[totalE_,percentR__,,marginalC_, Po_]:=Module[{xyPairs,logX,logY,logYfit,fit,a,b},
logX=Log[(1-percentR)*totalE];
logY:=Log[marginalC-Po];
xyPairs=Pair[logX,logY];
fit=Fit[xyPairs,{1,x},x];
a=fit/.x->O;
b=(fit/.x->1)-a;
logYfit=Table[fit,{x,logX}];
Correlation[logY,logYfit]
1;

(*Algorithm to determine optimal value of Po.*)

lowerBound=O;
upperBound=Min[marginalCost];
While[upperBound-lowerBound>precision,
r2Array=Array[{},12];
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bins=Table[lowerBound+(upperBound-lowerBound)/numBins*x,{x,O,numBins}];
maxBin=1;
Do[
r2Array[[i]]=CorRegLogLog[totalEmis,percentReduct,marginalCost,bins[[i]]];
If[i>1&&r2Array[[i]]>r2Array[[maxBin]],maxBin=i]
,{i,1,numBins,1}
];
price=bins[[maxBin]];
lf[maxBin>1,lowerBound=bins[[maxBin-1]]];
If[maxBin<numBins,upperBound=bins[[maxBin+1]]];
];
price
1;

(*EdMaxNormal[totalEmispercentReduct,margirnalCost]: Returns the initial price Po free variable for the
actual form of the abatement supply function. Po is chosen to maximize the correlation coeffecient
of the actual regression on the GAINS abatement data.*)
EdMaxNormal[totalEmis_,percentReduct_,marginalCost_]:=Module[{lowerBound,upperBound,price,r2A
rray,bins,maxBin},
CorRegNormal[totalE_,percentR_,marginaC,Po_]:=Module[{xyPairs,logX,logY,yFit,fit,a,b},
logX=Log[(1-percentR)*totaE];
logY=Log[marginalC-Po];
xyPairs=Pair[logX,IogY];
fit=Fit[xyPairs,{1,x},x];
a=fit/.x->O;
b=(fit/.x->1)-a;
yFit=Table[Po+Exp[a] *((1-x)*totaIE)Ab,{x,percentR}I];
Correlation[yFit,marginalC]
];
(*Algorithm to determine optimal value of Po.*)
lowerBound=O;
upperBound=Min[marginalCost];
While[upperBound-lowerBound>precision,
r2Array=Array[{},12];
bins=Table[lowerBound+(upperBound-lowerBound)/numBins*x,{x,o,numBins}];
maxBin=1;
Do[
r2Array[[i]]=CorRegNormal[totalEmis,percentReduct,marginalCost,bins[[i]]];
lf[i>1&&r2Array[[i]]>r2Array[[maxBin]],maxBin=i]
,{i,1,numBins,1}

];
price=bins[[maxBin]];
If[maxBin>1,lowerBound=bins[[maxBin-1]]];
if[maxBin<numBins,upperBound=bins[[maxBin+1]]];

];
price
];
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(*CalcEPPAParms[aggCostData,emissionsData,policyCostData,region]: Calculates all abatement cost

parameters for EPPA and returns them as well as the regression parameters for each sector/fuel pair in

the specified region.*)

CalcEPPAParms[aggCostData_,emissionsData_,policyCostData_,regionj:=
Module[{outData,percentReduct,marginalCost,sumPolicyCost,totalEmissions,sumEmissions,abatePol,log
XlogYPa irs, IogXlogYo Pa irs,xyPa irs, logX, logY, IogYo, P, Po,fit,fito,a,ao, b, bo, r2 Fit, r2o Fit, r2 Func, r20Fu nc,vSha

re,sigma, sigmao,distParam,technologies},
outData={{"Sector","Fuel","Total Pollution (Tg)"," Initial Emissions (Tg)","Initial Abatement (Tg)","Policy
Cost","Initial Price (2004 USD)/kg","Value Share of Emissions", "Price Elasticity of Demand", "Initial
Elasticity of Substitution", "alpha","beta", "Free Variable (Po)", "Correlation (rA2)"}};
Do[
percentReduct={};
marginalCost={};
sumPolicyCost=0;
totalEmissions = emissionsData[[i,3]];
sumEmissions=0;
vShare=0;
technologies ={};

(*Sums up all emissions from sources within each region, sector, and fuel type.*)

Do[
IffemissionsData [[i,1]]==aggCostData [U,1]]&&emissionsData [[i,2]]==aggCostData[[j,2]],
sumEmissions=aggCostData[,5]]+sumEmissions;
AppendTo[percentReduct,sumEmissions/totalEmissions];
AppendTo[marginalCost,aggCostData[[,4]]];
AppendTo[technologies,aggCostData [[,3]];
];
,{j,2,Length[aggCostData[[All]],1}

(*Calculates total policy cost within each region, sector, and fuel type.*)

Do[
lf[emissionsData[[i,1]]==policyCostData[[j,1]]&&emissionsData[[i,2]]==policyCostData[[,2]],
sumPolicyCost=policyCostData[[,4]]+sumPolicyCost;
1;
,{j,2,Length[policyCostData[[All]]],1}
1;

if[Length[percentReduct]>=1&&Max[percentReduct]<1,
if[Length[percentReduct]> 1,
if[StandardDeviation[marginalCost]<10A-9,
percentReduct={Max[percentReduct]};
marginalCost = {Max[marginalCost]};
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If [Length [pe rcentRed uctJ<= 2,
Prependro[percentReduct,O];
Ap pendTo [percent Red uct, Max[ pe rce nt Red uct+(1-Max [pe rce ntRed uct]) *0.05];
Prependro[marginalCost,Min[marginalCost]*O.8];
AppendTo[marginalCost,Max[marginalCostJ*1.1J;

P= EdM axLogLog[totalEmissions, percentRed uct, margina lCost];
IogX= Log [(1-pe rcent Red uct) *totaI Ernissio ns];
IogY:=Log~marginalCost-P];
IogXlogYPairs=Pair[IogX,IogYJ;
fit= Fit [IogXlogYPa irs,{1,x},x];
a=fit/.x->O;
b=(fit/.x->1)-a;
r2 Fit=Co rre latio n [ogY,Ta ble [fit, {x,logX1] ;
If[Length[r2Fit[[AII]]]>l,r2Fit=l];
r2Func=Correlation[marginalCost,Table[P+Exp [a]* (( 1-x)*totaI EmissionS)Ab,{x,percentReduct}]J;
If [Length [r2 Func[[AII]]]>1,r2 Func=1;

Po= Ed MaxNo rmalI[totalIEmissions, percentReduct,ma rginalCostJ;
IogYo:=Log[marginalCost-Po];
IogXlogYoPairs=Pair[IogX,IogYo];
fito= Fit [IogXlogYo Pa irs,{1,x},x];
ao=fito/.x->O;
bo=(fito/.x->1)-ao;
r2oFit=CorrelationIogYo,Table[fito,{x,ogX}J];
If[Length[r2oFit[[AII]]]>l,r2oFit=1];
r2oFunc=Correlation [marginaCost,abe[PoExp[ao *(( 1-x)*totaI EmissionS)Abo,{x,percentReduct}]];
If [Length [r2oFunc[ [AII]J> 1,r2o Fu nc=1J;

vShare=((Po+Exp~ao]*(totalEmissionS)Abo) *sumnEmissions* 1000000)/(sumPolicyCost+(Po+Exp[ao]*(total
EmissionS)Abo)*sumEmissions*1000000);
If[vShare>=nonZeroValueShare,
If~emissionsData[[i,2J]=="PROCESS",sigma=-(/b),sgma=-(/b)/(-nonZeroValueShare)];
If[emissionsData [[i,2]=="PROCESS",sigmao=-(/bo),sigmao=-(/bo)/(-nonzerovalueShare)];
abate Po I=emissionsData [[i,3]] *(1/nonZeroVa lueSha re-1)/100o;,
If[emissionsData[[i,2]]=="PROCESS",sigma=-(1/b),sigma=-(l/b)/(1-vShare)];
If[emissionsData [ [i, 2)]]== "PROCESS", sigmao=-(/bo),sigma o=-(l/bo)/(1-vSha re)];
abate Pol=emissionsData [[i,3]]*(1/vShare-1)/1OOO
I;

xyPa irs= Pa ir[percentRed uct*totalIEmissions, marginalICost];

If[printResults,
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(*Print header with plot information.*)

Print[" "1;
Print["-Po Chosen to Maximize Log-Linear Abatement Supply Function (Blue Plot)"];
Print["Region: ",region," Sector: ",emissionsData[[i,1]]," Fuel: ",emissionsData[[i,2]]," a: ",a," b: ",b," P:
",P+Exp[a]*(totalEmissions)Ab," r2fit: ",r2Fit," r2Func: ",r2Func];
Print["Policy Cost: ",sumPolicyCost," Po: ",P+Exp[a]*(totalEmissions)Ab," SumEmissions:
",sumEmissions*1000000," \[Theta]: ",
((Po+Exp[ao]*(totalEmissions)Abo)*sumEmissions*1000000)/(sumPolicyCost+(Po+Exp[ao]*(totalEmissio
ns)Abo)*sumEmissions* 1000000)," \[Epsilon]d: ",1/b," \[Sigma]: ",sigma];
Print["-Po Chosen to Maximize Normal Abatement Supply Function (Green Plot)"];
Print["Region: ",region," Sector: ",emissionsData[i,1]]," Fuel: ",emissionsData[[i,2]]," ao: ",ao," bo:
",bo," Po:",Po+Exp[ao]*(totalEmissions)Abo," r2ofit: ",r2oFit," r2oFunc: ",r2oFunc];
Print["Policy Cost: ",sumPolicyCost," Po: ",Po+Exp[ao]*(totalEmissions)Abo," SumEmissions:
"1,sumEmissions*1000000," \[Theta]: ",
((Po+Exp[ao]*(totalEmissions)Abo)*sumEmissions*1000000)/(sumPoicyCost+(Po+Exp[ao]*(totaEmissio
ns)Abo)*sumEmissions* 1000000)," \[Epsilon]d: ",1/bo," \[Sigma]: ", sigmao];
Print[Show[ListPlot[xyPairs,PlotStyle->Red,PlotRange-
>{{0,totalEmissions},{0,1.5*Max[xyPairs[[Al,2]]}],Plot[(P+Exp [a]*(totalEmissions-

x)A(b)),{x,,totalEmissions},PlotStyle->Blue,PlotRange-
>{{0,totalEmissions},{0,1.5*Max[xyPairs[[A,2]]]}},AxesLabel->{"Tg Removed","Price (2004

USD)/(kg)"}],Plot[(Po+Exp[ao] *(totalIEmissions-x)^ (bo)),{x,0,totalEmissions},PlotStyle->Green,PlotRange-
>{{0,totalEmissions},{0,1.5*Max[xyPairs[[All,2]]]}}],AxesLabe->{"Tg Removed","Price (2004 USD)/kg"}]
]1;
];

AppendTo[outData,{emissionsData[[i,1]],emissionsData[[i,2]],emissionsData[[i,3]]/1000+abatePol,emissi
onsData [[i,3]]/1000,abatePol,sumPolicyCost,(Po+Exp[ao]*(totaIEmissions)Abo),vShare,1/bo,sigmao,ao,b
o,Po,r2oFunc}];

1;
,{i,2,Length[emissionsData[[All]]],1}];
outData
]

(*RegionalParms[region,subRegions,gas]: Calculates all regional parameters by reading in GAINS data

files, mapping it to EPPA regions, and sectors, and then calling CalcEPPAParms to calculate the

parameters.*)

RegionalParms[region,subRegions,gas_]:=Module[{rawCost,rawEmissions,rawPolicyCost,formCost,for
mEmissions,formPolicyCost,ed},

rawCost=Array["",Length[subRegions]];
rawEmissions=Array["",Length[subRegionsl];
rawPolicyCost=Array["",Length[subRegions]];
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Do[rawCost[[i]]=lmport[gainsSourceDataDir<>macDataDir<>gas<>"_C_"<>subRegions[[i]]<>".txt","CSV",
CharacterEncoding->"Unicode"],{i,Length[subRegions]}];
Do[rawEmissions[[i]]=lmport[gainsSourceDataDir<>macDataDir<>gas<>"_E_"<>subRegions[[i]]<>".txt","
CSV",CharacterEncoding->"Unicode"],{i, Length[subRegions]}];
Do[rawPolicyCost[[i]]=lmport[gainsSourceDataDir<>macDataDir<>gas<>"_P_"<>subRegions[[i]]<>". txt","1

CSV",CharacterEncoding->"Unicode"],{i, Length [subRegions]}];

formCost=AggregateRawCost[rawCost,gas];
formEmissions=AggregateRawEmissions[rawEmissions,gas];
formPolicyCost=AggregateRawPolicyCost[rawPolicyCost];

ed=CalcEPPAParms[formCost,formEmissions,formPolicyCost,region]
];

(*###### #############################################################

Calculations

Descriptions: With functions and global parameters defined in Sections I, 11, and Ill, this section
calls those functions to calculate EPPA abatement parameters and then exports them to the EPPA
data folder specified by 'eppaDestinationDir'.

Clear[elasParms,abatePol,emisPol,abatePrice,macParms,formElasParms,formAbatePol, formEmisPol];

elasParms =

abatePol= {};
emisPol = {};
abatePrice =

macParms = Array["",{Length(gases[[All]]],Length[eppaRegions[[All]]]}];

Do[
Do[

(*Calculate GAINS marginal abatement cost curves and other EPPA parameters.*)

Print["EPPA Regional Parameters for: ",eppaRegions[[r]]," ",gases[[g]]];

macParms[[g,r]]=RegionalParms[eppaRegions[[r]],gainsRegions[[r]],gases[[g]]];

(*Format the data GAMS.*)

Do[

formElasParms=GamsFormatter[macParms[[g,r,s,9]]];
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AppendTo[elasParms,gases[[g]]<>"."<>eppaRegions[[r]]<>"."<>macParms[[g,r,s,1]]<>"."1<>macParms[[g,
r,s,2]]<>" "<>ToString[formElasParms]<>"\r"];

formAbatePol = GamsFormatter[macParms[[g,rs,5]]];
AppendTo[abatePol,gases[[g]]<>"."<>eppaRegions[[r]]<>"."<>macParms[[g,r,s,1]]<>". "<>macParms[[g, r,

s,211<>" "<>ToString[formAbatePol]<>"\r"];

formEmisPol = GamsFormatter[macParms[[g,rs,4]]];
AppendTo[emisPol,gases[[g]]<>"."<>eppaRegions[[r]]<>"."<>macParms[[g,r,s,1]]<>"."<>macParms[[g,r,s,
2]]<>" "<>ToString[formEmisPol]<>"\r"];

formAbatePrice = GamsFormatter[macParms[[g,rs,7]]];
AppendTo[abatePrice,gases[[g]]<>"."<>eppaRegions[[r]]<>"."<>macParms[[g,r,s,1]]<>"."<>macParms[[g,
r,s,2]]<>" "<>ToString[formAbatePrice]<>"\r"];

,{s,2,Length[macParms[[g,r,All]]]}];

,{r,1,Length[gainsRegions[[All]]]}];

(*Export results of the parameter calculatiosn to an excel sheet for easier review.*)

Export[gainsResultsDir<>gases[[g]]<>" Parameters.xis", {"ANZ"->macParms[[g,1]],"ASI"-

>macParms[[g,2]],"CAN"->macParms[[g,3]],"CHN"->macParms[[g,4]],"EUR"->macParms[[g,5]],"1IND"1-
>macParms[[g,6]],"JPN"->macParms[[g,7]],"REA"->macParms[[g,8]],"ROE"->macParms[[g,9]],"RUS"-
>macParms[[g,10]]," USA"->macParms[[g,11]]},"XLS"];
,{g,1,Length[gases[[All]]]}];

(*Flatten parameter data into 1D array so it can be sent to a .dat file type.*)

elasParms = Flatten[Join[{"parameter gainsElas /"}, elasParms, {"/;"}]];
Print[elasParms];
abatePol= Flatten[Join[{"parameter gainsAbate /"}, abatePol, {"/;"}]];
Print[abatePol];
emisPol= Flatten[Join[{"parameter gainsEmis /"}, emisPol, {"/;"}]];
Print[emisPol];
abatePrice = Flatten[Join[{"parameter gainsAbatePrice /"}, abatePrice, {"/;"}]J;
Print[abatePrice];

(*Export the EPPA parameters to the EPPA data directory.*)

Export[eppaDestinationDir <>"gains elas.dat", elasParms,"CSV"];
Export[eppaDestinationDir <>"gains abatePol.dat", abatePol,"CSV"];
Export[eppaDestinationDir <>"gains emisPol.dat", emisPol,"CSV"];
Export[eppaDestinationDir <>"gains priceEmis.dat", abatePrice,"CSV"];

Print["** meter*************************
Print["EPPA Parameter Calculations Complete"];
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