15.075 Spring 2003 Review for Mid-term

Slides prepared by Elizabeth Newton.

As a statistician...

- You work for a company developing a new non-invasive method for measuring cardiac output.
- Research Questions
- Study Design
- Sampling Design
- Sample Size

Sample Size

- n = $[(z_{\alpha/2}+z_{\beta})\sigma_D/\delta]^2$
- α=0.01
- β=0.1
- $\sigma/\delta = 2$
- $n = [(2.58+1.28)2]^2 = 60$

Cardiac Output Data

(See Table 8.6 on page 285 of the course textbook.)

Cardiac Output - Method A

These graphs were created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

Cardiac Output - Method B

These graphs were created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

Cardiac Output - Differences

These graphs were created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

Data Summaries

fsummary(A)	fsummary(B)	fsummary(Di)		
\$quantile:	\$quantile:	\$quantile:		
0% 25% 50% 75% 100%	0% 25% 50% 75% 100%	0% 25% 50% 75% 100%		
2.8 4.225 5.6 6.3 8.4	2.2 4.1 5 6.025 8.4	-0.3 0.1 0.45 0.7 1.4		
\$mean:	\$mean:	\$mean:		
[1] 5.469231	[1] 5.003846	[1] 0.4653846		
\$stdev:	\$stdev:	\$stdev:		
[1] 1.486141	[1] 1.579742	[1] 0.4824457		
\$iqr:	\$iqr:	\$iqr:		
[1] 2.075	[1] 1.925	[1] 0.6		
\$range:	\$range:	\$range:		
[1] 5.6	[1] 6.2	[1] 1.7		
\$n	\$n:	\$n:		
[1] 26	[1] 26	[1] 26		
\$nmiss:	\$nmiss:	\$nmiss:		
[1] 0	[1] 0	[1] 0		

Example 8.6, page 285

Cardiac Output (litres/min)

Confidence Interval

- 95% confidence interval on difference:
- $\hat{u} \pm cd$, where
 - û=estimated difference,
 - c=critical constant ($t_{\alpha/2,n-1}$),
 - d=standard deviation (s/ \sqrt{n})
- $0.465 \pm 2.06 * 0.482 / 5.1 = \{0.271, 0.660\}$

Conclusion?

t-statistic and P-value

- $T=(\hat{u}-\delta_0)/s$
 - =(0.465-0) / (0.482/ 5.1)
 - = 4.92
 - $> 2.06 = t_{\alpha/2,25}$

P-value = 2*(1-pt(4.92, 25))=0.000046

What if measurements were on different patients?

Assume variances equal:

Since sample sizes are the same (eqn 8.6, page 275): T=(mean(A)-mean(B))/sqrt((var(A)+var(B))/26) =1.0941 < 2.01 = qt(0.975,50) P-value = 2*(1-pt(1.0941,50)) = 0.279

Assume variances are not equal:

Calculate df = $25^*(w_1+w_2)^2/(w_1^2+w_2^2)$, where w1 and w2 are the standard errors of the means of A and B (eqn. 8.11, page 280) df=49.81

Results are almost the same as above.

Why so different?

- Independent:
- Tstat<-(mean(A)-mean(B))/sqrt((var(A)+var(B))/26) (Tstat=1.094097)
- Matched:
- Tstat<-(mean(A)-mean(B))/sqrt((var(A)+var(B)-2*var(A,B))/26)
- Tstat<-(mean(A)-mean(B))/sqrt(var(A-B)/26)
- (Tstat= 4.918699)

A different problem

• Suppose, instead, that these 2 methods are designed to boost cardiac output.

 Interest is in comparing proportion of patients with cardiac output greater than 5.4 liters/minute.

Observed Expected

Meth od	>5.4	≤5.4	Total	Meth od	>5.4	≤5.4	Total
A	16	10	26	A	12.5	13.5	26
В	9	17	26	В	12.5	13.5	26
Total	25	27	52	Total	25	27	52

Independent Samples Design

Test using Chi-square or z statistic (with pooled variance).

$$\chi^{2} = \Sigma_{i} (O_{i}-E_{i})^{2}/E_{i}$$

= (16-12.5)²/12.5 + (9-12.5)²/12.5 + (10-13.5)²/13.5 + (17-13.5)²/13.5
= 3.7748

$$p1 = 16/26 = 0.615$$

$$p2 = 9/26 = 0.366$$

$$p = 25/52 = 0.481$$

z < -(p1-p2)/sqrt(p*q*(2/52)) = 1.943

 $z^2 = \chi^2$

P-value = 0.052