15.075 Spring 2003
 Review for Mid-term

Slides prepared by Elizabeth Newton.

As a statistician...

- You work for a company developing a new non-invasive method for measuring cardiac output.
- Research Questions
- Study Design
- Sampling Design
- Sample Size

Sample Size

- $\mathrm{n}=\left[\left(\mathrm{z}_{\alpha / 2}+\mathrm{z}_{\beta}\right) \sigma_{\mathrm{D}} / \delta\right]^{2}$
- $\alpha=0.01$
- $\beta=0.1$
- $\sigma / \overline{ }=2$
- $\mathrm{n}=[(2.58+1.28) 2]^{2}=60$

Cardiac Output Data

(See Table 8.6 on page 285 of the course textbook.)

Cardiac Output - Method A

scatterplot vs. observation number

histogram

boxplot

qq plot

Cardiac Output - Method B

Cardiac Output - Differences

Data Summaries

fsummary(A)		fsummary(B)		fsummary(Di)	
\$quantile:		\$quantile:		\$quantile:	
0\% 25\% 50\%	75\% 100\%	0\% 25\% 50\%	75\% 100\%	0\% 25\% 50\%	75\% 100\%
2.84 .2255 .6	6.38 .4	2.24 .15	6.0258 .4	-0.3 $0.1 \begin{array}{lll}0.45\end{array}$	0.71 .4
\$mean:		\$mean:		\$mean:	
[1] 5.469231		[1] 5.003846		[1] 0.4653846	
\$stdev: [1] 1.486141		\$stdev:		\$stdev:	
		[1] 1.579742		$\text { [1] } 0.4824457$	
\$iqr: [1] 2075		\$iqr: [1] 1.925		\$iqr: [1] 0.6	
\$range: [1] 5.6		\$range: [1] 6.2		\$range: [1] 1.7	
\n\text { [1] } 26$		\$n:$\text { [1] } 26$		\$n: [1] 26	
\$nmiss:$\text { [1] } 0$		\$nmiss:$\text { [1] } 0$		\$nmiss:$\text { [1] } 0$	

Example 8.6, page 285
 Cardiac Output (litres/min)

Confidence Interval

95\% confidence interval on difference:
ut $\pm \mathrm{cd}$, where
û=estimated difference,
$\mathrm{c}=$ critical constant $\left(\mathrm{t}_{\mathrm{\alpha} / 2, \mathrm{n}-1}\right)$,
$\mathrm{d}=$ standard deviation ($\mathrm{s} / \mathrm{V} \mathrm{n}$)
0.465 ± 2.06 * $0.482 / 5.1=\{0.271,0.660\}$

Conclusion?

t -statistic and P -value

$\mathrm{T}=\left(\hat{u}-\delta_{0}\right) / \mathrm{s}$
$=(0.465-0) /(0.482 / 5.1)$
$=4.92$
$>2.06=t_{\alpha / 2,25}$

P-value $=2^{*}(1-p t(4.92,25))=0.000046$

What if measurements were on different patients?

Assume variances equal:
Since sample sizes are the same (eqn 8.6, page 275):
$\mathrm{T}=(\operatorname{mean}(\mathrm{A})-\mathrm{mean}(\mathrm{B})) / \mathrm{sqrt}((\operatorname{var}(\mathrm{A})+\operatorname{var}(\mathrm{B})) / 26)$
$=1.0941<2.01=q t(0.975,50)$
P-value $=2 *(1-p t(1.0941,50))=0.279$

Assume variances are not equal:
Calculate $\mathrm{df}=25^{*}\left(\mathrm{w}_{1}+\mathrm{w}_{2}\right)^{2} /\left(\mathrm{w}_{1}{ }^{2}+\mathrm{w}_{2}{ }^{2}\right)$, where w 1 and w 2 are the standard errors of the means of A and B (eqn. 8.11, page 280) $\mathrm{df}=49.81$
Results are almost the same as above.

Why so different?

Independent:
Tstat<-(mean(A)-mean(B))/sqrt((var(A)+var(B))/26)
(Tstat=1.094097)

Matched:
Tstat<-(mean(A)-mean(B))/sqrt((var(A)+var(B)-2*var(A,B))/26)
Tstat<-(mean(A)-mean(B))/sqrt(var(A-B)/26)
(Tstat= 4.918699)

A different problem

- Suppose, instead, that these 2 methods are designed to boost cardiac output.
- Interest is in comparing proportion of patients with cardiac output greater than 5.4 liters/minute.

Observed Expected

Meth od	>5.4	≤ 5.4	Total	Meth od	>5.4	≤ 5.4	Total
A	16	10	26	A	12.5	13.5	26
B	9	17	26	B	12.5	13.5	26
Total	25	27	52	Total	25	27	52

Independent Samples Design

Test using Chi-square or z statistic (with pooled variance).

$$
\begin{aligned}
& \chi^{2}=\Sigma_{\mathrm{i}}\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}} \\
& =(16-12.5)^{2} / 12.5+(9-12.5)^{2} / 12.5+(10-13.5)^{2} / 13.5+(17-13.5)^{2} / 13.5 \\
& =3.7748 \\
& \mathrm{p} 1=16 / 26=0.615 \\
& \mathrm{p} 2=9 / 26=0.366 \\
& \mathrm{p}=25 / 52=0.481 \\
& \mathrm{z}<-(\mathrm{p} 1-\mathrm{p} 2) / \mathrm{sqrt}\left(\mathrm{p}^{*} \mathrm{q}^{*}(2 / 52)\right)=1.943 \\
& \mathrm{z}^{2}=\chi^{2} \\
& \mathrm{P} \text {-value }=0.052
\end{aligned}
$$

