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Quantifying Regional Economic Impacts of CO2 Intensity Targets in China

Da Zhang*†§, Sebastian Rausch*, Valerie Karplus*, and Xiliang Zhang†

Abstract

To address rising energy use and CO2 emissions, China’s leadership has enacted energy and CO2 intensity
targets under the Twelfth Five-Year Plan (2011–2015), which are defined at both the national and provincial
levels. We develop a computable general equilibrium (CGE) model with global coverage that disaggregates
China’s 30 provinces and includes energy system detail, and apply it to assess the impact of provincial CO2

emissions intensity targets. We compare the impact of the provincial targets approach to a single national
target for China that achieves the same reduction in CO2 emissions intensity at the national level. We
find that at the national level, the national target results in 25% lower welfare loss relative to the provincial
targets approach. Given that the regional distribution of impacts has been an important consideration in the
target-setting process, we focus on the changes in provincial level CO2 emissions intensity, CO2 emissions,
energy consumption, and economic welfare. We observe significant heterogeneity across provinces in terms
of the energy system response as well as the magnitude and sometimes sign of welfare impacts. We further
model the current policy of fixed end-use electricity prices in China and find that national welfare losses
increase. Assumptions about capital mobility have a substantial impact on national welfare loss, while
assumptions about natural gas resource potential does not have a large effect.
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1. INTRODUCTION

In recent years policy in China has signaled strong intentions to reduce the country’s growing
energy and CO2 emissions footprint. Sustained rapid growth in China over the past three decades
has brought great benefits but has also intensified concerns about energy security, air quality and
global climate change. China’s comprehensive Five-Year Plans, which lay out the government’s
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priorities and program of work every five years, have increasingly reflected these concerns. Most
recently, China’s Twelfth Five-Year Plan (FYP) (2011–2015) has, for the first time, introduced a
national target for reducing the nation’s CO2 intensity by 17% over the period 2011 to 2015, in
line with the nation’s commitment at the 2009 Copenhagen Summit to reduce its CO2 emissions
intensity by 40–45% over the period 2005 to 2020. This national carbon intensity target has been
disaggregated at the provincial level, assigning responsibility for different levels of CO2 intensity
reduction to China’s provinces (State Council, 2012).

While meeting these targets is mandatory, their existence does not by itself create incentives
for firms and households across China to reduce CO2 emissions intensity. To meet these short-
and medium-term policy targets, China’s policy makers have announced a range of programs to
support target attainment. These include an industrial energy efficiency mandate, targets for the
deployment of renewable and nuclear electricity generation, and reduced subsidies to China’s
energy-intensive, export-oriented sectors (State Council, 2011; Xinhuanet, 2011; Industrial
Efficiency Policy Database (IEPD), 2012). Also in the early stages of development is a pilot
cap-and-trade system for CO2 emissions to be deployed in a subset of China’s provinces (China
Securities Journal, 2012). An energy cap is also under discussion (Xinhuanet, 2012).

Alongside economic growth and environmental protection, promoting inter-regional equity
remains a priority among China’s policy makers. Identifying the total welfare cost and its
distribution under each policy requires a modeling framework capable of resolving policy impacts
at the provincial level. In this paper, we first describe how we have developed a new computable
general equilibrium (CGE) model that includes a detailed representation of the economy and
energy system of China’s 30 provinces connected by inter-provincial trade as well as to the rest of
the world through international trade flows and an aggregate representation of other global
regions. The model includes economic flows and energy quantities in physical units. We apply
this new tool to perform an analysis of China’s CO2 intensity targets.

This paper is organized as follows. In Section 2, we summarize previous studies and identify
the contribution of this work. We also provide background on China’s CO2 intensity target policy
and the assignment of reduction targets in each of China’s provinces. In Section 3, we describe
the new model, including the model structure, data preparation, representation of inter-provincial
trade and integration with a global data set, the 2007 edition of the Global Trade Analysis Project
(GTAP 8) data base. In Section 4, we describe the results of our policy scenarios and investigate
the sensitivity of our results to electricity pricing policies, capital mobility assumptions, and the
availability of natural gas as a potential low carbon substitute fuel. Section 5 discusses some
preliminary conclusions and topics for future investigation.

2. BACKGROUND AND LITERATURE REVIEW

2.1 Previous Work

Energy-economic modeling approaches have been widely applied to study prospects for
emissions reduction at the sub-national or sectoral level in many countries (Rausch et al., 2011;
Lanz and Rausch, 2011; Lanz and Rausch, 2012; Caron et al., 2012; Paltsev et al., 2009; Alton
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et al., 2012; Ferreira-Filho and Horridge, 2012). Many of these studies have been conducted for
China. For instance, Wei et al. (2011) estimate CO2 emissions reduction potential and marginal
abatement costs by province in a model using a distance function approach. Yi et al. (2011)
evaluate provincial target allocation schemes based on several indicators related to equity,
economic development, and energy intensity, which are used to construct a comprehensive index
for policy evaluation. Our study contributes to efforts to evaluate both the economic and
distributional impacts of target allocation schemes. For this study we use a new CGE model that
disaggregates China at the provincial level. CGE models have been widely used in China to
investigate energy and climate policy proposals. Previous research has employed single-region
models of China to focus on the impacts of carbon mitigation measures (Cao, 2007; Wang et al.,
2009; Lin and Jiang, 2011; Dai et al., 2011). Other analyses have used models with various levels
of regional disaggregation to investigate a wide range of energy policy questions (Horridge and
Wittwer, 2008; Li et al., 2009; Wang et al., 2006; Li and He, 2005; Xu and Li, 2008; Lu et al.,
2010). Li and He (2010) are among the few to analyze carbon mitigation policy in a
regionally-disaggregated CGE model. However, these models are mostly based on older
input-output data (e.g., China’s 2002 input-output tables) and do not include physical accounting
in the energy sector. Moreover, they are not integrated with any global trade data set, treating
China as a small or large open economy, which can significantly affect the reliability of
simulation results.

2.2 Description of the Twelfth Five-Year Plan CO2 Intensity Targets

China’s primary policy approach to reduce energy and CO2 emissions takes the form of
intensity targets, defined as the allowable energy consumption or emissions per unit of GDP. Prior
to the Twelfth FYP (2011–2015), policy was focused on energy intensity. The Eleventh FYP
included an energy intensity reduction target of 20% nationwide. This target was not formally
allocated to provinces, although provinces made non-binding pledges to undertake a certain level
of reductions at the outset of the policy (World Bank, 2009). At the conclusion of the Eleventh
FYP, China’s leaders officially declared that a 19.1% reduction in energy intensity had been
achieved (Industrial Efficiency Policy Database (IEPD), 2012). The reduction achieved during the
Eleventh FYP has been attributed to energy efficiency improvements in industry (much of it
claimed to be achieved through an initiative called the 1,000 Enterprises Program) and the closure
of small, inefficient industrial and power generation facilities (He et al., 2010; Price et al., 2010;
Price and et.al., 2011).

A CO2 intensity target was formally introduced for the first time under the Twelfth FYP, with a
reduction goal of 17% (State Council, 2012). The reduction in CO2 intensity over this period is
expected to come from reductions in energy intensity (through further improvements in industrial
energy efficiency and a shift in economic structure away from energy-intensive industries), as
well as the further introduction of low carbon electricity sources into China’s electric power
generation mix. For the first time, binding targets for CO2 emissions reductions were assigned at
the provincial level. These targets are given in Table 1.
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Table 1. CO2 Intensity reduction targets across provinces of mainland China.

Carbon intensity reduction target (%) Provinces

19.5 Guangdong
19 Tianjin, Shanghai, Jiangsu, Zhejiang
18 Beijing, Hebei, Liaoning, Shandong
17.5 Fujian, Sichuan
17 Shanxi, Jilin, Anhui, Jiangxi, Henan, Hubei, Hu-

nan, Chongqing, Shannxi
16.5 Yunnan
16 Inner Mongolia, Heilongjiang, Guangxi, Guizhou,

Gansu, Ningxia
11 Hainan, Xinjiang
10 Qinghai, Tibet

A driving principle behind the allocation is to assign reduction burdens according to provincial
wealth, which is intended to ease pressure on less affluent regions or regions targeted for
accelerated development. Presently China is characterized by significant heterogeneity across
provinces in terms of per-capita GDP, total emissions rates, and emissions intensities (see Figure
1). In general, the eastern coastal provinces have higher per-capita GDP and higher total
emissions rates but low emission intensities compared to the western provinces in China, and thus
have been assigned higher intensity reduction targets. An alternative to provincial targets is to set
a single national reduction target that would induce reductions at least cost nationwide. Our
modeling framework allows us to compare national and provincial target allocation approaches,
and to understand how each leads to heterogeneous energy, emissions, and economic outcomes
across provinces.

3. MODELING FRAMEWORK

3.1 Data

For this study we develop a comprehensive energy-economic data set that includes a consistent
representation of energy markets in physical units as well as detailed accounts of regional
production and bilateral trade for the year 2007. The data set is based on detailed provincial-level
data for China and a global economic and energy data set, which are used to construct social
accounting matrices (SAMs) for all regions. SAMs for every region except China are based on
the GTAP data base (GTAP, 2012), while data for China is based on the full set of China’s
recently published 2007 provincial input-output tables and China’s national input-output table
(National Information Center, 2011).1 Energy use and emissions data is based on data from

1 In preparing our data we noted substantial discrepancies between the sum of economic flows in the provincial data
and the national totals. To achieve consistency with the national totals, which are used in the preparation of the
GTAP database, we scale the provincial data by the national total, holding fixed the provincial and sector shares of
output.
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Figure 1. Per-capita GDP (yuan) (a), CO2 emission (100 million tons) (b), and CO2 emission intensity
(ton/10,000 yuan) (c) of mainland China’s provinces in 2007. Tibet is not included due to data
availability in (b) and (c).
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GTAP and the 2007 China Energy Statistical Yearbook (National Statistics Bureau, 2008). The
GTAP 8 data set provides consistent global accounts of production, consumption and bilateral
trade as well as consistent accounts of physical energy flows, energy prices and emissions in the
year 2007, and identifies 129 countries and regions and 57 commodities (GTAP, 2012).

The provincial input-output data for China specifies benchmark economic accounts for 30
provinces in China (Tibet is not included due to a lack of data and the small scale of its economic
activities). The data set consists of input-output tables for each province. Each table identifies the
forward and backward linkages associated with production of 42 commodities and existing taxes.
Based on these input-output tables, we established our SAM tables for each province after some
minor adjustments and updates for balancing.2 We applied the following least-squares
optimization problem to obtain the balanced SAM tables for each province p (see Table 2).

min{xpij}
∑

i,j(xpij −Xpij)
2 + PEN

∑
i∈E or j∈E(xpij −Xpij)

2

s.t.
∑

j xpij =
∑

j xpji for all i
VXMpi ≤ VOMpi for all i

where i and j represent row and column indices of the SAM table, and xpij is the value of
elements of the SAM table for province p. E represents rows or columns related to energy sectors
(energy production, use and trade), and PEN is the penalty term associated with changing
elements related to the energy sector. VOMpi and VXMpi are output and total outflows (domestic
outflows and international exports) of sector i in province p.

The objective function minimizes the extent to which the value of SAM elements can be
altered, especially in the case of elements related to the energy sectors, given that we have already
modified the energy data to improve its quality. Constraints in the optimization problem force all
accounts in the SAM table to be balanced and require output of every sector to be greater than the
total outflow for each province to satisfy the Armington assumption (Armington, 1969).

We then construct another least-squares optimization problem to balance all the SAM tables
for each province simultaneously to ensure that the domestic trade flows for each sector in China
are balanced. Prior to this optimization, bilateral province-to-country trade flows are estimated by
disaggregating China’s bilateral international trade data in GTAP according to each province’s
value share in China’s import/export flows by sector. These trade flows are fixed in the
optimization.

min{xpij}
∑

p,i,j(xpij −Xpij)
2 + PEN

∑
i∈E or j∈E(xpij −Xpij)

2

s.t.
∑

j xpij =
∑

j xpji for all p, i
VXMpi ≤ VOMpi for all p, i∑

p VDXMpi =
∑

p VDIMpi for all i

2 We set all subzero entries in the input-output tables to zero. The number of subzero entries was very small relative
to the total number of entries (about 0.001%). To improve the characterization of energy markets, we merged
input-output data with data on physical energy quantities from both national and provincial energy balance tables
in China’s Energy Statistical Yearbook 2007 and energy price data supplied by the Energy Research Institute of
the National Development and Reform Commission (NDRC), China.
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Table 2. Structure of SAM tables for each province in China.

A C F H G1 G2 T DX X I1 I2 M

A AC SA
C CA CH G2D DER ER CS1 CS2 VDST
F FA
H HF HG2 DHR HR
G1 G1G2 CG1S
G2 G2G1 TR
T TA
DX DRC DRH
X RC RH
I1 DP PSV1 G1SV
I2 IC PSV2
M MG

Note: AC – sector output; SA – sector subsidy; CA – intermediate use; CH – household consumption; G2D – local government; DER
– domestic outflow; ER – export; CS1 – investment; CS2 – inventory addition; VDST – domestic transportation service use; FA –
factor input; HF – Factor earning; HG2 – transfer from central government to household; DHR – domestic trade deficit; HR –
international trade deficit; G1G2 – transfer from local government to central government; CG1S – Balancing term for central
government; G2G1 – transfer from central government to local government; TR – tax revenue for local government; TA –
production tax; DRC – domestic inflow; DRH – domestic trade surplus; RC – import; RH – international trade surplus; DP – capital
depreciation; PSV1 – balancing term for investment; G1SV – balancing term for investment; IC – inventory deletion; PSV2 –
balancing term for inventory; MG – domestic trade margin.

The optimization problem for balancing trade flows is similar to the previous one. VDXMpi and
VDIMpi are domestic exports and imports, respectively, from sector i for province p. Using the
balanced provincial SAM data, bilateral inter-provincial trade data is estimated using the
least-squares approach under the assumption that the import source composition of each sector is
the same as the source composition of the total imports for each province.

For this study, we aggregate the data set to 30 provinces in China and to three regions in the
rest of the world (the United States, the European Union and other European countries, and the
rest of world), and into 26 commodity groups (see Table 3). However, we maintain the flexibility
to aggregate the regions as desired for other studies. Our commodity aggregation identifies six
energy sectors and 20 non-energy composites. The mapping of GTAP commodities and sectors
identified in our study is provided in Table 3. Primary factors in the data set include labor, capital
and natural resources. Labor, capital earnings and natural resource rents represent gross earnings
denominated in 2007 U.S. dollars.

3.2 The Numerical Model

Our modeling framework is a multi-commodity, multi-region static numerical general
equilibrium model of the world economy with sub-national detail for China’s economy. The key
features of the model are outlined below.
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Table 3. Regions, commodity classifications and mappings in the model.

Region Abbreviation GTAP commodity Aggregated
commodity

Beijing BEJ Paddy rice AGR
Tianjin TAJ Wheat AGR
Hebei HEB Cereal grains AGR
Shanxi SHX Vegetables, fruit, nuts AGR
Inner Mongolia NMG Oil seeds AGR
Liaoning LIN Sugar cane, sugar beet AGR
Jilin JIL Plant-based fibers AGR
Heilongjiang HEL Crop AGR
Shanghai SHH Bovine cattle, sheep and goats, horses AGR
Jiangsu JSU Animal products AGR
Zhejiang ZHJ Raw milk AGR
Anhui ANH Wool, silk-worm cocoons AGR
Fujian FUJ Forestry AGR
Jiangxi JXI Fishing AGR
Shandong SHD Coal COL
Henan HEN Oil CRU
Hubei HUB Gas GAS
Hunan HUN Minerals OMN
Guangdong GUD Bovine meat products AGR
Guangxi GUX Meat products AGR
Hainan HAI Vegetable oils and fats AGR
Chongqing CHQ Dairy products AGR
Sichuan SIC Processed rice AGR
Guizhou GZH Sugar AGR
Yunnan YUN Food products AGR
Shanxi SHX Beverages and tobacco products B T
Shannxi SHA Textiles TEX
Gansu GAN Wearing apparel CLO
Qinghai QIH Leather products CLO
Ningxia NIX Wood products LUM
Xinjiang XIN Paper products, publishing PPP

Petroleum, coal products OIL
United States USA Chemical, rubber, plastic products CRP
Europe Union and Mineral products NMM

other European countries EUR Ferrous metals MSP
Rest of world ROW Metals MSP

Metal products FMP
Motor vehicles and parts TME
Transport equipment TME
Electronic equipment ELQ
Machinery equipment OME
Manufactures OMF
Electricity ELE
Gas manufacture and distribution GDT
Water WTR
Construction CON
Trade TRD
Transport TRP
Water transport TRP
Air transport TRP
Communication OTH
Financial services OTH
Insurance OTH
Business services OTH
Recreational and other services OTH
Public Administration, defense,

education, health OTH
Dwellings OTH
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Figure 2. Structure of production for all the industries except fossil fuels and OIL, GDT, ELE.

3.2.1 Modeling Production and Household Consumption Activities

For each industry (i = 1, . . . , I , i = j) in each region (r = 1, . . . , R) gross output (Yir) is
produced using inputs of labor (Lir), capital (Kir), natural resources including coal, natural gas,
crude oil, and land (Rir), and produced intermediate inputs (Xjir)3.

Yir = Fir(Lir, Kir, Rir;X1ir, . . . , XIir) (1)

We employ constant-elasticity-of-substitution (CES) functions to characterize the production
technologies. All industries are characterized by constant returns to scale and are traded in
perfectly competitive markets. Nesting structures for the production systems of all industries
except for fossil fuel and petroleum and coal products (OIL), gas manufacture and distribution
(GDT), electricity (ELE) are depicted in Figure 2.

Fossil fuels f (coal, crude oil and natural gas) are produced according to a nested CES
function combining a fuel-specific resource, capital, labor, and intermediate inputs.

Yfr =

[
αfr R

ρRfr
fr + νfr min (X1fr, . . . , Xifr, Vfr)

ρRfr

]1/ρRfr
(2)

where α, ν are share coefficients of the CES function and σR
fr = 1/(1− ρRfr) is the elasticity of

substitution between the fuel-specific resource and the composite including primary factors,
energy and materials. σR

fr is determined by the resource input share and price elasticity of supply
ηfr. The primary factor and energy composite is a Cobb-Douglas function of the energy input,

3 For simplicity, we abstract from the various tax rates that are used in the model. The model includes ad valorem
output taxes and import tariffs.
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labor and capital.

Vfr = Lβ1frK
β2
frE

βe1
1fr

. . . Eβei
ifr

(3)

where β1, β2, βe1, . . . , βei are shares of the labor, capital and energy inputs. Oil refining, gas
production and distribution production are represented in Figure 3.

Electricity production is represented in Figure 4. We distinguish several generation
technologies, including conventional fossil, hydro, nuclear and wind. In this version of the model,
the resource input share is calibrated using the benchmark data. As we lack estimates of price
elasticities for supply of nuclear, hydro, and wind in individual provinces in China, we adopt the
corresponding elasticities from the MIT Emissions Prediction and Policy Analysis model (Paltsev
et al., 2005).

For each sector, the capital mobility feature is represented by following a putty-clay
approach. A fraction φ of previously-installed capital becomes non-malleable in each sector, and
vintaged production in this sector uses this part of capital with fixed shares of all the inputs which
are identical to those installed in the base year. The fraction 1− φ of capital is malleable and can
be shifted to other sectors in response to input price changes. All the sectors except electricity
have the same φ value, while φ for the electricity sector is higher because capital tends to be less
mobile when invested in electricity generation (Sue Wing, 2006).

In each region r, preferences of representative consumers are represented by a CES utility
function comprised of consumption goods (Ci) and investment (I):

Ur = min [g(C1r, . . . , CIr), g(I1r, . . . , IIr)] (4)

where the function g(·) is a CES composite of all goods. In each region, a single government
entity approximates government activities at both central and local levels.

3.2.2 Supplies of Final Goods and Treatment of Domestic and International Trade

All intermediate and final consumption goods are differentiated following the Armington
assumption. For each demand class, the total supply of good i is a CES composite of a
domestically produced variety and an imported variety, as follows:

Xir =
[
ψz ZDρDi

ir + ξz ZMρDi
ir

]1/ρDi
(5)

Cir =
[
ψc CDρDi

ir + ξc CMρDi
ir

]1/ρDi
(6)

Iir =
[
ψi IDρDi

ir + ξi IMρDi
ir

]1/ρDi
(7)

Gir =
[
ψg GDρDi

ir + ξg GMρDi
ir

]1/ρDi
(8)
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Figure 3. Structure of production for oil refining i ∈{OIL} (a) and gas production and distribution
i ∈{GDT} (b).
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Figure 4. Structure of electricity production i ∈{ELE}.

where Z, C, I and G are inter-industry demand, consumer demand, investment demand, and
government demand for good i, respectively; and ZD, ZM, CD, CM, ID, IM, GD, GM are
domestic and imported components of each demand class, respectively. The ψ’s and ξ’s are the
CES share coefficients. The Armington substitution elasticities between domestic and imported
varieties in these composites are given by σDi = 1/(1− ρDi ).

The domestic and imported varieties of goods are represented by nested CES functions. We
replicate a border effect within our Armington import specification by assuming that goods
produced within China are closer substitutes than goods from international sources. We include
separate import specifications for China’s provinces (indexed by p = 1, . . . , P ) and international
regions (indexed by t = 1, . . . , T ). The nesting structure of the Armington composites are
depicted in Figures 5 and 6.
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Figure 5. Aggregation of local, domestic and foreign varieties of good i for China province p.
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Figure 6. Aggregation of domestic and foreign varieties of good i for international region t.
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3.2.3 Equilibrium and Model Solution

Consumption, labor supply and savings result from the decisions of the representative
household in each model region that maximize its utility subject to a budget constraint that
consumption equals income. Given input prices gross of taxes, firms maximize profits subject to
the technology constraints. Firms are assumed to operate in perfectly competitive markets (an
assumption that can be relaxed in specific applications) and maximize profit by selling products at
a price equal to the marginal cost of production. Numerically, the equilibrium is formulated as a
mixed complementarity problem (MCP) (Mathiesen, 1985; Rutherford, 1995). A model solution
must satisfy zero profit and market clearance conditions, with the former condition determining a
vector of activity levels and the latter a vector of market-clearing prices. The problem is
formulated in GAMS and solved using the mathematical programming system MPSGE
(Rutherford, 1999) and the PATH solver (Dirkse and Ferris, 1995) to obtain non-negative prices
and quantities.

3.3 Scenarios

We design two scenarios to compare the impact of different approaches to setting CO2

intensity targets in China. In the first scenario, Regional Targets (RT), we require compliance with
CO2 intensity reduction targets set at the provincial level, based on the Twelfth FYP (see Table
1).4 In the second scenario, National Target (NT), we impose a single CO2 intensity reduction
target at the national level that is equivalent to the national carbon intensity reduction achieved in
Scenario RT, which we find to be a reduction of 17.4%. We model the allocation of emissions
allowances to provinces based on their benchmark emissions, and a nation-wide allowance
trading market is established. We implement both policies as an endogenous tax on CO2

embodied in energy used across the range of economic activities. The tax is adjusted until the
CO2 intensity target is achieved. The tax revenue collected in each province is returned to the
representative household in the same province.

We expect that the national and regional target allocation scenarios will produce different
welfare outcomes. The provincial target scenario is regionally constrained, and the reductions
required vary across provinces, while under a single national target least cost opportunities can be
chosen from across the economy as a whole. While we design the national target to equal the CO2

intensity reduction achieved under the regional target at the national level, our model simulates
how emissions and emissions intensity, as well as energy consumption and associated policy cost,
will vary by province. Understanding how each policy design induces changes in the energy
consumption profile, emissions and economic welfare in each province will lend insight into the
trade-offs between the efficient policy design (a single national cap) and a regionally-constrained
policy that sets provincial targets explicitly.

4 We caution that our simulation is not intended to simulate the future impact of the Twelfth FYP, particularly given
that we are using a static framework based on 2007 data. Nevertheless, this framework allows us to understand
the relative merits of alternative policy approaches and develop intuition about the relationship between provincial
characteristics and localized welfare changes as a result of policy.
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4. RESULTS

China is characterized by significant regional heterogeneity in per-capita income, energy
demand, CO2 emissions and CO2 emissions intensity as described above. We therefore anticipate
that policy impacts will vary across provinces, and also expect different responses under the two
policy approaches modeled. Below we discuss the impact of each policy approach (regional or
national targets) at the national level before considering in depth heterogeneity in terms of CO2

intensity, total CO2 emissions, energy consumption and welfare outcomes at the provincial level.

4.1 Comparing Policy Impact at the National Level

By design both scenarios achieve a reduction in CO2 emissions intensity of 17.4%, but at
different national welfare costs.5 In both scenarios, welfare loss is modest at the national level,
1.5% in Scenario RT and 1.2% in Scenario NT (see Figure 7). More welfare loss occurs at the
national level under Scenario RT, the provincial allocation scheme (a 25% greater reduction
relative to Scenario NT), consistent with the fact that abatement flexibility, and thus the
equilibrium allocation, is more constrained by the provincial-level reductions required. CO2

intensity reduction under Scenarios NT and RT are achieved by reducing coal use by around 25%,
while total final consumption of fossil energy falls by 18%. At the same time, generation from
non-fossil sources (hydro, nuclear and wind) increases from 120 million tons of coal equivalent
(mtce) to about 160 mtce in Scenario RT and 150 mtce in Scenario NT.6 Very slight differences
exist between the two scenarios—slightly more non-fossil energy is brought online in Scenario
RT, while coal use is reduced more under Scenario NT. It is interesting that the outcomes are
similar, despite the fact that under the provincial targets, cost effective opportunities to reduce
coal are regionally constrained—for instance, a more modest reduction in CO2 intensity may be
required within a province that has a large opportunity to cost-effectively reduce coal use, while a
province facing a more aggressive target may have limited opportunities to improve coal use
efficiency and instead needs to rely on adoption of non-fossil sources.

In both scenarios CO2 emissions reductions are slightly larger in percentage terms than CO2

intensity reductions at the national level (see Figure 8). We observe a reduction in emissions in
the static model framework because the intensity target reduces China’s GDP, and so a CO2

intensity reduction consistent with the new level of GDP results in a disproportionately larger
reduction in CO2 emissions. We would expect the effect to be the opposite if the policy were
modeled in a dynamic framework that captured increases in GDP over the same period—i.e. total
emissions may decrease less or increase if the economy is growing over the period covered by the
intensity target. As this analysis is aimed at understanding the relationship between policy design
and the distribution of impacts, we adopt a static approach to build intuition, acknowledging that
in practice emissions outcomes are a function of the intensity target stringency and the rate of
GDP growth.

5 Welfare costs are measured as the equivalent variation of household income, relative to the no policy benchmark.
6 One million tons of coal equivalent (mtce) is equal to 0.03 exajoules (EJ).
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Figure 7. Regional welfare change.
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Figure 8. Regional carbon emissions reductions.

16



4.2 Comparing Policy Impact at the Provincial Level

A comparison of the CO2 intensity reduction undertaken in each of China’s provinces under
the two scenarios reveals some significant differences (see Figure 9). Under the national target,
several provinces that had relatively low targets in Scenario RT end up contributing significantly
more to overall abatement (in particular Qinghai and Guizhou), suggesting that these provinces
offer abatement opportunities at lower cost. By contrast, provinces that faced tough provincial
targets in Scenario RT contribute less to overall abatement under the national target (see for
instance Shaanxi, Beijing and Jiangsu). This result suggests that the Scenario RT target allocation
is demanding large reductions from provinces where abatement is relatively expensive, while
bypassing opportunities to make reductions inexpensively in other provinces.

The modest welfare loss at the national level also masks large variation in the welfare
impacts across provinces under both scenarios (see Figure 7). Some provinces experience large
welfare increases (Qinghai, Guizhou), while some provinces undergo large welfare decreases,
e.g., Shaanxi province, a major domestic coal exporter, experiences welfare loss of about 12% in
Scenario RT. In general the pattern of welfare change is similar in both scenarios. Interestingly,
consumption gains incurred in some provinces, e.g., Qinghai and Guizhou, are larger in the
national target allocation (Scenario NT), suggesting that a single national constraint is not only
good for efficiency, but can increase welfare gains in provinces with large potential to reduce
emissions. Figure 10 shows the final energy consumption structure of each province in the
reference and both policy scenarios. In the national target allocation (Scenario NT), energy use
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Figure 9. Regional carbon intensity reduction.
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Figure 10. Regional energy consumption. From left to right for each province: Reference, Scenario RT,
and Scenario NT. Unit: Billion tons of coal equivalent.

patterns reflect a less constrained response to achieve reductions in emissions intensity. We find
that provinces such as Guangdong, Shandong and Jiangsu that have already achieved lower CO2

intensity (given a higher level of development and adoption of efficient technology). These
provinces face more costly abatement opportunities at the margin and so given the option they do
not undertake significant additional abatement under Scenario NT, continuing their reliance on
coal. By contrast, provinces that have high energy intensity and face relatively low cost
opportunities to cut coal use (Qinghai and Guizhou) end up reducing their reliance on coal, and
thus contribute disproportionately to achieving the total national reduction. By selling allowances
to provinces that face more costly abatement opportunities, these provinces benefit relative to the
provincial target scenario.

Comparing the carbon prices in individual provinces under each scenario (see Figure 11)
provides some clues as to the relative stringency of the reduction targets at the provincial level.
Under Scenario NT, a single national carbon price of 225 yuan per ton CO2 (or about U.S. $30
per ton in 2007) is needed to induce the required reduction in CO2 intensity. Under Scenario RT,
there is significant diversity in the provincial carbon price, ranging from 40 to 440 yuan per ton
CO2 (U.S. $5 to U.S. $58 per ton in 2007). It is instructive to compare the carbon prices that
result in each province under Scenario NT and Scenario RT to understand whether, under regional
targets, provinces undertake more or less reduction relative to the national targets scenario. We
find that provinces with carbon prices in Scenario RT in excess of the national carbon price
undertake more abatement relative to Scenario NT, while the reverse is true for provinces with
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Figure 11. Regional carbon price.

carbon prices in Scenario RT that fall below the national price in Scenario NT. An example is
Qinghai province, which has large opportunities to reduce CO2 emissions intensity by reducing
coal use, but these opportunities are essentially bypassed because the CO2 intensity reduction
required of Qinghai (10%) is one of the lowest. As discussed above, Qinghai’s welfare gain under
Scenario NT is partly related to the fact that it can undertake reductions cheaply on behalf of
other provinces, reducing the burden elsewhere in the economy to reduce CO2 intensity.

For China as a whole, as well as for the U.S., Europe and the rest of world, CO2 emissions
intensity and total CO2 emissions changes are small, while the welfare change is negligible in
both scenarios (see Table 4). However, even small changes are notable given that policy is not
directly imposed in these regions. Moreover, should China choose to adopt more stringent
policies in the future, the effects on non-target regions may be substantial given China’s size and
its role as an energy consumer in global markets.

4.3 Role of Fixed Electricity Prices

Electricity prices in China are currently managed to keep end-use prices at affordable levels,
and are set at different levels for household and industrial users. To reflect China’s current
electricity policy, we model prices as fixed to households alone, or to both households and
industrial users. We model this type of managed pricing through a endogenous subsidy that
maintains electricity prices at a fixed level. In the first scenario, “electricity subsidy for all
sectors” (Scenario RT ELEALL), a subsidy is provided to electricity consumers in all sectors, and
the subsidy rate is endogenously determined by the model to hold the electricity price at the level
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Table 4. Results for China, U.S., Europe and rest of world in the two scenarios in percentage terms.

Carbon intensity
change

Carbon emission
change

Welfare change

China (Scenario RT) −17.4 −18.8 −1.5
China (Scenario NT) −17.4 −18.6 −1.2
U.S. (Scenario RT) 0.2 0.3 0.0
U.S. (Scenario NT) 0.2 0.2 0.0
Europe (Scenario RT) 0.2 0.3 0.0
Europe (Scenario NT) 0.2 0.2 0.0
Rest of world (Sce-
nario RT)

0.5 0.5 0.0

Rest of world (Sce-
nario NT)

0.5 0.5 0.0

of the reference year (e.g., the price is not adjusted to reflect increases in underlying costs of
generating electricity). We assume that local governments fund the subsidy with transfers from
households. In the “cross electricity subsidy” scenario (Scenario RT ELERES), we only model a
subsidy to residential users to maintain the residential electricity price at the reference level, and
the subsidy is financed by a tax levied on all other electricity consumers. This tax rate is
endogenously determined by the model to ensure that household electricity price remains fixed,
and the tax revenue is equal to the subsidy to the household.

CO2 intensity, emissions and welfare changes (%) in China as a whole for the above
scenarios are presented in Table 5. In both scenarios, with fixed electricity prices households
experience slightly greater welfare loss relative to the regional intensity targets scenario in which
electricity is not subsidized (Scenario RT) (−1.45% relative to −1.60% or 1.55% at the national
level). The additional welfare loss results from the economic distortion created by the subsidy.
With fixed prices, consumers’ electricity demand does not reflect the penalty imposed on
carbon-intensive energy sources, and so demand is higher relative to a case in which prices are
passed through. Interestingly, Scenario RT ELERES has higher CO2 intensity and emissions
reduction than Scenario RT, while Scenario RT ELEALL has lower intensity and emission
reduction but even greater welfare loss. These differences reflect the fact that economic activity
also changes when a subsidy to maintain fixed electricity prices is imposed.

Table 5. CO2 intensity, emission and welfare changes (%) of China for alternative electricity policy
scenario under region carbon intensity targets.

RT RT ELEALL RT ELERES

CO2 intensity −17.43 −17.42 −17.45
CO2 emission −18.83 −18.72 −19.17
Welfare change −1.45 −1.60 −1.55
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4.4 Sensitivity Analysis

Since our study is focused a relatively short (five-year) period covered by the Twelfth FYP, it
is reasonable to expect that the malleability of the capital stock will play a significant role in the
response to the CO2 intensity targets. We therefore investigate a case in which capital is less
malleable than in the reference scenarios by setting high capital vintaging share in the model to
reflect the limited mobility of capital in the short term. In the high vintaging (HVTG) case, we set
the non-malleable fraction of capital φ in each sector to be 50% higher than in our base case
(BASE).

We also consider sensitivity to the assumption of the supply elasticity of natural gas. In
recent years regional natural gas prices in Asia have remained high and supply is currently
limited. There is much speculation about the role that an expanded domestic (potentially
unconventional) gas resource in China could play in national efforts to reduce CO2 intensity. The
price elasticity of natural gas supply ηng is set to be four times higher than in our base case in the
high natural gas potential (HNGS) case.

The results of changing capital vintaging and natural gas availability assumptions on CO2

intensity, emission and welfare changes (%) in China as a whole under both Scenario RT and
Scenario NT are shown in Table 6. In both scenarios a high fraction of non-malleable capital
leads to greater welfare loss, especially in Scenario NT, which reflects the difficulty of adjusting
the input structure of production in the short term. Increasing the supply elasticity of natural gas
has almost no impact on the model results because the share of natural gas of China’s primary
energy mix is still quite small, its production and use is still carbon intensive relative to other
alternatives, and the model captures the fact that there is limited substitution potential for natural
gas in the electric power or industrial sectors in China in the short term.

Table 6. CO2 intensity, emission and welfare changes (%) of China for alternative vintaged capital share
and natural gas supply elasticity assumptions.

BASE HVTG HNGS

Scenario RT:
CO2 intensity -17.4 -17.5 -17.4
CO2 emission -18.8 -19.7 -18.8
Welfare change -1.5 -2.4 -1.5

Scenario NT:
CO2 intensity -17.4 -17.4 -17.4
CO2 emission -18.6 -19.0 -18.6
Welfare change -1.2 -1.7 -1.2

5. CONCLUSIONS

This paper described a new provincial-level CGE model of China and applied it to assess the
impact of alternate approaches to achieving the Twelfth FYP CO2 intensity targets. The main goal
of this analysis was to compare two CO2 intensity target allocation scenarios: one policy scenario
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that matches China’s Twelfth FYP targets imposed at the provincial level, and one policy scenario
in which China faces a single national target that achieves an equivalent national intensity
reduction. While we find that the single national carbon intensity reduction target results in less
consumption loss at the national level (1.2%) than current provincially-disaggregated targets
(1.5%), we also find great disparities in the regional impacts. Given that regional impacts are an
important consideration in the formulation of national energy and climate policy, it is important to
understand how these impacts are distributed, and to be able to estimate the incremental cost of
pursuing reductions through provincial rather than a single national constraint.

Our results suggest that assigning provincial targets may miss cost-effective opportunities to
reduce emissions in less-constrained provinces, while demanding more costly reductions from
highly-constrained provinces. Assigning the appropriate intensity target level for each province is
a difficult task. It is very difficult in advance to perform an exhaustive assessment of abatement
costs across provinces, not least because it requires knowledge of these costs (which are often
proprietary, difficult to estimate or otherwise unavailable). A national target creates incentives to
undertake reductions where they are most cost effective, independent of where they are located in
China. However, we note that the challenges of implementing a national intensity target may be
significant in practice, as provincial governments are currently held accountable for target
implementation, and it is less clear how this responsibility would be assigned (and achievement
verified) under a national target. Nevertheless, as China’s policymakers consider design of a
carbon market that integrates several or all provinces, models such as the one developed in this
work will be able to estimate the impacts of alternative design approaches as an input to the
policy process. As we demonstrate for the case of fixed electricity prices, it is possible to
incorporate specific non-market features of China’s economy to capture aspects of the response to
policy that may affect the magnitude and direction of simulated policy outcomes.

Our model can help to make equity and efficiency trade-offs clear by serving as a platform to
evaluate alternative target allocation scenarios. Our results provide some first insights into the
impact of reducing energy intensity in China in a static regional energy-economic modeling
framework. An important caveat is that we assume in our model that China’s economy is
characterized by perfectly competitive markets, which may have important implications for
welfare loss. We model one feature of China’s electricity market—subsidized end-use
prices—and find that welfare losses increase when costs are not passed through. This is consistent
with the absence of a price signal that would otherwise encourage electricity conservation or spur
the adoption of more efficient technology and practices. We further find that the magnitude of the
welfare change is sensitive to our assumption about capital mobility, but we also find that it does
not change our main result, which is that a single national target imposes a smaller welfare burden
on the national economy than the regional target allocation.
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