
MIT Open Access Articles

Linux Kernel Vulnerabilities: State-of-
the-Art Defenses and Open Problems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M. Frans
Kaashoek. 2011. Linux kernel vulnerabilities: state-of-the-art defenses and open problems. In
Proceedings of the Second Asia-Pacific Workshop on Systems (APSys '11). ACM, New York, NY,
USA, , Article 5 , 5 pages.

As Published: http://dx.doi.org/10.1145/2103799.2103805

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/73008

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73008
http://creativecommons.org/licenses/by-nc-sa/3.0/

Linux kernel vulnerabilities:
State-of-the-art defenses and open problems

Haogang Chen Yandong Mao Xi Wang Dong Zhou†

Nickolai Zeldovich M. Frans Kaashoek

MIT CSAIL †Tsinghua University

ABSTRACT
Avoiding kernel vulnerabilities is critical to achieving security of
many systems, because the kernel is often part of the trusted com-
puting base. This paper evaluates the current state-of-the-art with
respect to kernel protection techniques, by presenting two case
studies of Linux kernel vulnerabilities. First, this paper presents
data on 141 Linux kernel vulnerabilities discovered from January
2010 to March 2011, and second, this paper examines how well
state-of-the-art techniques address these vulnerabilities. The main
findings are that techniques often protect against certain exploits
of a vulnerability but leave other exploits of the same vulnerabil-
ity open, and that no effective techniques exist to handle semantic
vulnerabilities—violations of high-level security invariants.

1. INTRODUCTION
An OS kernel is a part of the trusted computing base (TCB) of

many systems. Vulnerabilities in the kernel itself can allow an
adversary to bypass any kernel protection mechanisms, and com-
promise the system, such as gaining root access. Much research
has gone into mitigating the effects of kernel vulnerabilities, but
kernel vulnerabilities, and more importantly, kernel exploits, are
still prevalent in Linux. This paper investigates where the research
community may want to focus its attention, by analyzing past Linux
kernel vulnerabilities, categorizing them, evaluating what defensive
techniques might have been used to prevent them, and speculating
on what the remaining open problems are.

Surprisingly few studies have been performed to understand the
types of kernel vulnerabilities that occur in practice. A study by
Arnold et al. [3] argues that every kernel bug should be treated as
security-critical, and must be patched as soon as possible. Mokhov
et al. explore how kernel programmers patch known vulnerabili-
ties [19]. Christey and Martin report on vulnerability distributions
in CVE [8]; our study is also based on CVE and our findings are
consistent with that study, but ours focuses only on kernel vulnera-
bilities. Neither of the studies shed light on what techniques could
be used to prevent unknown vulnerabilities from being exploited. In
this paper, we present a case study of Linux kernel vulnerabilities
discovered from January 2010 to March 2011. We categorize these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

vulnerabilities by the kind of programming mistake the developers
made, and the impact it has on security.

Based on this list of kernel vulnerabilities, we perform a second
case study, by examining how effective techniques proposed by re-
searchers might be at mitigating vulnerabilities in the Linux kernel.
These techniques include runtime mechanisms such as code integrity
checks [22], software fault isolation [6, 15], and user-level device
drivers [5], as well as bug-finding tools and static analysis [1, 2].
This examination is not empirical, but is based purely on our un-
derstanding of the techniques. Nonetheless, we believe it can be
helpful in identifying what classes of vulnerabilities can already be
solved, and what open problems remain.

The findings of our two studies are as follows. First, we find
that there are 10 common classes of kernel vulnerabilities in Linux,
which may lead to attacks ranging from arbitrary memory modifi-
cations to information leaks to denial-of-service attacks. Second,
we find that about 2/3 of the vulnerabilities are in kernel modules
or drivers, and that conversely, 1/3 of the bugs are found in the
core kernel. Third, we find that no single existing technique can
prevent all kernel vulnerabilities, and that a technique often miti-
gates some exploits of a vulnerability but does not address other
exploits of the same vulnerability. Fourth, there are certain classes of
vulnerabilities that are not addressed at all. For example, semantic
vulnerabilities, where high-level security invariants are violated, are
difficult to catch with state-of-the-art techniques that focus mostly
on memory safety and code integrity.

2. LINUX KERNEL VULNERABILITIES
Figure 1 categorizes the 141 Linux kernel vulnerabilities pub-

lished on the CVE list from January 2010 to March 2011 and the
type of attacks that can exploit the vulnerability. Despite their di-
versity, most of these vulnerabilities fall into 10 categories, based
on the kind of programming mistake the developers made, as listed
in the first column. Since each vulnerability can often be exploited
in several ways, we further categorize the exploits in several at-
tack classes. Memory corruption typically allows an adversary to
perform arbitrary operations in the kernel, and is thus a superset
of other types of attacks, such as policy violation, DoS, informa-
tion disclosure, and others. Therefore if a vulnerability leads to a
memory-corruption attacks, we do not count it under other attack
classes. The rest of this section discusses the types of vulnerabilities
we have found.
Missing pointer checks. The kernel omits access_ok checks or
misuses “faster” operations such as __get_user, which does not
validate the value of user-provided pointers or index variables to
ensure that they point to user-space memory only. These bugs enable
unprivileged processes to read from or write to arbitrary kernel
memory locations, leading to memory corruption (CVE-2010-4258),

Vulnerability Mem. corruption Policy violation DoS Info. disclosure Misc.
Missing pointer check 6 0 1 2 0
Missing permission check 0 15 3 0 1
Buffer overflow 13 1 1 2 0
Integer overflow 12 0 5 3 0
Uninitialized data 0 0 1 28 0
Null dereference 0 0 20 0 0
Divide by zero 0 0 4 0 0
Infinite loop 0 0 3 0 0
Data race / deadlock 1 0 7 0 0
Memory mismanagement 0 0 10 0 0
Miscellaneous 0 0 5 2 1
Total 32 16 60 37 2

Figure 1: Vulnerabilities (rows) vs. possible exploits (columns). Some vulnerabilities allow for more than one kind of exploit, but
vulnerabilities that lead to memory corruption are not counted under other exploits.

Vulnerability Total core drivers net fs sound

Missing pointer check 8 4 3 1 0 0
Missing permission check 17 3 1 2 11 0
Buffer overflow 15 3 1 5 4 2
Integer overflow 19 4 4 8 2 1
Uninitialized data 29 7 13 5 2 2
Null dereference 20 9 3 7 1 0
Divide by zero 4 2 0 0 1 1
Infinite loop 3 1 1 1 0 0
Data race / deadlock 8 5 1 1 1 0
Memory mismanagement 10 7 1 1 0 1
Miscellaneous 8 2 0 4 2 0
Total 141 47 28 35 24 7

Figure 2: Vulnerabilities (rows) vs. locations (columns).

information disclosure (CVE-2010-0003), DoS (CVE-2010-2248),
or privilege escalation (CVE-2010-3904 and CVE-2010-3081) if
the process controls what data to write.
Missing permission checks. The kernel performs a privileged oper-
ation without checking whether the calling process has the privilege
to do so. A vulnerability in this category results in a violation of a
kernel security policy. The attacks that can exploit this vulnerability
depend on what the security policy is, ranging from arbitrary code
execution (CVE-2010-4347), privilege escalation (CVE-2010-2071
and CVE-2010-1146), to overwriting an append-only file (CVE-
2010-2066 and CVE-2010-2537).
Buffer overflow. The kernel incorrectly checks the upper or lower
bound when accessing a buffer (CVE-2011-1010), allocates a smaller
buffer than it is supposed to (CVE-2010-2492), uses unsafe string
manipulation functions (CVE-2010-1084), or defines local variables
which are too large for the kernel stack (CVE-2010-3848). The
attacks that can exploit this vulnerability are memory-corruption
(for writes) or information-disclosure (for reads) attacks. An adver-
sary can mount privilege-escalation attacks by overwriting nearby
function pointers and subverting the kernel’s control flow integrity.
Integer overflow. The kernel performs an integer operation incor-
rectly, resulting in an integer overflow, underflow, or sign error.
The adversary can trick the kernel into using the incorrect value
to allocate or access memory, allowing similar attacks as allowed
by “buffer overflow” vulnerabilities. For example, overflow after
multiplication can cause the kernel to allocate a smaller-than-needed
buffer (CVE-2010-3442); underflow after subtraction can cause
memory corruption beyond the end of a buffer (CVE-2010-3873);
and sign errors during comparison can bypass bounds checking and
cause information disclosure (CVE-2010-3437).
Uninitialized data. The kernel copies the contents of a kernel buffer
to user space without zeroing unused fields, thus leaking potentially
sensitive information to user processes, such as variables on the

kernel stack (CVE-2010-3876). This category has 29 vulnerabilities,
the highest of all categories. A direct attack using this vulnerability
results in unintended information disclosure. However, vulnerabili-
ties in this category may enable other attacks, such as attacks that
require knowing the exact address of some kernel data structure,
private kernel keys, or other kernel randomness.
Memory mismanagement. This category includes vulnerabilities
in kernel memory management, such as extraneous memory con-
sumption (CVE-2011-0999), memory leak (CVE-2010-4249), dou-
ble free (CVE-2010-3080), and use-after-free errors (CVE-2010-
4169 and CVE-2010-1188). For the vulnerabilities that we ex-
amined, an adversary can mount DoS attacks by exploiting them,
although in general arbitrary memory corruption may be possible.
Miscellaneous. There are other types of vulnerabilities that usually
result in either process crashes, kernel panics, or hangs, such as null
pointer dereferences, divide by zeros (CVE-2011-1012 and CVE-
2010-4165), infinite loops (CVE-2011-1083 and CVE-2010-1086),
deadlocks (CVE-2010-4161), and data races (CVE-2010-4526 and
CVE-2010-4248).

One observation from the Figure 1 is that buffer and integer over-
flows are the top threats to the kernel’s integrity: 78% of memory
corruption exploits are caused by these two vulnerabilities. This
observation is consistent with the report by Christey and Martin [8].

Figure 2 shows the distribution of the vulnerabilities in the Linux
kernel source code tree, namely, the code statically linked into the
kernel image (“core”), device drivers (drivers), network protocols
(net), file systems (fs), and the sound subsystem (sound). We
observe that a non-trivial portion (1/3) of vulnerabilities are located
in the core kernel, while 2/3 are in loadable kernel modules. Less
than 20% of vulnerabilities that we examined are in device drivers.

3. STATE-OF-THE-ART PREVENTION

We examined several state-of-the-art kernel security tools to see
how many vulnerabilities they can prevent. Figure 3 summarizes
the results. The rest of the section discusses each tool and the
vulnerabilities or attacks that it can prevent. Our examination mainly
focuses on tools that target the OS kernel, and is based on our
understanding of these techniques.

3.1 Runtime tools
Software fault isolation. BGI [6] is a tool to isolate kernel modules
with support for controlled sharing between kernel and modules.
BGI provides a memory access control list (ACL) for each module.
Programmers using BGI set the ACLs, granting or revoking a mod-
ule’s privileges as it invokes various functions in the core kernel
(e.g., granting access when allocating memory, and revoking access
when freeing memory). In this way, BGI can prevent a vulnerable
module from overwriting kernel memory that it shouldn’t have ac-
cess to, such as double-free bugs and some buffer overflows, but
allow access to kernel memory that it should have access to.

A major shortcoming of BGI is that it handles only vulnerabil-
ities inside a module, and certain attacks that attempt to cross the
boundary of the buggy module. As Figure 2 shows, 1/3 of all
vulnerabilities are in the core kernel, and would not be handled by
BGI. Moreover, some exploits occur entirely within a module, and
thus would not be handled by BGI either. For example, if there is a
buffer overflow vulnerability in a file system module, the attacker
could tamper with the module’s internal data, trick the module into
executing code that only applies to setuid binaries, and gain root
privilege. Isolating modules from one another would not solve this
problem.
Code integrity. SecVisor [22] enforces code integrity for the kernel.
A thin hypervisor layer authenticates all code before that code is
allowed to execute in kernel mode. SecVisor is effective at prevent-
ing code injection attacks. However, although it may defend against
common exploits that are unaware of SecVisor’s existence, persis-
tent adversaries could still mount attacks by corrupting important
kernel data, or by hijacking control flow to existing kernel code.
It has been shown that it is possible to use static analysis to com-
bine existing code sequences to perform arbitrary computation [23].
Thus, SecVisor makes exploits harder to write, but does not prevent
an adversary from exploiting vulnerabilities, which is why we list
zeros in the “SecVisor” column in Figure 3.
User-level drivers. SUD [5] runs device drivers at user level and
prevents vulnerabilities in the driver from affecting the rest of the
kernel. This turns most vulnerabilities in the driver into a denial-
of-service attack that crashes the driver itself; a separate recovery
mechanism, such as shadow drivers [24], is needed to mitigate the
DoS impact. Note, however, that only a small fraction of kernel
security vulnerabilities come from device drivers (20% in Figure 2)
and that user-level drivers don’t address the other vulnerabilities.
Memory tagging. Memory tagging systems, such as Raksha [10],
can detect when kernel code misuses untrusted inputs (from user pro-
cesses or from the network), preventing an adversary from mounting
code injection attacks or otherwise taking over control flow. As
with SecVisor, this prevents certain types of exploits that rely on
taking over kernel control flow, but doesn’t address many other
vulnerabilities in Figure 2.
Uninitialized memory tracking. Two systems specifically address
the problem of kernel code leaking sensitive data through unini-
tialized memory. Kmemcheck [20] is a runtime tool in the Linux
kernel that detects uninitialized memory vulnerabilities for a given
workload. Kmemcheck tracks initialization status of each memory
byte, with the help of the kernel memory allocator. Kmemcheck
cannot detect reading of uninitialized data from the stack. Secure

deallocation [17] (SD), on the other hand, periodically zeros out the
kernel stack to reduce information leaks from uninitialized stack
variables, but does not address dynamically-allocated objects. Nei-
ther of these two tools can guarantee that they find and prevent all
information disclosure bugs, although they make the bugs more
difficult to exploit.

3.2 Compile-time tools
In principle, code analysis tools can pinpoint vulnerabilities so

that they can be fixed once and for all by developers, and ideally
prove the absence of any vulnerabilities in code. Many such tools
have been used to find and fix a wide range of security problems
in the Linux kernel [1, 2, 4, 13, 21]. One limitation of most static
analysis tools is the large number of false positives. Thus, since it is
not productive for programmers to filter out these false positives and
fix all real vulnerabilities, almost no static analysis tool can prove
the absence of vulnerabilities of any type in the Linux kernel, and
the tools are largely used for bug-finding. To reduce the number of
false positives, many static analysis tools require programmers to
supply annotations [1, 2].

One specific class of vulnerabilities that seem to be difficult to
detect using static analysis are the semantic vulnerabilities, such as
missing permission check bugs. On the other hand, several tools
have been effective at finding potential null dereference, buffer
overflow, deadlock, and infinite loop bugs [1, 2, 9, 11, 26].

4. OPEN PROBLEMS
The examination in the previous section suggests there are several

unaddressed challenges facing researchers in dealing with vulnera-
bilities found in the Linux kernel. First, vulnerabilities are present
in almost all parts of the kernel, including device drivers, kernel
modules, and core kernel code. Solutions that focus on only one part
of the kernel, such as kernel modules, are insufficient by themselves.

Second, many runtime tools focus on preventing a certain class
of exploits, as opposed to preventing any exploit of a certain class
of vulnerabilities. The difference is important, since an adversary
that knows of a given vulnerability is free to choose any exploit that
will work on the target system. Thus, defense mechanisms that still
allow a vulnerability to be exploited in some way are of limited use.

Third, many vulnerabilities continue to stem from the fact that
Linux is written in an unsafe language. While it might be a good
idea to write any new kernel in a type-safe language, we must
contend with C, if we want to handle existing Linux code. Similarly,
alternative kernel designs, such as HiStar [27] or Minix [16], can
significantly reduce the amount of trusted code in the kernel, but
these techniques cannot be incrementally applied to Linux. Systems
like Overshadow [7] and Proxos [25] can also avoid trusting the
entire Linux kernel, for applications that require only a subset of
the kernel’s functionality, but this approach has not yet been shown
to work for all applications. How to incrementally provide type
safety and module isolation for large monolithic kernels written in
an unsafe language remains an open topic.

Although these challenges are unaddressed, others have identified
them too. The rest of this section expands on several challenges that
have received less attention.

4.1 Semantic vulnerabilities
Figure 3 shows that none of previous research addresses “missing

permission checks” vulnerabilities. Unfortunately, these vulnera-
bilities can easily be exploited to gain privilege. Figure 4 shows
a patch to CVE-2010-2071, in which the btrfs module forgets
to check the owner of a file when setting file permissions. Thus,
an adversary can gain write access to any file in the volume. Fur-

Vulnerability BGI SecVisor SUD Raksha kmemcheck SD

Missing pointer check 0 0 3 0 0 0
Missing permission check 0 0 1 0 0 0
Buffer overflow 1 0 1 0 0 0
Integer overflow (D) 0 0 1 0 0 0
Integer overflow (I) 0 0 1 0 0 0
Integer overflow (E) 0 0 3 0 0 0
Uninitialized data 0 0 13 0 1 23
Null dereference 11 0 3 0 0 0
Divide by zero 2 0 0 0 0 0
Infinite loop 0 0 1 0 0 0
Data race / deadlock 0 0 1 0 0 0
Memory mismanagement 1 0 1 0 0 0
Miscellaneous 0 0 0 0 0 0

Figure 3: Number of vulnerabilities that existing runtime tools can prevent. For “integer overflow”, “D” means that the vulnerability
can only lead to DoS attack, “I” means that the vulnerability can only lead to information disclosure, and “E” means that the
vulnerability can lead to root privilege escalation, thus any other type of attacks. If a tool can prevent “integer overflow (E)”, then
for the same vulnerability, it is not credited for “integer overflow (I)” or “integer overflow (D)”.

1 --- a/fs/btrfs/acl.c
2 +++ b/fs/btrfs/acl.c
3 @@ -160,3 +160,6 @@ static int btrfs_xattr_acl_set(...
4 int ret;
5 struct posix_acl *acl = NULL;
6

7 + if (!is_owner_or_cap(dentry->d_inode))
8 + return -EPERM;
9 +

Figure 4: Patch for CVE-2010-2071 in btrfs.

thermore, the adversary can obtain root access by replacing legal
setuid executables with malicious ones. Ironically, an identical
vulnerability (CVE-2010-1641) was discovered in the gfs2 module
15 days earlier. Similar vulnerabilities exist in other file systems
as well. For example, in CVE-2010-2066, the ext4 module allows
local users to overwrite an append-only file. An attacker can exploit
this vulnerability to tamper with audit logs.

In another two semantic vulnerabilities, the kernel permissively
exports a sensitive interface to all users, allowing unprivileged users
to alter crucial system state. In CVE-2010-1146, for example, the
reiserfs driver does not prevent the .reiserfs_priv directory
from being opened, which contains meta-data that should be private
to the file system. As a result, unprivileged users could tamper with
the exposed meta-data and directly modify ACLs belonging to other
users, including root, or set the CAP_SETUID extended attribute on
a malicious executable to gain privilege.

Another example is CVE-2010-4347, in which the acpi module
creates a custom_method file in debugfs with writable permission
for all users. The file exports an interface that allows users to
define custom methods for the ACPI module to call. Therefore, an
unprivileged user could modify the kernel’s control flow by writing
a specially-crafted value to this file, and gain root privileges.

These vulnerabilities are difficult to check for and defend against,
because the security policies are not explicitly stated, and it is usu-
ally the programmer’s responsibility to enforce them by manually
inserting the right checks in each code path. In contrast, the policy
for enforcing memory or type safety can often be inferred from the
code in a semi-automated fashion.

One possible approach for dealing with these vulnerabilities is
based on the observation that there are common interfaces where
high-level policies can be checked, or where the policies can be
inferred from. For example, in Linux, many file systems implement
the VFS interface, and each file system internally is supposed to
perform the same set of permission checks (e.g., the permissions

on a file can be changed only by the file’s owner or by root). A
kernel developer could annotate the VFS interface with these high-
level policies, and use some type of analysis to check whether every
implementing file system performs sufficient checks. Alternatively,
an automated analysis could try to infer the set of policy checks
needed, by comparing many file system implementations to each
other, similar to the idea of detecting bugs as deviant behavior [14].

Another possible approach to dealing with these bugs may be
to reason about privilege separation in terms of user or application
principals, instead of kernel module principals (as most current
kernel isolation systems have done [5, 6, 15, 16]). While user
boundaries may not correspond to clean boundaries in kernel code,
if one can enforce isolation in terms of user privileges, one may not
need to reason about vulnerable modules, as in Loki [28].

4.2 Denial-of-service vulnerabilities
Few previous pieces of work address vulnerabilities that lead to

only denial-of-service (DoS) attacks, possibly because DoS attacks
do not harm the data integrity of the kernel. However, as pointed
out by an earlier study [3], any kernel weakness can turn out to
be a security threat. For example, the econet privilege escalation
exploit involved three separate vulnerabilities that were not orig-
inally considered to be security-critical [12], including one DoS
vulnerability.

Dealing with denial-of-service vulnerabilities in kernel code is
difficult, because it requires not only detecting and preventing an
adversary from crashing the kernel, but also requires continuing
the kernel’s execution to properly perform operations on behalf of
other users. This can be particularly difficult if the denial-of-service
vulnerability is triggered while a kernel thread is holding locks, or
otherwise cannot be terminated cleanly without violating kernel
invariants. One approach to ensuring the kernel continues to operate
despite denial-of-service vulnerabilities is to use shadow drivers [24]
or recovery domains [18], but no general-purpose techniques for
ensuring availability despite these vulnerabilities are available.

5. SUMMARY
This paper’s study of Linux kernel vulnerabilities suggests that

we have a long way to go in making existing OS kernels secure.
First, from January 2010 to March 2011, 141 vulnerabilities in the
Linux kernel were discovered, many of which have serious exploits.
Second, state-of-the-art defense techniques address only a small
subset of them. Third, some of the unaddressed vulnerabilities, such
as semantic bugs, pose challenging research problems.

Acknowledgments
We thank the anonymous reviewers for their feedback. This research
was partially supported by the DARPA Clean-slate design of Re-
silient, Adaptive, Secure Hosts (CRASH) program under contract
#N66001-10-2-4089. The opinions in this paper don’t necessarily
represent DARPA or official US policy.

References
[1] Smatch. http://smatch.sourceforge.net/.
[2] Sparse. http://sparse.wiki.kernel.org/.
[3] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage,

G. Thomas, and A. Kaseorg. Security impact ratings con-
sidered harmful. In Proceedings of the 12th Workshop on Hot
Topics in Operating Systems, Monte Verita, Switzerland, May
2009.

[4] K. Ashcraft and D. Engler. Using programmer-written com-
piler extensions to catch security holes. In Proceedings of the
23rd IEEE Symposium on Security and Privacy, Berkeley, CA,
May 2002.

[5] S. Boyd-Wickizer and N. Zeldovich. Tolerating malicious
device drivers in Linux. In Proceedings of the 2010 USENIX
Annual Technical Conference, Boston, MA, June 2010.

[6] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,
A. Donnelly, P. Barham, and R. Black. Fast byte-granularity
software fault isolation. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, Big Sky, MT,
October 2009.

[7] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports. Over-
shadow: A virtualization-based approach to retrofitting pro-
tection in commodity operating systems. In Proceedings of
the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, Seattle,
WA, March 2008.

[8] S. Christey and R. A. Martin. Vulnerability type distributions
in CVE. http://cve.mitre.org/docs/vuln-trends/
vuln-trends.pdf, 2007.

[9] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs
for systems code. In Proceedings of the 2006 ACM Confer-
ence on Programming Language Design and Implementation,
Ottawa, Canada, June 2006.

[10] M. Dalton, H. Kannan, and C. Kozyrakis. Real-world buffer
overflow protection for userspace and kernelspace. In Proceed-
ings of the 19th Usenix Security Symposium, San Jose, CA,
July 2008.

[11] I. Dillig, T. Dillig, and A. Aiken. Static error detection us-
ing semantic inconsistency inference. In Proceedings of the
2007 ACM Conference on Programming Language Design and
Implementation, San Diego, CA, June 2007.

[12] N. Elhage. CVE-2010-4258: Turning denial-of-service into
privilege escalation. http://blog.nelhage.com/2010/
12/cve-2010-4258-from-dos-to-privesc/, 2010.

[13] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler ex-
tensions. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation, San Diego, CA, October
2000.

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring errors in

systems code. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles, Banff, Canada, October 2001.

[15] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces.
In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, Seattle, WA, November 2006.

[16] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanen-
baum. MINIX 3: A highly reliable, self-repairing operating
system. ACM SIGOPS Operating Systems Review, 40(3):80–
89, 2006.

[17] C. Jim, P. Ben, G. Tal, and R. Mendel. Shredding your garbage:
reducing data lifetime through secure deallocation. In Pro-
ceedings of the 14th Usenix Security Symposium, Baltimore,
MD, August 2005.

[18] A. Lenharth, V. S. Adve, and S. T. King. Recovery domains:
an organizing principle for recoverable operating systems. In
Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, Washington, DC, March 2009.

[19] S. A. Mokhov, M.-A. Laverdiere, and D. Benredjem. Taxon-
omy of Linux kernel vulnerability solutions. Innovative Tech-
niques in Instruction Technology, E-learning, E-assessment,
and Education, 2008.

[20] V. Nossum. Getting started with kmemcheck.
http://www.mjmwired.net/kernel/Documentation/
kmemcheck.txt.

[21] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and
G. Muller. Faults in Linux: Ten years later. In Proceedings
of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems, Newport
Beach, CA, March 2011.

[22] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles, Stevenson, WA, October
2007.

[23] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Pro-
ceedings of the 14th ACM Conference on Computer and Com-
munications Security, Alexandria, VA, October–November
2007.

[24] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering device drivers. In Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation, San
Francisco, CA, December 2004.

[25] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making
trust between applications and operating systems configurable.
In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, Seattle, WA, November 2006.

[26] Y. Xie and A. Aiken. Scalable error detection using Boolean
satisfiability. In Proceedings of the 32rd ACM Symposium
on Principles of Programming Languages, Long Beach, CA,
January 2005.

[27] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proceedings of
the 7th Symposium on Operating Systems Design and Imple-
mentation, Seattle, WA, November 2006.

[28] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis. Hard-
ware enforcement of application security policies. In Proceed-
ings of the 8th Symposium on Operating Systems Design and
Implementation, San Diego, CA, December 2008.

http://smatch.sourceforge.net/
http://sparse.wiki.kernel.org/
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://blog.nelhage.com/2010/12/cve-2010-4258-from-dos-to-privesc/
http://blog.nelhage.com/2010/12/cve-2010-4258-from-dos-to-privesc/
http://www.mjmwired.net/kernel/Documentation/kmemcheck.txt
http://www.mjmwired.net/kernel/Documentation/kmemcheck.txt

	Introduction
	Linux kernel vulnerabilities
	State-of-the-art prevention
	Runtime tools
	Compile-time tools

	Open problems
	Semantic vulnerabilities
	Denial-of-service vulnerabilities

	Summary

