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Center for Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, 6Max Planck Institute for
Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany and 7Santa Fe Institute, 1399 Hyde
Park Road. Santa Fe, NM 87501, USA

Received October 3, 2011; Revised December 7, 2011; Accepted December 28, 2011

ABSTRACT

Thermodynamic folding algorithms and structure
probing experiments are commonly used to deter-
mine the secondary structure of RNAs. Here we
propose a formal framework to reconcile informa-
tion from both prediction algorithms and probing
experiments. The thermodynamic energy param-
eters are adjusted using ‘pseudo-energies’ to
minimize the discrepancy between prediction and
experiment. Our framework differs from related
approaches that used pseudo-energies in several
key aspects. (i) The energy model is only changed
when necessary and no adjustments are made if
prediction and experiment are consistent. (ii)
Pseudo-energies remain biophysically interpretable
and hold positional information where experiment
and model disagree. (iii) The whole thermodynamic
ensemble of structures is considered thus allowing
to reconstruct mixtures of suboptimal structures
from seemingly contradicting data. (iv) The noise
of the energy model and the experimental data is
explicitly modeled leading to an intuitive weighting
factor through which the problem can be seen as
folding with ‘soft’ constraints of different strength.
We present an efficient algorithm to iteratively cal-
culate pseudo-energies within this framework and
demonstrate how this approach can be used in
combination with SHAPE chemical probing data to
improve secondary structure prediction. We further
demonstrate that the pseudo-energies correlate

with biophysical effects that are known to affect
RNA folding such as chemical nucleotide
modifications and protein binding.

INTRODUCTION

RNAs fulfill a large number of diverse biological functions
in the cell (1). This wide functional spectrum of RNAs is
made possible by the structural diversity of these highly
flexible molecules. Studying the structure of a novel RNA
thus is often the first step toward elucidating a possible
biological function. Resolving the complete tertiary struc-
ture is a complex undertaking, however, so it is usually the
secondary structure that is analyzed first. In a typical
probing experiment, the RNA is enzymatically digested
or chemically modified in a manner that is specific for
structural context (2,3). These experiments typically
reveal which nucleotides are contained within a double-
stranded helix and which nucleotides form unpaired loops.
In addition, solvent accessibility or local flexibility can be
assessed, see Ref. (4) for a recent review. Structure probing
experiments have been routinely used for many years.
More recently, high-throughput methods have been
introduced (5–8) and next-generation sequencing tech-
niques have made it possible to perform probing experi-
ments even on a genome-wide scale (9,10).
All these experiments, however, only report partial

information on the structure and even a perfect experi-
ment does not reveal the actual base pairing patterns
(11). Therefore, the results of probing experiments
need to be combined with computational predictions.
Most commonly, programs such as mfold (12),
RNAstructure (13) or RNAfold (14) are employed
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that predict secondary structures by minimizing free
energy. They are based on an empirical energy model
(15), which is based on a very large set of thermodynamic
measurements on small RNA oligonucleotides. In the
simplest case, the predicted structure is manually
adjusted to fit the measured constraints. To automatize
this process, prediction programs allow the user to
restrict the search space to only consider structures
compatible with certain constraints observed in the
probing data.
An alternative method is to include information from

experiments as ‘pseudo-energies’ in the energy model. This
approach was introduced by Matthews et al. (16,17) and is
implemented in the program RNAstructure (13). On
chemical probing data generated by selective 20-hydroxyl
acylation analyzed by primer extension (SHAPE) (5), it
showed nearly perfect results on Escherichia coli 16s
rRNA (17) and it was successfully used to predict struc-
ture models for the complete HIV genome (18).
In this article, we expand on the idea of incorporating

experimental data as pseudo-energies into energy-based
folding algorithms. Instead of adding ad hoc modifications
to the minimum free energy calculation, we propose a
formal method to reconcile experimental information
with the theoretical prediction in the partition function
over all possible structures. The partition function
describes the entire ensemble of secondary structures in
thermodynamic equilibrium and allows to calculate an
intuitive matrix of base pairing probabilities (19).
Our approach is based on the assumption that both

experimental measurements and the thermodynamic
energy parameters are imperfect, noisy approximations
of the physical reality. In this setting, it becomes natural
to ask for a perturbation vector that minimizes a weighted
sum of perturbation energies and discrepancies between
measured and predicted base pairing probabilities. In the
simplest case, this can be written as a least square approxi-
mation problem of the form

Fð~�Þ ¼
X
�

�2�
�2�
þ
Xn
i¼1

1

�2i
pið~�Þ � qi
� �2

! min ð1Þ

Here, ~� is the perturbation vector and e� the perturbation
energy added for some structural element�. pið~�Þ and qi
are the predicted and measured base pairing probabilities
for position i, respectively. The estimated variances �2� and
�2i of energy parameters and measurements, respectively,
serve as weighting factors. This optimization problem
can be viewed as energy directed folding with soft con-
straints replacing the hard combinatorial constraints
used before.
We show here (i) that the pseudo-energies ~� can be ef-

ficiently calculated by an iterative algorithm, (ii) that the
approach combined with SHAPE data leads to improved
secondary structure predictions, (iii) that the algorithm
also can successfully handle cases of RNAs with several
alternative structures and (iv) that the pseudo-energies
have an interpretable meaning and indicate positions
where experimental data and the thermodynamic energy
model disagree.

MATERIALS AND METHODS

Minimization of the objective function using gradient
descent

The objective function in Equation (1) and the motivation
behind it is explained in more detail under ‘Rationale’ in
the ‘Results’ section. Here, we show how to efficiently find
the minimum of this function.

The minimum of the objective function, Equation (1),
satisfies qF/qe�=0 for all parameters, i.e.

�� ¼ ��
2
�

Xn
i¼1

1

�2i
pið~�Þ � qi
� � @pi

@��
ð~�Þ ð2Þ

Numerically, this can be solved by iteratively minimizing
F. We use a gradient descent iteration of the form

�0� ¼ �� � a
@F

@��

¼ 1�
2at
�2�

 !
�� � 2a

Xn
i¼1

1

�2i
pið~�Þ � qi
� � @pi

@��
ð~�Þ

ð3Þ

with a step size a< 0. We chose this approach because
it only depends on the first-order derivatives of pi
with respect to e�. In the following paragraphs, we show
that the required partial derivatives @pi=@��j~� can
be obtained analytically from constrained partition
functions.

Analytic calculation of the gradient

Since e� denotes the energy contribution that is added to
all secondary structures that contain a particular ‘struc-
tural feature’�, we can subdivide the structure ensemble
into those structures that ‘have�’, and those that do not.
This is possible for any parameter of the standard en-
ergy model and for any additional position-dependent
term. Let Z[i](e�) be the partition function over all
states with position i unpaired in the perturbed energy
model, whereas Z[i](0) is the corresponding partition
function in the reference state. Similarly, Z[�](.) and
Z[i,�](.) denote the partition functions over all struc-
tures that ‘have�’, and of those that both ‘have�’
and leave i unpaired, respectively, for each of the two
energy models. The crucial observation is that the follow-
ing identities hold for these constrained partition
functions:

Z½i�ð��Þ ¼ Z½i�ð0Þ � Z½i; ��ð0Þ þ Z½i; ��ð��Þ

Zð��Þ ¼ Zð0Þ � Z½��ð0Þ þ Z½��ð��Þ
ð4Þ

By construction, furthermore, we have

Z½��ð��Þ ¼ Z½��ð0Þ expð���=RTÞ

Z½i; ��ð��Þ ¼ Z½i; ��ð0Þ expð���=RTÞ
ð5Þ

Since pi(.)=Z[i](.)/Z(.), we can express the partial de-
rivatives in terms of restricted partition functions. We only
need to compute the derivates at the reference energy
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model (which we take to be the energy model in each step
of the gradient iteration).

@pi
@��

����
��¼0

¼
@

@��

Z½i�ð0Þ � Z½i; ��ð0Þ 1� e���=RT
� �

Zð0Þ � Z½��ð0Þ 1� e���=RTð Þ

����
��¼0

¼
1

RT

Z½i�ð0Þ

Zð0Þ

Z½��ð0Þ

Zð0Þ
�
Z½i; ��ð0Þ

Z½i�ð0Þ

Z½i�ð0Þ

Zð0Þ

� �

¼
1

RT
pið0Þ p½��ð0Þ � p½�ji�ð0Þ½ �

ð6Þ

The probabilities of the structural patterns, p[�], can be
obtained by McCaskill’s algorithm (19) provided� is a
base pair (k,l), an unpaired position j, or another feature
that appears implicitly in the dynamic programming
recursions.

Implementation for position-specific perturbations

Here we consider the simplest case of perturbations that
add positive or negative energy contributions to single
positions. In that case, we can replace the generic dimen-
sion� with an additional index 1� j� n, and the gradient
takes the form

@pi
@�j

����
�j¼0

¼
1

RT
pið0Þ pjð0Þ � p½jji�ð0Þ

� �
ð7Þ

We have extended the implementation of McCaskill’s
algorithm in the Vienna RNA package (version 2.0 beta)
to calculate the partition function of a sequence with add-
itional position-specific energy contributions. More pre-
cisely, during the energy evaluation step that calculates
energies for different structural elements such as stacked
pairs, hairpins, interior loops and multiloops, we add ej if
position j is unpaired for the particular structural element.
By adding negative (favorable) perturbation energies, we
enforce a position to be unpaired, while adding positive
perturbation energies will lead to a position be more likely
to be paired. pi can then directly be calculated from the
partition function under the perturbed energy model.

In principle, also the term p[jji] can be easily calculated
directly from the partition function. The conditional prob-
ability that j is unpaired given that i is unpaired as well can
be obtained by constraining the dynamic programming
recursion to structures in which i is unpaired. However,
the partition function algorithm scales O(n3) in CPU time
with length n. Evaluating all n conditional probabilities
renders the whole algorithm requiring O(n4). This is too
expensive in terms of computational resource for practical
applications, however.

To overcome this problem, we estimate the term p[jji]
by sampling structures from the thermodynamic ensemble.
We use stochastic backtracking (20) to randomly generate
structures proportional to their Boltzmann weight and
empirically determine p[jji] from the random structures.

To get actual structure models from the base pair prob-
ability matrix, we used the maximum-expected accuracy
approach (21,22) with a g-parameter of 1.0.

Missing data, i.e. positions i for which no qi is available,
are handled transparently by setting �=1 resulting in

position i being effectively ignored in the evaluation of
the objective function [Equation (1)].

Analysis of SHAPE data

We used SHAPE reactivities for 23S and 16S rRNAs as
reported by Deigan et al. (17). The 23S and 16S rRNAs
were split in 6 and 4 domains, respectively, of a maximum
length of 700 nt as described before (21).We did not use do-
main 4 of the 16S rRNA because it was poorly covered by
the SHAPE data andmainly consisted ofmissing data. As a
reference structure, we used the same phylogenetically
derived structure as in Ref. (17). Accuracy was measured
as Sensitivity= (number of correctly predicted base pairs)/
(total number of known base pairs) and the positive predict-
ive value PPV=(number of correctly predicted base pairs)/
(total number of predicted base pairs). As a combined
measure of sensitivity and positive predictive value, we
also used the Mathews correlation coefficient as described
previously (23). Deigan et al. found 16.5 and 13.6% of the
positions in the 16S and 23S rRNA, respectively, where the
in vitro folded RNA as probed by the SHAPE data is dif-
ferent from the phylogenetic structure (corresponding the in
vivo proteinized state). Deigan et al. removed these sites in
their benchmark, while we kept it for the benchmarks
reported here. The overall accuracies achieved in our bench-
marks are therefore lower as reported by Deigan et al.
To use the SHAPE data with our algorithm, we

discretized the reactivities by classifying them in paired
and unpaired positions using a cutoff of 0.25 [see also
Ref. (11)]. This cutoff corresponds to an error rate of
about 25% of positions being incorrectly classified. We
also tried a two cutoff approach and classified all positions
with SHAPE reactivities <0.1 and >1.5 as paired and
unpaired, respectively. This lowers the error rate to
about 10% at the expense of a lower coverage of around
50%, i.e. more missing data. We did not see any signifi-
cant advantage using this approach for any of the methods
(data not shown). Furthermore, we also tried more
sophisticated machine learning methods to classify bases
as ‘paired’ and ‘unpaired’ according to their SHAPE
signal. Essentially, we face a machine learning problem
to parse the continuous SHAPE signal as shown in
Supplementary Figure S1E into discrete states. In prin-
ciple, this enables us to consider also the context of a
base during classification. However, also here we did not
find a significant improvement over the simple threshold-
ing approach.
RNAstructure (version 5.3) was run with default

values and with parameters of m=2.6 and b=�0.8
and these were found to be optimal on this specific data
set (17). The ‘Sample+Select’ strategy described in
Ref. (11) was re-implemented using RNAfold, 105 struc-
tures were sampled and the structure with the lowest
Manhattan distance to the discretized SHAPE vector
was used. The results for hard constraints were calculated
with RNAfold and the option -C.

Availability

All source code accompanying this article can be down-
loaded here: https://github.com/wash/probing.
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RESULTS

Rationale

Similar to previous approaches (16,17), our algorithm
modifies the folding energy parameters (15), which
are used in RNAfold, mfold and RNAstructure. In
the following, we refer to these standard parameters as
the ‘reference energy model’ and the positive or
negative pseudo-energies that change this model as ‘per-
turbations’. Let ~� be a vector of perturbations of the ref-
erence energy model. In the most generic formulation, we
consider a collection of structural elements whose contri-
bution to the energy model can be perturbed. We use the
index� to refer to one of these degrees of freedom, which
correspond to the coordinates of the vector of perturb-
ation energies ~�. Note that these degrees of freedom
need not be structural elements that correspond to param-
eter of the reference energy model.
Our goal is to find a vector ~� that changes the standard

energy model in the light of the experimental data. Deigan
et al. (17) chose the perturbations proportional to the ex-
perimental signal. More precisely, for each position i they
mapped the SHAPE reactivity R(i)—the experimental
signal for being unpaired (24)—to perturbation energies
using the following relationship a+mln[1+R(i)].
In practice, this strategy gave good results. Theore-

tically, however, this approach is poorly justified; in par-
ticular, there does not seem to be a meaningful biophysical
interpretation of the energy model. Ideally, if experiment
and the energy model agree perfectly, ~� should vanish. By
setting ~� proportional to the experimental signal, however,
the exact opposite is the case. Positions that show the
highest signal in the experiment and already are predicted
with high probability are assigned the highest perturbation
energies.
Here, we regard both the experimental data and the

structure prediction based on the energy model as a
noisy approximation to the physical ground truth.
Therefore, our goal is to find a perturbation vector that
minimizes the discrepancy between the experimental meas-
urement and computational prediction. In particular, we
seek a perturbation vector ~� that modifies the energy
model only when necessary.
This is achieved by minimizing the total error of both

energy model and measurements. We assume that the ex-
perimental data is given in form of a probabilistic signal as
a vector qi of the probabilities that position i is unpaired
and an associated variance �2i . Likewise, we assume a
variance �2� for the uncertainty of the parameters of the
standard energy model. Assuming, furthermore, that indi-
vidual energy parameters as well as the measurements for
each sequence position are independent, we obtain the
error function

Fð~�Þ ¼
X
�

�2�
�2�
þ
Xn
i¼1

1

�2i
pið~�Þ � qi
� �2

Here, pið~�Þ is the predicted probability that nucleotide i is
unpaired in the energy model perturbed by ~�. The choice
of the quadratic error function Fð~�Þ is the most natural one
from a mathematical point of view since all its terms have

a natural interpretion as variances. The minimization
problem thus evenly distributes the residual deviations
between energy parameter set and measured data depend-
ing on their intrinsic variances �2i and �2�.

In principle, both the variances �2i and �2� can be
estimated from probing experiments and the experiments
underlying the standard energy model, respectively.
However, in this article we will not use explicit estimates
but rather treat them as parameters that control whether
more weight is given on the experimental data or predic-
tion of the energy model. If �� � the algorithm will find a
solution closest to the experimental information, while in
the other case the experimental information will be
ignored and the solution will be essentially the same as
the prediction of the unperturbed energy model. Note
that the solution ~�min of the optimization problem
depends only on the ratio �/�, i.e. on the relative
accuracy of the energy model and measured probing data.

Iterative adaption of the energy parameters

So far we did not specify which parameters� of the energy
model are actually considered to be subject of perturb-
ations. Since typical experiments only report data on
whether a base is likely to be paired or unpaired, it is
not useful to consider base pairs or any higher order struc-
tural elements. We therefore concentrate on the simplest
case and consider only position-specific perturbations
ej (‘Materials and Methods’ section).

We have implemented an efficient strategy to find the
minimum of the objective function in this case (‘Materials
and Methods’ section). It is based on a gradient descent
algorithm. The gradient for the objective function can be
calculated analytically (see ‘Materials and Methods’
section).

We first tested the algorithm on an artificial sequence
that can fold in two alternative structures. The one-stem
structure corresponding to the ground state of the unper-
turbed energy model, ~� ¼ 0, is energetically highly favor-
able. The less stable alternative three-stem structure is
used here as the experimentally supported structure that
our algorithm is supposed to recover. We considered the
paired/unpaired probability profile of the target structure
as perfect ‘experimental’ data and set qi to 0.0 or 1.0 for
paired and unpaired positions i, respectively. Accordingly,
we chose the associated variance �2 of ~q low and set
�2=0.01 and �2=1.0. This example is a hard test for
our approach: since the two structures have very distinct
pairing profiles, major refolding is required to correct the
energy-based prediction.

We start with ~� ¼ 0. Using the exact solution for the
gradient [Equation (7), ‘Materials and Methods’
section), we observe that the algorithm finds a minimum
after about 150 iterations (Figure 1, upper left diagram).
This minimum is confirmed by the fact that norm of the
gradient (Figure 1, below) converges to zero and is <0.001
after 246 iterations. The corresponding base pairing prob-
ability matrices gradually change from the original
one-stem structure to the alternative three-stem structure.
In the minimum, the structure is completely refolded and
conforms to the desired target structure (Figure 1, right).
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We repeated the minimization calculation starting from
five different random vectors ~�. All five start points lead to
the same minimum confirming that the procedure is
robust and finds consistently the same solution. To
further confirm the validity of the analytically derived
gradient, we repeated the iteration with a numerically
calculated gradient @Fð~�Þ

@�i
¼

Fð~�;�iþdÞ�Fð~�;���dÞ
2d . Setting

d=10�5, we observe that both solutions lead to exactly
the same minimization path (Figure 1).

Efficient solutions for long sequences

The exact analytical solution of the gradient as well as the
numerical approximation scales as O(n4) with the
sequence length n (‘Materials and Methods’ section).
The form of the analytical solution given in Equation (7)
(‘Materials and Methods’ section), however, suggests that
a major speedup can be achieved if the term p[ijj] can be
computed more efficiently. This can be done by random
sampling from the thermodynamic equilibrium since an
accurate estimate is needed only when position j is
unpaired with a noticeable probability, so that fairly

small samples are sufficient. We repeated the minimization
using this approximation. Sampling the gradient from
10 000 random structures leads to the same minimum as
the exact solution. In this particular example, we observe a
slight deviation in the minimization paths after about
eight iterations (Figure 1). In most other examples,
however, we observed the paths to be identical.
Only when the minimization reaches a point close to con-
vergence, the approximated gradient fails to further
improve the objective function. In this example, the
calculation with the sampled gradient stopped after
113 iterations with the norm of the gradient in the
order of 1.
To verify that our algorithm is capable of finding the

solution also for longer sequences in reasonable time we
ran the algorithm on RNAs of different lengths. We used
the same parameters as before and used the known sec-
ondary structure as ‘target’ structure. To test if the
sampled gradient gives the same solution as the exact
gradient, we ran the minimization with the exact
gradient until the norm of the gradient was <0.1 and
with the sampled gradient until the objective function
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Figure 1. Iterative adaption of energy parameters. A sequence is re-folded from a single-stem structure to a three-stem structure. The diagram on the
left shows the minimization path of the objective function [Equation (1)] and the associated norm of the gradient. The algorithm was run using
different versions of the gradient (exact, approximated by numeric differentiation, approximated by sampling) and five different random initializa-
tions of the perturbation vector. The pair probabilities and associated structures are shown for three points in the iteration on the right. The upper
right half of the matrix shows the base pair matrix for the target structure, while the lower left matrix shows the matrix for the current prediction.
The gray and black boxes in the margin, denote the probability of being paired for each position (gray: target structure, black: current prediction).
The area of the boxes is proportional to the respective probability. The green/red boxes represent the values of the current perturbation vector
e (normalized between 0 and 1). Red represents a negative energy contribution for an unpaired position, i.e. supports a position to be unpaired.
Green represents a positive energy contribution for an unpaired position, i.e. supports this position to form a base pair.
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could not be improved any more. Using the sampling
approach, the solution was found within seconds for
small RNAs of about 100 nt like tRNAs or the 5S
rRNA and within minutes for longer RNAs of about
300 nt (Table 1). Following previous work (17,21), the
longest sequence tested was 686 nt long. Also for this
length our algorithm using the sampled gradient could
find a solution within an hour. In contrast, the exact
solution took longer than 6 days. The objective function
was minimized by more than 95% in all cases. Despite the
extreme differences in running time, the sampling
approach led to essentially the same rate of minimization
as the exact approach.

Improved structure models using SHAPE probing data

We next demonstrate that our algorithm in the course of
minimizing the objective function actually optimizes the
secondary structure prediction. Following Deigan et al.
(17), we used E. coli 23S and 16S rRNA to benchmark
the structure models obtained by our algorithm.
First, we considered the limiting case of perfect data,

i.e. we used the paired/unpaired profile of the reference
structures (‘Materials and Methods’ section) as input. In
that case, the new iterative ‘soft constraint’ algorithm
should give the same results as the ‘hard’ combinatorial
constraints that can be applied to classical minimum free
energy folding. We ran our algorithm with different com-
binations of �/� and compared the results to RNAfold
without constraints and with hard constraints
(Figure 2A). Combinations �� � essentially ignore the
external data resulting in similar predictions as standard
RNAfold. With increasing weight on the external data
(i.e. �� �), the accuracy increases and finally converges
to the same level of RNAfold with hard constraints. This
level represents the theoretical accuracy that can be
achieved by the combination of thermodynamic folding
with probing data.
We next used SHAPE data (17) to test our algorithm on

real probing data. The SHAPE signal measures local nu-
cleotide flexibility. The signal is generally higher in
unpaired regions than in paired regions (Supplementary
Figure S1A–C). It is important to note, however, that
there is no simple relationship between nucleotide flexibil-
ity and base pair probabilities and there are systematic
differences between these two properties beyond statistical
noise (Supplementary Figure S1D and E). For example,

SHAPE signals have a typical peak structure with nucleo-
tides in the middle of a loop being usually the most
reactive. However, the probability of these nucleotides to
be unpaired in the thermodynamic ensemble has generally
not the same peak shape (Supplementary Figure S1E).
We have tried various ways to map the SHAPE signal
to the probability vector qi. However, we found that con-
verting the SHAPE signal into a discrete vector with
qi= f1.0, 0.0} using a simple thresholding approach
(‘Materials and Methods’ section) gave the best results.

Again, we ran our algorithm with varying values of �/�
(Figure 2A). We observed an improvement in prediction
accuracy over the standard RNAfold prediction with
increasing weight on the SHAPE data. However, at
around �/�=0.5 the improvement peaks for both the
23S and 16S rRNA, and due to the inherent noise in the
SHAPE experiment, the accuracy drops again when more
weight is given on the experimental data.

We also run RNAfold with hard constraints on the same
data. Here, the accuracy does not improve and is generally
worse than RNAfold without probing data. In contrast to
the soft constraint algorithm, a small number of inaccurate
constraints introduced by the noise in the data can almost
completely destroy the prediction in this case.

We further compared to two other methods that were
used in combination with SHAPE data before. We ran
minimum free energy prediction augmented with pseudo
energies as described in Deigan et al. (RNAstructure +
SHAPE) (17). We used the same parameters m and b
that were found to be optimal on exactly the same data
by Deigan et al. In addition, we also implemented the
‘Sample and Select’ approach described in Quarrier et al.
(11). This strategy samples a large number of random
structure from the ensemble and chooses a structure
with the minimum distance to the probing data under a
simple distance metric (‘Materials and Methods’ section).
Figure 2B summarizes the results for all methods averaged
over all domains of both rRNAs. We found that all
methods except RNAfold with hard constraints lead to
improved predictions over RNAfold (and the equivalent
RNAstructure implementation) of about 15–20%.
Our soft constrained algorithm achieves 0.70 ± 0.08
sensitivity and 0.71±0.07 positive predictive
value, while ‘RNAstructure + SHAPE’ and the ‘Sample
+ Select’ approach achieve 0.70 ± 0.07/0.67±0.09 and
0.67 ± 0.07/0.65 ± 0.08, respectively.

Table 1. Optimization efficiency for RNAs of various length

Exact gradient Sampled gradient

RNA Length No. of iterations Minimization
ratea

Time No. of iterations Minimization
ratea

Time

tRNA 78 15 0.99 23 s 19 0.99 10 s
5s rRNA 117 48 0.98 4min 30 s 57 0.98 49 s
SRP RNA 301 104 0.98 5 h 8min 1 s 127 0.98 12min 57 s
23s rRNA (1)b 514 324 0.95 5 day 9 h 38min 5 s 104 0.94 43min 55 s
23s rRNA (2)b 686 136 0.96 6 day 22min 7 s 69 0.94 53min 25 s

Calculations were performed on six core AMD Opteron CPUs with 800 MHz.
aRate of minimization of the objective function after n iterations: 1�D1/Dn.
bTwo subdomains of the 23s rRNA were used.
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Recovering the ensemble of a bistable structure

So far we only considered the case that the external
pairing signal originates from a single target structure.
However, RNA molecules typically are not present as a
single structure but form an ensemble in which very
different structures can be present simultaneously. This
is of biological significance in particular for riboswitches
(25) and ribozymes (26–28). The signal measured in a
probing experiment, therefore, will in general be a super-
position of responses from structural alternatives. We
tested, therefore, if our algorithm can recover the base
pairing matrix of more complex ensembles of alternative
structures. We used a sequence that served as a starting

point to design an effective thermoswitch (29). The
sequence can fold into two alternative structures
(a single hairpin or a two-stem structure). Folding with
RNAfold at 37

�

C predicts that both alternatives are
roughly equally probable in the ensemble (see base-pairing
matrix labeled as ‘target ensemble’ in Figure 3). At low
temperatures the single hairpin dominates. We asked if we
can induce the mixed ensemble at low temperature by
modifying the energy parameters using a perturbation
vector. This represents a common situation where the ex-
perimental conditions such as temperature or salt concen-
tration are different in the experiment and in the
thermodynamic model.

Figure 2. Structure prediction benchmark. (A) Prediction accuracy on 23S and 16S rRNAs as measured by the Matthews correlation coefficient
(higher is better). Our iterative algorithm was run with different combinations of �/� on ‘perfect data’ based on the reference structure and real
SHAPE data. In comparison, the results of the ‘RNAstructure+SHAPE’ from Deigan et al. (17) and ‘Sample+Select’ from Quarrier et al. (11) are
shown. As additional reference points, results from RNAfold with hard constraints and RNAfold/RNAstructure without any additional data is
shown. (B) Sensitivity and positive predictive values averaged over all domains of the 23S and 16S rRNA are shown. For our algorithm (‘RNAfold
soft constraints’) we used �/�=200 for perfect data and �/�=0.5 for the SHAPE data. The latter corresponds to the optimum found for the 23S
rRNA in (A). It was chosen to ensure a fair comparison to ‘RNAstructure+SHAPE’ which was also run with parameters that were optimized for
the 23S rRNA. Error bars show 95% confidence interval of the average.
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First we tried the method from Deigan et al. (17) and set
ei= b+mln[1+qi]. For qi we used the probability of being
unpaired in the target ensemble at 37

�

C and we set
m=2.75 and b=�0.75, a combination that generally
worked well in our implementation and that is also close
to the published parameters. Using this approach, the
resulting base pair matrix only shows one hairpin struc-
ture and not the expected ensemble of the two alternative
structures (Figure 3A). We also tried to systematically
search for other parameter pairs m and b and also other
combinations failed to recover the correct ensemble. We
next used our iterative minimization algorithm and set the
probability of being unpaired at 37

�

C as our input vector
qi. Running our algorithm at 10

�

C with �2 = 0.01 and �2

= 1.0, we could calculate a perturbation vector that gives
exactly the expected results (Figure 3A).
This simple example highlights a major advantage of

the present approach over both hard constraints and sim-
plistic bonus energies: since we consider the entire
Boltzmann ensemble and model the observable experi-
mental signal as a superposition of contributions from
the individual members of the ensemble, we can also
accommodate seemingly conflicting data that arise from
different subsets of structures in the ensemble. The effect
of our pseudo-energies is merely to distort the relative
frequencies of structures within the ensemble.

Correlation of perturbation energies with nucleotide
modifications

Another advantage of our algorithm is that it calculates
position-specific perturbation energies that are non-zero
only when they are required to reconcile the experimental-
ly observed data with the energy model. The perturbations

thus identify regions along the sequence where the energy
model fails to accurately represent the observed data.

Chemically modified nucleotides are an important
source of inaccuracies because they are not explicitly con-
sidered in the energy model. Such post-transcriptional
modifications are common in several classes of non-coding
RNAs. They are particularly well-studied for tRNAs
(30,31). Generally, tRNAs fold into the functional clover-
leaf structure spontaneously in vitro without being
modified (31). However, there is one well-known excep-
tion to this rule. The human mitochondrial tRNA-Lys was
found to be misfolded in vitro while forming the canonical
cloverleaf in vivo. One particular base methylation is suf-
ficient to induce the correct folding also in vitro (32).

Theoretically, our approach should be able to identify
nucleotides with modifications that influence their pairing
behavior. In such a situation, we expect a large perturb-
ation energy localized at the modified nucleotide and
possibly its pairing partner. We thus analyzed the
behavior of the mito-tRNA-Lys in silico. Folding with
RNAfold clearly does not result in the typical cloverleaf
structure but rather yields an extended stem structure
(Figure 4). This is consistent with the in vitro results,
which also did not show the canonical cloverleaf structure.
We ran our algorithm on the sequence and imposed the
cloverleaf structure as external constraint. The algorithm
finds a minimum after 18 iterations and leads to a refold of
the structure. The resulting perturbation vector shows two
distinct peaks strongly suggesting that the base pair stacks
between positions 8,9 and 61,62 is the most critical for the
molecule to fold into the correct structure. The high peak
that suppresses this base pair stack corresponds to the
methylation that also was shown in vitro to be responsible

A B

Figure 3. Recovering the correct structure ensemble of a bistable structure. A sequence that folds into a one- and two-stem structure with equal
probabilities at 37

�

C, folds predominantly into the one-stem structure at 10
�

C. Using the qi vector of the probability of being unpaired of the
ensemble at 37

�

C, the same bistable ensemble is attempted to be induced at 10
�

C. (A) If the perturbation vector is chosen proportional to the vector
qi (~�i= b+mln[1+qi]), the correct solution cannot be found and the ensemble is still dominated by the one-stem structure. (B) Using the iterative
optimization algorithm, a perturbation vector can be found that recovers the bistable ensemble representing both the one-stem and two-stem structure.
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for the refolding. It is important to note that a simple
comparison of the misfolded prediction of the standard
energy model to the reference structure will not give the
same information (see the difference plot of pi of the initial
prediction and qi of the reference structure in Figure 4).
Since the molecule undergoes re-folding the initial pi of the
misfolded structure is not informative and only an itera-
tive approach will identify the positions critical for the
structure change.

We further asked if there is a general correlation of
nucleotide modifications and perturbations calculated
from our algorithm. To this end, we analyzed 160
tRNAs contained in the MODOMICS database (33) in
exactly the same way as the human mito-tRNA-Lys
example above. The MODOMICS database contains
experimentally determined nucleotide modifications of
various RNAs. Again, we used the canonical cloverleaf
structure as the input of our algorithm. We found that
the absolute value of the perturbations for modified
bases (0.25 kcal/mol) is on average higher for modified
bases than those for unmodified bases (0.17 kcal/mol).
The difference (Figure 5) is significant (Mann–Whitney
test P< 2� 10�16) and implies that discrepancies
between the standard energy model and the canonical
tRNA structure can be partly attributed to nucleotide

modifications. However, we only found few candidates
where a nucleotide modification seems to directly cause
a complete refold. This confirms that the human mito-
chondrial tRNA-Lys described in the literature is an out-
standing example and most other tRNAs fold into the
cloverleaf shape spontaneously without modification (31).

Correlation of pseudo-energies and protein binding

RNA binding proteins are another reason that can cause
differences between experimentally observed and thermo-
dynamically predicted structures (34). The 50-end of the
sodB mRNA in Escherichia coli was found to change the
structure upon binding of Hfq (35). Hfq acts as a chaper-
one and opens a region that forms a intermolecular inter-
action with the small RNA RyhB. We ran our algorithm
applying the structure model proposed for the sodB
mRNA by Geissmann et al. (35). We observed high
energy perturbations in the second half of the analyzed
region (Figure 6), which corresponds exactly to the
region that shows the protein-induced structure change.

DISCUSSION

The combination of thermodynamic folding and structure
probing experiments is currently the standard method to

Figure 4. Perturbation energies correlate with nucleotide modifications in tRNAs. Human mitochondrial tRNA-Lys does not fold into the canonical
cloverleaf using the standard energy model (top) but can be easily re-folded with perturbations calculated by our algorithm (bottom). The highest
peak (favoring single strand formation, red) in the perturbation vector affects the same stack as the methylation of position 9 (red arrow) known to
be necessary and sufficient for the correct folding in vitro. The lowest peak (favoring base pairing, green) corresponds to the new base pairing
partners for the destroyed stack. Critical nucleotides for the re-folding are boxed. The dotplot coloring and annotation scheme is the same as in
Figures 1 and 3.
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establish secondary structure models. Probing experiments
have seen rapid development over the past years leading to
probing data for the complete HIV genome (18) and pilot
studies of transcriptome wide probing in yeast (9) and
mouse (10). Scaling the problem from individual RNAs
to genome-wide data is not only an experimental chal-
lenge. The computational analysis of probing experiments
to automatically generate reliable structure models seems
equally challenging. There are many steps involved and
sophisticated methods to pre-process the data that have
been developed (8,10). Here, we addressed the last step in
this process, the actual folding step.
We proposed a novel way to incorporate experimental

constraints into classical thermodynamic folding. Hard
combinatorial constraints that have been used for long

time only make sense when a model is manually built
for an individual RNA, but does not scale to automatic
structure prediction from noisy data. Therefore, we
introduced a ‘soft constraint’ approach that is based on
pseudo-energies that favor individual positions to be
paired or unpaired. We formulated the problem using
the partition function, which offers the most flexible de-
scription of the thermodynamics properties of an RNA
and allows for example to calculate pair probabilities or
study suboptimal structures (19). Since previous pseudo-
energy approaches cannot be easily applied in that case
(see ‘Rationale’ section), we introduced a formal frame-
work to reconcile external constraints and thermodynamic
predictions. In this framework, pseudo-energies have an
interpretable meaning and the system shows some import-
ant properties such as the simple fact that in the case of
experiment and thermodynamic model being in perfect
agreement no pseudo-energies are applied. However, an
iterative algorithm is required in practice to find the
optimal pseudo-energies. We derived an analytic expres-
sion for the gradient of this optimization problem which
allows for effective minimization.

We tested our method on a SHAPE data set of rRNAs
that has been used for benchmarking previously.
It provides of 	4000 probed positions (17) allowing for
statistically relevant comparisons between methods.
Unfortunately, similarly sized data sets are not available
for other RNAs and it remains to be determined how our
results generalize across various other classes of RNAs.

On the rRNA data set, we found that our soft con-
straint approach with SHAPE data clearly improves struc-
ture prediction compared with normal thermodynamic
folding. Varying the weight of the probing data used for
the prediction identifies a maximum in accuracy, which,
however, stays well below the best value theoretically

Figure 6. Energy perturbations correlate with Hfq induced structure changes in the sodB mRNA. A perturbation vector for the standard energy
model was calculated to fit the experimentally established structure model by Geissmann et al. (35). The dotplot and color annotations are the same
as in Figs. 1, 3 and 4.
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Figure 5. Distribution of perturbation energies for modified and
non-modified nucleotides in tRNAs. The 160 tRNAs with known modi-
fications were forced to fold into the canonical tRNA structure and the
values of the perturbation energies were analyzed. Non-zero perturb-
ation energies indicate a discrepancy between the prediction under the
standard energy model and the canonical structure.

4270 Nucleic Acids Research, 2012, Vol. 40, No. 10

 at M
IT

 L
ibraries on A

ugust 8, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


possible with perfect data (Figure 2). Although our
algorithm performs well in this particular benchmark, it
could not clearly outperform for example the much
simpler method by Deigan et al. An important observa-
tion is that the difference between the observed and the-
oretically possible performance is much larger than the
differences between the various methods. This suggests
that substantial improvements cannot be achieved by
improving the folding algorithm in a generic way but
rather through more efficient noise filtering and
pre-processing of the raw data from the various experi-
mental protocols. Although there is a clear correlation of
SHAPE reactivities and pair probabilities, it is not
straightforward to find a simple model to describe this
relationship. The SHAPE reactivity measuring the local
flexibility of a nucleotide seems to be dependent on the
structural context, i.e. the type of loop (hairpin, bulge) and
the position within the loop. It is also influenced by
tertiary interactions. Systematic studies with different
classes of RNAs will be necessary to understand this
signal and the associated noise in more detail. Here, we
used a simple tresholding method to convert the SHAPE
reactivities into discrete states (paired or unpaired) as
input for our algorithm.

We also studied the behavior of our algorithm on indi-
vidual examples and found that it is capable of recovering
the correct thermodynamic ensemble of a bistable RNA
(29), identify the critical positions of nucleotide modifica-
tions required for correct in vivo folding of human mito-
chondrial tRNA-Lys (32) and the region of Hfq-induced
structure changes in sodB mRNA (35). These applications
demonstrate the usefulness of our ‘soft constrained’
partition function approach beyond pure structure
prediction.

Finally, we have formulated the problem in a generic
form such that the methodology presented in this article is
not limited to classical chemical or enzymatic probing
data for individual positions. A new experimental proced-
ure has been proposed that provides information on
particular base pairs on a short model RNA by extending
classical probing with systematic mutation strategies
(36). Our algorithm can be extended to any structural
element for which the probability can be calculated from
the partition function, including specific base pairs which
would allow one to analyze also the type of experiments
presented by Kladwang et al. (36).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figure S1.
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