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ABSTRACT

Strong experimental and theoretical evidence
shows that transcription factors (TFs) and other
specific DNA-binding proteins find their sites using
a two-mode search: alternating between three-
dimensional (3D) diffusion through the cell and
one-dimensional (1D) sliding along the DNA. We
show that, due to the 1D component of the search
process, the search time of a TF can depend on the
initial position of the TF. We formalize this effect by
discriminating between two types of searches:
global and local. Using analytical calculations and
simulations, we estimate how close a TF and
binding site need to be to make a local search
likely. We then use our model to interpret the wide
range of experimental measurements of this para-
meter. We also show that local and global searches
differ significantly in average search time and the
variability of search time. These results lead to a
number of biological implications, including sugges-
tions of how prokaryotes achieve rapid gene
regulation and the relationship between the search
mechanism and noise in gene expression. Lastly, we
propose a number of experiments to verify the
existence and quantify the extent of spatial effects
on the TF search process in prokaryotes.

INTRODUCTION

Protein–DNA interactions are vitally important for every
cell. Transcription factors (TFs) are proteins that interact
with specific DNA sequences to regulate gene expression.
The targeting of TFs to their sites is a passive process;
therefore, it seems natural to assume that TFs simply
diffuse through the nucleus (in eukaryotes) or cell
(in prokaryotes) until they find their sites.
In the 1970s, this assumption was challenged by the

observation that, in vitro, the prokaryotic TF LacI is able
to find its binding site 100 times faster than expected by

three-dimensional (3D) diffusion in the solvent (1). This
led to the suggestion of a ‘facilitated diffusion’ mechanism
in which TFs alternate between 3D diffusion, jumping,
through the volume of the cell and one-dimensional (1D)
sliding along the DNA to rapidly locate their binding sites
(2–4). This hypothesis was corroborated by several pieces
of evidence—most strikingly several single molecule
studies in which the authors visualized individual proteins
sliding along DNA (5–7). Several groups have also mathe-
matically modeled this process and shown it to be a
plausible way of making the search significantly faster
than 3D diffusion alone (3,4,8–11).

Several aspects of facilitated diffusion, however, remain
puzzling, e.g. the effect of the DNA sequence composition
and conformational transitions in the protein on the rate
of sliding (10,12) and role of the DNA conformation (11).
Here we consider how spatial effects influence the search
process. Specifically, we ask whether and how search time
depends on the initial distance between the protein and the
target site.

The distance dependence of the TF search process has
not been considered before because the rate of a
bimolecular reaction in 3D is distance-independent (13).
Therefore, the time it takes for a protein diffusing in 3D to
find its target does not depend on the initial distance
between the two, as long as this distance is greater than the
size of the target. In contrast, the time of search in two
dimensions (2D) (e.g. on a membrane) or in 1D (e.g. along
DNA or along a filament) is distance-dependent (13).
Therefore, we ask: can the 1D component of facilitated
diffusion make search much faster for a protein that starts
a small distance from its target site?

Here we use simulations and analytical estimates to
demonstrate that TF search time indeed depends on the
initial position of the TF with respect to its binding site.
We show that the trajectories can be naturally separated
into fast local and slow global searches (Figure 1A). We
find that if a TF starts sufficiently close—less than 1000
base pairs (bp) for our model organism Escherichia coli—
to its binding site, a local search is likely.

While studying how spatial effects contribute to the
search process, we observe that upon dissociation from
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DNA, a protein is likely to quickly re-associate near is
dissociation point, thus making a short-range hop, rather
than a long-range jump (Figure 1B). We examine how
these two types of spatial excursions influence the search
process, allowing us to reconcile the widely ranging exper-
imental measurements of the sliding length (6,7,14,15).

Finally, we show that the strong non-specific binding of
TFs to DNA makes global search rather slow, thus
making local search appreciably faster. Moreover, local
searches have significantly smaller variance in the search
time, making them an attractive mechanism to deliver
DNA-binding proteins to their targets quickly and
reliably.

There are a number of biological implications of these
spatial effects. Since transcription and translation are
coupled in bacteria, proteins are produced near the location
of their genes. Therefore, TFs whose genes are co-localized
with their binding sites are likely to use a local search
mechanism. The efficiency of local search provides a
physical justification for the observed co-localization of
TF genes and their binding sites in prokaryotic genomes
(16–18). We also propose a number of experiments to test
the mechanism and its predictions.

MATERIALS AND METHODS

Characterizing hops using simulations

To include hops in the search model, we needed to estimate
the relative frequency of hops and jumps and the
displacement due to hops. Assuming that DNA could be
treated as straight rods on the length scale of a hop, we
considered the problem in a cylindrical geometry and
simplified it further to a 2D geometry (Figure 2A). In the
2D cross-section, DNA strands are represented as absorb-
ing circles. To simulate diffusion in 2D, we discretized the
cross section into a 1 mm2 square lattice with 1 nm spacing
and randomly distributed DNA strands, each with an
absorbing radius of 2 nm. We simulated a TF trajectory as
a random walk on the lattice, starting from its dissociation
from DNA and ending with its association to DNA.
Trajectories that started and ended on the same DNA
strand were called hops; otherwise they were jumps
(Figure 2A). From these trajectories, we calculated the

probability of a hop as a function of the number DNA
strands in the lattice (Figure 2B).
Using the length of the hop trajectories, we also

calculated the displacement along the DNA strand
during a hop for lattices with 1500 strands, the approx-
imate density of DNA in E. coli. We assumed that, in the
3D geometry, two-thirds of the random walk steps were in
the 2D plane and one-third were in the z-direction—along
the DNA. Therefore, given the length of the hop trajectory
in 2D, we drew the number of 1 nm steps along the DNA
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Figure 1. (A) We defined two types of searches: local searches in which the TF finds its binding site quickly using only hops and slides, and global
searches in which the TF finds its binding site using hops, jumps and slides. In this illustration, the black oval is the TF, the gray line is the DNA and
the cyan rectangle is the binding site. (B) In our model, we consider three types of movements that a TF can make with respect to DNA. Slides are
rounds of 1D diffusion where the TF remains in constant contact with the DNA for a length of s bp. Hops and jumps are both types of 3D diffusion.
Hops are short, and the dissociation and association sites on the DNA are close (linearly) and correlated. Jumps are long, and the dissociation and
association sites may be quite distant along the DNA, though close in 3D space. (C) During a search, the TF alternates between 3D and 1D
movements until it finds its site. At the end of a slide, the TF dissociates from the DNA, with probability phop takes a hop and associates to the same
strand of DNA, and with probability pjump=1 – phop jumps to a new strand of DNA.
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Figure 2. (A) DNA exists in a compacted form in vivo, as illustrated on
the top. To model the relative frequency and properties of hops and
jumps, we looked at a 2D cross section of the DNA, imagining the
DNA strands to be approximately straight rods on the short length
scales we are dealing with. We defined hops as excursions that begin
and end on the same strand of DNA in the cross section, shown with
the dotted line, and jumps as excursions that begin and end on different
DNA strands, shown with the dashed line. (B) Using a lattice model of
the cross section, we calculated the probability of hops versus jumps
from simulation, using 106 runs. In E. coli, the approximate number of
DNA strands in the lattice is 1500, which leads to phop=0.83, but phop
is relatively robust to changes in the DNA density. (C) Using the
results of the lattice simulation, we calculated the distribution of the
displacement along the DNA strand that takes place during each hop.
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strand, z, from the negative binomial probability distribu-
tion function

pðzÞ ¼
yþ z� 1

z

� �
2=3ð Þ

y 1=3ð Þ
z;

where y is the number of 1 nm steps in the 2D cross
section. To calculate the net displacement along the DNA
strand resulting from a 1D random walk with z 1 nm steps,
we drew the displacement (in nm) c from the probability
distribution function pðcÞ ¼ ð1=

ffiffiffiffiffiffiffiffi
2�z

p
Þ exp �c2=2z

� �
, the

normal distribution with a mean of 0 and a variance of
z. As can be seen in Figure 2C, the median absolute
displacement resulting from these hops is approximately
1 bp, which is much smaller than persistence length of
DNA, the length scale on which DNA is approximately
straight, 150 bp. This justified the use of a 2D projection of
3D DNA, since, on the length scale of a hop, DNA is
approximately straight. For each DNA density, a total of
106 random walks were simulated, 1000 lattices and 1000
walks per lattice.

Simulating transcription factor searches

To simulate the search process in its entirety, we first
created a DNA strand M bp long and randomly selected
one site to be the binding site. The TF started d bp away
from the binding site. (See Tables 1 and 2 for parameter

definitions and values.) The TF then alternated between 1D
slides and 3D moves (hops or jumps). The slides were
modeled as 1D random walks in which the TF could take a
1 bp step to the left or right or dissociate with a probability
pdissocation ¼ 2=s2, where s is average number of base pairs
scanned during a slide. At the end of each slide, the TF
hopped with probability phop=0.8325 (derived from
lattice simulations with 1500 DNA strands), otherwise it
jumped. Hops were simulated using the empirical distribu-
tion shown in Figure 2C, and jumps were simulated by
picking a random association point. When the TF landed
on the binding site, the search was terminated.

For the simulation-based estimates of plocal, the prob-
ability that the TF finds its binding site using only slides
and hops, but no jumps, we simulated 1000 runs for each
combination of d and s, using values of s corresponding to
KNS

d =10–6, 10–5, 10–4 and 10–3M, and values of d
between 0 and 3000 bp. (See Table 2 for details of the
relationship of KNS

d , the equilibrium dissociation constant
of a TF and piece of non-specific DNA, and s.) For the
simulation-based estimates of search time presented in
Figures 3B and 3C, we used KNS

d =10–5M and 5000 runs
for each d. To find the average search time for n TFs, we
simulated runs in groups of n, took the minimum search
time of the group, and averaged this over all groups.

RESULTS

Why and how is the transcription factor search
distance-dependent?

As Polya purportedly told the drunkard wandering the
streets looking for his home, ‘You can’t miss; just keep
walking, and stay out of 3D!’ In 3D, diffusion is non-
redundant, i.e. the probability of revisiting a particular site
is less than one (13). As a consequence of this property,
the average time to find a particular site does not depend
on initial position. Conversely, in 1D, diffusion is highly
redundant and search time strongly depends on initial
position.

In the TF search process, the search time becomes
independent of initial position as soon as the TF diffuses

Table 1. Model variables and functions

Variable Description

ts[d ] Average search time for a TF looking for its binding site
ts
global Average search time for a TF looking for its binding site

using a global search
ts
local[d ] Average search time for a TF looking for its binding site

using a local search
d Initial distance between a TF and its binding site
n Copy number of a TF per cell
plocal[d ] The probability a TF at distance d finds its site using a

local search

Table 2. Model parameters and estimates

Parameter Description Value Source/Equation

M Length of E. coli K12 DNA multiplied by average copy number 107 bp (46)
phop Probability of a 3D hop 0.8325 Simulation
pjump Probability of a 3D jump 0.1675 1-phop
Kd

NS Dissociation constant of TF from a nonspecific piece of DNA 10�3–10�6M (23)
kon

NS Association rate of TF to a nonspecific piece of DNA;

here b=0.34 nm, the length of a bp of DNA

106M�1 s�1 Diffusion-limited rate=4�D3Db

koff
NS Dissociation rate of TF to a nonspecific piece of DNA 100–103 s�1 Kd

NS
�kon

NS

[D] Concentration of non-specific DNA binding sites in a cell;
here vcell is the cell volume �1 mm3

10�2M M=vcell

�1D Time a TF spends sliding 100–10�3 s�1 1 kNS
off

�3D Time a TF spends hopping and jumping 10�4 s KNS
D =½D�kNS

off

D1D 1D diffusion coefficient of TF 1.85�105 bp2/s Mean from (7)
D3D 3D diffusion coefficient of TF 3 mm2/s (25)

s Number of bp of DNA scanned by a TF during one slide 30–900 bp 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1D=kNS

off

q
se Number of bp scanned in between jumps 70–2000 bp s=

ffiffiffiffiffiffiffiffiffiffiffi
pjump

p
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in 3D. Therefore, in previous models (3,8–11), the
calculated mean search time (ts) is independent of initial
position. The search time is presented in different forms,
but all are approximately equivalent to the average
number of rounds of 1D and 3D diffusion multiplied by
the average time of each round:

ts ¼
M

s
�1D þ �3D½ �: 1

(See Supplementary Data for details.) Here M is the
genome length in bp, s is the average number of bp
scanned in one slide, �1D is the average duration of one
slide, and �3D is the average duration of jump. (See
Tables 1 and 2 for variable and parameter definitions.)
However, if a TF can find its site by sliding along the

DNA and not jumping (i.e. ‘staying out the 3D’), in what
we call a local search, the search time, tlocals , will be
dependent on its initial position (Figure 1A). Otherwise,
assuming that a jump brings the protein to a random
location of the DNA, the search will be global, i.e. the TF
forgets its initial location and must sample the entire DNA
molecule to find its site. In this case, the mean search time,
tglobals , will be given by Equation (1).
Therefore, the mean search time for a TF starting at a

distance d from its binding site is an average of tlocals and
tglobals , weighted by the probability that a TF will find its
site via a local search, plocal, or global search, 1 – plocal:

ts d½ � ¼ plocal d½ �tlocals d½ � þ 1� plocal d½ �ð Þtglobals 3

Logically, plocal should be a monotonically decreasing
function of d. Therefore, if a TF starts close enough to its
binding site, it is likely to find it using a local search.

How close does a transcription factor need to be to its
site to find it with a local search?

In the Supplementary Data, we derive plocal:

plocal½d � ¼ exp �
2d

s

� �
4

This result is quite intuitive; local searches are likely when a
TF starts less than approximately s/2 bp away from its
binding site, half the length covered in a single slide. The
sliding length, s, depends on a TF’s equilibrium dissocia-
tion constant for non-specific DNA, KNS

d , and its 1D diffu-
sion coefficient, D1D, as shown in Table 2. In our model
organism, E. coli, this value ranges from 30 to 900 bp.
The picture changes when we consider the possibility

that some jumps may not be completely randomizing. The
current model of jumps assumes that after a TF
dissociates from the DNA, all sites on DNA are equally
likely to be the association site. However, due to DNA
packing, it is likely that there is an increased probability of

B

C

A

Figure 3. (A) The probability of a local search depends on the effective
sliding length, se, of the TF and the initial distance between the TF and
its binding site d. Here we show the relationship for several values of
KNS

d =10�6, 10�5, 10�4 and 10�3M corresponding to se=70 (circles),
210 (squares), 660 (diamonds), 2100 (triangles) bp, respectively. The
solid line represents the analytical result and the markers represent the
simulated result (ntrials=1000/condition). (B) The average search time
ts depends on several parameters—here we plot it as a function of d for
several values of the copy number n=5, 10 and 20 copies/cell;
KNS

d =10–5M. As n increases, the probability of a local search increases
and the global search time (the plateau) decreases. For small n,
the difference in ts for small and large d is particularly striking.

We simulated 5000 runs at each distance d. (C) The reliability of the
search also depends on d. Here we plot the distribution of ts for d=50,
200 and 2000 bp for a single TF. In the box and whisker plots,
the box has lines at the lower quartile, median and upper quartile
values. The whiskers extend from the box to 1.5 times the interquartile
range, the difference between the lower and upper quartiles. Data
points beyond the whiskers were excluded.
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associating near the dissociation point. Since we do not
have a clear picture of DNA packing in the cell, we make
the assumption that spatial excursions can be of two
extreme types: hops, small dissociations from the DNA in
which the protein re-associates to the same region of DNA
at a distance smaller than or equal to its persistence length
(150 bp), and jumps, excursions in which each site of DNA
is equally likely to be the association point (8,10),
(Figure 1B). As we show below, this assumption allows
us to study spatial effects on the search process, using only
information about the DNA density and its persistence
length to characterize hops. Since we do not have enough
information to completely characterize jumps, we make
the simplest assumption, as others have done (8,10), i.e. all
landing points are equally probable.
To include hops into the search model, we first need to

estimate the probability of hopping, phop, versus jumping,
pjump=1 – phop. Since we assume that hops happen on
length scales shorter than the persistence length of DNA,
we can consider the DNA as cylinders, where hopping
corresponds to a TF returning to the same cylinder it
dissociates from, and jumping corresponds to associating
to a different cylinder (Figure 1C). Since we are picturing
the DNA as cylinders, we can then move to the 2D
problem of return to a circle in the presence of other
absorbing points, as depicted in Figure 2A, and use both
analytical and simulation-based techniques to estimate
phop using the DNA density in E. coli.
To estimate phop analytically, we make a further

approximation by assuming the picture corresponds to
two concentric absorbing circles. The inner circle, with
radius R–, corresponds to the DNA strand from which the
TF dissociates and the outer circle, with radius R+, is an
effective shell of absorption by all the other DNA strands.
The TF is released at some distance r from the center of
the circles. The probability of hopping—returning to the
inner circle—is then phop ¼ ln r=Rþð Þ=ln R�=Rþð Þ (13).
Since this is only an approximation of the true picture,
we use this calculation only to set the bounds for phop by
assuming R+ is minimally the distance between DNA
strands, �0.1 mm, and maximally the radius of the E. coli
cell,�1 mm. We set r=4nm and R�=2nm, which gives
us an estimate of phop between 0.82 and 0.89. We note that
the probability of hopping is still quite high if the TF is
released a few nanometers away from the original DNA
strand, as newly translated TFs would be in prokaryotes,
where transcription and translation are coupled and TFs
are therefore produced in the vicinity of their genes.
Using the same 2D formulation shown in Figure 2A, we

also estimate phop by simulation (Materials and Methods
section). We find that, for a biological density of DNA,
the probability of a TF hopping is large (>0.80). In our
subsequent simulations, we assume phop=0.83, a quantity
corresponding roughly to the density of DNA in the
E. coli nucleoid. In reality, the DNA density is not
uniform over the volume of the nucleoid and phop will vary
accordingly. However, in Figure 2B, we show that the
change in phop is small for large changes in DNA density.
The obtained value of phop allows us to calculate the
number of hops a TF makes before it jumps to a new
region of DNA as nhop ¼ 1=ð1� phopÞ ¼ 1=pjump � 6� 9.

Using simulations we also find, as others have suggested
(3,8), that hops are very short, with a median displacement
of 1 bp (Figure 2C). Therefore, in the following treatment,
we coarse-grain hops into an effective slide. Thus, the
effective sliding time is increased by a factor of
nhop ¼ 1=pjump and the effective sliding distance becomes
se ¼ s=

ffiffiffiffiffiffiffiffiffiffiffi
pjump

p
. This gives us:

plocal ¼ exp �
2d

se

� �
5

In E. coli, se ranges from 70 to 2000 bp. Figure 3A shows
plocal as a function of d for several values of se, as expre-
ssed in Equation (5) and confirmed by simulation. The
correspondence between the simulation, which includes
hops explicitly, and the analytical estimate validates our
proposal to coarse-grains hops into slides. Thus, the
addition of hops simply extends the reach of local
searches.

Why do sliding length measurements vary widely?

A critical parameter in this analysis is sliding length, s.
Our analysis may help to understand the wide range in the
measurements of sliding lengths for different proteins
(Table 3). Some of these differences are certainly due to
differences in the proteins and experimental conditions. In
particular, since the non-specific binding of a protein to
DNA is driven almost entirely by electrostatics, a protein’s
non-specific affinity depends strongly on ion concentration
(19–21). We also propose that, in some experiments, it is
likely that hops are included in the sliding measurement.
In the first two experiments listed in Table 3, the
experimental designs allow for the unambiguous identifi-
cation of hops and slides, and the measured slide lengths
are on the low end of the scale (14,15).

In the second two experiments, the slide lengths were
measured by single-molecule imaging of proteins on DNA
(6,7). Given our modeling results, we propose that hops
are too short to be seen in a single-molecule experiment.
(Halford and Marko also predict this resolution problem
(9), though these measurements were not yet made at
that point.) The median hop displacement is only 1
bp=0.34 nm, while the resolution of the experiments is
10–50 nm. Authors of the single-molecule studies have
taken the independence of the diffusion coefficient on the
ionic strength as an evidence for a lack of hops. Clearly,
such small hops could not significantly alter the diffusion
coefficient. Our results demonstrate that the major
contribution of hops is to duration of sliding rather than

Table 3. Recent sliding-length experiments

Protein Function Sliding
distance

Motion
observed

Reference

EcoRV Restriction enzyme <174 bp Hopping, sliding (14)
BbvCI Restriction enzyme <50 bp Hopping, sliding (15)
hOgg1 Base-excision

DNA-repair
protein

440 bp Sliding (6)

LacI Transcription factor 350–8500 bp Sliding (7)

3574 Nucleic Acids Research, 2008, Vol. 36, No. 11



to its rate. Thus our model and the notion of small hops
help to reconcile these different sliding lengths and
seemingly contradicting results about the existence of
hops.

Are local searches much faster than global searches?

This analysis of local and global searches is not
biologically relevant unless there is a significant difference
between the length of each, tlocals and tglobals . We again use
analytical and simulation based approaches. In the
Supplementary Data, we show

tlocals �
dse

4D1D
6

tglobals �
Mse
4D1D

7

SinceM, the length of the genome, is quite large compared
to values of d for which local search is likely (<1000 bp),
global searches are indeed much longer than local
searches.

Figure 3B shows the simulated and estimated values of
search time, ts, as a function of d for several different
values of n, the copy number of TFs per cell. Here we use
KNS

d ¼ 10�5 M, which gives an effective sliding length of
�700 bp. There is a dramatic difference between ts for
small and large d. When considering n=10, the estimated
copy number of LacI tetramers per E. coli cell (22), the
search time of 10 TFs for d< 700 bp is less than 3.5min,
but is about 15min for d> 2000 bp, a time comparable to
the duplication time in bacteria.

The initial distance between the TF and its target also
affects the reliability of the search. In Figure 3C, we show
box-and-whisker plots for the search time of a single TF at
d=50, 200 and 2000 bp. Not only is the median
dramatically smaller (under 1 s for d=50 and 200 bp
compared to over 100min for d=2000 bp), but the spread
of the distributions of vastly different—the interquartile
range is 0.1 s for d=50bp, 90min for d=200 bp, and
170min for d=2000 bp.

Why are global searches so slow?

As has been pointed out by several authors, independent
of other parameters, the global search time is minimized
when �1D= �3D, i.e. when the TF spends equal amounts
of time sliding along the DNA and diffusing through the
DNA volume (8–10). This balances the acceleration of the
search due to fewer rounds of search with the deceleration
due to longer rounds of search. Since

�3D
�1D

¼
KNS

d

½D�
8

where [D] is the concentration of non-specific DNA in the
cell, the search time is minimized when KNS

d ¼ ½D�. In
E. coli, [D]=10�2M, and the measured values of KNS

d
range between 10�3 and 10�6M (23). Therefore, in vivo,
KNS

d is not optimized to minimize search time and can
result in global search times between 15 and 500min for
n=1 TF (Figure 4).

Several other studies that have examined the facilitated
diffusion mechanism estimated that a TF could find its
binding site much more quickly than our estimates of
tglobals . In their seminal work, Berg, Winter and von Hippel
study in some depth the rate of the TF search process
(3,4,19). In the concluding paper of a three-paper series,
they put together measured and estimated parameters for
the search and arrive at a search time of �2 s for n=10
(4). In this estimate, however, they used values of D1D and
D3D that are about an order of magnitude larger than
recently measured and currently accepted values for in vivo
diffusion (24,25), and KNS

d ¼ 10�3 M, a value at the upper
limit of the range. Using our values, we get a search time
of �100 s for 10 TFs and �15min for 1 TF. Three other
groups use different approaches to arrive at similar search
time expressions. Coppey et al. use realistic parameter
values to estimate a rapid search time for a short piece of
DNA, but since they are considering in vitro experiments
with a restriction enzyme, they do not consider the case
where the DNA length is genome-sized (8). In their
estimates, Halford and Marko assume that D1D and D3D

are equal (and an order of magnitude larger than the
measured in vivo D3D) and that s is optimal, resulting in a
rapid search time (9). Slutsky and Mirny also assume D1D

and D3D are equal and fast and that �1D= �3D, also
resulting in a rapid search time (10).
Since slow global searches are in part due to fairly

strong non-specific binding, this naturally leads to the
question of why strong non-specific binding would exist.
We suggest two possibilities. (i) Strong non-specific
binding is functionally important. For example, this
binding can be important for relief of repression when a
repressor’s affinity for its specific site is reduced by ligand
binding (23,26). In this case, strong non-specific binding
will allow the non-specific sites to out-compete the specific
site. For a treatment of other equilibrium aspects of gene
regulation, see (27,28). (ii) There is a design limitation. If it
is generally true that DNA binding domains use the same

Biological Range

Figure 4. The global search time for a single TF depends non-
monotically on its affinity for non-specific DNA, measured by the
dissociation constant, KNS

d . The search time is minimized when KNS
d is

equal to the concentration of non-specific DNA, [D]=10�2M.
However, the estimated range of KNS

d is 10�6 to 10�3M. See
Supplementary Data, Section 1.4.1, for details.
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set of amino acids to bind both specific and non-specific
sites (20), albeit in different ways, there may be a
limitation on how weak the non-specific binding can be
compared to a strong specific binding.

DISCUSSION

In this article, we examine the distance-dependence of TF
search time and find that (i) the search time is distance-
dependent, with local searches likely at distances less than
sliding length of a TF; (ii) hops lengthen the reach of local
searches by increasing the effective sliding length by a
factor of �3; and (iii) due to a TF’s strong non-specific
affinity for DNA and slow diffusion, global search can be
slow. Therefore, low copy-number TFs will find their sites
markedly faster if they maintain a small initial distance to
their binding sites.

The role of DNA conformation

In our model, we attempt to describe the TF search
process more realistically by including hops. However, we
still assume that jumps are completely randomizing. This
assumption is a bit simplistic, though probably sensible,
given the data at hand. In reality, the compact conforma-
tion of DNA can make jumps non-uniform, e.g. making it
more likely for a protein to associate to DNA a certain
distance away from a dissociation point (but much further
than a hop). For example, the proposed solenoid structure
of bacterial DNA can make jumps to the next coil more
likely than to a remote coil. Such correlated jumps may
make the search more redundant, thus (i) making the
global search slower and (ii) making the local search
spread further that a single effective sliding length se. Some
have addressed this effect (11,29), and though progress is
being made (30), experimental data on the in vivo
conformation of prokaryotic DNA is still scarce, so it is
still unclear what role DNA conformation plays in the
search process in live cells. We also note that our work
neglects the presence of other DNA-binding proteins that
may also interfere with the search process (31).

Biological implications

The arrival of a TF to its regulatory site is an essential step
in the process of gene regulation. While this step may not
necessarily be the rate-limiting one, significant delays in
the arrival time can make gene regulation sluggish, thus
slowing down response to environmental stimuli and
causing the organism to be less fit. We note that these
arguments apply to both repressors and activators. A slow
search by an activator can lead to delayed gene activation,
while a slow search by repressor can lead to unrepressed
activity of certain genes or leaky repression. To avoid the
adverse effects of slow regulation, we propose that
prokaryotes may take advantage of fast local search
through a mechanism described below.
Since transcription and translation are coupled in

bacteria, proteins are produced in situ—near their gene’s
physical location on the chromosome. We suggest that if a
TF gene and its binding site are within se bp of each other,
this co-localization enables a local search and presumably

faster gene regulation. This provides a kinetic advantage
that is arguably less costly that maintaining a larger copy
number of a TF to compensate for slow search. We believe
that strong support for our hypothesis can be found in the
organization of prokaryotic genomes. A number of groups
have observed that prokaryotic TF genes tend to be closer
to their binding sites than expected at random (16,17). An
explanation offered is the selfish gene cluster hypothesis—
the proximity is favorable for horizontal gene transfer of
an operon together with its regulator (32,33). Our model
offers a kinetic explanation, which is a modified version of
Droge and Muller-Hill’s idea of ‘local concentration’ (22).
In another study, we use bioinformatics to show that TFs
with a small number of targets in the genome are likely to
be co-localized with their target sites, on length scales
comparable to our estimates of se (18). We also demon-
strate that the observed co-localization and gene orienta-
tion cannot be explained by selfish gene hypothesis,
further supporting our kinetic hypothesis. For highly
pleiotropic TFs with a larger number of target sites,
co-localization is impossible, and we suggest rapid search
is achieved by high copy number. For example, ArcA, is a
highly pleiotropic TF with over 50 binding sites in the
E. coli genome (34) is estimated to have a copy number of
200 copies per cell (35).

In eukaryotes, where transcription and translation
happen in different compartments of the cell, co-localiza-
tion of this type is clearly not possible. However,
eukaryotes have highly organized nuclei, and the com-
partmentalization may lead to a high concentration of a
TF in the vicinity of its binding site (22). Additionally, it
appears that some TFs are constitutively bound to their
binding sites and await an activation signal [e.g. Gal4
(36)].

Our simulations also demonstrate that a local search
has smaller variance of the arrival time. Noise in gene
expression is shown to be in part determined by initiation
or repression of transcription. Variability in the arrival of
a TF to a promoter can greatly increase temporal noise
and cell-to-cell variance of gene expression (37–40). Thus
cells may employ a local search not only to reduce delays
in gene regulation, but also to control (though not
necessarily reduce) noise in gene expression.

To estimate the effects of search time on noise, we note
that Cai et al. have shown that, under the control of a
repressor like LacI, protein production occurs in bursts,
presumably due to the competition between the repressor
and RNA polymerase (41). The frequency of the bursts is
proportional to the search time (42). Therefore, the
baseline production of a protein that is repressed by a
single repressor will scale directly with search time.

Comparison with a recent in vivo experiment

A recent in vivo single-molecule experiment shows that the
1D/3D search strategy is likely at work in living cells (25).
The experiments studied the search by Lac repressor for its
cognate sites. Lac repressor was in its native orientation,
i.e. co-localized with the target site, and thus produced at
a distance of about 300 bp from the site. The measured
search time for a single protein per cell was approximately
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6min, which is somewhat faster that our estimated global
search time if we were to assume KNS

d is 10–3M, a value at
the very upper limit of the measured in vivo range (23).
Since the protein synthesis was co-localized with its site,
and the YFP marker used had short maturation time of
7min, it is hard to delineate contributions of the local and
global search. A more direct test would be to measure and
compare the search time for a system where the TF gene is
distant from its target site.

Testing the proposed model with experiments

We propose a number of ways to test the distance-
dependence of the search time. In each case, we propose to
compare two strains of E. coli, one in which the gene of
the TF of interest is less than se bp away from its binding
site, e.g. within a few hundred bp, and one in which the
gene is much farther away, e.g. over 10 kbp away. In the
first strain, a TF will be synthesized near its binding site,
making local search likely, and in the second strain, the
lack of co-localization will make local search unlikely.
Since all the necessary parameters are not known with
great accuracy, it is hard to predict the exact differences in
search times and the downstream effects between the two
strains; however, given the large estimated differences
between local and global search times, we would expect
the properties measured in the proposed experiments to be
detectably different.

First, in vivo single molecule measurements (25) can be
used to directly measure the binding time in the two
strains. Second, one can measure the consequences of
co-localization on gene expression by comparing the
degree of repression (43), the noise in gene expression
(37,38,44) or the dynamics of individual the bursts of
expression (45) in strains where the TF of interest
represses a reporter gene. Finally, one can compare the
more subtle effects of the timing of repression, which are
not directly observable but have an impact on fitness. This
can be done using competitive growth experiments. One
can compete the two strains, both producing a repressor
that controls the production of a deleterious protein, but
different in relative locations of the repressor gene and its
target gene. If our model is correct, the strain with the
locally produced repressor will have less leaky repression
and therefore a growth advantage over the other strain.

NOTE ADDED IN PROOF

While this paper was in press, we were pointed to Skoko
et al. (47), which suggests that some proteins stay bound
to DNA much longer than expected, given their Kd

NS.
In fact, our picture of hops is consistent with this
experimental observation, i.e. multiple re-associations
will allow proteins to remain bound to DNA for long
time, particularly when competitor DNA is scarce or
absent. This mechanism suggests that some experimental
methods to measure Kd

NS may allow proteins to rapidly
re-associate to the same piece of DNA and some may not,
leading to different measurements of the apparent Kd

NS

for the same protein.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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