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ABSTRACT

Motivation: Deciphering the complex mechanisms by which
regulatory networks control gene expression remains a major
challenge. While some studies infer regulation from dependencies
between the expression levels of putative regulators and their targets,
others focus on measured physical interactions.
Results: Here, we present Physical Module Networks, a unified
framework that combines a Bayesian model describing modules
of co-expressed genes and their shared regulation programs,
and a physical interaction graph, describing the protein–protein
interactions and protein-DNA binding events that coherently underlie
this regulation. Using synthetic data, we demonstrate that a Physical
Module Network model has similar recall and improved precision
compared to a simple Module Network, as it omits many false
positive regulators. Finally, we show the power of Physical Module
Networks to reconstruct meaningful regulatory pathways in the
genetically perturbed yeast and during the yeast cell cycle, as well
as during the response of primary epithelial human cells to infection
with H1N1 influenza.
Availability: The PMN software is available, free for academic use
at http://www.compbio.cs.huji.ac.il/PMN/.
Contact: aregev@broad.mit.edu; nirf@cs.huji.ac.il

1 INTRODUCTION
Transcription regulation plays a major role in controlling gene
expression and cell function. Despite intensive research, the
topology and function of most regulatory circuits remain largely
unknown. The increasing availability of large-scale datasets, such
as genomics sequence, gene expression profiles and protein–DNA
or protein–protein interaction data, provides an opportunity to
automatically infer regulatory circuits on a genome-wide scale.

Three main types of approaches have been used to infer regulatory
models from genomic data (Kim et al., 2009), each suffering from
substantial limitations. Observational models, including Bayesian
networks (Friedman, 2004) and their extensions (e.g. Hartemink
et al., 2002; Segal et al., 2003; Zou et al., 2005), rely on
dependencies between the expression profiles of regulators to those
of their target genes. These can handle abundant expression data, but
often fail to distinguish true regulation from co-expression (Amit
et al., 2009; Kim et al., 2009; Segal et al., 2003). Perturbational
models associate targets to factors based on the effect of the factors’
genetic manipulation on gene expression (Amit et al., 2009; Capaldi

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the last two authors
should be regarded as joint Second authors.

et al., 2008; Hu et al., 2007). These identify functional effects, but
may fail to correctly distinguish direct from indirect targets (Wagner
et al., 2001). Finally, physical models associate regulatory factors
with the targets whose promoters they bind (Breitkreutz et al., 2010;
Harbison et al., 2004; Lee et al., 2002), or where a cis-regulatory
site is present (e.g. Suzuki et al., 2009). These identify molecular
targets, but some of those may be functionally silent (Capaldi et al.,
2008).

Thus, a major challenge is to build a realistic, molecular and
functional model of gene regulation that combines changes in
gene expression with the underlying physical interactions. Previous
attempts toward this goal have mostly introduced new hypotheses
only at one level, while using the other level to support them.
These include works that detect functional modules by integrating
phenotypic and physical data (Ideker et al., 2002; Nariai et al.,
2004; Peleg et al., 2010) or that reconstruct or annotate signaling
pathways or binding events (Gao et al., 2004; Ourfali et al., 2007;
Yeang et al., 2004; Yeger-Lotem et al., 2009). A notable exception
(Kundaje et al., 2008) integrated binding, sequence and expression
information in a Bayesian framework to identify both clusters of
genes and their transcriptional regulators. However, this work did
not consider upstream signaling pathways.

Here, we present Physical Module Networks (PMN), a novel
probabilistic graphical method that learns transcriptional networks
by combining gene expression profiles, protein–protein and protein-
DNA binding data. The PMN model, based on Module Networks
(Segal et al., 2003), discovers modules of co-expressed genes,
sets of regulators that control their activity, and a path of
physical interactions that connects the regulators to their target
module (Fig. 1). The modules, regulators and paths are inferred
simultaneously, resulting in the most probable physical model of
gene regulation that underlies the observed data.

Using synthetic data, we show that the addition of physical
interactions to the simple Module Network (MN) model improves
the model’s precision, without compromising recall. We evaluate
the biological power of the model in two yeast systems (gene
perturbations and cell cycle), and a human dataset (response of
epithelial cells to flu infection). In each case, the learned modules
and pathways are biologically sound, and lead to novel insights,
emphasizing the power of integrated probabilistic models.

2 THE PMN MODEL
A PMN (Fig. 1) consists of two components: an MN representing
the relation in expression between a regulator and its targets and a
Physical Interaction Graph providing a path of physical interactions
between them.

© The Author(s) 2011. Published by Oxford University Press.
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Fig. 1. PMNs physical module. (a) Expression pattern of the Mob1 regulator
(top) and its 37 target genes (bottom), during 2 cell cycles (two replicates
are shown). (b) A physical pathway connecting Mob1 via Cdc28 to the
transcription factor FKH2 that binds 15 of the module genes. (c) Learning
procedure. Input: gene expression, a set of potential regulators and physical
protein–protein and protein–DNA interactions. PMN Learner: an iterative
optimization procedure that finds modules, their regulators and the physical
pathways that explain the regulation. Output: the best configuration found
by the learner.

2.1 Module Networks
An MN model (Segal et al., 2003) represents regulatory
dependencies in expression profiles between genes. It relies on two
major assumptions. First, it assumes that the expression level of a
target gene can be predicted from the expression level of one or
more regulators. Second, it assumes that genes are organized into
modules, where all members of a module are regulated by the same
factors and in the same way. For example (Fig. 1a), the expression
values of all the genes in a G2/M module can be predicted by the
level of the same regulator (Mob1), in the same way. In some cases,
multiple regulators act combinatorially. This may be modeled in
different ways, including a decision tree (Segal et al., 2003, 2005),
linear regression (Lee et al., 2006), etc.

Formally, a Module Network is a Bayesian network which is
defined over gene groups (modules) rather than over individual
genes (Fig. 2a, Segal et al., 2005). Briefly, an MN model M
consists of three components. The first is the partition of all genes
G in the domain into a set of modules C ={M1,...,Mn}. The
second is a structure S that assigns for each module Mj a set of
parents PaMj

⊂G, which we term regulators of the genes in Mj .
This structure induces a graph GM with C as vertices and edges
{Mj →Mk :Mj ∩PaMk

�=∅}. A legal MN has induced an acyclic
graph GM. The third component is a set of template conditional
probabilities P(Mj |PaMj

), each of which specifies a distribution

(a) (b)

Fig. 2. Consistency toy example. (a) MN over 4 modules. Gene 1 is the
regulator of Module 2, Gene 4 is the regulator of Module 4. (b) Physical
pathways connecting the regulators to the target genes. The pathways start
from the regulator proteins (circles) and connect them via transcription
factors to their target genes (rectangles).

over the values of a gene for each value assignment Val(PaMj
) to the

parent set. Together these components provide a concise description
of the joint distribution over all genes in G, such that each gene
depends on the parents of the module it belongs to; see (Segal et al.,
2005).

2.2 Physical Interaction Graph
A Physical Interaction Graph (Figs 1b and 2b) describes possible
interactions between proteins and genes. Formally, an interaction
graph I is a graph over a set of genes and proteins with three types of
edges: protein–protein interactions (an undirected edge between two
proteins), protein–DNA interactions (directed edge from a protein to
a gene), and transcription interactions (directed edge from a gene to
its protein product). Thus, each gene in the domain is represented by
two nodes, one for the gene and one for its protein product. Protein
nodes corresponding to transcription factors are marked according
to prior biological knowledge. The interaction graph may contain
genes whose expression was not measured (and thus do not appear
in the MN).

2.3 Regulatory Paths
An MN M and a Physical Interaction Graph I are consistent, if we
can explain how the state of the regulators in the MN reaches the
target genes through physical interactions. More precisely, for each
pair of regulator Xi and target module Mj in M, there should be
a consistent physical Regulation Path from Xi to Mj . A Regulation
Path (Fig. 2b) is a sequence of nodes 〈v1,...,vn〉 in I, where v1 is
a protein node of the protein product of Xi and vn is a transcription
factor (TF) that binds all the genes in Mj . If the protein v1 is a
transcription factor, the path can be the trivial one, of length zero.
The regulation path is partially directed, such that the edge between
v� and v�+1 is either undirected or directed from v� to v�+1.

A PMN P =〈M,I〉 model has a consistent configuration if each
regulator in the Module Network has a regulation path from its
protein to the genes in its target module (Fig. 2).

3 LEARNING A PMN
Given input data, our goal is to find the configuration of
the model—modules, regulators and regulation paths—that best
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describes the data. The input consists of (1) gene expression
measurements, DX , (2) a pool of potential (‘candidate’) regulators
R⊆G from which the algorithm can choose, and (3) protein–protein
and protein–DNA interaction measurements (DI ), associated with
P-values that represent their confidence. Following the literature
on graphical models (Koller and Friedman, 2009), we pose the
learning problem as a discrete optimization problem. We define a
score function that captures how well a model decribes the observed
data, and then search for the model that maximizes the score.

3.1 Model score
Formally, let P =〈M,I〉 be a PMN model which consists of an
MN M and a Physical Interaction Graph I. We score how well
a given model describes the data D=〈DX ,DI 〉 using a Bayesian
Score, which is derived from the posterior probability of the model.
According to Bayes rule, we know that

P(P|D)∝P(P)P(D|P)

where P(P) is the prior of the model, P(D|P) is the likelihood of
the model given the data. Thus, we can define a score

Score(P : D)= logP(P)P(D|P).

Note that we are ignoring the normalization constant, since it
depends only on the data and thus does not change the relative score
of different models.

The score must fulfill two major requirements. First, it must
be decomposable into the two model components, allowing us to
calculate the score of one component while the other is fixed, an
important attribute for efficient learning. Second, we must ensure
model consistency, by a high penalty on inconsistent configurations,
such that they will not be chosen during the learning.

Under the following two constructions, the Bayesian score
satisfies both decomposability and consistency. First, the prior has
the following structure:

P(P)∝P(M)P(I)C(M,I)

where C(M,I)=1 if M and I describe a consistent configuration,
and 0 otherwise. Although this requirement limits the class of priors
we can use, it ensures our model is both consistent and enables
efficient learning. Second, we require that the likelihood of each
component be independent from the other, given the model. That is,

P(D|P)=P(DX |M)P(DI |I).

This is a reasonable assumption since the gene expression and
physical interaction observations are derived from independent
sources.

If these assumptions are satisfied, the Bayesian score can be
further developed for consistent pairs 〈M,I〉:

Score(P : D) = logP(M)P(DX |M)+logP(I)P(DI |I)

= Score(M : DX )+Score(I : DI )

For inconsistent pairs the score is −∞.
The MN score Score(M : DX ) is described by (Segal et al., 2005).

Briefly, under several assumptions, it is decomposed to the score of
the gene assignment and the score of the network structure, allowing
efficient learning of each aspect, while the other is fixed.

The new contribution of our work is the Physical Interaction
Graph score, Score(I : DI ). This score is constructed from local

scores of the individual edges in the graph. We make the simplifying
assumption that the observations about edges of the interaction graph
are independent of each other, given the underlying interaction
network. This assumption is reasonable since the experimental
measurement of each pair of edges is independent of the other pairs.
Thus, each edge, and the evidence supporting it, contribute to the
score independently of other edges in the graph.

Formally, we define E to be the set of edges that can appear in I:
all undirected edges between two protein nodes, and directed edges
from a protein (TF) node to a gene node. (The transcription edge
from a gene to its protein is assumed as given.) Let e be a (potential)
edge in E, we define Ie to be the indicator random variable with
value 1 if e is in I and 0 otherwise. The set of variables {Ie :e∈E}
defines uniquely the graph I. We represent the evidence from various
interaction screens about an edge e in DI as another indicator random
variable de, such that de =1 if e was observed in DI and 0 otherwise.

The independence assumption implies that

Score(I : DI )= log
∏
e∈E

P(de|Ie)P(Ie),

where P(Ie) is a prior belief in the edge e, and it can be set to be
uniform, or to reflect other external biological knowledge, such as
the quality of the experimental assay. and P(de|Ie) is the probability
to observe e given Ie.

This definition of the score seems to involve all edges in E, which
can be a very large number. This would be in contrast to the typical
assumption that real interaction graphs are sparse. To avoid this
problem, we rewrite the score as

Score(I : DI ) = [logP(I|DI )−logP(I∅|DI )]+logP(I∅|DI )

=
∑
e∈I

We +Score(I∅ : DI )

where Score(I∅ : DI ) is the score of the empty graph and

We = log
P(de|Ie =1)P(Ie =1)

P(de|Ie =0)P(Ie =0)

is the likelihood cost of adding e to the graph. Since Score(I∅ :
DI ) is constant, we can ignore it when evaluating different I. The
remaining terms involve only the weights of the edges present in
I. We note that we choose a uniform prior P(Ie)=0.001 so as to
ensure that We <0 for all edges. It means that adding an edge always
has a cost, and thus penalizing long pathways.

Finally, we choose the probability of the observation function.
There is no clear mechanistic argument for a specific function,
and for mathematical convenience we choose to use the following
function

P(de =1|Ie)=
{

ωe−ωpe If Ie =1
pe If Ie =0

,

where ω=0.9 is a constant estimated from the data and pe is the
P-value of e. That is, if the edge is not in the graph we assume
that the probability to observe it in the data is its P-value. If the
edge is in the graph, the probability to observe it has an exponential
distribution which is dependent on its P-value. Note that under these
assumptions, an edge which is not observed in the data may still be
included in the graph, associated with a low prior probability.
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3.2 Model optimization
The MN learning procedure (Segal et al., 2005) performs a
coordinate-wise greedy optimization (Koller and Friedman, 2009),
iterating between two optimization procedures. The first procedure
keeps the partition of genes into modules fixed, and improves the
score by modifyng the regulatory programs. This involves steps of
adding and removing regulators to modules. The second procedure
keeps the regulatory program fixed, and improves the score by
moving genes from one module to another. Given the properties of
the Bayesian score, each procedure can be implemented as a greedy
hill-climbing search with local operations that can be evaluated
relatively easily.

In learning PMNs, we maintain the same overall architecture,
with an important distinction: at the same time that a change in M
is evaluated, we also need to change I to maintain consistency, and
determine what is the score of these changes. Thus, each local step in
the MN learning procedure is accompanied by a step on the Physical
Interaction Graph, and the impact of the proposed step on the score
is the sum of these two components.

Specifically, when adding an edge from a regulator R to a module
M in M, we must ensure that there is a consistent regulatory path. If
there is none, then we consider the addition of protein–DNA edges
that will introduce at least one such path. If after such inclusion there
is still no path, the step will not be taken. Recall that a regulatory
path is a single path from the regulator to a transcription factor,
and then branches into edges from the transcription factor to each
of the genes in the module. Considering each transcription factor
T seperately, the procedure searches for the heaviest path (using
the weights We defined above) from R to T using the Bellman–
Ford algorithm (Bellman, 1958). (Since all the weights are negative,
finding the heaviest path is equivalent to finding the shortest path by
Bellman–Ford.) It then evaluates the cost of edges from the TF to
the genes in M. The total score for T is the sum of these two terms.
The transcription factor T that maximizes the score is chosen, and
the associated edges are added to I.

When removing an edge from R to M, we may remove some edges
in I. The algorithm examines edges on the path from R to M, and
then considers which ones can be removed, while still maintaining
consistency of all other regulatory paths. This is done with all edges
until no more edges can be removed.

When reassigning a gene from one module to another, a set of TF
to gene edges has to be removed and others added. These depend
on the regulatory paths choosen for each module.

Thus, the resulting procedure is essentially isomorphic to the MN
procedure except for the additional book-keeping for maintaining
changes to I that accompany each change in M. The initialization of
the procedure is with an initial clustering of genes, and the procedure
stops upon convergence.

4 EVALUATION WITH SYNTHETIC DATA
We first compared the performance of PMN on synthetic data to
that of a standard MNs model, examining its robustness to noise
and comparing its precision and recall in recovering regulatory
interactions. We reasoned that in this comparison we can most
directly evaluate the specific impact of the additional information
(physical data) and constraints (e.g. consistency) in a PMN.

We generated a synthetic network over 312 genes, partitioned to
7 modules that are regulated by 10 genes (out of the 312 genes).
The conditional probability distributions (CPDs) are taken from a
Bayesian network test case (Beinlich et al., 1989). We sampled
physical interaction observations from a set of real interactions
(Batada et al., 2006; Herrgard et al., 2006; MacIsaac et al., 2006),
covering 43% of the original network. The distributions of node
degrees and of edge weights were similar to that of the original
network. We built the synthetic Physical Interaction Graph by
choosing 7 TF proteins as the ‘true’ TFs, and finding pathways
that connect them to the regulators. (Data available online at
http://www.compbio.cs.huji.ac.il/PMN/.)

We evaluated the models by three criteria: (i) the likelihood
of a previously unseen set of gene expression samples (test set);
(ii) the ability to choose the correct regulators for each gene
(reconstruction); and (iii) the PMN’s ability to reconstruct the
correct regulation pathway by counting all the interactions that were
selected for the model (this criteria is not applicable for MN). The
latter two criteria were measured by recall (True Positive/(True
Positive + False Negative)) and precision (True Positive/(True
Positive + False Positive)).

We learned the MN model from 200 gene expression samples and
used 10-fold cross validation to estimate its train and test scores.
We learned the PMN model from the same train and test sample
sets, in addition to a set of physical interaction observations. To
simulate noise which is abundant in expression data, we generated
data from different levels of smoothed distribution. We smoothed
the distribution to degree α, by transforming each CPD, replacing
each term P(X =xi|Pax) by a smoothed version

P′(X =xi|Pax)∝P(X =xi|Pax)α

where we normalize the entries to sum to 1.
We find that the likelihood of a test set given the learned

PMN is almost identical to the likelihood given the MN (Fig. 3a),
indicating that both models have similar predictive power. Thus, the
additional constraints in a PMN (by consistency requirements) do
not compromise its predictive power.

While both models have good recall, the PMN has substantially
higher precision. Recall ranges between 80% and 100%, when
learning with a sufficient number of modules. The PMN, however,
chooses fewer false regulatory relations than the MN, resulting
in a higher precision (Fig. 3b). This is likely due to the
additional constraints on the choice of regulators in a PMN, which
must be supported by both expression and physical interactions.
Notably, when smoothness is introduced to the expression data,
the performance of MN and PMN is similar in terms of test
set likelihood, recall and precision (data not shown). With strong
smoothing the observation values are nearly uniformly distributed,
and the MN recall is higher compared to the PMN (data not shown).
In this case, the train score is so low, that the addition of the physical
interaction score prevents the algorithm from adding regulators,
even if they are correct. Conversely, when the smoothing is lower,
the PMN outperforms the MN in precision (Fig. 3c).

We next examined the contribution of protein–protein interactions
and protein–DNA interactions to the correctness of the reconstructed
pathways. First, introducing noise to the protein–protein interaction
observations (by adding random edges, weighted by the average
weight of edges in the interaction set), had little, if any, effect on the
PMN’s ability to correctly reconstruct regulator–target relationships
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(a) (b)

(d)(c)

Fig. 3. Performance on synthetic data. (a) Log likelihood of test samples,
achieved by PMN (solid line) and MN (dashed line) as a function of module
number. Plots show average over 10-fold cross validation experiments; error
bars show 2 STD. (b) Precision rate of reconstructing regulator-target pairs,
achieved by PMN and MN, as a function of number of modules. Plots as
in (a). (c) Precision rate of reconstructing regulator-target pairs, achieved by
PMN and MN, as a function of smoothness of the expression data. Plots as
in (a). (d) Reconstructed pathways as a function of noise in the protein–DNA
data. Plots show average precision and recall over 10-fold cross validation;
error bars indicate 2 STD.

and pathways. Second, increasing the number of protein–DNA
interactions from the true TFs to their true modules, had a
negligible effect on the accuracy of regulator–target relationships,
but dramatically improved the accuracy of the reconstructed
pathways (Fig. 3d), emphasizing the importance of the TF choice in
the model.

5 A MAP OF THE YEAST RESPONSE TO GENE
PERTURBATIONS

We next assessed the biological accuracy and insights in real
data, addressing two capabilities of the PMN approach. First,
we considered the reconstruction of correct regulation pathways,
between known modules and their known regulators, as determined
by gene perturbation in yeast (Hughes et al., 2000; Mnaimneh et al.,
2004). Second, we assessed the biological performance of a full
learning of PMN from yeast cell cycle expression data (Pramila
et al., 2006), a relatively well characterized system which enables
us to estimate the biological relevance of the inferred model.

In both cases, we collected observations for protein–protein
and protein–DNA interactions from multiple sources (Batada
et al., 2006; Herrgard et al., 2006; MacIsaac et al., 2006),
generating a dataset of 18.1K protein–protein and 90.6K protein–
DNA interactions over 5640 proteins. To avoid spurious over-
representation of highly connected (‘hub’) proteins in reconstructed
pathways (as they connect most protein pairs in the network in the
most efficient way), we determined the confidence in each edge
(P-value) according to the degree of the adjacent nodes in the
observed network, such that edges that involve highly connected
proteins are penalized. In addition, the P-value prefers edges that

are supported by more than a single line of evidence. Formally, the
P-value of an edge e with degree x of its heaviest adjacent node,
was set to be:

pe = 1

2+e−0.2x+5
+0.2C

where C =0 when the edge is supported by two or more lines of
evidence, or C =1 otherwise. Unobserved edges were associated
with a constant P-value which is higher than any observed edge. (See
http://www.compbio.cs.huji.ac.il/PMN/ for additional information.)

To evaluate the ability of PMN to reconstruct regulation pathways,
we used a test case in which the regulators and the modules are
known. We used a set of expression profiles measured following
single-gene knockouts (Hughes et al., 2000) and knockdowns
(Mnaimneh et al., 2004). We defined each perturbed gene as a
regulator, the genes that were significantly repressed as one target
module, and those that were significantly induced as another target
module. The threshold for significance was defined as more than
a 2-fold increase or decrease, and one set (Hughes et al., 2000)
was further filtered using a significance threshold presented in the
original paper (P<0.01). We removed small target modules (less
than 5 genes), resulting in a set of 827 regulator-module pairs, for
446 distinct regulators. We used the interaction data as described
above.

For each of the 827 regulator-module pairs we reconstructed the
most probable (primary) regulation pathway that starts with the
regulator and ends with a TF that binds some of the target genes.
For example, consider the simple pathway that was reconstructed
from NDD1 (Fig. 4a), a component of the MCM1/NDD1/FKH
transcription factor complex that activates G2/M transition genes
(Koranda et al., 2000). The pathway correctly reconstructs the
connection of NDD1 to FKH2, which in turn has evidence for
binding 28% of the 60 target genes. We successfully reconstructed
660 primary pathways with an average length of 2.6 edges, including
48 pathways of size zero (directly from a perturbed TF to its targets).
On average, the selected TFs had evidence for binding 20% of
genes per target module. We failed to reconstruct pathways for the
remaining 167 pairs, where the observed physical interactions did
not have paths from the regulator proteins to a TF.

Long-term gene perturbation can cause drastic changes in the
cell, and may thus affect the target genes in more than one way. To
search for secondary effects, we removed the edges in the primary
pathway, and repeated the pathway reconstruction procedure. For
example, after removing the (trivial) primary pathway from SWI4
(Fig. 4b) to its targets genes (39% of the genes that were repressed
after its perturbation are bound by SWI4), we detected a secondary
pathway from SWI4 to FKH2 gene, which in turn binds 12% of the
altered genes.

To statistically assess the reconstructed pathways we estimated
their score’s P-value empirically, by randomization of the input
interactions. We used an edge-swapping algorithm (Maslov and
Sneppen, 2002) to generate 50 randomized observation networks
that maintain the node degrees of the original network, and
then learned pathways for the same 827 regulator-module pairs
using each of the 50 networks. We then assessed the significance
of each pathway learned with the real network, based on the
frequency of observing a path with that score or higher in the
randomized networks. We found that 99 primary pathways and 6
secondary pathways were significant [above 2 STD (P<0.021)].
(Data available online at http://www.compbio.cs.huji.ac.il/PMN/).
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(a)

(e)

(c)

(i)

(h)

(g)

(j)

(f)

(b)

Fig. 4. Yeast pathway map. Unification of sixty two selected pathways, reconstructed by PMN from gene perturbation data. The pathways are also available
online at www.compbio.cs.huji.ac.il/PMN/. Proteins (circles) and genes (squares) are connected by protein–protein interactions (lines) and protein–DNA
interactions (arrows). Triangles represent repressed (green) and induced (red) target modules. Numbers indicate the percentage of target genes bound by
the TF in pathways which are mentioned in the text. Proteins were manually annotated with the following categories: Metal-ion transport (grey), cell-cycle
(green), protein biosynthesis (light blue), amino-acid metabolism (purple), stress (pink), sugar metabolism (orange), mating (yellow) or other (white). (a–j)
Pathways that are discussed in the text.

These significant reconstructed pathways span a spectrum of
cellular processes, including cell-cycle, mating, stress response,
protein biosynthesis, amino-acid metabolism and metal ion transport
(Fig. 4). To biologically interpret them, we annotated each pathway
member according to the process in which it participates, and each
target module with its enriched GO process terms (Fisher’s exact
test, corrected with FDR 5%). We then inspected the functional
relevance of each pathway and its terminal TF to the module and
regulator with which it was associated.

There are 6 coherent mating pathways, each consists of known
members of the pheromone response, and ends with STE12, the
pheromone response TF (Fig. 4c). Three start with STE18, STE5
and STE7, and end with repressed modules enriched for pheromone
response genes, a fourth starts with DIG1, a STE12 repressor (Olson
et al., 2000), and indeed ends with an induced module enriched for
pheromone response genes. These provide a proof of concept.

We detected 10 coherent cell-cycle pathways, of which 5 are
meiosis pathways that end with UME6, a TF that regulates both
induction and repression of early meiotic genes (Steber and Esposito,
1995). Two of the pathways (Fig. 4d) start with an ISW2 knockout,
a member of the ISWI chromatin remodeling complex, which is
known to be recruited by UME6 (Goldmark et al., 2000). Another
pathway starts from a GPA2 knockout (Fig. 4e), a G-protein that
is coupled with the carbon sensor GPR1, through the early meiosis
activators IME2 and IME1, to UME6, which binds a target module
enriched for sporulation genes. This is consistent with induction of
sporulation during carbon (and nitrogen) starvation.

Some of the reconstructed meiosis pathways lead to novel
hypotheses. Most notably, the secondary pathway from SIN3

(Fig. 4f), a histone deacetylase component involved in meiosis
regulation, which is connected to its target module through STB4.
STB4 is a zinc-finger with an unknown function that interacts with
SIN3 in a 2-hybrid assay (Kasten and Stillman, 1997), and binds 6%
of the genes in the target module. We hypothesize that STB4 plays
a role in induction of early meiosis genes.

Several pathways reflect the cellular response to stress following
gene perturbations, and the coupling between reduction of cell
growth (through repression of ribosomal functions) and changes to
carbon metabolism during stress. Twelve pathways lead to ribosomal
protein (RP) gene modules (Fig. 4g), ending with the known RP
activators FHL1 or RAP1. Interesting exceptions are two pathways
that start with the knockout of GCR1, a transcriptional activator
of glycolysis genes (Fig. 4h): in the primary pathway GCR1 binds
RAP1 leading to repression of both carbohydrate catabolism genes
[known to be regulated by RAP1 and GCR1 (Mizuno et al., 2004)]
and RP genes. In the secondary pathway GCR1 binds GCR2, a
known co-activator, which binds 19 of the repressed genes, including
3 glycolysis genes. Coupling between RP gene regulation and sugar
metabolism is also observed following perturbation of the splicing
factor PRP39 (Fig. 4i), proposing a new molecular pathway.

Finally, 14 pathways reflect protein biosynthesis and amino acid
metabolism, ending with GCN4, a major TF activator of amino acid
metabolism genes. The pathways control 10 modules, both repressed
and induced, that are enriched for amino acid metabolism genes.
While statistically significant, these pathways likely reflect mostly
indirect effects on amino acid metabolism by many of the genetic
perturbations in the study, a fact noted in the original study (Hughes
et al., 2000). In such cases, the reconstructed pathways may not
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Fig. 5. Yeast cell cycle map. Pathways reconstructed by PMN from the yeast cell cycle data. Left - An example module (# 36), indcued in G1 & S, is enriched
for DNA replication and telomerase maintenance genes, and is regulated by ACM1 and SWI4. Right - all other pathways reconstructed. Modules (rectangles)
are colored according to their peak activity phase, and proteins are colored according to the phase in which they are known to play a role.

reflect a ’real’ transduction of a regulatory signal, although their
intiation (perturbed gene) and endpoint (the TF GCN4) are correct.
Indeed, when GCN4 is removed, other, more relevant pathways may
be revealed, for example in the case of RTG1 (Fig. 4j). Despite these
limitations, we concluded that PMN can recover known coherent
pathways in the correct context, as well as reveal novel potential
mechanisms.

6 RECONSTRUCTING A YEAST CELL CYCLE
NETWORK

We assessed the reconstruction of a full PMN—modules, regulators
and pathways—using the yeast cell cycle, a well-studied system
that facilitates careful evaluation. We used expression profiles
measured at 50 time points during 2 cell cycles from yeast
cultures synchronized with α-factor (Pramila et al., 2006). We
focused on the 594 top cyclic genes as defined in the original
publication (PNM5 posterior > 0.999), 68 of which have a known
regulatory role in cell cycle (by GO), and were designated as
candidate regulators for the model to choose from. We augmented
the physical interactions described above with protein–DNA
interactions measured specifically during the yeast cell cycle (Horak
et al., 2002).

The inferred network consists of 36 modules of average size 17.5
genes (±19.7 genes), 11 with a single regulator and 4 with two
regulators, with regulation paths of average length of 2.5. Nine
modules peak at G1 or G1/S (Fig. 5 right, pink or pink-yellow), of
which one is enriched for cytokinesis genes (module #43), two for
mitosis genes (#5, #44), and four for DNA replication genes (#36,
#39, #44, #48). For example, module 36 (Fig. 5 left) is regulated
by SWI4, via SWI6 and MBP1, which binds 59% of the module
genes, consistent with the known role of the SBF (SWI4-SWI6)
and MBF (SWI6-MBP1) complexes in regulating late G1 genes.
Module 36 is also regulated by ACM1, an inhibitor of mitosis that is
induced during G1/S, via a pathway consisting of (in order) CLN1,
SIC1 (both G1/S transition regulators), and CDC14, a phosphatase
required for mitotic exit. Although CDC14 does not seem to be
directly connected to G1/S regulation, it is known to interact with
SWI6-MBP1 complex that binds the module genes (Geymonat et al.,
2004).

Six modules peak at S and four at G2/M (Fig. 5, blue). For
example, Module 33, enriched for mitosis genes, is active throughout
S and G2/M, and is regulated by FKH1, a key TF of G2/M genes,
which binds directly to 46% of the module genes. In another
example, Module 45 (Figs 1a and b, 5 right) is regulated by MOB1,
an essential component of the mitotic exit network, through a
pathway that consist of (in order) CDC28, the catalytic subunit of
the main cell cycle CDK, and FKH2, a major G2/M TF, which binds
43% of the module genes. The module genes are also enriched for
binding of NDD1, an FKH2 transcriptional co-activator (Fig. 1b).

In some notable exceptions, biologically ‘incoherent’ regulators
are chosen by the PMN. For instance, Module 13 (Fig. 5 right) peaks
in S phase, is highly enriched for histones, and is regulated by ESP1
and HSL1, mitosis and budding regulators. This may reflect the
fact that in some cases, induction of a regulator’s mRNA precedes
the time of its protein’s activity (Amit et al., 2009; Ramsey et al.,
2008). While the choice of regulator in the MN is based solely of
the expression pattern, the physical interactions in the PMN may be
able to reduce the number of such false cases.

Conversely, the selected TF is coherent with the target module
in all cases where the TF binds more than one gene per module:
MBP1 is chosen as the TF of 4 G1 and S modules; FKH1 for two S
and G2/M modules; FKH2 for two G2/M modules; MCM1, a major
cell cycle transcription and DNA replication regulator, for a G1
module; and HCM1, a transcription regulator of S phase genes, for
two G1 and S modules. Besides FKH1, the TFs are not chosen as the
regulators themselves (at the beginning of a pathway), because their
own mRNA expression profiles do not correlate with their protein
activity: some are induced in a different phase, and others do not
show a cyclic pattern at all. Yet, the PMN correctly associated them
with their target modules.

7 PATHWAY RECONSTRUCTION OF
HUMAN–FLU INTERACTIONS

Infection of human cells with the H1N1 influenza virus results in
substantial changes in the cells’ transcription profile. A recent study
(Shapira et al., 2009) measured these changes in human primary
bronchial epithelial cells at 10 time point along 18 h following
infection with wild type virus, attenuated virus, viral RNA or
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(a) (b)

Fig. 6. Viral infection in human host. Pathways reconstructed from H1N1
influenza virus proteins to responsive gene clusters. (a) Pathway connecting
NP and PB2 viral proteins to cluster 2. (b) Pathway connecting NA viral
protein to clusters 4 and 5 and HA viral protein to clusters 4 and 7. Color
indicates protein categories (see legend).

treatment with interferon. It also identified (with yeast two hybrid
assays), potential interactions between each of the 10 viral proteins
and 87 human proteins.

We used PMN to identify the potential mechanisms that lead from
the viral proteins to changes in expression. This presents a special
challenge, since the human physical network is much larger than
in yeast, and is still poorly covered (Hart et al., 2006). We used
12 gene modules that were pre-defined (Shapira et al., 2009), and
reconstructed the pathways from 10 viral genes to each cluster. We
used human protein–protein and protein–DNA interactions collected
from multiple published sources (Badis et al., 2009; Berger et al.,
2008; Chang et al., 2008; Suzuki et al., 2009; Yosef et al., 2009),
and human-viral protein interactions from the original paper. To
reduce noise, we included only 32 TFs whose targets were enriched
(Fisher’s Exact Test, FDR 5%) in at least one cluster.

We ran the pathway reconstruction procedure six times, removing
in each round the TF that was selected in the previous round, to
reconstruct multiple secondary pathways. The first three rounds,
selected only general TFs (TAF1, CREB1, NRF1 and SP1) for
each of the 12 modules. Specific pathways emerged only after we
removed these general factors.

One intriguing example is the pathway that connects the viral
polymerase subunits NP and PB2 to the human TF Interferon
Regulatory Factor 2 (IRF2) (Fig. 6a), a known regulator of
interferon-dependent gene expression, which binds 16 out of 57
genes in cluster #2, which is induced by interferon. The initial
study identified a novel role for the viral polymerase in perturbing
host signaling (Shapira et al., 2009), but its relation to the
transcriptional program and mode of action remained unknown.
Our PMN analysis suggests that the polymerase subunits act
through a pathway that includes apoptotic proteins TRAF1, API1
and p53, and impact interferon-dependent gene expression, thus
raising testable mechanistic hypotheses. Other interesting pathways
(Fig. 6b) connect the NA and HA viral proteins to three clusters.
All three pathways consist of (in order) CREBP, VCAF, MLL and
CREBBP, but end in three different TFs: NFKB1 that binds cluster
#7 (5 out of 60 genes, induced only in presence of whole virus),

E2F1 that binds cluster #5 (5 out of 55 genes, induced by virus
or viral RNA) and the interferon-dependent factor IRF1 that binds
cluster #4 (23 out of 139 genes, induced by interferon alone), all
major regulators in host response pathways. This suggests a novel
role and mechanism for additional viral proteins in modulating the
host transcriptional response.

8 DISCUSSION
Here, we presented PMNs, a probabilistic graphical method that
learns transcriptional networks by combining phenotypic effects
(changes in gene expression) with their underlying physical
mechanism (protein–protein and protein–DNA interactions). We
evaluated the model by comparing to a simple MN on synthetic
data, and by reconstructing coherent pathways and regulation in
yeast and human data.

A PMN builds and subtantially extends on MNs, a special
case of a Bayesian network that is defined over a set of gene
modules rather than single genes (Segal et al., 2003). The main
drawback of a simple MN is that each regulator is chosen solely
based on its expression pattern, limiting its ability to distinguish
between true regulators and false positives. The PMN addresses
this limitation by presenting additional constraints on the choice
of regulators, requiring a physical pathway that connects it to
some of the target genes. Indeed, as we have shown on synthetic
data, the added physical interactions increase the model’s precision
without compromising recall. Furthermore, the PMN presents a
new hypothesis for the regulation mechanism. We showed that it
can determine coherent pathways and regulatory mechanisms that
connect genetic perturbations to target genes (in yeast and human
data), as well as coherent modules, regulators and pathways in the
yeast cell-cycle system.

Notably, adding physical interactions also carries disadvantages,
especially when interaction data are very partial and noisy. PMN
may miss a true regulator if a full regulation path is missing (hurting
recall), the reconstructed pathways are sensitive to noise in the
interaction measurements, and certain types of interactions (protein
modifications, chromatin occupancy, cellular localization), as well
as alternative splicing, are not modeled in the simple interaction
graph. Nevertheless, PMN’s success in several realistic cases, in
yeast and human, suggest that it provides an important advance
toward reconstructing models of regulatory circuits in eukaryotic
cells.
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