
MIT Open Access Articles

Temporal light field reconstruction
for rendering distribution effects

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. 2011.
Temporal light field reconstruction for rendering distribution effects. ACM Transactions on
Graphics 30, 4, Article 55 (July 2011), 12 pages.

As Published: http://dx.doi.org/10.1145/1964921.1964950

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/73082

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73082
http://creativecommons.org/licenses/by-nc-sa/3.0/

Temporal Light Field Reconstruction for Rendering Distribution Effects

Jaakko Lehtinen
NVIDIA Research

Timo Aila
NVIDIA Research

Jiawen Chen
MIT CSAIL

Samuli Laine
NVIDIA Research

Frédo Durand
MIT CSAIL

PBRT, 16 spp, 403 s Our result, 16 spp, 403 + 10 s (+2,5%)PBRT, 256 spp, 6426 s

Figure 1: A scene with complex occlusion rendered with depth of field. Left: Images rendered by PBRT [Pharr and Humphreys 2010] using
16 and 256 low-discrepancy samples per pixel (spp) and traditional axis-aligned filtering. Right: Image reconstructed by our algorithm in
10 seconds from the same 16 samples per pixel. We obtain defocus quality similar to the 256 spp result in approximately 1/16th of the time.

Abstract

Traditionally, effects that require evaluating multidimensional in-
tegrals for each pixel, such as motion blur, depth of field, and
soft shadows, suffer from noise due to the variance of the high-
dimensional integrand. In this paper, we describe a general re-
construction technique that exploits the anisotropy in the temporal
light field and permits efficient reuse of samples between pixels,
multiplying the effective sampling rate by a large factor. We show
that our technique can be applied in situations that are challenging
or impossible for previous anisotropic reconstruction methods, and
that it can yield good results with very sparse inputs. We demon-
strate our method for simultaneous motion blur, depth of field, and
soft shadows.

Keywords: depth of field, motion blur, soft shadows, light field,
reconstruction

Links: DL PDF

1 Introduction

A number of advanced rendering techniques require the reconstruc-
tion and integration of radiance from samples. Recent analysis
has emphasized the anisotropic and bandlimited nature of the ra-
diance signal, leading to frequency-based adaptive sampling for
glossy highlights [Durand et al. 2005], depth of field [Soler et al.
2009], motion blur [Egan et al. 2009], and soft shadows [Egan et al.
2011]. These techniques focus on sampling, and while they provide

dramatic reductions in sampling rate, they rely on fairly simple re-
construction that suffers from a number of limitations. First, be-
cause they use linear reconstruction kernels and a simple model of
local spectrum, they fail near object boundaries, and need to re-
sort to brute-force sampling and reconstruction there. While this
would not be a problem for pinhole images of static scenes, it be-
comes significant for motion blur and depth of field, where the blur
causes boundaries to affect a large fraction of pixels, 70% in the
case of Figure 1. Other techniques [Hachisuka et al. 2008] rely on
the sampled radiance itself to determine anisotropy, which requires
noise-free samples, and a potentially high sampling rate for high-
frequency signals such as textured surfaces, defeating the purpose
of adaptive sampling.

We concentrate on reconstruction, and seek to improve the images
obtained from a relatively sparse stochastic sampling of the high-
dimensional domain (screen, lens, time, light source, etc.) of the ra-
diance function. This complements adaptive techniques that drive
the sampling process by predictions derived from analyzing light
transport. Our algorithm can be applied as a black box, as long
as we have collected auxiliary information (motion vectors, depth)
about the samples. We demonstrate high-quality rendering results
in situations where linear reconstruction or contrast-driven adaptive
sampling are ineffective, while using a small fraction of the time re-
quired for rendering equal-quality results using traditional methods.
We operate strictly in the primal light field domain.

This paper makes the following contributions:

• A non-linear temporal light field reconstruction algorithm that
is applicable in the presence of complex occlusion effects,

• A method for determining the visibility consistency of a set of
light field samples based on visibility events,

• A method to resolve visibility without explicit surface recon-
struction, with support for occlusion boundaries, and

• A hierarchical query structure for efficient pruning of the in-
put light field samples.

We apply our algorithm to simultaneous depth of field, motion blur,
and shadows cast by area light sources.

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf

2 Related Work

Distribution ray tracing [Cook et al. 1984] is widely used for simu-
lating blurry phenomena such as motion blur, depth of field, and
glossy reflection in offline rendering. Averaging the stochastic
samples by a pixel filter corresponds to using axis-aligned nearest
neighbor reconstruction in the light field prior to integrating over
time/lens/light/incident direction. Even with high-quality sampling
patterns, a large number of potentially very expensive samples is
often required for reducing noise to an acceptable level, especially
with defocus and soft shadows from area lights. This is undesirable
due to the high cost of both shading and visibility sampling, even
when using techniques that reuse shaded values [Cook et al. 1987;
Ragan-Kelley et al. 2011]. There is a clear need for methods that
maximize the image quality obtainable from a given set of samples.

Light transport analysis and sheared reconstruction Egan et
al. [2009] present a frequency analysis of motion blur. They drive
sampling based on predicted bandwidth across time and space, and
propose a sheared reconstruction algorithm that extends filter sup-
port along the motion. This drastically reduces the number samples
required in homogeneously moving regions, because information
is shared between multiple pixels. The benefit diminishes in re-
gions that exhibit inhomogeneous movement, for example due to
object or occlusion boundaries. Similar arguments apply to sheared
reconstruction for soft shadows [Egan et al. 2011]. In contrast to
both approaches, we handle complex occlusion effects, and support
simultaneous motion, defocus and soft shadows.

Soler et al. [2009] analyze defocus in frequency space, and pro-
pose an algorithm for adaptive sampling for depth of field. They
vary both the image-space sampling and the lens sampling, but only
perform reconstruction in the 2D image. This prevents them from
sharing lens samples across the image, and presents challenges at
object boundaries.

Contrast-based adaptive sampling Multi-dimensional adap-
tive sampling (MDAS) [Hachisuka et al. 2008] takes radiance sam-
ples in the space of the high-dimensional light transport integrand,
and reconstructs the integrand using an anisotropic nearest neighbor
filter. Specifically, MDAS strives to concentrate samples around
significant contrast thresholds, and tailor the filter to anisotropy
measured directly from the samples. Given noise-free samples,
this can work well for defocus and motion blur. However, a com-
plex integrand with high variance due to noise, complex visibility
boundaries, or even texture, causes the sampler to essentially re-
vert to uniform sampling. Furthermore, the algorithm is sensitive
to the choice of input parameters, e.g., the relative scales between
the dimensions of the integrand. In addition, MDAS quickly be-
comes infeasible in higher dimensions due to its reliance on kD-
trees, making application to simultaneous motion, defocus and area
lights challenging.

Adaptive wavelet rendering [Overbeck et al. 2009] extends fre-
quency ray tracing [Bolin and Meyer 1995] to handle integrals com-
puted at each pixel. It adapts to regions where either the image or
the integrand is smooth. However, it cannot adapt as well to the
anisotropic case where radiance is smooth along a direction other
than an axis of the wavelet basis, such as the motion blur of a high-
frequency texture.

Reprojection techniques Chen and Williams [1993] describe a
method for view interpolation from pinhole cameras, and apply it
to motion blur and soft shadows. This approach has been recently
extended and parallelized to run quickly on GPUs [Yu et al. 2010].
Both of these approaches show good results in simple scenarios, but
the reconstruction heuristics used for resolving visibility and avoid-

a) b) x

u

x

u

Figure 2: a) A slice through an XU light field showing an out-
of-focus foreground object (orange) on an out-of-focus background
(blue). Vertical dashed lines denote pixel boundaries, and disks de-
note input samples over the screen and lens. A traditional distribu-
tion ray tracer generates an image by averaging the input samples
in a pixel. b) The light field, reconstructed at a large number of
reconstruction locations by our algorithm. Thanks to the increased
resolution, the resulting image is of much higher quality. A regu-
lar sampling is shown for clarity only; our algorithm operates on
stochastic samples.

ing holes are geared towards simplicity and speed instead of high
quality. In a similar vein, some algorithms reuse samples across
frames with the aim of speeding up illumination computations, e.g.
[Walter et al. 1999; Nehab et al. 2007]. In contrast, we perform
reprojection within the high-dimensional integration domain, not
across frames, making use of stochastic samples. In addition, we
explicitly deal with visibility based on the similarity of the appar-
ent trajectories of the samples in the temporal light field.

Lee et al. [2010] blur the distinction between sampling and re-
construction. They accelerate defocus effects by first rasterizing
the scene into a layered depth image (LDI), and then performing
fast ray tracing using the LDI as a scene representation. The initial
sampling is done using a pinhole camera, and thus some surfaces
may not be represented well. Furthermore, extending the method to
motion blur and other distributed effects like area shadows seems
difficult.

Fast 2D approximations Some early motion blur algorithms are
based on compositing 2D images that have been blurred in the
direction of motion in layers that correspond to different objects
[Potmesil and Chakravarty 1983; Max and Lerner 1985]. This
poses problems for complex scenes. Recent realtime algorithms use
image-based blurring driven by the depth buffer. Nguyen [2007]
presents a survey. While the techniques are fast and well adapted
to GPU pipelines, they typically suffer from a number of noticeable
artifacts due to insufficiently captured occlusion.

3 Algorithm

We seek to achieve high-quality distribution effects such as depth
of field and motion blur from a sparse set of 5D (screen-lens-time)
samples. For this, we present a new reconstruction algorithm that
can upsample these sparse input samples using a non-linear pro-
cess that leverages information about depth and motion, and that
accurately resolves visibility. See Figure 2. Final pixel values are
obtained by summation over the reconstructed samples, similar to
a normal distribution ray tracer, except that reconstruction is much
faster than computing radiance using ray tracing.

Our reconstruction builds on the common observation that the high-
dimensional radiance field exhibits strong anisotropy [Chai et al.
2000; Durand et al. 2005; Egan et al. 2009], with slope aligned

with the inverse depth [Chai et al. 2000], inverse velocity [Egan
et al. 2009], or inverse blocker depth [Egan et al. 2011]. This is par-
ticularly true for Lambertian objects, but is also largely the case for
glossy highlights due to a rough BRDF. We exploit this anisotropy
to perform reconstruction that follows the direction of the signal.
The method can be extended to leverage bandwidth and adapt the
range of influence of a sample to handle cases such as arbitrary
BRDFs, which we demonstrate with a proof-of-concept implemen-
tation.

Our reconstruction provides higher quality than previous work be-
cause it leverages information about depth and motion of each in-
put sample in two critical ways. First, we use per-sample depth and
motion information to accurately reproject the individual samples.
This contrasts with previous sheared reconstructions [Hachisuka
et al. 2008; Egan et al. 2009] that consider only one direction of
anisotropy per reconstruction and have limited ability to handle
cases where the reconstruction kernel overlaps samples with dif-
ferent directions, in particular when multiple objects are present
(Figure 3). Second, we use depth information together with new
algorithms that determine occlusion between samples to accurately
treat visibility. This further enables our method to handle recon-
struction around object boundaries.

We describe our algorithm in 5D to handle simultaneous motion and
defocus blur. We extend the algorithm to soft shadows in Section 5.

Algorithm overview The key challenge is to perform high-
quality and efficient reconstruction at a given 5D location with co-
ordinates x̂ŷ in the image, ûv̂ on the lens, and time t̂. In order to
exploit the anisotropy and reason about occlusion, we reduce the
problem to a 2D x̂ŷ neighborhood in image space by reprojecting
the samples to the lens-time coordinates ûv̂t̂ along their individual
trajectories. This provides us with a scattered set of point samples
in 2D. In the simplest case, the samples’ visibility is consistent, i.e.,
they form a single apparent surface, and they can all be filtered to-
gether by averaging their radiance. However, the strength of our
technique is its ability to handle occlusion configurations as well.
For this, we need to solve two critical problems. First, we need
a criterion to detect occlusion in the light field. This is especially
difficult because we deal with moving objects. Second, if occlu-
sion occurs, we need to determine which samples correspond to the
apparent surface visible at the the reconstruction location.

Finally, only a small number of input samples actually contribute to
a given reconstruction location. It is, however, difficult to determine
which samples need to be considered because it depends on each
sample’s individual trajectory (Figure 3). This is why we introduce
a hierarchical data structure to accelerate sample retrieval.

The input to our algorithm consists of a set of input samples

si = {(xi, yi, ui, vi, ti) 7→ (zi, vi, Li)}

from the temporal light field, where xy are screen coordinates, uv
are lens coordinates, t is the time coordinate, z is the depth, v is the
3D motion vector (including depth change), Li is the radiance as-
sociated with the input sample. We make the common approxima-
tion of linear motion in world space, which results in non-uniform
screen-space motion due to perspective1. Note that even though the
motion of a single sample is linear, an object as a whole may un-
dergo non-rigid deformation. For defocus, we employ the standard
two-plane thin-lens model [Pharr and Humphreys 2010].

1In principle, any motion model could be used, as long as its parameters
can be computed and exported at the time of input sampling. In practice, we
believe curvilinear motion is best approximated by linear segments.

b)
x

u

a)
x

u

reconstruction
location,
radius R

input samples

dx/du

Figure 3: Reprojecting the input samples. a) The input samples and
their dx/du. The reconstruction location (x̂, û) is denoted by the
white disk, and the radius R by the line segment. b) Reprojecting
the input samples to the reconstruction location’s û coordinate.

To generate the output image, we explicitly integrate over the
screen, time, lens dimensions (and light source when handling soft
shadows) by Monte Carlo integration. At each Monte Carlo sample,
which we call reconstruction locations, we reconstruct the temporal
light field from the input samples. We typically take N = 128 re-
construction locations per pixel, and find the pixel radiance by sim-
ply integrating the reconstruction results with pixel filter P (x, y):

L(Pixel) =
1

N

N∑
j=1

RECONSTRUCT(x̂j , ŷj , ûj , v̂j , t̂j) P (x̂j , ŷj),

(1)
where ûj , v̂j , t̂j are samples drawn from the lens × time cube, and
x̂j , ŷj are samples drawn from the support of the pixel filter. As re-
construction and integration are combined, we do not need to store
the upsampled temporal light field at any point.

Reconstruction algorithm The function RECONSTRUCT pro-
cesses each 5D reconstruction location (x̂j , ŷj , ûj , v̂j , t̂j) as fol-
lows.

1. We first reproject the input samples’ screen coordinates to
the (ûj , v̂j , t̂j) coordinates of reconstruction location (Sec-
tion 3.1), and discard samples that are too far away in xy (Sec-
tion 3.3). The reprojected samples are efficiently queried from
a hierarchy (Section 4), and are returned from the hierarchy as
clusters of samples.

2. We proceed to group the returned clusters into apparent sur-
faces using the algorithm described in Section 3.2. This typi-
cally results in 1-2 surfaces per reconstruction location.

3. If more than one apparent surface is found, we sort the sur-
faces front-to-back, and proceed to determine which one cov-
ers the reconstruction location (Section 3.3).

4. We compute the output color by filtering the samples that be-
long to the covering surface using a circular tent filter. Note
that the reconstruction results are still subsequently filtered
with the pixel filter P (x, y) according to Equation 1.

3.1 Reprojection

Based on our motion and lens models, the depth and motion vector
of an input sample determine how it behaves in the temporal light
field under defocus and motion. Concretely, we solve for how the
input sample’s screen position changes as a function of the (û, v̂, t̂)
coordinates. Figure 3 illustrates this for defocus.

The reprojected screen position (x′i, y
′
i) for sample si as a function

of (û, v̂, t̂) is obtained by first computing the depth according to the

u

xa)

u

xb)

Figure 4: a) samples whose trajectories do not intersect have no
mutual visibility events, and can be treated as a single surface in
the reconstruction. b) Visibility changes between surfaces leads to
crossings between the trajectories of the samples.

z component of the motion vector as

z′i(t̂) = zi + (t̂− ti)vz
i , (2)

and then computing the new screen position as

x′i(û, t̂) =

[
xi − uiC(zi)

]
zi + (t̂− ti)vx

i

z′i(t̂)
+ ûC(z′i)

y′i(v̂, t̂) =

[
yi − viC(zi)

]
zi + (t̂− ti)vy

i

z′i(t̂)
+ v̂C(z′i).

(3)

Conceptually, Equations 2-3 reproject the sample from its original
screen location (xi, yi), computed at (ui, vi, ti), to the center of
the lens, backproject the point to 3D, then move it along the 3D
motion vector to the new time t̂, project back to screen coordinates,
and finally to the new lens position (û, v̂) according to the circle
of confusion at the new depth. As expected, setting (û, v̂, t̂) =
(ui, vi, ti) leaves the screen position unchanged. The signed circle
of confusion C(zi) = ∂x/∂u = ∂y/∂v is computed by

C(z) =
C1

z
+ C2, (4)

where C1, C2 are per-frame constants determined from standard
thin-lens geometry [Pharr and Humphreys 2010].

The reprojection of a sample through the full lens-time cube might
ignore view-dependent effects for non-Lambertian objects. This
corresponds to the shade-once assumption often used in production
rendering, e.g. [Cook et al. 1987], and most results in this paper
are obtained this way. However, our method can be extended to
use BRDF bandwidth estimates [Ramamoorthi and Hanrahan 2004;
Durand et al. 2005] for determining a range of validity so that such
a sample may only contribute to reconstruction locations that are
close enough to the reconstruction location along the light field tra-
jectory. We demonstrate a prototype implementation.

3.2 Detecting Visibility Consistency

The ability to detect when a set of reprojected samples should be
filtered together is crucial to our algorithm. We could use simple
heuristics such as surface IDs or thresholds on the difference be-
tween depths and motion vectors of the input samples, but such
approaches are notoriously brittle, as confirmed by our early exper-
iments. Instead, we derive a formal criterion based on the crossing
of the reprojection trajectories in the temporal light field. Our cri-
terion allows any set of samples that have no detectable visibility
changes in the vicinity of a reconstruction location — regardless of
their originating primitive or object — to be filtered together.

We start with a simpler case, depth of field in a static scene, where
we need to determine if two samples can occlude each other from

different lens positions. Our key observation is that the relative or-
dering of the screen positions of samples from a non-overlapping
surface never changes under reprojections. In other words, if sam-
ple s1 lies to the right and up from sample s2, as seen from one
point on the lens, this must hold for any other lens coordinates as
well2. In contrast, visibility changes due to defocus always lead to
crossings that can be detected as changing xy orderings between
points as (û, v̂, t̂) change (cf. Figure 4). This holds because our
original input sampling only contains points that are visible from
some part of the 5D domain, i.e., there are no samples that are al-
ways behind another surface. We define the consistency test for
samples s1 and s2 around the lens coordinates (û, v̂) as

SAMESURFACE(s1, s2, û, v̂)
def
=

x′1(û± δ, v̂ ± δ)− x′2(û± δ, v̂ ± δ)
y′1(û± δ, v̂ ± δ)− y′2(û± δ, v̂ ± δ)

have consistent sign for all the 4 choices of (±,±) (5)

where δ =
√

1/N , where N is the number of reconstruction loca-
tions per pixel, approximates the size of the subdomain that corre-
sponds to one reconstruction location. The square root accounts for
the fact that the lens domain is 2D.

We extend the above test to handle motion using the same rationale:
screen positions of samples that can be treated as a single appar-
ent surface do not cross on the screen, when the time coordinate is
changed. Furthermore, the criterion is easily extended to groups of
samples by comparing the relative xy orderings of the vertices of
their bounding rectangles. In practice, we allow the trajectories to
cross for at most 0.1 pixels.

3.3 Reconstruction with Complex Visibility

Reconstruction from samples that originate from multiple apparent
surfaces is hard, because we need to determine which surface is vis-
ible at the reconstruction location. The challenge is to distinguish
between small holes in the geometry and apparent holes caused by
stochastic sampling. Our solution is to locally triangulate the repro-
jected samples, aided by efficient, conservative early-out tests.

Based on the 5D input sampling pattern, we precompute a radius R
of the largest empty circle we expect to see on the x̂ŷ plane after re-
projection. Consequently, any hole smaller than R should be filled,
because it is beyond the resolution of our input sampling. However,
surface boundaries need special treatment, because extending their
coverage by R leads to visible bloating (Figure 5).

Determining R The dispersion of a point set is defined as the ra-
dius of the largest circle that does not contain any of the points. For
a sampling pattern, this provides a fundamental limit below which
we cannot distinguish between apparent and actual holes. We set
the radius R to be equal to the dispersion limit measured from the
input sampling pattern. However, the dispersion measured in xy
changes under reprojections. E.g., when we take a high-quality
xyuv sampling pattern that has low dispersion (such as one ob-
tained from a Sobol sequence) and reproject according to Equa-
tions 2-3, the point set becomes much less uniformly distributed
in xy, i.e., its dispersion increases3. When measuring R, we take

2The only exception is when the surface changes apparent orientation
from backfacing to frontfacing for some lens coordinates. Our algorithm
treats samples that originate from different sides as separate surfaces.

3Some intuition as to why this happens is offered by the fact that a good
sampling pattern has little energy in the center of the Fourier domain, ex-
cept for the peak at zero. Defocus and motion are shears that effectively

Constant (u,v), no triangulationInput samples

Constant (u,v), with triangulation Constant (u,v), ground truth

^ ^

^ ^ ^^

Figure 5: A constant-ûv̂ slice of the x̂ŷûv̂ light field shows the
importance of triangulation. Top-left: Axis-aligned filtering of the
16 input samples per pixel. Top-right: Surface boundaries bloat
without triangulation. Bottom-left: Triangulation avoids the bloat.
Bottom-right: Ground truth from PBRT using a pinhole camera.

the maximum dispersion under a large number of random reprojec-
tions. The measured values for R are approximately 2/

√
N for our

Sobol sequences, and other high-quality sampling patterns seem to
give similar values. Note that the dispersion limit is a property of
the sampling pattern and thus independent of the scene.

Determining visibility We say that a reconstruction location is
covered if it is possible to find three reprojected input samples that
form a triangle that 1) covers the reconstruction location, and 2)
fits inside a circle of radius R. Let us call such triangles valid. By
elementary geometry, the edges of a valid triangle cannot be longer
than 2R because otherwise it cannot possibly fit inside a circle of
radius R. Since the reconstruction location can be close to one its
vertices, we may consequently need input samples that reproject as
far as 2R of the reconstruction location to find all valid triangles.

We explain the algorithm using two surfaces; the extension to any
number of surfaces is straightforward. Figure 6 illustrates the three
possible scenarios between two surfaces:

1. Samples belong to one surface.
2. Samples belong to two surfaces, and the nearest surface ex-

tends in all directions from the reconstruction location.
3. Samples belong to two surfaces, and we are at a boundary of

the nearest surface.

If samples from only one surface are found within R of the recon-
struction location, we have trivial coverage. Most occurrences of
the second case can be detected quickly by classifying the input

contract the empty area at the center, because the subsequent xy projection
corresponds to a slice through the zero frequency axes Ωu and Ωv (Fourier
slice theorem). This is visible in the primal domain as larger empty areas.

R
2.

R

1.
R

3.
foreground
surface

background
surface

reconstruction
location

Figure 6: Determining visibility. 1) Samples from only one surface
fall within radius R of the reconstruction location. All dark brown
samples within R are linearly filtered. 2) Samples come from two
surfaces, but samples from the foreground surface fall in all four
quadrants around the reconstruction location. Hence, a covering
quadrilateral necessarily exists. The xy filter is applied to the light
green samples only. 3) Border. The actual covering surface is found
by locally triangulating the samples.

samples into 90-degree quadrants relative to the reconstruction lo-
cation’s (x̂, ŷ). If all quadrants contain a sample from the nearest
surface withinR, we know without further work that we can form a
valid triangle that covers the reconstruction location. Cases 1 and 2
handle over 90% of the reconstruction locations in our test scenes.

In the third case, we search for any three input samples that span a
valid triangle. This is implemented as a O(n3) loop over the input
samples that belong to each surface. Despite the high algorithmic
complexity, the sample counts were low enough in our tests that
the triangulation was not a bottleneck. Should the need ever arise,
asymptotically faster O(N logN) triangulation algorithms could
be used instead. Section 6.2 discusses the timing breakdown.

If the reconstruction location is covered, we filter the radiance from
all samples of the covering surface using a tent filter of radius R
centered at the reconstruction location.

Sometimes we have only one or two samples from a surface, and
therefore cannot determine the coverage using triangulation. In
these cases we merge the surface to the next one, effectively blend-
ing the two surfaces together. In our scenes, this happens in
0.3− 0.5% of the reconstruction locations.

4 Acceleration

The reconstruction algorithm needs to quickly find the input sam-
ples that reproject to the vicinity of reconstruction location’s (x̂, ŷ),
given (û, v̂, t̂). The primary challenge is that an input sample can
move a considerable distance on the screen during the shutter inter-
val, or as a function of lens coordinates in out-of-focus areas4. Our
solution is a 5D hierarchical acceleration structure. Glassner [1988]
and other authors have proposed acceleration structures where the
nodes’ spatial extents are parameterized with time in order to ef-
ficiently ray trace animated scenes. We employ the same general
principle and organize the input samples into a bounding volume
hierarchy (BVH), where the nodes’ xy extents are parameterized
using û, v̂ and t̂. At query time, we use this parameterized bound-
ing volume to test if the reconstruction location is inside the bounds.

Node bounds We compute four plane equations, Xmin, Xmax,
Ymin, Ymax, for each node of the hierarchy. These conservatively

4However, the number of samples reprojecting to the vicinity of (x̂, ŷ)
from a single (û, v̂, t̂) is relatively unaffected by the magnitude of motion
and defocus. Variation is caused primarily by changes in visibility.

function ConstructSurfaces(x, y, u, v, t)
1: N ← QueryTree(x, y, u, v, t)
2: N ← Sort(N)
3: i← 0
4: surfaces ← empty list
5: S ← empty list
6: while i < N.length and SameSurface(S,N [i]) do
7: S.append(N [i])
8: i← i+ 1
9: end while

10: surfaces.append(S)
11: if i < N.length goto 5
12: return surfaces

Figure 7: Pseudocode for grouping nodes to surfaces for a re-
construction location (x, y, u, v, t). List N holds the leaf nodes
returned by the tree. List S holds the current surface, and
SameSurface(S,node) tests node against all nodes in S.

bound the xy coordinates of all samples contained in the node as
a function of lens coordinates and time, so that we can quickly
obtain a conservative screen bounding rectangle for a node for
any (û, v̂, t̂). Concretely, Xmin = (A,B,C) is constructed such
that for all input samples in the node, their reprojected coordinates
x′i(û, v̂, t̂) obey

x′i(û, v̂, t̂) ≥ Aû+Bt̂+ C (6)

for any (û, v̂, t̂), and analogously for the other planes, flipping com-
parisons as necessary5. The algorithm for constructing the planes is
detailed in Appendix A.

If the reconstruction location’s (x̂, ŷ) lie within the specified ra-
dius of the node’s extents, as evaluated by Equation 6, the node
may contain samples that get reprojected within the radius of the
reconstruction location. We then say that a reconstruction location
intersects the node.

Query The task of a query from the acceleration structure is to
find the input samples that reproject close to (x̂, ŷ), group the re-
projected samples into apparent surfaces, and order the surfaces
front-to-back. The query starts from the BVH’s root node, recur-
sively proceeds to all intersected child nodes, and collects the inter-
sected leaf nodes into a list. Once the leaf nodes are found, we
group them into apparent surfaces, sort the surfaces, and repro-
ject the individual samples contained in them. As a critical opti-
mization, we guarantee during hierarchy construction that each leaf
node contains samples from exactly one surface, as determined by
SAMESURFACE (Equation 5). This allows us to form the surfaces
by grouping leaf nodes instead of individual samples, greatly reduc-
ing the complexity of this stage. In practice, we first sort the leaf
nodes according to the reprojected z′ of the first sample in each
leaf, and then walk the sorted list and group the adjacent nodes if
they satisfy SAMESURFACE. Figure 7 provides pseudocode. Fi-
nally, the individual samples of the leaf nodes are reprojected and
checked for inclusion within the radius.

Construction The construction follows a push-pull procedure,
where we first create the leaf nodes using a top-down quadtree sub-
division, and then construct a BVH using bottom-up grouping of
nodes.

5Note that Xmin and Xmax are independent of v because defocus is sep-
arable between xu and yv. Similarly Ymin and Ymax are independent of u.

light source
lu coordinate

light source
lx coordinate plane Π

view rays

lig
ht

 ra
ys

object 1

object 2

z

Figure 8: To reconstruct shadows from area light sources, we first
determine the points that are visible from camera (black rays). We
shoot a ray from a point on the light source (parameterized by
lu, lv) towards these points, and compute light-space depths z for
the nearest hits as seen from the light. For shadowed view sam-
ples (dashed disk), the depth denotes the first occluder along the
ray. The direction of light rays is parameterized by the the lx, ly
coordinates of their intersection with the Π plane.

We start by reprojecting all input samples to the center of the
(û, v̂, t̂) cube. We bucket the reprojected samples into regular bins
on the xy plane, and construct an initial quadtree of the bins, so
that the subdivision stops whenever there are fewer than a specified
number of samples (we use 32) inside the node, or the node consists
of only one bin. Additionally, we split leaf nodes that contain sam-
ples from more than one surface. Once the leaf nodes are finished,
we construct a BVH using an agglomerative bottom-up algorithm
[Walter et al. 2008].

The acceleration structure construction takes approximately one
second for Figure 1 on a quad-core Intel Core i7 CPU.

5 Soft Shadows

The reconstruction of soft shadows from planar area lights is closely
related to defocus. Depth of field is produced by integrating radi-
ance over the 2D lens for each pixel; soft shadows are produced
by integrating shadowed radiance from the 2D light source to a re-
ceiver point in the scene. However, two main differences must be
accounted for. First, the density of light rays depends on the re-
ceiver points, and is therefore non-uniform. Second, the radiance
contributed by a light ray changes along the ray, because the ray
terminates at the nearest occluder.

Parameterization To leverage our defocus and motion blur ma-
chinery, we parameterize the light rays emitted from the light source
using two parallel planes: the plane of the light source, and a
plane Π placed at an arbitrary non-zero distance from the light
(see Figure 8). The coordinates (lu, lv) specify points on the light
source, and (lx, ly) encode the ray’s direction by specifying the
point where the ray hits plane Π. This is similar to the usual
lens-focal plane parameterization for defocus. Each light sample
{(lx, ly, lu, lv) 7→ (z, L)} records the depth z of the first hit from
the direction of the light, and the radiance L carried by the ray onto
the blocking surface. This 4D set of rays defines an incident ra-
diance light field. Motion blurred shadows arising from moving
lights, shadow casters, or camera are easily supported by incorpo-
rating time as a parameter of the light samples, and storing a motion
vector in addition to z and L.

Algorithm The input samples to the shadow reconstruction algo-
rithm are drawn from a 7D screen-time-lens-light domain. First, we
render the screen-lens-time input samples from the camera’s point
of view, as before, and construct an acceleration hierarchy. For
each scene point hit by a camera ray, we choose a point on the light
source, and generate a light sample (Figure 8). A separate acceler-
ation hierarchy is built from the light samples.

To reconstruct the radiance from a point (l̂u, l̂v) on the light source
to a point p in the scene, we first determine the (l̂x, l̂y) coordinates
of the ray from (l̂u, l̂v) to p (Figure 8). These coordinates change
linearly as a function of (l̂u, l̂v), with slope determined by p’s light-
space depth [Egan et al. 2011]. The situation is now similar to
defocus, with (l̂x, l̂y) taking the place of the reconstruction location
(x̂, ŷ): reprojection and coverage testing using the light samples
proceed as described earlier.

A crucial difference from Section 3 is that we must account for the
change in visibility along the light ray. That is, a ray carries no light
after it has hit the blocker. We handle this by comparing the light-
space depths of the receiver p and those of the light samples, and
setting L = 0 for light samples that terminate before p. Filtering of
the samples is otherwise unchanged. This means that a single light
sample may contribute light to one surface and shadow to another.
This is in contrast to [Egan et al. 2011], who render shadows due
to distant occluders and must carefully decide where their filter can
be applied.

To enable simultaneous motion blur, depth of field, and area shad-
ows, we employ the above single-ray reconstruction in a fashion
similar to path tracing. Specifically, we first reconstruct the scene
point p visible at the camera reconstruction location (x̂, ŷ, û, v̂, t̂)
using the camera samples. We then perform a lighting reconstruc-
tion for one point (l̂u, l̂v) on the light using point p and the light
samples. This path tracing formulation prevents the combinatorial
explosion in the number of reconstructions. We reconstruct shad-
owed lighting using the same t as the camera sample to ensure that
scene geometry is consistent between the camera and light.

Density Because the light samples are cast towards the hit points
of the camera samples, their density in the (lx, ly) coordinate sys-
tem is determined by the relative orientations of the light, camera,
and the surface on which the camera sample lies. To account for the
non-uniform density, we derive an analytic formula for the 2 × 2
Jacobian J = ∂(lx, ly)/∂(x, y) of the change lx, ly as a function
of screen coordinates x, y, and store this density ρ =

√
| det J |

in each light sample. The reconstruction algorithm uses this den-
sity for scaling R by ρ to account for the non-uniform density.
The square root is necessary because the Jacobian measures area
scaling, while R is a radius. To facilitate the computation of the
view-light Jacobian, we augment the view samples with the depth
derivatives ∂z/∂x and ∂z/∂y computed when taking the camera
samples. Appendix B gives detailed formulae.

When computing J , we currently do not account for the additional
changes in density caused by a finite lens and light size, i.e., our
Jacobian is based on a pinhole camera and a pointlight. Also, the
depth gradients are computed at t = 0.5. While Figure 11 shows
that good results can be achieved with these approximations, vali-
dating and extending the density model remains future work.

6 Results and Discussion

We evaluate or algorithm on one scene that features defocus (BAL-
CONY, Figure 1), two scenes that feature simultaneous defocus and
motion blur (BUTTERFLIES and CHAIRS, Figure 9), and the EX-

Input: 1 sample/pixel Our result Ground truth

Figure 10: Reconstruction from extremely limited information.
Some discrepancies can be seen between our reconstruction and
ground truth on the close-to-focus leaves, but overall the quality is
high, especially for only one sample per pixel.

CAVATOR scene (Figure 11) features simultaneous defocus, motion,
and area lighting. The supplementary material contains videos that
demonstrate our algorithm’s temporal stability.

Implementation details and test setup We have produced both
a multithreaded CPU implementation and a CUDA GPU imple-
mentation of our algorithm. Currently, the GPU implementation
can render defocus and motion blur, while soft shadows from area
lights are still rendered on the CPU. Our test setup consists of an In-
tel Core i7 930 CPU at 2.8GHz with 12GB RAM, and an NVIDIA
GeForce 480GTX GPU with 1.5GB RAM. All results, unless oth-
erwise noted, use 128 reconstruction locations per pixel.

The input samples used for generating the results come from three
sources: PBRT [Pharr and Humphreys 2010] (Figures 1, 15, 9),
Pixie [Arikan 2009] (Figure 17), both modified to output the sam-
ples, and our own ray tracer (Figure 11). In addition, PBRT was
modified to support linear world-space motion. This demonstrates
the plug-and-play nature of our approach. The input samples are
stored in a common, easy-to-parse file format, and no source-
dependent processing was used for generating the results, with the
exception of the shadow pipeline that requires additional informa-
tion about the relative placement of the camera and light.

Defocus and motion Figure 1 features a balcony scene with
heavily defocused foreground objects (foliage and balcony railing).
The inputs consists of 16 low-discrepancy samples per pixel, ren-
dered at 800 × 550 in 403 seconds using PBRT. Given these sam-
ples, our GPU implementation produced in 10 seconds an image of
equal quality, subjectively as well as in terms of PSNR, to an 256
spp rendering from PBRT, which took 6426 seconds (16× longer).

Figure 9 features two scenes, BUTTERFLIES and CHAIRS. PBRT
was used for generating the samples and the ground truth images.
Images were rendered at 960 × 540. BUTTERFLIES features com-
plex visibility due to the foliage and changing occlusions due to
the motion of the butterfly on the right. Again, given the initial 16
samples per pixel, our reconstruction algorithm produced in about
10 seconds images comparable to 256 spp renderings from PBRT,
corresponding to speedup of 16×.

The number of reconstruction locations in our algorithm is not di-
rectly comparable to the number of samples per pixel taken by
PBRT, because each of our reconstruction locations uses multiple
input samples for filtering its result. To verify this, we replaced
our tent filtering of input samples with a nearest neighbor filter,
which resulted in quality comparable to PBRT with the same num-
ber samples per pixel. Additionally, we excluded the possibility
that differences in sampling patterns might affect the image qual-
ity noticeably by using PBRT’s patterns in our implementation; the
effect was negligible.

Our result, 1072 + 11 s (+1.02%)

PBRT 256spp, 17 276 s (+1611%)

PBRT 16spp, 1072 s

Our result, 771 + 6 s (+0.78%)

PBRT 256spp, 12 070 s (+1565%)

PBRT 16spp, 771 s

Figure 9: Simultaneous depth of field and motion blur. Top row: Image rendered by PBRT using 16 samples per pixel. Middle row: Our
reconstruction from the same 16 samples per pixel. Bottom row: Equal quality PBRT rendering.

Simultaneous area lights, defocus, motion In the EXCAVA-
TOR scene (Figure 11) we reconstruct soft shadows, motion blurred
soft shadows, and motion blurred soft shadows with depth of field
from four 7D (x̂, ŷ, û, v̂, t̂, l̂x, l̂y) input samples per pixel. The top
row shows images generated by axis-aligned filtering of the input
samples, and the next row shows our reconstruction result.

This scene shows that our 5D (x̂, ŷ, û, v̂, t̂) reconstruction algo-
rithm can be robustly extended to new integration domains (light),
and that it performs surprisingly well even with very sparse in-
put samplings. In particular, note how the left-hand excavator’s
shovel blends on top of the cockpit in the middle and right im-
ages. The accompanying videos demonstrate temporal stability of
the reconstructed shadows, with and without motion and defocus.
In these animations, each frame is sampled and reconstructed inde-
pendently. Some geometric aliasing is visible in the high-frequency

geometry, like the excavators’ tracks, but that is a property of the in-
put sampling, not our reconstruction algorithm. We stress that these
results are deliberately computed with very sparse input samplings.

Numerical verification Figure 12 contains signal-to-noise ratios
(PSNR) measured from our reconstruction as a function of both the
number of input samples and the number of reconstruction loca-
tions, computed for the BUTTERFLIES scene. The ground truth was
computed using 1024 samples per pixel using PBRT. We computed
the PSNRs after applying gamma and clamping the results to the
0-255 range, but before quantization. It can be observed that our
algorithm yields a considerable improvement over axis-aligned fil-
tering, even when using a very low number of input samples, and
matches ground truth well, as demonstrated by the PSNRs in the
high 30s. As demonstrated by Figure 10, reasonable results can be
obtained even from very limited samplings (1 input sample/pixel).

N
e
a
re
s
t
n
e
ig
h
b
o
r

4
 s
a
m
p
le
s
/p
ix
e
l

O
u
r
re
s
u
lt

4
 s
a
m
p
le
s
/p
ix
e
l

Area light Area light + motion blur Area light + motion blur + defocus

Figure 11: Physically-based soft shadows with motion blur and depth of field. Top row: Nearest neighbor filtering, four samples per pixel.
Bottom row: Our reconstruction, computed from the same four samples per pixel as the top images.

25
16 32 64 128 256

30

35

40

P
S

N
R

 (d
B

)

Number of reconstruction locations

16
Input samples/pixel

8

2
4

1

Figure 12: PSNR measurements vs. ground truth for BUTTER-
FLIES as a function of #reconstruction locations and #input sam-
ples. Axis-aligned filtering gave 13.6dB, 16.3dB, 19.5dB, 23.1dB
and 27.6dB for 1, 2, 4, 8 and 16 input samples per pixel.

Fast refocusing It is easy to refocus images during the recon-
struction stage using the same input samples. This can be done
by changing the lens model parameters C1, C2 after the samples
have been reprojected to the center of the (u, v, t) domain using the
original lens parameters, but before building the acceleration struc-
ture. This modifies the input samples’ slopes ∂(x, y)/∂(u, v), or
equivalently, shears the lens integration kernel [Ng 2005]. Chang-
ing the aperture is achieved the same way, by scaling C1 and C2.
As demonstrated in Figure 13, our algorithm enables high-quality
refocusing in a matter of seconds. The supplementary material in-
cludes a video demonstrating refocusing on the BALCONY scene of
Figure 1 from 16 spp input, demonstrating the stability of the re-
construction under parameter changes. All frames of the animation
are reconstructed from the same input samples. Our method scales
to a large number of reconstruction locations, and we use 2048 per
pixel in this video because the upper right of the scene contains
extremely high contrast due the HDR environment map.

Discussion of failure cases Our visibility heuristic detects sets
of samples that have no significant relative parallax over time and
the lens. Even if visibility is undersampled due to high-frequency
geometry, e.g., distant foliage, the samples can be correctly filtered

Original reconstruction Refocusing from same samples

Figure 13: Left: Reconstruction using the original focus distance
of input samples. Right: Reconstruction from the same samples
using a modified focusing distance. See the supplementary material
for a video showing a continuous rack focus.

together, unlike in object space groupings. For this to fail, the sam-
ples would have to originate from very high-frequency geometry
that has significant relative parallax due to defocus or motion. To
alleviate this, potentially undersampled surfaces are merged with
the next one, effectively blending them together, as described in
Sec. 3.3. This happens rarely, and due to the parallax, only on sur-
faces that are blurred due to motion or defocus anyway.

Our algorithm is based on the assumption that the input sampling
captures the frequency content of the integrand. Consequently, if
the input samples are aliased, we introduce a low-frequency er-
ror, just like traditional sampling and reconstruction. Away from
visibility boundaries, this is avoided by usual prefiltering methods
(MIP-maps, ray differentials).

Bandwidth information and view-dependent effects Fig-
ure 14 demonstrates a proof-of-concept implementation which uti-
lizes additional information about shading bandwidth caused by
view-dependent effects. Based on an estimate of the bandwidth
of the reflectance function [Durand et al. 2005], we weight each re-
construction sample by its distance from the reconstruction location
on the uv plane by a Gaussian matched to the BRDF bandwidth to

Input Samples,
16spp

Reconstruction
w/o bandwidth

Reconstruction
with bandwidth

Ground truth

Figure 14: The effect of additional bandwidth information illus-
trated on a defocused glossy teapot under environment lighting.

MDAS, avg. 16 spp

Filtering time: 51 s

Our result, 16 spp

Filtering time: 73 s (CPU)

MDAS, relative density

Figure 15: MDAS applied to the scene from Figure 1. Average sam-
pling rate is 16 samples per pixel. Top: Image rendered by MDAS,
with the inset showing the relative density of samples taken. Lower
left: Detail of the image reconstructed by MDAS. Lower right: Our
result. Reported timings include only filtering. These numbers refer
to the CPU implementations; on GPU our filtering took 10 seconds.

account for view-dependent variation along the 5D trajectories. To
match the effective drop in the number of input samples that affect
each reconstruction location, we sample the glossy object propor-
tionally more, leading to a non-uniform distribution of the input
samples. Combining our filter with predictions of the shape of the
reflected spectrum [Durand et al. 2005; Soler et al. 2009; Egan et al.
2009] remains an interesting avenue of future work.

6.1 Comparisons

MDAS Figure 15 shows a comparison between our depth of field
reconstruction and multidimensional adaptive sampling [Hachisuka
et al. 2008]. Because we have only a CPU implementation of
MDAS, we quote timings from our CPU implementation to ensure
fairness. The scene is difficult for the contrast-based algorithm be-
cause it contains complex visibility and lighting, which cause prob-
lems for the anisotropy estimator that works based on radiance sam-
ples alone. As can be seen, this results in a noisy final image in
comparison to our result. As discussed by Hachisuka et al. [2008],
MDAS could likely be extended to utilize additional anisotropy in-
formation.

x

u

Figure 16: An xu slice through the screen-lens light field in an
8-pixel-wide region in the San Miguel scene (slice highlighted in
red in the left image). The complex visibility over the lens and the
samples’ varying slopes prohibit sheared linear filtering.

Sheared reconstruction Egan et al. [2009; 2011] share our goal
of reconstructing an image from a relatively sparse sampling, aided
by auxiliary information about the integrand. Their spectrum model
predicts crucial phenomena such as image bandwidth reduction re-
sulting from motion (resp. circle of confusion, blocker depth), and
can be used for driving adaptive sampling. However, some issues
arise when reconstruction is performed using a linear filter derived
from the same model.

First, the reconstruction falls back to axis-aligned (traditional) fil-
tering near occlusion boundaries or regions of inhomogeneous mo-
tion. This happens because in such areas the local spectrum of the
light field is too complex to allow a wider spatial filter. The effect
is visible in the BALLERINA scene (Figure 17) near the boundaries
and around the central fold of the dress. Furthermore, depth of field
can exacerbate the issue. Figure 16 shows an xu slice of a com-
plex screen-lens light field with many objects at different depths,
resulting in a complex function with occlusion and multiple slopes.
While Egan et al. [2009] introduced their algorithm for motion blur,
it can be also be applied to defocus without significant changes.
When we did this, only about 30% of the pixels in Figure 1 could
be filtered using a sheared filter; in other areas the algorithm re-
verted to axis-aligned filtering. In contrast, our algorithm handles
these difficult situations thanks to the per-sample slopes and explicit
visibility determination.

Second, the model assumes that the integration filters, i.e., shut-
ter response, lens aperture, and light intensity, are bandlimited (in
practice, Gaussians). This prohibits the use of box filters, which is
crucial for obtaining faithful depth of field reconstruction, as cam-
era apertures are not Gaussian. In our experiments with sheared
reconstruction filters, using a box filter against the theory leads to
noticeable aliasing artifacts.

Third, the model is derived in an infinite screen-time (resp. screen-
lens, screen-light) domain. This forces one to draw samples outside
the effective width of the shutter interval (resp. lens, light source)
to avoid aliasing.

The sheared filter of Egan et al. [2009] and our reconstruction agree
when the samples come from a single fronto-parallel planar object
moving uniformly in the direction of the image plane (no depth
changes). In this case the light field slopes of all samples are the
same. If we furthermore apply a Gaussian weighting on the time
(or lens) axes, our filter reduces to exactly the same sheared linear
filter as predicted by Egan et al.’s analysis [2009].

6.2 Timing breakdown and memory consumption

In our tests, the time taken by different parts of the reconstruction
algorithm is distributed as follows. The tree construction, which
is currently performed on the CPU, accounts for around 10% for
the GPU variant and around one percent when filtering on the CPU
in BUTTERFLIES. Querying the tree, including testing the leaves

Egan et al. 2009
8 samples/pixel

Our method
4 samples/pixel

Ground truth
(Pixie)

Figure 17: Comparison of motion blurred results between sheared
reconstruction, our method, and ground truth. Even though sheared
reconstruction gets the large scale movement right, some deviations
from ground truth remain even in the homogeneously moving re-
gions. The insets show that our algorithm yields results closer to
ground truth, also in regions where sheared reconstruction must
fall back to axis-aligned filtering due to occlusion boundaries or
inconsistent motion. Differences in moving shadows result from a
content pipeline issue that prevents us from running our shadow
filter on this image. As a result, surface shadows are treated like
texture. The scene was rendered in a resolution of 512× 512. Our
reconstruction took 2.3 seconds (GPU).

using SAMESURFACE, reprojecting the individual samples, and fil-
tering when triangulation is not necessary, takes roughly 80% of the
time on the GPU (resp. 90% on CPU), with the rest of the time used
for triangulation. The statistics are similar for the other scenes. In
practice, execution time scales linearly with the number of recon-
struction locations.

Each input sample consumes 64 bytes of memory. The most sig-
nificant contributors to the overall memory consumption of our al-
gorithm in BUTTERFLIES are the input samples (510MB) and and
the acceleration structure (116MB), i.e., the memory consumption
is almost entirely determined by the number of input samples.

7 Conclusion

Our technique enables accurate reconstruction of the temporal light
field, making it possible to create high-quality renderings featuring
simultaneous motion blur, depth of field, and area shadows from
relatively sparse input samplings. We improve on previous work on
two crucial aspects. First, we are not limited to a single anisotropic
direction per reconstruction location, but instead use the accurate
trajectory for each individual input sample. Second, we introduced
novel methods for determining the visibility consistency of stochas-

X max
=A 2

t + B 2

X min
=A 1

t +
 B 1

Right edge of screen

x(t=0) position at start of shutter

Left edge of screen

texit = tmax

tmin=0

sample
exits
screen

t(z=0)

t

x

original
sample
(xi,ti)

subset of
spacetime
bounded by
xmin-xmax

Figure 18: Bounding the reprojection of a sample. (See text.)

tic light field samples and for resolving their visibility, enabling re-
construction in presence of object boundaries. The algorithm has
no scene-dependent parameters, and has been successfully applied
to several scenes obtained from multiple rendering systems at vary-
ing sampling densities. Our method is fast, especially when imple-
mented on the GPU, and additionally enables effects such as refo-
cusing.

Our approach to reprojection and visibility determination could also
be applied to other integration domains, such as incident radiance
for glossy reflection. While we have demonstrated that bandwidth
information may be used in our reconstruction algorithms, we feel
that combining our technique more closely with sophisticated, non-
uniform, adaptive sampling based on predictions of the anisotropic
spectra and bandwidth resulting from e.g. gloss, curvature and defo-
cus [Durand et al. 2005; Soler et al. 2009; Egan et al. 2009] should
enable further savings.

A Bounding Planes

We construct the planes used for bounding the input samples’ mo-
tion under reprojections as follows. We first construct planes for
each individual sample, and then merge the planes as the samples
are grouped first to leaves and then internal nodes. We first perform
fits for X and Y bounding lines as two separate 2D (xt and yt)
problems, and account for defocus, which is separable from mo-
tion, afterwards. Note that in contrast to motion BVHs used in ray
tracing, we bound projected screen coordinates. See Figure 18.

We first determine the time interval when the sample is in front of
the camera: [0, tz=0] if the sample starts in front, and [tz=0, 1] if the
sample is behind the camera at t = 0. We subsequently compute
the time instants tenter and texit when the sample potentially enters
and exits the screen — the sample can enter the screen if its t = 0
position is outside the screen and vice versa — and use these to
further trim the time interval to only those times [tmin, tmax] when
the sample is potentially on-screen. We then fit two lines that bound
x(t) from right and left. Note that these lines are not coincident,
because the trajectory x(t) is typically curved due to perspective.
After repeating for y, we have four lines that satisfy A1t + B1 ≤
x(t) ≤ A2t + B2 and C1t + D1 ≤ y(t) ≤ C2t + D2. The
additional effect of defocus is subsequently handled by evaluating
∂(x, y)/∂(u, v) at tmin and tmax, and lifting the lines into 3D planes,
potentially adjusting the constants B and D, such that the changes
in x and y due to defocus are bounded by the result.

When constructing tree nodes, we need to merge two sets of bound-
ing planes. We first conservatively extend the [tmin, tmax] range to
enclose the ranges from both inputs. Subsequently, we evaluate
both sets of plane equations at the ends of the new interval, and at
the [−1, 1] extremities of the lens coordinates, and fit new bounding
planes to these points.

B View-light Jacobian

We seek the Jacobian J = ∂(lx, ly)/∂(x, y), where (x, y) are
screen coordinates and (lx, ly) are coordinates on the light’s im-
age plane. Given the screen coordinates x, y in clip units [−1, 1]2,
the depth z, and the partials ∂z/∂(x, y) of the surface where the
camera sample hits, we locally linearize the surface being viewed.
LetX(x, y) = x z(x, y) and Y (x, y) = y z(x, y) be 3D clip space
points that project to (x, y). Note that z varies with (x, y) because
the surface is in general orientation. Now, by the product rule,

∂X

∂x
= z + x

∂z

∂x
,
∂X

∂y
= x

∂z

∂y
,
∂Y

∂x
= y

∂z

∂x
,
∂Y

∂y
= z + y

∂z

∂y
,

and the vectors (∂X
∂x
, ∂Y

∂x
, ∂z
∂x

)T, (∂X
∂y
, ∂Y

∂y
, ∂z
∂y

)T form a basis for
the locally linearized 3D surface. In other words, points on the
plane can be written asX(α, β)

Y (α, β)
z(α, β)

 =

∂X
∂x

∂Y
∂x

xz
∂Y
∂x

∂Y
∂y

yz
∂z
∂x

∂Y
∂z

z

αβ

1

for some (α, β), where we denote the matrix by M. Therefore,

(α, β, 1)T = M−1(X,Y, z)T, and 1/z = M−1(3, :)(x, y, 1)T,
where M−1(3, :) denotes the third row of the inverse6. Now,
the camera-space homogeneous point (X,Y, z, 1) is projectively
equivalent to (x, y, 1, 1/z), which is obtained from (x, y) by

A (x, y, 1)T, with A =

(
I3×3

M−1(3, :)

)
.

Finally, we apply the projective camera-to-light transformation L
to yield (lx, ly, lz, 1)T ∼ LA (x, y, 1)T, where ∼ denotes usual
projective equivalence. We have a rational linear expression for
(lx, ly) in terms of (x, y), which is easy to differentiate to get J .

Acknowledgments
We thank Kevin Egan for help with the Ballerina scene and fruit-
ful discussions on sheared reconstruction; Jonathan Ragan-Kelley
for early brainstorming; George Drettakis for helpful comments;
Guillermo M. Leal Llaguno for the Balcony scene on which Butter-
flies is based; Florent Boyer for the scene on which Chairs is based;
Daniel Genrich for the Ballerina scene. This work was partially
funded by the MIT-Singapore Gambit lab and a grant from Intel.

References

ARIKAN, O., 2009. Pixie – Open source RenderMan.
http://www.renderpixie.com.

BOLIN, M. R., AND MEYER, G. W. 1995. A frequency based ray
tracer. In Proc. ACM SIGGRAPH 95, 409–418.

CHAI, J.-X., TONG, X., CHAN, S.-C., AND SHUM, H.-Y. 2000.
Plenoptic sampling. In Proc. ACM SIGGRAPH 2000, 307–318.

CHEN, S. E., AND WILLIAMS, L. 1993. View interpolation for
image synthesis. In Proc. ACM SIGGRAPH 93, 279–288.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. In Computer Graphics (Proc. ACM SIG-
GRAPH 84), vol. 18, 137–145.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes image rendering architecture. In Computer Graphics
(Proc. ACM SIGGRAPH 87), vol. 21, 95–102.

6We’ve shown the well known result that 1/z is linear in screen space,
but derived it using the partials of depth computed at one point.

DURAND, F., HOLZSCHUCH, N., SOLER, C., CHAN, E., AND
SILLION, F. X. 2005. A frequency analysis of light transport.
ACM Trans. Graph. 24, 3, 1115–1126.

EGAN, K., TSENG, Y., HOLZSCHUCH, N., DURAND, F., AND
RAMAMOORTHI, R. 2009. Frequency analysis and sheared re-
construction for rendering motion blur. ACM Trans. Graph. 28,
3, 93:1–93:13.

EGAN, K., HECHT, F., DURAND, F., AND RAMAMOORTHI, R.
2011. Frequency analysis and sheared filtering for shadow light
fields of complex occluders. ACM Trans. Graph. 30, 2, 9:1–9:13.

GLASSNER, A. 1988. Spacetime ray tracing for animation. IEEE
Computer Graphics and Applications 8, 2, 60–70.

HACHISUKA, T., JAROSZ, W., WEISTROFFER, R. P., DALE, K.,
HUMPHREYS, G., ZWICKER, M., AND JENSEN, H. W. 2008.
Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM Trans. Graph. 27, 3, 33:1–33:10.

LEE, S., EISEMANN, E., AND SEIDEL, H.-P. 2010. Real-time
lens blur effects and focus control. ACM Trans. Graph. 29, 4,
65:1–65:7.

MAX, N., AND LERNER, D. 1985. A two-and-a-half-d motion-
blur algorithm. In Computer Graphics (Proc. ACM SIGGRAPH
85), vol. 19, 85–93.

NEHAB, D., SANDER, P., LAWRENCE, J., TATARCHUK, N., AND
ISIDORO, J. 2007. Accelerating real-time shading with reverse
reprojection caching. In Proc. Graphics hardware, 25–35.

NG, R. 2005. Fourier slice photography. ACM Trans. Graph. 24,
3, 735–744.

NGUYEN, H. 2007. GPU Gems 3. Addison-Wesley Professional.

OVERBECK, R., DONNER, C., AND RAMAMOORTHI, R. 2009.
Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 140:1–
140:12.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based Ren-
dering, 2nd ed. Morgan Kauffmann.

POTMESIL, M., AND CHAKRAVARTY, I. 1983. Modeling mo-
tion blur in computer-generated images. In Computer Graphics
(Proc. ACM SIGGRAPH 83), vol. 17, 389–399.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled sampling for real-time
graphics pipelines. ACM Trans. Graph.. To appear.

RAMAMOORTHI, R., AND HANRAHAN, P. 2004. A signal-
processing framework for reflection. ACM Trans. Graph. 23,
1004–1042.

SOLER, C., SUBR, K., DURAND, F., HOLZSCHUCH, N., AND
SILLION, F. 2009. Fourier depth of field. ACM Trans. Graph.
28, 2, 18:1–18:12.

WALTER, B., DRETTAKIS, G., AND PARKER, S. 1999. Inter-
active rendering using the render cache. In Proc. Eurographics
Workshop on Rendering, 235–246.

WALTER, B., BALA, K., KULKARNI, M., AND PINGALI, K.
2008. Fast agglomerative clustering for rendering. In Proc. Sym-
posium on Interactive Ray Tracing, 81–86.

YU, X., WANG, R., AND YU, J. 2010. Real-time depth of field
rendering via dynamic light field generation and filtering. Com-
put. Graph. Forum 29, 7, 2099–2107.

