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On the Complexity of Approximating a Nash Equilibrium

Constantinos Daskalakis∗

EECS and CSAIL, MIT

Abstract

We show that computing a relative—that is, multiplica-
tive as opposed to additive—approximate Nash equilib-
rium in two-player games is PPAD-complete, even for
constant values of the approximation. Our result is
the first constant inapproximability result for the prob-
lem, since the appearance of the original results on the
complexity of the Nash equilibrium [8, 5, 7]. More-
over, it provides an apparent—assuming that PPAD 6⊆
TIME(nO(log n))—dichotomy between the complexities of
additive and relative notions of approximation, since
for constant values of additive approximation a quasi-
polynomial-time algorithm is known [22]. Such a di-
chotomy does not arise for values of the approximation
that scale with the size of the game, as both relative
and additive approximations are PPAD-complete [7]. As
a byproduct, our proof shows that the Lipton-Markakis-
Mehta sampling lemma is not applicable to relative no-
tions of constant approximation, answering in the neg-
ative direction a question posed to us by Shang-Hua
Teng [26].

1 Introduction

In the wake of the complexity results for computing a
Nash equilibrium [8, 5, 7], researchers undertook the
important—and indeed very much algorithmic—task
of understanding the complexity of approximate Nash
equilibria. A positive outcome of this investigation
would be useful for applications since it would provide
algorithmic tools for computing approximate equilibria;
but, most importantly, it would alleviate the negative
implications of the aforementioned hardness results to
the predictive power of the Nash equilibrium concept.
Unfortunately, since the appearance of the original
hardness results, and despite considerable effort in
providing upper [20, 9, 10, 21, 15, 3, 27, 28] and
lower [12, 18] bounds for the approximation problem,
the approximation complexity of the Nash equilibrium
has remained unknown. This paper obtains the first
constant inapproximability results for the problem.
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REER Award CCF-0953960. Part of this work was done while
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When it comes to approximation, the typical algo-
rithmic approach is to look at relative, that is multi-
plicative, approximations to the optimum of an objec-
tive function. In a game, there are multiple objective
functions, one for each player, called her payoff function.
In a Nash equilibrium each player plays a randomized
strategy that optimizes the expected value of her ob-
jective function given the strategies of her opponents.
And, since the expected payoffs are linear functions of
the players’ strategies, to optimize her payoff a player
needs to use in the support of her own strategy only pure
strategies that achieve optimal expected payoff against
the opponents’ strategies.

Relaxing this requirement, a relative ε-Nash equi-
librium is a collection of mixed strategies, one for each
player of the game, so that no player uses in her support
any pure strategy whose payoff fails to be within a rela-
tive error of ε from the best response payoff. 1 Clearly,
in an ε-Nash equilibrium, the expected payoff of every
player is within a relative error ε from her best response
payoff. However, the latter is a strictly weaker require-
ment; we can always include in the mixed strategy of a
player a poorly performing pure strategy and assign to
it a tiny probability so that the expected payoff from the
overall mixed strategy is only trivially affected. To dis-
tinguish the two kinds of approximation the literature
has converged to ε-approximate Nash equilibrium as the
name for the latter, weaker kind of approximation.

Despite the long line of research on algorithms for
approximate equilibria cited above, there is a single pos-
itive result for relative approximations due to Feder et
al. [15], which provides a polynomial-time algorithm
for relative 0.5-approximate Nash equilibria in 2-player
games with payoffs in [0,M ], for all M > 0. On the
other hand, the investigation of the absolute-error (i.e.
additive-error) counterparts of the notions of approx-
imate equilibrium defined above has been much more
fruitful. 2 The additive notions of approximation are

1Given this definition, this kind of approximation also goes by

the name ε-well supported Nash equilibrium in the literature. We

adopt the shorter name ε-Nash equilibrium for convenience.
2In the additive notions of approximation, it is required that

the expected payoff from either the whole mixed strategy of a

player or from everything in its support is within an ε absolute,
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less common in algorithms, but they appear algorith-
mically more benign in this setting. Moreover, they
naturally arise in designing simplicial approximation al-
gorithms for the computation of equilibria, as the ad-
ditive error is directly implied by the Lipschitz proper-
ties of Nash’s function in the neighborhood of a Nash
equilibrium [25]. For finite values of additive approx-
imation, the best efficient algorithm to date computes
a 0.34-approximate Nash equilibrium [27], and a 0.66-
well-supported equilibrium [21], when the payoffs of the
two-player game are normalized (by scaling) to lie in a
unit-length interval.

Clearly, scaling the payoffs of a game changes the
approximation guarantee of additive approximations.
Hence the performance of algorithms for additive ap-
proximate equilibria is typically compared after scaling
the payoffs of the input game to lie in a unit-length inter-
val; where this interval is located is irrelevant since the
additive approximations are payoff-shift invariant. Un-
like additive notions of approximation, relative notions
are payoff-scale invariant, but not payoff-shift invariant.
This distinction turns the two notions of approximation
appropriate in different settings. Imagine a play of some
game in which a player is gaining an expected payoff of
$1M from her current strategy, but could improve her
payoff to $1.1M via some other strategy. Compare this
situation to a play of the same game where the player’s
payoff is -$50k and could become $50k via a different
strategy. It is debatable whether the incentive of the
player to update her strategy is the same in the two sit-
uations. If one subscribes to the theory of diminishing
marginal utility of wealth [2], the two situations could
be very different, making the relative notion of approx-
imation more appropriate; if the regret is perceived to
be the same in these two situations, then the additive
notion of approximation becomes more fitting.

In terms of computational complexity, additive and
relative approximations have thus far enjoyed a sim-
ilar fate. In two-player games, if the approximation
guarantee scales inverse polynomially in the size of
the game then both relative and additive approxima-
tions are PPAD-complete [7]. Hence, unless PPAD⊆P,
there is no FPTAS for either additive or relative ap-
proximations. In the other direction, for both addi-
tive and relative notions, we have efficient algorithms
for finite fixed values of ε. Even though progress in
this frontier has stalled in the past couple of years,
the hope for a polynomial-time approximation scheme—
at least for additive approximations—ultimately stems
from an older elegant result due to Lipton, Markakis

that is additive as opposed to multiplicative, error from the best
response payoff.

and Mehta [22]. This provides a quasi-polynomial-time
algorithm for normalized bimatrix games (games with
payoffs scaled in a unit-length interval), by establish-
ing that, for any fixed ε, there exists an additive ε-
approximate Nash equilibrium of support-size logarith-
mic in the total number of strategies. 3 The LMM algo-
rithm performs an exhaustive search over pairs of strate-
gies with logarithmic support and can therefore also
optimize some objective over the output equilibrium.
This property of the algorithm has been exploited in re-
cent lower bounds for the problem [18, 12], albeit these
fall short from a quasi-polynomial-time lower bound for
additive approximations. On the other hand, a quasi-
polynomial-time algorithm is not known for relative ap-
proximations, and indeed this was posed to us as an
open problem by Shang-Hua Teng [26].

Our Results. We show that computing a rela-
tive ε-Nash equilibrium in two-player games is PPAD-
complete even for constant values of ε, namely

Theorem 1.1. For any constant ε ∈ [0, 1), it is PPAD-
complete to find a relative ε-Nash equilibrium in bima-
trix games with payoffs in [−1, 1]. This remains true
even if the payoffs of both players are positive in every
ε-Nash equilibrium of the game.

Our result is the first inapproximability result for con-
stant values of approximation to the Nash equilibrium
problem. Moreover, unless PPAD ⊆ TIME(nO(log n)), it
precludes a quasi-polynomial-time algorithm à la [22]
for constant values of relative approximation. 4 Under
the same assumption, our result provides a dichotomy
between the complexity of relative and additive notions
of constant approximation. Such a dichotomy has not
been shown before, since for approximation values that
scale inverse polynomially in the size of the game the
hardness results of [7] apply to both notions.

Observe that, if the absolute values of the game’s
payoffs lie in the set [m,M ], where M

m < c, for
some constant c—call these games c-balanced, then the
relative approximation problem can be reduced to the
additive approximation problem in normalized games
(that is games with payoffs in a unit-length interval)
with a loss of 2c in the approximation guarantee (see
Remark 2.1 and following discussion). Therefore, in
view of [22] and unless PPAD ⊆ TIME(nO(log n)), we cannot
hope to extend Theorem 1.1 to the special class of c-
balanced games. On the other hand, our result may
very well extend to the special class of games whose

3The argument also applies to the stronger notion of additive
ε-well supported Nash equilibria [12].

4In fact, an LMM-style sampling lemma is precluded uncon-
ditionally from our proof, which constructs games whose relative
ε-Nash equilibria have all linear support.
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payoff functions range in either [0,+∞) or (−∞, 0], but
are not c-balanced for some constant c. We believe
that this special class of games is also PPAD-complete
for constant values of relative approximation and that
it should be possible to remove the use of negative
payoffs from our construction with similar, although
more tedious arguments. As an indication, we note
that in all approximate Nash equilibria of the games
resulting from our construction, all players get positive
payoff. Finally, we believe that our result is tight with
regards to the range of values of ε. For ε = 1, a trivial
algorithm yields a relative 1-Nash equilibrium for games
with payoffs in {0, 1} (this is the class of win-lose games
introduced in [1]), while for win-lose games with payoffs
in {−1, 0} we can obtain an interesting polynomial-
time algorithm that goes through zero-sum games (we
postpone the details for the full version). We believe
that these upper bounds can be extended to payoffs in
[−1, 1].

Results for Polymatrix Games. To show The-
orem 1.1, we prove as an intermediate result a simi-
lar (and somewhat stronger) lower bound for graphical
polymatrix games, which in itself is significant. In a
polymatrix game the players are nodes of a graph and
participate in 2-player games with each of their neigh-
bors, summing up the payoffs gained from each adja-
cent edge. These games always possess exact equilibria
in rational numbers [14], their exact Nash equilibrium
problem was shown to be PPAD-complete in [8, 14], an
FPTAS was precluded by [7], and their zero-sum coun-
terparts are poly-time solvable [13, 4]. We establish the
following lower bound.
Theorem 1.2. For any constant ε ∈ [0, 1), it is PPAD-
complete to find a relative ε-Nash equilibrium of a
bipartite graphical polymatrix game of bounded degree
and payoffs in [−1, 1]. This remains true even if a
deterministic strategy guarantees positive payoff to every
player, regardless of the other players’ choices; i.e., it
remains true even if the minimax value of every player
is positive.
Another way to describe our theorem is this: While it
is trivial for every player to guarantee positive payoff
to himself via a deterministic strategy, it is PPAD-hard
to find mixed strategies for the players so that every
strategy in their support is payoff-optimal to within a
factor of (1− ε).

Our Techniques. To obtain Theorem 1.2, it is
natural to try to follow the approach of [8] of reducing
the generic PPAD-complete problem to a graphical poly-
matrix game. This was done in [8] by introducing the so
called game-gadgets: these were small graphical games
designed to simulate in their Nash equilibria arithmetic
and boolean operations and comparisons. Each game

gadget consisted of a few players with two strategies, so
that the mixed strategy of each player encoded a real
number in [0, 1]. Then these players were assigned pay-
offs in such a way that, in any Nash equilibrium of the
game, the mixed strategy of the “output player” of the
gadget implemented an operation on the mixed strate-
gies of the “input players”. Unfortunately, for the con-
struction of [8] to go through, the input-output relations
of the gadgets need to be accurate to within an exponen-
tially small additive error; and even the more efficient
construction of [7] needs the approximation error to be
inverse polynomial. Alas, if we consider ε-Nash equilib-
ria with constant values of ε, the errors in the gadgets
of [8] become constant, and they accumulate over long
paths of the circuit in a destructive manner.

We circumvent this problem with an idea that
is rather intuitive, at least in retrospect. The error
accumulation is unavoidable if the gates are connected
in a series graph without feedback. But, can we design
self-correcting gates if feedback is introduced after each
operation? Indeed, our proof of Theorem 1.2 is based
on a simple “gap-amplification” kernel (described in
Section 3.1), which reads both the inputs and the
outputs of a gadget, checks if the output deviates from
the prescribed behavior, and amplifies the deviation.
The amplified deviation is fed back into the gadget
and pushes the output value to the right direction.
Using this gadget we can easily obtain an exponentially
accurate (although brittle as usual [8]) comparator
gadget (see Section 3.3), and exponentially accurate
arithmetic gadgets (see Section 3.2). Using our new
gadgets we can easily finish the proof of Theorem 1.2
(see Section 3.5).

The Grand Challenge. The construction out-
lined above, while non-obvious, is in the end rather in-
tuitive. The real challenge to establish Theorem 1.1 lies
in reducing the polymatrix games of Theorem 1.2 to
two-player games. Those familiar with the hardness re-
ductions for normal form games [17, 8, 5, 7, 14], will rec-
ognize the challenge. The “generalized matching pen-
nies reduction” of a polymatrix game to a two-player
game (more details on this shortly) is not approxima-
tion preserving, in that ε-Nash equilibria of the polyma-
trix game are reduced to O

(
ε
n

)
-Nash equilibria of the

2-player game; as a consequence, even if the required ac-
curacy ε in the polymatrix game is a constant, we still
need inverse polynomial accuracy in the resulting two-
player game. In fact, as we argue below, any matching
pennies-style reduction is doomed to fail, if ε-Nash equi-
libria for constant values of relative approximation are
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considered in the two-player game. 5

We obtain Theorem 1.1 via a novel reduction, which
in our opinion constitutes significant progress in PPAD-
hardness proofs. The new reduction can obtain all re-
sults in [17, 8, 5, 7, 14], but is stronger in that it shaves a
factor of n off the relative approximation guarantees. In
particular, the new reduction is approximation preserv-
ing for relative approximations. Given the ubiquity of
the matching pennies reduction in previous PPAD hard-
ness proofs, we expect that our new tighter reduction
will enable reductions in future research.

To explain a bit the challenge, there are two kinds of
constraints that a reduction from multi-player games to
two-player games needs to satisfy. The first makes sure
that information about the strategies of all the nodes of
the polymatrix game is reflected in the behavior of the
two players of the bimatrix game. The second ensures
that the equilibrium conditions of the polymatrix game
are faithfully encoded in the equilibrium conditions of
the two-player game. Unfortunately, when the approxi-
mation guarantee ε is a constant, the two requirements
get coupled in ways that makes it hard to enforce both.
This is why previous reductions take the approximation
requirement in the bimatrix game to scale inverse poly-
nomially in n; in that regime the above semantics can
indeed be decoupled. In our case, the use of constant
approximations makes the construction and analysis ex-
tremely fragile. In a very delicate and technical reduc-
tion, we use the structure of the game outside of the
equilibrium to enforce the first set of constraints, while
keeping the equilibrium states pure from these require-
ments in order to enforce there the equilibrium condi-
tions of the polymatrix game. This is hard to implement
and it is quite surprising that it is at all feasible. In-
deed, all details in our construction are extremely finely
chosen.

Overview of the Construction. We explain our
approximation preserving reduction from polymatrix to
bimatrix games by providing intuition about the inad-
equacy of existing technology. As mentioned above, all
previous lower bounds for bimatrix games are based on
generalized matching-pennies constructions. To reduce
a bipartite graphical polymatrix game into a bimatrix
game, such constructions work as follows. First the
nodes of the polymatrix game are colored with two col-
ors so that no two nodes sharing an edge get the same
color. Then two “lawyers” are introduced for the two
color classes, whose purpose is to “represent” all the
nodes in their color class. This is done by including in
the strategy set of each lawyer a block of strategies cor-

5In view of [22] additive approximations are unlikely to be
PPAD-complete for constant values of ε. So the matching pennies—

as well as any other construction—should fail in the additive case.

responding to the strategy-set of every player in their
color class, so that, if the two lawyers choose strate-
gies corresponding to adjacent nodes of the graph, the
lawyers get payoff equal to the payoff from the interac-
tion on that edge. The hope is then that, in any Nash
equilibrium of the lawyer-game, the marginal distribu-
tions of the lawyers’ strategies inside the different blocks
define a Nash equilibrium of the underlying polymatrix
game.

But, this naive construction may induce the lawyers
to focus on the most “lucrative” nodes. To avoid
this, a high-stakes matching pennies game is added to
the lawyers’ payoffs, played over blocks of strategies.
This game forces the lawyers to randomize (almost)
uniformly among their different blocks, and only to
decide how to distribute the probability mass of every
block to the strategies inside the block they look at
the payoffs of the underlying graphical game. This tie-
breaking reflects the Nash equilibrium conditions of the
graphical game.

For constant values of relative approximation, this
construction fails to work. Because, once the high-
stakes game is added to the payoffs of the lawyers, the
payoffs coming from the graphical game become almost
invisible, since their magnitude is tiny compared to the
stakes of the high-stakes game (this is discussed in de-
tail in Section 4.1). To avoid this problem we need a
construction that forces the lawyers to randomize uni-
formly over their different blocks of strategies in a sub-
tle manner that does not overwhelm the payoffs coming
from the graphical game. We achieve this by including
threats. These are large punishments that a lawyer can
impose to the other lawyer if she does not randomize
uniformly over her blocks of strategies. But unlike the
high-stakes matching pennies game, these punishments
essentially disappear if the other lawyer does randomize
uniformly over her blocks of strategies; to establish this
we have to argue that the additive payoff coming from
the threats, which could potentially have huge contribu-
tion and overshadow the payoff of the polymatrix game,
has very small magnitude at equilibrium, thus making
the interesting payoff visible. This is necessary to guar-
antee that the distribution of probability mass within
each block is (almost) only determined by the payoffs
of the graphical game at an ε-Nash equilibrium, even
when ε is constant. The details of our construction are
given in Section 4.2, the analysis of threats is given in
Section 4.3, and the proof is completed in Sections 4.4
and F.4. Threats that are similar in spirit to ours were
used in an older NP-hardness proof of Gilboa and Zer-
mel [16]. However, their construction is inadequate here
as it could lead to a uniform equilibrium over the threat
strategies, which cannot be mapped to an equilibrium
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of the underlying polymatrix game. Indeed, it takes
a lot of effort to avoid such occurrence of meaningless
equilibria.

The final maneuver. As mentioned above, our
reduction from graphical polymatrix games to bimatrix
games is very fragile; as a result we actually fail
to establish that the relative ε-Nash equilibria of the
lawyer-game correspond to relative ε-Nash equilibria of
the polymatrix game. Nevertheless, we manage to show
that the evaluations of the gadgets used to build up the
graphical game are correct to within very high accuracy;
and this rescues the reduction.

2 Preliminaries
A bimatrix game has two players, called row and column,
and m strategies, 1, . . . ,m, available to each. If the
row player chooses strategy i and the column player
strategy j then the row player receives payoff Rij and
the column player payoff Cij , where (R,C) is a pair
of m × m matrices, called the payoff matrices of the
game. The players are allowed to randomize among
their strategies by choosing any probability distribution,
also called a mixed strategy. For notational convenience
let [m] := {1, . . . ,m} and define the set of mixed
strategies ∆m := {x | x ∈ Rm+ ,

∑
i xi = 1}. If the

row player randomizes according to the mixed strategy
x ∈ ∆m and the column player according to the strategy
y ∈ ∆m, then the row player receives an expected payoff
of xTRy and the column player an expected payoff of
xTCy.

A Nash equilibrium of the game is a pair of mixed
strategies (x, y), x, y ∈ ∆m, such that xTRy ≥ x′TRy,
for all x′ ∈ ∆m, and xTCy ≥ xTCy′, for all y′ ∈ ∆m.
That is, if the row player randomizes according to x
and the column player according to y, then none of the
players has an incentive to change her mixed strategy.
Equivalently, a pair (x, y) is a Nash equilibrium iff: 6

for all i with xi > 0 : eTi Ry ≥ eTi′Ry, for all i′;
(2.1)

for all j with yj > 0 : xTCej ≥ xTCej′ , for all j′.
(2.2)

That is, every strategy that the row player includes
in the support of x must give him at least as large
expected payoff as any other strategy, and similarly for
the column player.

It is possible to define two kinds of approximate
Nash equilibria, additive or relative, by relaxing, in the
additive or multiplicative sense, the defining conditions
of the Nash equilibrium. A pair of mixed strategies

6As always, ei represents the unit vector along dimension i,
i.e. pure strategy i.

(x, y) is called an additive ε-approximate Nash equi-
librium if xTRy ≥ x′TRy − ε, for all x′ ∈ ∆m, and
xTCy ≥ xTCy′ − ε, for all y′ ∈ ∆m. That is, no player
has more than an additive incentive of ε to change her
mixed strategy. A related notion of additive approx-
imation arises by relaxing Conditions 2.1 and 2.2. A
pair of mixed strategies (x, y) is called an additive ε-
approximately well-supported Nash equilibrium, or sim-
ply an additive ε-Nash equilibrium, if

for all i with xi > 0 : eTi Ry ≥ eTi′Ry − ε, for all i′;
(2.3)

and similarly for the column player. That is, every
player allows in the support of her mixed strategy only
pure strategies with expected payoff that is within an
absolute error of ε from the payoff of the best response
to the other player’s strategy. Clearly, an additive ε-
Nash equilibrium is also an additive ε-approximate Nash
equilibrium, but the opposite implication is not always
true. Nevertheless, we know the following:

Proposition 2.1. [7, 8] Given an additive ε-
approximate Nash equilibrium (x, y) of a game
(R,C), we can compute in polynomial time an additive√
ε · (
√
ε+ 1 + 4umax)-Nash equilibrium of (R,C), where

umax is the maximum absolute value in the payoff
matrices R and C.

The relative notions of approximation are defined by
multiplicative relaxations of the equilibrium conditions.
We call a pair of mixed strategies (x, y) a relative ε-
approximate Nash equilibrium if xTRy ≥ x′TRy − ε ·
|x′TRy|, for all x′ ∈ ∆m, and xTCy ≥ xTCy′ − ε ·
|xTCy′|, for all y′ ∈ ∆m. That is, no player has
more than a relative incentive of ε to change her mixed
strategy. Similarly, a pair of mixed strategies (x, y)
is called a relative ε-approximately well-supported Nash
equilibrium, or simply a relative ε-Nash equilibrium, if

for all i s.t. xi > 0 : eTi Ry ≥ eTi′Ry − ε · |eTi′Ry|, ∀i′;
(2.4)

and similarly for the column player. Condition (2.4)

implies that the relative regret
∣∣∣ eTi Ry−eTi′RyeT

i′Ry

∣∣∣ experienced
by the row player for not replacing a strategy i in
her support by another strategy i′ with better payoff
is at most ε. Notice that this remains meaningful
even if R has negative entries. Clearly, a relative ε-
Nash equilibrium is also a relative ε-approximate Nash
equilibrium, but the opposite implication is not always
true.

And what about the relation between the additive
and the relative notions of approximation? The follow-
ing is an easy observation based on the above definitions.
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Remark 2.1. Let G = (R,C) be a game whose payoff
entries have absolute values in [`, u], where `, u > 0.
Then an additive ε-Nash equilibrium of G is a relative ε

` -
Nash equilibrium of G, and a relative ε-Nash equilibrium
of G is an additive (ε · u)-Nash equilibrium of G. The
same is true for ε-approximate Nash equilibria.

As noted earlier, algorithms for additive approximations
are usually compared after scaling the payoffs of the
game to some unit-length interval. Where this interval
lies is irrelevant since the additive approximations are
shift invariant. So by shifting we can bring the payoffs to
[−1/2, 1/2]. 7 In this range, if we compute a relative 2ε-
Nash equilibrium this would also be an additive ε-Nash
equilibrium and, similarly, a relative 2ε-approximate
Nash equilibrium would be an ε-approximate Nash equi-
librium. So the computation of additive ε approxima-
tions in normalized games can be reduced to the compu-
tation of ε/2 relative approximations. But the opposite
is not clear; in fact, given our main result and [22], it
is impossible assuming PPAD 6⊆ TIME(nO(logn)). How-
ever, if the ratio u

` < c, where u, ` are respectively the
largest, smallest in absolute value entries of the game,
then the computation of a relative ε-Nash equilibrium
can be reduced to the computation of an additive ε

2c -
Nash equilibrium of a normalized game.

Graphical Polymatrix Games. As mentioned
in the introduction, we use in our proof a subclass of
graphical games [19], called graphical polymatrix games.
As in graphical games, the players are nodes of a
graph G = (V,E) and each node v ∈ V has her own
strategy set Sv and her own payoff function, which
only depends on the strategies of the players in her
neighborhoodN (v) in G. The game is called a graphical
polymatrix game if, moreover, for every v ∈ V and
for every pure strategy sv ∈ Sv, the expected payoff
that v gets for playing strategy sv is a linear function
of the mixed strategies of her neighbors N (v) \ {v}
with rational coefficients; that is, there exist rational
numbers {αv:sv

u:su
}u∈N (v)\{v},su∈Su

and βv:sv such that
the expected payoff of v for playing pure strategy sv
is ∑

u∈Nv\{v},su∈Su

αv:sv
u:su

pu:su + βv:sv ,(2.5)

where pu:su denotes the probability with which node u
plays pure strategy su.

7Clearly, going back to the original payoffs results in a loss of
a factor of (umax − umin) in the approximation guarantee, where

umax and umin are respectively the largest and smallest payoffs
of the game before the scaling.

3 Hardness of Graphical Polymatrix Games

Our hardness result for graphical games is based on de-
veloping a new set of gadgets for performing arithmetic
and boolean operations, and comparisons via graphical
games. Given these gadgets we can follow the construc-
tion in [8] of putting together a large graphical game
that solves, via its Nash equilibria, the generic PPAD-
complete problem. The main challenge is that, since we
are considering constant values of relative approxima-
tion, the gadgets developed in [8] introduce a constant
error per operation. And, the construction in [8]—even
the more careful construction in [7]—cannot accommo-
date such error. We go around this problem by intro-
ducing new gadgets that are very accurate despite the
fact that we are considering constant values of approx-
imation. Our gadgets are largely dependent on the gap
amplification gadget given in the next section, which
compares the mixed strategy of a player with a linear
function of the mixed strategies of two other players
and magnifies the difference if a certain threshold is ex-
ceeded. Based on this gadget we construct our arith-
metic and comparison gadgets, given in Sections 3.2
and 3.3. And, with a different construction, we also get
boolean gadgets in Section 3.4. Due to space limitations
we only state the properties of our gadgets in the follow-
ing sections and defer the details of their construction
to Appendix B. Moreover, we only describe the “sim-
ple” versions of our gadgets. In Appendix B, we also
present the more “sophisticated” versions, in which all
the players have positive minimax values. These latter
gadgets are denoted with a superscript of ‘+’.

3.1 Gap Amplification.

Lemma 3.1. (Detector Gadget) Fix ε ∈ [0, 1),
α, β, γ ∈ [−1, 1], and c ∈ N. There exists n0 ∈ N, such
that for all n > n0, there exists a graphical polymatrix
game Gdet with three input players x, y and z, one in-
termediate player w, and one output player t, and two
strategies per player, 0 and 1, such that in any relative
ε-Nash equilibrium of Gdet, the mixed strategies of the
players satisfy

p(z : 1)− [αp(x : 1) + βp(y : 1) + γ] ≥ 2−cn

⇒ p(t : 1) = 1;

p(z : 1)− [αp(x : 1) + βp(y : 1) + γ] ≤ −2−cn

⇒ p(t : 1) = 0.

3.2 Arithmetic Operators. We use our gap ampli-
fication gadget Gdet to construct highly accurate—in the
additive sense—arithmetic operators, such as plus, mi-
nus, multiplication by a constant, and setting a value.
We use the gadget Gdet to compare the inputs and the
output of the arithmetic operator, magnify any devia-
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tion, and correct—with the appropriate feedback—the
output, if it fails to comply with the right value. In this
way, we use our gap amplification gadget to construct
highly accurate arithmetic operators, despite the weak
guarantees that a relative ε-Nash equilibrium provides,
for constant ε’s. We start with a generic affine operator
gadget Glin.

Lemma 3.2. (Affine Operator) Fix ε ∈ [0, 1),
α, β, γ ∈ [−1, 1], and c ∈ N. There exists n0 ∈ N, such
that for all n > n0, there is a graphical polymatrix game
Glin with a bipartite graph, two input players x and y,
and one output player z, such that in any relative ε-Nash
equilibrium

p(z : 1) ≥
max{0, min{1, αp(x : 1) + βp(y : 1) + γ}} − 2−cn;

p(z : 1) ≤
min{1, max{0, αp(x : 1) + βp(y : 1) + γ}}+ 2−cn.

Using Glin we obtain highly accurate arithmetic opera-
tors.

Lemma 3.3. (Arithmetic Gadgets) Fix ε ≥ 0, ζ ≥
0, and c ∈ N. There exists n0 ∈ N, such that for
all n > n0, there exist graphical polymatrix games
G+,G−,G×ζ ,Gζ with bipartite graphs, two input players
x and y, and one output player z, such that in any
relative ε-Nash equilibrium

• the game G+ satisfies
p(z : 1) = min{1 , p(x : 1) + p(y : 1)} ± 2−cn;

• the game G− satisfies
p(z : 1) = max{0 , p(x : 1)− p(y : 1)} ± 2−cn;

• the game G×ζ satisfies
p(z : 1) = min{1 , ζ · p(x : 1)} ± 2−cn;

• the game Gζ satisfies p(z : 1) = min{1 , ζ} ± 2−cn.

3.3 Brittle Comparator. Also from Gdet it is quite
straightforward to construct a (brittle [8]) comparator
gadget as follows.

Lemma 3.4. (Comparator Gadget) Fix ε ∈ [0, 1),
and c ∈ N. There exist n0 ∈ N, such that for all
n > n0, there exists a graphical polymatrix game G>
with bipartite interaction graph, two input players x and
z, and one output player t, such that in any relative ε-
Nash equilibrium of G>

p(z : 1)− p(x : 1) ≥ 2−cn ⇒ p(t : 1) = 1;

p(z : 1)− p(x : 1) ≤ −2−cn ⇒ p(t : 1) = 0.

3.4 Boolean Operators. In a different manner that
does not require our gap amplification gadget we con-
struct boolean operators. We only need to describe a
game for or and not. Using these we can obtain and.

Lemma 3.5. (Boolean Operators) Fix ε ∈ [0, 1).
There exist graphical polymatrix games G∨,G¬ with bi-
partite graphs, two input players x and y, and one out-
put player z, such that in any relative ε-Nash equilib-
rium
• if p(x : 1), p(y : 1) ∈ {0, 1}, the game G∨ satisfies
p(z : 1) = p(x : 1) ∨ p(y : 1);

• if p(x : 1) ∈ {0, 1}, the game G¬ satisfies p(z : 1) =
1− p(x : 1).

3.5 Proof of Theorem 1.2. We reduce an instance
of the PPAD-complete Approximate Circuit Evalua-
tion problem (see Appendix A) to a graphical polyma-
trix game, by replacing every gate of the given circuit
with the corresponding gadget. The construction of our
gadgets guarantees that a relative ε-Nash equilibrium of
the polymatrix game corresponds to a highly accurate
evaluation of the circuit, completing the hardness proof.
The inclusion in PPAD follows from the fact that the ex-
act (ε = 0) Nash equilibrium problem is in PPAD [14].
Details are given in Appendix C.

4 Hardness of Two-Player Games

4.1 Challenges. To show Theorem 1.1, we need to
encode the bipartite graphical polymatrix game GG,
built up using the gadgets G>, G+, G−, G×ζ , Gζ ,
G∨, G¬ in the proof of Theorem 1.2, into a bimatrix
game, whose relative ε-Nash equilibria correspond to
approximate evaluations of the circuit encoded by GG.
A construction similar to the one we are after, but for
additive ε-Nash equilibria, was described in [8, 5]. But,
that construction is not helpful in our setting, since it
cannot accommodate constant values of ε as we discuss
shortly. Before that, let us get our notation right.

Suppose that the bipartite graphical polymatrix
game GG has graph G = (VL ∪ VR, E), where VL, VR
are respectively the “left” and “right” sides of the graph,
and payoffs as in (2.5). Without loss of generality, let
us also assume that both sides of the graph have n
players, |VL| = |VR| = n; if not, we can add isolated
players to make up any shortfall. To reduce GG into
a bimatrix game, it is natural to “assign” the players
on the two sides of the graph to the two players of the
bimatrix game. To avoid confusion, in the remaining
of this paper we are going to refer to the players of the
graphical game as “vertices” or “nodes” and reserve the
word “player” for referring to the players of the bimatrix
game. Also, for notational convenience, let us label
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the row and column players of the bimatrix game by
0 and 1 respectively, and define ρ : VL ∪ VR → {0, 1} to
be the function mapping vertices to players as follows:
ρ(v) = 0, if v ∈ VL, and ρ(v) = 1, if v ∈ VR.

Now, here is a straightforward way to define the
reduction: For every vertex v, we can include in the
strategy set of player ρ(v) two strategies denoted by
(v : 0) and (v : 1), where strategy (v : s) is intended
to mean “vertex v plays strategy s”, for s = 0, 1. We
call the pair of strategies (v : 0) and (v : 1) the block
of strategies of player ρ(v) corresponding to vertex v.
We can then define the payoffs of the bimatrix game as
follows (using the notation for the payoffs from (2.5)):

Uρ(v)((v : s) , (v′ : s′)) :=(4.6) {
αv:sv′:s′ + βv:s, if (v, v′) ∈ E;
βv:s, if (v, v′) /∈ E.

In other words, if the players of the bimatrix game play
(v : s) and (v′ : s′), they are given payoff equal to the
payoff that the nodes v and v′ get along the edge (v, v′),
if they choose strategies s and s′ and the edge (v, v′)
exists; and they always get the additive term βv:s.

Observe then that, if we could magically guarantee
that in any Nash equilibrium the players 0 and 1 ran-
domize uniformly over their different blocks of strate-
gies, then the marginal distributions within each block
would jointly define a Nash equilibrium of the graphical
game. Indeed, given our definition of the payoff func-
tions (4.6), the way player ρ(v) distributes the probabil-
ity mass of the block corresponding to v to the strategies
(v : 0) and (v : 1) needs to respect the Nash equilibrium
conditions at v. This goes through as long as the players
randomize uniformly, or even close to uniformly, among
their blocks of strategies. If they don’t, then all bets
are off . . .

To make sure that the players randomize uniformly
over their blocks of strategies, the construction of [17,
8, 6, 11, 5, 7, 14] makes the players play, on the
side, a high-stakes matching pennies game over blocks
of strategies. This forces them to randomize almost
uniformly among their blocks and makes the above
argument approximately work. To be more precise, let
us define two arbitrary permutations πL : VL → [n]
and πR : VR → [n], and define π : VL ∪ VR → [n] as
π(v) = πL(v), if v ∈ VL, and π(v) = πR(v), if v ∈ VR.
Given this, the matching pennies game is included in
the construction by giving the following payoffs to the
players

Ũρ(v)((v : s) , (v′ : s′)) :=(4.7)

Uρ(v)((v : s), (v′ : s′)) + (−1)ρ(v) ·M · 1π(v)=π(v′),

where M is chosen to be much larger than the payoffs

of the graphical game. Notice that, if we ignored the
graphical game payoffs from (4.7), the resulting game
would be a generalized matching pennies game over
blocks of strategies; and it is not hard to see that,
in any Nash equilibrium of this game, both players
assign probability 1/n to each block. The same is
approximately true if we do not ignore the payoffs
coming from the graphical game, as long as M is chosen
large enough to overwhelm these payoffs. Still, in this
case every block receives roughly 1/n probability mass;
and if ε is small enough (inverse polynomial in n) there
may still be regret for not distributing that mass to the
best strategies within the block. In particular, we can
argue that, for every ε-Nash equilibrium of the bimatrix
game, the marginal distributions of the blocks comprise
jointly an ε′-Nash equilibrium of the graphical game,
where ε and ε′ are polynomially related.

The above construction works well as long as ε is
inverse polynomial in the game description. But, it
seems that an inverse polynomial value of ε is really
needed. If ε is constant, then the additive notion
of approximation cannot guarantee that the players
will randomize uniformly over their different blocks
of strategies, or even that they will assign non-zero
probability mass to each block. Hence, we cannot
argue anymore that the marginal distributions comprise
an approximate equilibrium of the graphical game. If
we consider relative ε-Nash equilibria, the different
strategies inside a block always give payoffs that are
within a relative ε from each other, for trivial reasons,
since their payoff is overwhelmed by the high-stakes
game. So again, the marginal distributions are not
informative about the Nash equilibria of the graphical
game. If we try to decrease the value of M to make
the payoffs of the graphical game visible, we cannot
guarantee anymore that the players of the bimatrix
game randomize uniformly over their different blocks
and the construction fails.

To accommodate constant values of ε, we need a
different approach. Our idea is roughly the following.
We include in the definition of the game threats. These
are large punishments that one player can impose to
the other player if she does not randomize uniformly
over her blocks of strategies. But unlike the high-stakes
matching pennies game of [8, 5], these punishments (al-
most) disappear if the player does randomize uniformly
over her blocks of strategies; and this is necessary to
guarantee that at an ε-equilibrium of the bimatrix game
the distribution of probability mass within each block is
(almost) only determined by the payoffs of the graphical
game, even when ε is constant.

The details of our construction are given in Sec-
tion 4.2, and in Section 4.3 we analyze the effect of
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the threats on the equilibria of the game. In partic-
ular, in Lemmas 4.1 and 4.3 we show that the threats
force the players of the bimatrix game to randomize
(exponentially close to) uniformly over their blocks of
strategies. Unfortunately to do this, we need to choose
the magnitude of the punishment-payoffs to be expo-
nentially larger than the magnitude of the payoffs of
the underlying graphical game. Hence, the punishment-
payoffs could in principle overshadow the graphical-
game payoffs, turn the payoffs of the two players neg-
ative at equilibrium, and prevent any correspondence
between the equilibria of the bimatrix and the poly-
matrix game. Yet, we show in Lemma 4.4 that in an
ε-Nash equilibrium of the bimatrix game, the threat
strategies are played with small-enough probability that
the punishment-payoffs are of the same order as the pay-
offs from the underlying graphical game. This opens up
the road to establishing the correspondence between the
approximate equilibria of the bimatrix and the polyma-
trix games. However, we are not able to establish this
correspondence, i.e. we fail to show that the marginal
distributions used by the players of the bimatrix game
within their different blocks constitute an approximate
Nash equilibrium of the underlying graphical game. 8

But, we can show (see Lemma 4.5) that the marginal
distributions define jointly a highly accurate (in the ad-
ditive sense) evaluation of the circuit encoded by the
graphical game; and this is enough to establish our
PPAD-completeness result (completed in Section F.4 of
the appendix).

4.2 Our Construction. We do the following modi-
fications to the game defined by (4.6):

• For every vertex v, we introduce a third strategy to
the block of strategies of player ρ(v) corresponding
to v; we call that strategy v∗ and we are going to
use it to make sure that both players of the bimatrix
game have positive payoff in every relative ε-Nash
equilibrium.

• For every vertex v, we also introduce a new strategy
badv in the set of strategies of player 1 − ρ(v).
The strategies {badv}v∈VL

are going to be used
as threats to make sure that player 0 randomizes
uniformly among her blocks of strategies. Similarly,
we will use the strategies {badv}v∈VR

in order to
force player 1 to randomize uniformly among her
blocks of strategies.

8While we can show that the un-normalized marginals satisfy
the approximate equilibrium conditions of the polymatrix game,
the fragility of relative approximations prevents us from showing

that the normalized marginals do, despite the fact that the
normalization factors are equal to within an exponential error.

• The payoff functions Û0(·; ·) and Û1(·; ·) of players
0 and 1 respectively are defined in Figure 4 of
the appendix, for some H, U and d to be decided
shortly. The reader can study the definition of the
functions in detail, however it is much easier to
think of our game in terms of the expected payoffs
that the players receive for playing different pure
strategies as follows

E
(
Ûp:v∗

)
= −U · pbadv

+ 2−dn;(4.8)

E
(
Ûp:(v:s)

)
= −U · pbadv

+(4.9) ∑
(v,v′)∈E

∑
s′=0,1

αv:sv′:s′ · pv′:s′ +
1
n
βv:s;

E
(
Ûp:badv

)
= H · (pv − 1/n).(4.10)

In the above, we denote by E
(
Ûp:v∗

)
, E
(
Ûp:(v:s)

)
and E

(
Ûp:badv

)
the expected payoff that player

p receives for playing strategies v∗, (v : s) and
badv respectively (where it is assumed that p is
allowed to play these strategies, i.e. p = ρ(v) for
the first two to be meaningful, and p = 1 − ρ(v)
for the third). We also use pv:0, pv:1 and pv∗ to
denote the probability by which player ρ(v) plays
strategies (v : 0), (v : 1) and (v∗), and by pbadv

the probability by which player 1 − ρ(v) chooses
strategy badv. Finally, we let pv = pv:0 +pv:1 +pv∗ .

Since we are considering relative approximate Nash
equilibria we can assume without loss of generality that
the payoffs of all players in the graphical game GG are
at most 1 (otherwise we can just scale all the utilities
down by an appropriate factor to make this happen).
Let us then choose H := 2hn, U := 2un, d, and
δ := 2−dn, where h, u, d ∈ N, h > u > d > c′ > c,
and c, c′ are the constants chosen in the definition of
the gadgets used in the construction of GG (as specified
in the proofs of Lemmas 3.3, 3.4 and 3.5). Let us also
choose a sufficiently large n0, such that for all n > n0

the inequalities of Figure 5 of the appendix are satisfied.
These inequalities are needed for technical purposes in
the analysis of the bimatrix game.

4.3 The Effect of the Threats. We show that the
threats force the players to randomize uniformly over
the blocks of strategies corresponding to the different
nodes of GG, in every relative ε-Nash equilibrium. One
direction is intuitive: if player ρ(v) assigns more than
1/n probability to block v, then player 1−ρ(v) receives
a lot of incentive to play strategy badv; this incurs
a negative loss in expected payoff for all strategies of
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block v, making ρ(v) loose her interest in this block.
The opposite direction is less intuitive and more fragile,
since there is no explicit threat (in the definition of the
payoff functions) for under-using a block of strategies.
The argument has to look at the global implications
that under-using a block of strategies has and requires
arguing that in every relative ε-Nash equilibrium the
payoffs of both players are positive (Lemma 4.2); this
also becomes handy later. Observe that Lemma 4.1 is
not sufficient to imply Lemma 4.3 directly, since apart
from their blocks of strategies corresponding to the
nodes of GG the players of the bimatrix game also have
strategies of the type badv, which are not contained in
these blocks. The proofs of the following lemmas can
be found in the appendix.

Lemma 4.1. In any relative ε-Nash equilibrium with
ε ∈ [0, 1), for all v ∈ VL ∪ VR, pv ≤ 1

n + δ.

Lemma 4.2. In any relative ε-Nash equilibrium with
ε ∈ [0, 1), both players of the game get expected payoff at
least (1− ε)2−dn from every strategy in their support.

Lemma 4.3. In any relative ε-Nash equilibrium with
ε ∈ [0, 1), for all v ∈ VL ∪ VR, pv ≥ 1

n − 2nδ.

4.4 Mapping Equilibria to Approximate Gad-
get Evaluations.

Almost There. Let us consider a relative ε-
Nash equilibrium of our bimatrix game G, where
{pv:0, pv:1, pv∗}v∈VL∪VR

are the probabilities that this
equilibrium assigns to the blocks corresponding to the
different nodes of G. For every v, we define

U ′v∗ := 2−dn; and

U ′(v:s) :=
∑

(v,v′)∈E

∑
s′=0,1

αv:sv′:s′ · pv′:s′ +
1
n
βv:s, for s = 0, 1.

so that E
(
Ûp:v∗

)
= −U · pbadv

+ U ′v∗;

E
(
Ûp:(v:s)

)
= −U · pbadv

+ U ′(v:s), for s = 0, 1.

In the appendix we show the following.

Lemma 4.4. Let

σmax ∈ arg max
σ∈{v∗,(v:0),(v:1)}

{U ′σ} .

(In particular, observe that U ′σmax
> 0.) Then, in

any relative ε-Nash equilibrium with ε ∈ [0, 1), for all
σ ∈ {v∗, (v : 0), (v : 1)},

U ′σ < (1− ε)U ′σmax
⇒ pσ = 0.(4.11)

Notice the subtlety in Condition (4.11). If we replace
U ′σ and U ′σmax

with E
(
Ûp:σ

)
and E

(
Ûp:σmax

)
, then

it is automatically true, since it corresponds to the
relative ε-Nash equilibrium conditions of the game G.
But, to remove the term −U · pbadv

from E
(
Ûp:σ

)
and E

(
Ûp:σmax

)
and maintain Condition (4.11), we

need to make sure that this term is not too large so
that it overshadows the true relative magnitude of the
underlying values of the U ′’s. And Lemma 4.2, comes to
our rescue: since the payoff of every player is positive at
equilibrium, at least one of the U ′’s has absolute value
larger than U · pbadv

; and this is enough to save the
argument. Indeed, the property of our construction that
the threats approximately disappear at equilibrium is
really important here.

The Trouble. Given Lemma 4.4, the un-
normalized probabilities {pv:0, pv:1, pv∗}v∈VL∪VR

satisfy
the relative ε-Nash equilibrium conditions of the graphi-
cal game GG (in fact, of the game GG+ with three strate-
gies 0, 1, ∗ per player—see the proof of Theorem 1.2). It
is natural to try to normalize these probabilities, and ar-
gue that their normalized counterparts also satisfy the
relative ε-Nash equilibrium conditions of GG+. After
all, given Lemmas 4.1 and 4.3, the normalization would
essentially result in multiplying all the U ′’s by n. It
turns out that the (exponentially small) variation of ±δ
in the different pv’s and the overall fragility of the rel-
ative approximations makes this approach problematic.
Indeed, we fail to establish that after the normalization
the equilibrium conditions of GG+ are satisfied.

The Final Maneuver. Rather than worrying
about the ε-Nash equilibrium conditions of GG+, we ar-
gue that we can obtain a highly accurate evaluation of
the circuit encoded by GG+. We consider the following
transformation, which merges the strategies (v : 0) and
v∗:

p̂(v : 1) :=
pv:1
pv

; p̂(v : 0) :=
pv:0 + pv∗

pv
.(4.12)

We argue that the normalized values p̂ correspond to
a highly accurate evaluation of the circuit encoded by
the game GG. We do this by studying the input-
output conditions of each of the gadgets used in our
construction of GG. For example, for all appearances of
the gadget Gdet inside GG we show the following.

Lemma 4.5. Suppose that x, y, z, w, t ∈ VL ∪ VR, so
that x, y and z are inputs to some game Gdet with
α, β, γ ∈ [−1, 1], w is the intermediate node of Gdet,
and t is the output node. Then the values p̂ obtained
from a relative ε-Nash equilibrium of the bimatrix game
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as shown above satisfy

p̂(z : 1)− [αp̂(x : 1) + βp̂(y : 1) + γ] ≥ 2−cn(4.13)
⇒ p̂(t : 1) = 1;

p̂(z : 1)− [αp̂(x : 1) + βp̂(y : 1) + γ] ≤ −2−cn(4.14)
⇒ p̂(t : 1) = 0.

Given Lemma 4.5, we immediately obtain that
the output of all comparator gadgets is highly accu-
rate (Corollary F.1). Via similar arguments we can
show that the gadget Glin (Lemma F.1)—and hence
all the arithmetic gadgets (Corollary F.2)—are highly
accurate, and also that the boolean gadgets are accu-
rate (Lemma F.2). It follows that the values {p̂(v :
1)}v∈VL∪VR

correspond to an approximate evaluation of
the circuit encoded by the graphical game GG. This
is sufficient to conclude the proof of the PPAD-hardness
part of Theorem 1.1, since finding such an evaluation
is PPAD-hard [8] (see Appendix A). On the other hand,
finding an exact Nash equilibrium of a bimatrix game is
in PPAD [24], hence finding a relative ε-Nash equilibrium
is also in PPAD. To complete the proof of Theorem 1.1,
note that, by virtue of Lemma 4.2, all players have pos-
itive payoffs in every relative ε-Nash equilibrium of the
game. See Section F.4 of the appendix for the detailed
proof of Theorem 1.1.
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A The Approximate Circuit Evaluation
Problem

We define the Approximate Circuit Evaluation
problem, which was shown to be PPAD-complete in [8].
Our definition is based on the notions of the generalized
circuit and the approximate circuit evaluation, given in
Definitions A.1 and A.2 below. All these definitions
were implicit in [8] and were made explicit in [5].

Definition A.1. (Generalized Circuit) A circuit
C is called a generalized circuit if it is built up using:

• arithmetic gates: the addition and subtraction
gates, denoted by C+ and C− respectively, have
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two input nodes and one output node (for the gate
C− one of the input nodes is designated to be the
“positive” input); the scale by ζ gate, C×ζ , has one
input and one output node, and the set equal to ζ,
Cζ , gate has one output node;

• comparison gates: the comparison gate, C>, has
two input nodes (one of which is designated to be
the “positive” input) and one output node;

• boolean gates: the OR gate, C∨, has two input nodes
and one output node, and the NOT gate, C¬, has
one input and one output node.

Definition A.2. (Approximate Circuit Evaluation)
Given a generalized circuit C and some constant c, an
approximate evaluation of the circuit with accuracy
2−cn is an assignment of [0, 1] values to the nodes
of the circuit such that the inputs and outputs of the
various gates of the circuit satisfy the following

• C+: if the input nodes have values x, y and the
output node has value z then

z = min{1 , x+ y} ± 2−cn;

• C−: if the input nodes have values x, y, where x is
the value of the positive input, and the output node
has value z then

z = max{0 , x− y} ± 2−cn;

• C×ζ : if the input node has value x and the output
node value z then z = min{1 , ζ · x} ± 2−cn;

• Cζ : if the output node has value z then z =
min{1 , ζ} ± 2−cn;

• C>: if the input nodes have values x, z, where z is
the value of the positive input, and the output node
has value t then

z ≥ x+ 2−cn ⇒ t = 1;

z ≤ x− 2−cn ⇒ t = 0;

• C∨: the values x, y of the input nodes and the value
z of the output node satisfy:

if x, y ∈ {0, 1}, then z = x ∨ y;

• G¬: the value x of the input player and the value z
of the output player satisfy

if x ∈ {0, 1}, then z = 1− x;

Definition A.3. (Approximate Circuit Evalua-
tion Problem) Given a generalized circuit C and a con-
stant c, find an approximate evaluation of the circuit C
with accuracy 2−cn.

B Gadgets of Section 3

Lemma B.1. (Detector Gadget) Fix ε ∈ [0, 1),
α, β, γ ∈ [−1, 1], and c ∈ N. There exist c′, n0 ∈ N,
such that for all n > n0:

• there exists a graphical polymatrix game Gdet with
three input players x, y and z, one intermediate
player w, and one output player t, and two strate-
gies per player, 0 and 1, such that in any relative
ε-Nash equilibrium of Gdet, the mixed strategies of
the players satisfy the following

p(z : 1)− [αp(x : 1) + βp(y : 1) + γ] ≥ 2−cn
(2.15)

⇒ p(t : 1) = 1;

p(z : 1)− [αp(x : 1) + βp(y : 1) + γ] ≤ −2−cn
(2.16)

⇒ p(t : 1) = 0;

• there exists a graphical polymatrix game G+
det with

the same characteristics as Gdet, except that every
player has three strategies 0, 1, and ∗, and such that
Properties (2.15) and (2.16) are satisfied, in any
relative ε-Nash equilibrium, and moreover every
(non-input) player receives a positive payoff of
2−c

′n if she plays strategy ∗, regardless of the
strategies of the other players of the game.

y

x

z

w t

Figure 1: The detector gadgets Gdet and G+
det.

Proof of Lemma B.1: The graphical structure of the
games Gdet and G+

det is shown in Figure 1, where the
direction of the edges denotes direct payoff dependence.
The construction of the games Gdet and G+

det is similar,
so we are only going to describe the construction of
G+

det. A trivial adaptation of this construction—by just
removing all the ∗ strategies—gives the construction of
Gdet. Let us choose c′ > c, n0 such that (1 − ε)2−cn >
2−c

′n, for all n > n0.
Since the players x, y and z are input players, to

specify the game we only need to define the payoffs of
the players w and t. The payoff of player w is defined
as follows:

• u(w : ∗) = 2−c
′n;
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• u(w : 0) = 1z:1 − α · 1x:1 − β · 1y:1 − γ;

• u(w : 1) = 2−c
′n · 1t:1;

where 1A denotes the indicator function of the event
A. The payoff of player t is defined so that she always
prefers to disagree with w:

• u(t : ∗) = 2−c
′n;

• u(t : 0) = 1w:1;

• u(t : 1) = 1w:0;

Clearly, both w and t receive a payoff of 2−c
′n if

they play strategy ∗ regardless of the strategies of the
other players of the game. So, we only need to argue
that (2.15) and (2.16) are satisfied. Observe that the
expected payoff of player w is p(z : 1)−[αp(x : 1)+βp(y :
1)+γ] for playing 0 and 2−c

′n·p(t : 1) for playing 1, while
the expected payoff of player t is p(w : 1) for playing 0
and p(w : 0) for playing 1.

To argue that (2.15) is satisfied, suppose that in
some relative ε-Nash equilibrium we have

p(z : 1)− [αp(x : 1) + βp(y : 1) + γ] ≥ 2−cn.

Then the expected payoff of player w is at least 2−cn

for playing 0, while it is is at most 2−c
′n from strategies

1 and ∗. But, (1 − ε)2−cn > 2−c
′n, for all n > n0.

Hence, in any relative ε-Nash equilibrium, it must be
that p(w : 0) = 1. Given this, the expected payoff of
player t is 1 for playing strategy 1, while her expected
payoff from strategy 0 is 0 and from strategy ∗ is 2−c

′n.
Hence, in a relative ε-Nash equilibrium, it must be that
p(t : 1) = 1. So (2.15) is satisfied.

To show (2.16), suppose that in some relative ε-
Nash equilibrium

p(z : 1)− [αp(x : 1) + βp(y : 1) + γ] ≤ −2−cn.

Then the expected payoff of player w is at most −2−cn

for playing 0, while she gets 2−c
′n for playing ∗ and ≥ 0

for playing 1. So, in any relative ε-Nash equilibrium
p(w : 0) = 0 (recall that ε < 1). Hence, the expected
payoff to player t for playing strategy 1 is 0, while she
gets at least 2−c

′n for playing ∗ and p(w : 1) for playing
0. So, in any relative ε-Nash equilibrium p(t : 1) = 0
(where we used again that ε < 1). �

Lemma B.2. (Affine Operator) Fix ε ∈ [0, 1),
α, β, γ ∈ [−1, 1], and c ∈ N. There exists n0, c

′ ∈ N,
such that for all n > n0

• there is a graphical polymatrix game Glin with a
bipartite graph, two input players x and y, and one

output player z, such that in any relative ε-Nash
equilibrium

p(z : 1) ≥
(2.17)

max{0,min{1, αp(x : 1) + βp(y : 1) + γ}} − 2−cn;

p(z : 1) ≤
(2.18)

min{1,max{0, αp(x : 1) + βp(y : 1) + γ}}+ 2−cn;

• there also exists a graphical polymatrix game G+
lin

with the same characteristics as Glin, except that
every player has three strategies 0, 1, and ∗, and
such that properties (2.17) and (2.18) are satisfied
in any relative ε-Nash equilibrium, and moreover
every (non-input) player receives a positive payoff
of 2−c

′n if she plays strategy ∗, regardless of the
strategies of the other players of the game.

Proof of Lemma B.2: Glin and G+
lin have the graphi-

cal structure shown in Figure 2. They are obtained
by adding feedback to the gadgets Gdet and G+

det re-
spectively through a new player w′ who is introduced
to keep the graph bipartite. We describe the nature of
this feedback by specifying the payoffs of players w′ and
z. Again we are only going to describe the gadget G+

lin,
and the description of Glin is the same, except that the
strategies ∗ are removed. Let us choose c′, n0 such that
(1− ε)2−cn > 2−c

′n, for all n > n0. We assign to player

y

x

z

w t

Gdet

w′

Figure 2: The affine operator gadgets Glin and G+
lin.

w′ the following payoff:

• u(w′ : ∗) = 2−c
′n;

• u(w′ : 0) = 1t:1;

• u(w′ : 1) = 1− 1t:1;

and we assign to player z the following payoff:

• u(z : ∗) = 2−c
′n;
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• u(z : 0) = 1w′:0;

• u(z : 1) = 1w′:1.

Now, we proceed to argue that (2.17) and (2.18) are
satisfied. We distinguish three cases:

• [αp(x : 1) +βp(y : 1) + γ] ≤ 0: In this case we have

max{0 ,min{1 , αp(x : 1) + βp(y : 1) + γ}} = 0,
min{1 ,max{0, αp(x : 1) + βp(y : 1) + γ}} = 0.

So, clearly, (2.17) is satisfied. To show (2.18),
suppose for a contradiction that

p(z : 1) >
(2.19)

min{1 ,max{0, αp(x : 1) + βp(y : 1) + γ}}+ 2−cn.

The above implies, p(z : 1) > [αp(x : 1) + βp(y :
1) + γ] + 2−cn; hence, by Lemma B.1, p(t : 1) = 1.
Given this, the expected payoff of w′ is 1 for playing
0, while at most 2−c

′n for playing ∗ or 1. But,
(1−ε)1 > 2−c

′n, for all n > n0. Hence, in a relative
ε-Nash equilibrium it must be that p(w′ : 0) = 1.
Now, the expected payoff of player z is 1 for playing
0, and at most 2−c

′n for playing ∗ or 1. Hence,
in a relative ε-Nash equilibrium it must be that
p(z : 0) = 1. Hence, p(z : 1) = 0, which contradicts
(2.19).

• 0 ≤ [αp(x : 1) + βp(y : 1) + γ] ≤ 1: In this case we
have

max{0 ,min{1 , αp(x : 1) + βp(y : 1) + γ}}
= αp(x : 1) + βp(y : 1) + γ,

min{1 ,max{0, αp(x : 1) + βp(y : 1) + γ}}
= αp(x : 1) + βp(y : 1) + γ.

Suppose for a contradiction that

p(z : 1) > [αp(x : 1) + βp(y : 1) + γ] + 2−cn.
(2.20)

From Lemma B.1, this implies p(t : 1) = 1. Given
this, the expected payoff of w′ is 1 for playing 0,
while at most 2−c

′n for playing ∗ or 1. Hence,
in a relative ε-Nash equilibrium it must be that
p(w′ : 0) = 1. Now, the expected payoff of player
z is 1 for playing 0, and at most 2−c

′n for playing
∗ or 1. Hence, in a relative ε-Nash equilibrium it
must be that p(z : 0) = 1. Hence, p(z : 1) = 0,
which contradicts (2.20), and therefore (2.18) is
satisfied. To argue that (2.17) is satisfied, suppose
for a contradiction that

p(z : 1) < [αp(x : 1) + βp(y : 1) + γ]− 2−cn.
(2.21)

From Lemma B.1, this implies p(t : 1) = 0. Given
this, the expected payoff of w′ is 1 for playing 1,
while at most 2−c

′n for playing ∗ or 0. Hence,
in a relative ε-Nash equilibrium it must be that
p(w′ : 1) = 1. Now, the expected payoff of player
z is 1 for playing 1, and at most 2−c

′n for playing
∗ or 0. Hence, in a relative ε-Nash equilibrium it
must be that p(z : 1) = 1, which contradicts (2.21).
Hence, (2.17) is satisfied.

• [αp(x : 1) + βp(y : 1) + γ] > 1: In this case,

max{0 ,min{1 , αp(x : 1) + βp(y : 1) + γ}} = 1,
min{1 ,max{0, αp(x : 1) + βp(y : 1) + γ}} = 1.

So, automatically (2.18) is satisfied. To
show (2.17), suppose for a contradiction that

p(z : 1) <
(2.22)

max{0,min{1, αp(x : 1) + βp(y : 1) + γ}} − 2−cn.

The above implies, p(z : 1) < [αp(x : 1) + βp(y :
1) + γ] − 2−cn. From Lemma B.1, this implies
p(t : 1) = 0. Given this, the expected payoff of w′

is 1 for playing 1, while at most 2−c
′n for playing

∗ or 0. Hence, in a relative ε-Nash equilibrium it
must be that p(w′ : 1) = 1. Now, the expected
payoff of player z is 1 for playing 1, and at most
2−c

′n for playing ∗ or 0. Hence, in a relative ε-Nash
equilibrium it must be that p(z : 1) = 1, which
contradicts (2.22). Hence, (2.17) is satisfied.

�

Lemma B.3. (Arithmetic Gadgets) Fix ε ≥ 0, ζ ≥
0, and c ∈ N. There exists c′, n0 ∈ N, such that for all
n > n0:

• there exist graphical polymatrix games
G+,G−,G×ζ ,Gζ with bipartite interaction graphs,
two input players x and y, and one output player
z, such that in any relative ε-Nash equilibrium

– the game G+ satisfies
p(z : 1) = min{1 , p(x : 1)+p(y : 1)}±2−cn;

– the game G− satisfies
p(z : 1) = max{0 , p(x : 1)−p(y : 1)}±2−cn;

– the game G×ζ satisfies
p(z : 1) = min{1 , ζ · p(x : 1)} ± 2−cn;

– the game Gζ satisfies
p(z : 1) = min{1 , ζ} ± 2−cn;
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• there also exist graphical polymatrix games G+
+ ,

G+
− , G+

×ζ , G+
ζ with the same characteristics as the

graphical games G+, G−, G×ζ , Gζ , except that every
player has three strategies 0, 1, and ∗, and such that
the above properties are satisfied in any relative ε-
Nash equilibrium, and moreover every (non-input)
player receives a positive payoff of 2−c

′n if she plays
strategy ∗, regardless of the strategies of the other
players of the game.

Proof of Lemma B.3: All the gadgets are obtained
from Glin and G+

lin with the appropriate setting of the
parameters α, β and γ. For G+ and G+

+ , set α = β = 1
and γ = 0. For G− and G+

− set α = 1, β = −1 and
γ = 0. For G×ζ and G+

×ζ set α = ζ and β = γ = 0.
Finally, for Gζ and G+

ζ set α = β = 0 and γ = ζ. �

Lemma B.4. (Comparator Gadget) Fix ε ∈ [0, 1),
and c ∈ N. There exist c′, n0 ∈ N, such that for all
n > n0:

• there exists a graphical polymatrix game G> with
bipartite interaction graph, two input players x and
z, and one output player t, such that in any relative
ε-Nash equilibrium of G>

p(z : 1)− p(x : 1) ≥ 2−cn ⇒ p(t : 1) = 1;
(2.23)

p(z : 1)− p(x : 1) ≤ −2−cn ⇒ p(t : 1) = 0;
(2.24)

• there also exists a graphical polymatrix game G+
>

with the same characteristics as G>, except that
every player has three strategies 0, 1, and ∗, and
such that the above properties are satisfied in any
relative ε-Nash equilibrium, and moreover every
(non-input) player receives a positive payoff of
2−c

′n if she plays strategy ∗, regardless of the
strategies of the other players of the game.

Proof of Lemma B.4: G> and G+
> are obtained from Gdet

and G+
det respectively, by setting α = 1, β = γ = 0. �

Lemma B.5. (Boolean Operators) Fix ε ∈ [0, 1)
and c′ ∈ N. There exists n0 ∈ N, such that for all
n > n0:

• there exist graphical polymatrix games G∨,G¬ with
bipartite interaction graphs, two input players x
and y, and one output player z, such that in any
relative ε-Nash equilibrium

– if p(x : 1), p(y : 1) ∈ {0, 1}, the game G∨
satisfies p(z : 1) = p(x : 1) ∨ p(y : 1);

– if p(x : 1) ∈ {0, 1}, the game G¬ satisfies
p(z : 1) = 1− p(x : 1);

• there also exist graphical polymatrix games G+
∨ ,G+

¬
with the same characteristics as the games G∨,G¬,
except that every player has three strategies 0, 1,
and ∗, and such that the above properties are satis-
fied in any relative ε-Nash equilibrium, and more-
over every (non-input) player receives a positive
payoff of 2−c

′n if she plays strategy ∗, regardless
of the strategies of the other players of the game.

Proof of Lemma B.5: The structure of the graphical
games G∨,G¬, G+

∨ ,G+
¬ is shown in Figure 3. We are

going to describe G+
∨ ,G+

¬ ; the other games are obtained
by dropping strategy ∗. We choose c′, n0 such that
1− ε > 2−c

′n. To define the game G+
∨ , we give player w

y

x
w z

Figure 3: The gadgets G∨,G¬, G+
∨ ,G+

¬ .

the following payoff function:

u(w : 0) = 2−c
′n; u(w : ∗) = 2−c

′n; u(w : 1) = 1x:1+1y:1;

we also give player z an incentive to agree with player
w as follows

u(z : 0) = 1w:0; u(z : ∗) = 2−c
′n; u(z : 1) = 1w:1.

Now suppose that, in some relative ε-Nash equilibrium,
p(x : 1), p(y : 1) ∈ {0, 1} and p(x : 1) ∨ p(y : 1) = 1.
Then the expected payoff to player w is at least 1 for
choosing strategy 1, and 2−c

′n for choosing strategy 0
or ∗. Since, 1 − ε > 2−c

′n, it follows that p(w : 1) = 1.
Given this, the expected payoff to player z is 1 for
playing 1 and at most 2−c

′n for choosing strategy ∗
or 0. Hence, p(z : 1) = 1. On the other hand, if
p(x : 1) ∨ p(y : 1) = 0, the expected payoff to player
w is 2−c

′n for choosing strategies 0 or ∗, and 0 for
choosing strategy 1. Hence, p(w : 1) = 0. Given
this, the expected payoff to player z is 0 for choosing
strategy 1, 2−c

′n for choosing strategy ∗, and p(w : 0)
for choosing strategy 0. Hence, p(z : 1) = 0. So,
p(z : 1) = p(x : 1) ∨ p(y : 1).

In the game G+
¬ player w has the following payoff

function:

u(w : 0) = 1x:1; u(w : ∗) = 2−c
′n; u(w : 1) = 1−1x:1;

and we give player z an incentive to agree with player
w as follows

u(z : 0) = 1w:0; u(z : ∗) = 2−c
′n; u(z : 1) = 1w:1.
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Now suppose that, in some relative ε-Nash equilibrium,
p(x : 1) = 1. Then the expected payoff to player w is 1
for choosing strategy 0, and at most 2−c

′n for choosing
strategy ∗ or 1. Since, 1 − ε > 2−c

′n, it follows that
p(w : 0) = 1. Given this, the expected payoff to player
z is 1 for playing 0 and at most 2−c

′n for choosing
strategy ∗ or 1. Hence, p(z : 1) = 0 = 1 − p(x : 1). On
the other hand, if p(x : 1) = 0, the expected payoff to
player w is 1 for choosing strategy 1, and at most 2−c

′n

for choosing strategies ∗ or 0. Hence, p(w : 1) = 1.
Given this, the expected payoff to player z is 1 for
choosing strategy 1, 2−c

′n for choosing strategy ∗, and
0 for choosing strategy 0. Hence, p(z : 1) = 1. So,
p(z : 1) = 1− p(x : 1). �

C Proof of Theorem 1.2

Proof of Theorem 1.2: From [14], it follows that comput-
ing an exact Nash equilibrium of a graphical polymatrix
game is in PPAD. Since exact Nash equilibria are also rel-
ative ε-Nash equilibria, inclusion in PPAD follows imme-
diately. So we only need to justify the PPAD-hardness of
the problem. To do this, we reduce from the Approx-
imate Circuit Evaluation problem (implicit in [8],
explicit in [5]) which is roughly the following (see Ap-
pendix A for a detailed definition): Given a circuit con-
sisting of the gates plus, minus, scale by a constant, set
equal to a constant, compare, or, and not, find values for
the nodes of the circuit satisfying the input-output rela-
tions of the gates to within an additive error of 2−cn—
analogously to the input-output relations of the gadgets
specified in Lemmas 3.3, 3.4, and 3.5. It was shown in [8]
that there is a constant c such that the Approximate
Circuit Evaluation problem is PPAD-complete. But,
given any circuit, it is easy to set up, using the gad-
gets G+, G−, G×ζ , Gζ , G>, G∨, G¬ of Lemmas 3.3, 3.4
and 3.5, a bipartite graphical polymatrix game GG with
the same functionality as the circuit: every node of the
circuit corresponds to a player, the players participate
in arithmetic, comparison and logical gadgets depend-
ing on the types of gates with which the corresponding
nodes of the circuit are connected, and given any rel-
ative ε-Nash equilibrium of the graphical game we can
obtain an approximate circuit evaluation by interpreting
the probabilities with which every player plays strategy
1 as the value of the corresponding node of the circuit.
To make sure that every node in our graphical game has
positive minimax value we can use in our construction
the sophisticated versions G+

+ , G+
− , G+

×ζ , G
+
ζ , G+

> , G+
∨ , G+

¬
of our gadgets given in Appendix B. Call the resulting
game GG+ for future reference. �

D The Bimatrix Game in Our Construction

See Figure 4.

E Choosing the Right Constants

See Figure 5

F Omitted Details from Section 4

F.1 Analysis of Threats. Proof of Lemma 4.1: Let
va ∈ arg maxv{pv} and, for a contradiction, suppose
that pva >

1
n + δ. Now define the set

S =
{
v ρ(v) = ρ(va), pv −

1
n
≥ (1− ε) ·

(
pva
− 1
n

)}
.

Since pva
> 1/n, there must be some vb, with ρ(vb) =

ρ(va), such that pvb
< 1/n.

Now the expected payoff of player 1 − ρ(va) for
playing any strategy badv, v ∈ S is at least H · δ · (1− ε)
and, by assumption, H · δ · (1 − ε)2 > 1. So, in any
relative ε-Nash equilibrium of the game, player 1−ρ(va)
will not play any strategy of the form (v : s), since her
expected payoff from these strategies is at most 1. Also,
player 1 − ρ(va) will not play any strategy of the form
badv, v /∈ S, because by the definition of the set S she is
better off playing strategy badva

by more than a relative
ε. Moreover, |S| < n, since vb /∈ S. Hence, there must
be some vc ∈ S, such that pbadvc

> 1/n.
Let’s go back now to player p(va). Her expected

payoff from strategy v∗b is at least 2−dn (since we
argued that pbadvb

= 0), while her expected payoff from
strategies vc : 0, vc : 1 and vc∗ is at most −U 1

n + 1 < 0,
since pbadvc

> 1/n and we assumed that all payoffs in
the graphical polymatrix game are at most 1. Hence, in
any relative ε-Nash equilibrium, it must be that pvc = 0,
which is a contradiction since we assumed that vc ∈ S.
�

Proof of Lemma 4.2: Let us fix some player p of the
bimatrix game. We distinguish the following cases:

• There exist va, vb, with ρ(va) = ρ(vb) = p, such
that pva

≥ 1/n and pvb
< 1/n: The payoff of

player 1 − p from strategy badva
is ≥ 0, while

her payoff from strategy badvb
is < 0. Hence, in

any relative ε-Nash equilibrium, player 1− p plays
strategy badvb

with probability 0. So, the payoff
of player p for playing strategy v∗b is at least 2−dn.
Hence, her payoff must be at least (1− ε)2−dn from
every strategy in her support.

• pv < 1/n, for all v with ρ(v) = p: Let va ∈
arg minv:ρ(v)=p{pv}. Let then φa := 1/n − pva .
Observe that the expected payoff of player 1 − p
is −Hφa for playing strategy badva

, while her
expected payoff from every strategy v∗, ρ(v) = 1−p
is at least−U ·pbadv

≥ −U ·n·φa. Since U ·n(1+ε) <
H it follows that −U · n · φa(1 + ε) > −Hφa. So
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Ûp(σ ; σ′) :=



−U + 2−dn, if σ = v∗, σ′ = badv, ρ(v) = p;
2−dn, if σ = v∗, σ′ 6= badv, ρ(v) = p;

Up(σ ; σ′)|βv:s← 1
nβ

v:s , if σ = (v : s), σ′ = (v′ : s′), ρ(v) = 1− ρ(v′) = p;
−U + 1

nβ
v:s, if σ = (v : s), σ′ = badv, ρ(v) = p;

1
nβ

v:s, if σ = (v : s), σ′ = badv′ , ρ(v) = ρ(v′) = p;
H · (1− 1

n ), if σ = badv, σ′ ∈ {(v : 0), (v : 1), v∗}, ρ(v) = 1− p;
H · (− 1

n ), if σ = badv, σ′ /∈ {(v : 0), (v : 1), v∗}, ρ(v) = 1− p;

(4.25)

with Up(σ ; σ′)|βv:s← 1
nβ

v:s , we denote that the term βv:s in Up((v : s) ; (v′ : s′)) is scaled down by a factor of
n; this is done for technical reasons that we discuss later.

Figure 4: The payoffs of the bimatrix game in our construction.

H · δ · (1− ε)2 > 1

U
1
n
> 1

H > U · n(1 + ε)
Uδ > 1

2−cn ≥ 2−cn

2(1− 2n2δ)
+ 5 · 2n2δ

(1− 2n2δ)

(1− ε)2−cn > 2−c
′n2(1 + nδ)

(1− ε)2−cn > 2n2−dn

(1− ε)2−c
′n > n2−dn

Figure 5: We choose a sufficiently large n0, so that the above inequalities are satisfied for all n > n0, for the
choices of H, U , d, δ, c and c′ made in Section 4.2.

player 1 − p is going to play strategy badva with
probability 0 in any relative ε-Nash equilibrium.
Hence, the expected payoff of player p for playing
strategy v∗a will be 2−dn. Hence, her payoff must
be at least (1− ε)2−dn from every strategy in her
support.

• pv = 1/n, for all v with ρ(v) = p: It must be that
pbadv = 0, for all v with ρ(v) = 1 − p. Hence,
the expected payoff of player 1− p is at least 2−dn

from every v∗, while her expected payoff is 0 from
every strategy badv. So, player 1 − p is going to
play all strategies badv with probability 0. So, the
expected payoff of player p is at least 2−dn from
every strategy v∗, ρ(v) = p. Hence, her payoff must
be at least (1− ε)2−dn from every strategy in her
support.

�

Proof of Lemma 4.3: Let va ∈ arg minv{pv} and, for

a contradiction, suppose that pva < 1
n − 2nδ. Using

Lemma 4.1, it follows that there must exist some vb
with ρ(vb) = 1− ρ(va) such that

pbadvb
≥ 1
n

(2n− (n− 1))δ > δ.(6.26)

Then the payoff that player ρ(vb) gets from all her
strategies in the block corresponding to vb is at most
−Uδ+ 1 < 0 (since pbadvb

> δ and the payoffs from the
graphical game are at most 1). Hence, by Lemma 4.2 it
follows that in any relative ε-Nash equilibrium, it must
be that pvb

= 0. But then the payoff of player ρ(va) from
strategy badvb

is−H1/n < 0. And by Lemma 4.2 again,
it must be that pbadvb

= 0. This contradicts (6.26). �

F.2 Un-normalized Graphical-Game Equilib-
rium Conditions from Relative Equilibria of the
Bimatrix Game. Proof of Lemma 4.4: Notice first
that σmax ∈ arg maxσ∈{v∗,(v:0),(v:1)}

{
E
(
Ûp:σ

)}
. Next,

1514 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



from Lemmas 4.2 and 4.3, it follows that

−U · pbadv + U ′σmax
> 0.(6.27)

Now, for a given σ ∈ {v∗, (v : 0), (v : 1)} \ {σmax}, we
distinguish the following cases:

• −U ·pbadv +U ′σ < 0: This implies that the expected
payoff to player ρ(v) for playing strategy σ is nega-
tive, while the expected payoff from strategy σmax

is positive (see Equation (6.27)), so the implication
is true.

• −U · pbadv
+ U ′σ ≥ 0: We have

−U · pbadv
+ U ′σ

−U · pbadv
+ U ′σmax

<
−U · pbadv + (1− ε)U ′σmax

−U · pbadv
+ U ′σmax

=
−U · pbadv

+ U ′σmax
− εU ′σmax

−U · pbadv
+ U ′σmax

= 1− ε ·
U ′σmax

−U · pbadv
+ U ′σmax

≤ 1− ε.

Hence, player ρ(v) will assign probability 0 to
strategy σ.

�

F.3 Approximate Circuit-Evaluations from
Relative Equilibria of the Bimatrix Game. We
argue first that the values p̂ satisfy the input-output
relations of the gadget Gdet (Lemma 4.5).

Proof of Lemma 4.5: We show (4.13) first. Suppose
p̂(z : 1) − [αp̂(x : 1) + βp̂(y : 1) + γ] ≥ 2−cn. This
implies the following

pz:1
pz
−
[
α · px:1

px
+ β · py:1

py
+ γ

]
≥ 2−cn;(6.28)

Now we show

Claim F.1. The above imply:

pz:1 −
[
α · px:1 + β · py:1 +

γ

n

]
≥ 2−cn

2n
.(6.29)

Proof. Indeed, suppose that

pz:1 −
[
α · px:1 + β · py:1 +

γ

n

]
<

2−cn

2n
.

Then

pz:1
pz
−
[
α · px:1

px
+ β · py:1

py
+ γ

]
<

2−cn

2npz
− α ·

[
px:1
px
− px:1

pz

]
− β ·

[
py:1
py
− py:1

pz

]
−
[
γ − γ

npz

]
≤ 2−cn

2(1− 2n2δ)
+ |α|px:1 ·

4nδ
pxpz

+ |β|py:1 ·
4nδ
pypz

+ |γ| · 2nδ
pz

≤ 2−cn

2(1− 2n2δ)
+ |α| · 4nδ

pz
+ |β| · 4nδ

pz
+ |γ| · 2nδ

pz

≤ 2−cn

2(1− 2n2δ)
+ (2|α|+ 2|β|+ |γ|) · 2nδ

pz

≤ 2−cn

2(1− 2n2δ)
+ (2|α|+ 2|β|+ |γ|) · 2n2δ

(1− 2n2δ)
≤ 2−cn. (using Figure 5)

This is a contradiction to (6.28).

Given (6.29) we have

U ′w:0 ≥
2−cn

2n
;

U ′w:1 = 2−c
′npt:1 ≤ 2−c

′n 1
n

(1 + nδ); (using Lemma 4.1)

U ′w∗ = 2−dn.

From Lemma 4.4, it follows then that pw:1 = pw∗ = 0.
Hence, pw:0 = pw. Given this, we have

U ′t:0 = 0;

U ′t:1 = pw:0 = pw ≥ 1/n(1− 2n2δ); (using Lemma 4.3)

U ′t∗ = 2−dn.

Hence, Lemma 4.4 implies pt:1 = pt. So that p̂(t : 1) =
1.

We show (4.14) similarly. Suppose p̂(z : 1)− [αp̂(x :
1) + βp̂(y : 1) + γ] ≤ −2−cn. This implies the following

pz:1
pz
−
[
α · px:1

px
+ β · py:1

py
+ γ

]
≤ −2−cn;(6.30)

Now we show

Claim F.2. The above imply:

pz:1 −
[
α · px:1 + β · py:1 +

γ

n

]
≤ −2−cn

2n
.(6.31)

Proof. Indeed, suppose that

pz:1 −
[
α · px:1 + β · py:1 +

γ

n

]
> −2−cn

2n
.
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Then

pz:1
pz
−
[
α · px:1

px
+ β · py:1

py
+ γ

]
> −2−cn

2npz
− α ·

[
px:1
px
− px:1

pz

]
− β ·

[
py:1
py
− py:1

pz

]
−
[
γ − γ

npz

]
≥ − 2−cn

2(1− 2n2δ)
− |α|px:1 ·

4nδ
pxpz

− |β|py:1 ·
4nδ
pypz

− |γ| · 2nδ
pz

≥ − 2−cn

2(1− 2n2δ)
− |α| · 4nδ

pz
− |β| · 4nδ

pz
− |γ| · 2nδ

pz

≥ − 2−cn

2(1− 2n2δ)
− (2|α|+ 2|β|+ |γ|) · 2nδ

pz

≥ − 2−cn

2(1− 2n2δ)
− (2|α|+ 2|β|+ |γ|) · 2n2δ

(1− 2n2δ)
≥ −2−cn (using Figure 5)

This is a contradiction to (6.30).

Given (6.31) we have U ′w:0 ≤ −2−cn

2n . But, U ′w∗ = 2−dn.
Hence, by Lemma 4.4 we have that pw:0 = 0. Given
this, we have U ′t:1 = pw:0 = 0. But, U ′t∗ = 2−dn. Hence,
pt:1 = 0. So that p̂(t : 1) = 0. �

We immediately obtain from Lemma 4.5 that the
input-output relations of the comparator gadget are
fine.

Corollary F.1. Suppose x, z, w, t ∈ VL ∪ VR, so that
x, z are inputs to a comparator game G>, w is the
intermediate node, and t the output node. Then

p̂(z : 1) ≥ p̂(x : 1) + 2−cn ⇒ p̂(t : 1) = 1;

p̂(z : 1) ≤ p̂(x : 1)− 2−cn ⇒ p̂(t : 1) = 0.

Now, we study the gadget Glin.

Lemma F.1. Suppose x, y, z, w,w′, t ∈ VL ∪VR, so that
x, y are inputs to the game Glin with parameters α, β
and γ, z is the output player, and w, w′, t′ are the
intermediate nodes (as in Lemma B.2, Figure 2). Then

p̂(z : 1) ≥(6.32)
max{0,min{1 , αp̂(x : 1) + βp̂(y : 1) + γ}} − 2−cn;

p̂(z : 1) ≤(6.33)
min{1,max{0, αp̂(x : 1) + βp̂(y : 1) + γ}}+ 2−cn.

Proof of Lemma F.1: The proof proceeds by considering
the following cases as in the proof of Lemma B.2:

• [αp̂(x : 1) +βp̂(y : 1) + γ] ≤ 0: In this case we have

max{0 ,min{1 , αp̂(x : 1) + βp̂(y : 1) + γ}} = 0,
min{1 ,max{0, αp̂(x : 1) + βp̂(y : 1) + γ}} = 0.

So, clearly, (6.32) is satisfied. To show (6.33),
suppose for a contradiction that

p̂(z : 1) >(6.34)
min{1,max{0, αp̂(x : 1) + βp̂(y : 1) + γ}}+ 2−cn.

The above implies, p̂(z : 1) > [αp̂(x : 1) + βp̂(y :
1) + γ] + 2−cn. By Lemma 4.5, this implies
p̂(t : 1) = 1, so pt:1 = pt. Given this, U ′w′:0 =
pt:1 = pt ≥ 1

n (1 − 2n2δ), while U ′w′∗ = 2−dn

and U ′w′:1 = pt:0 = 0. Lemma 4.4 implies then
pw′:1 = pw′∗ = 0, so that pw′:0 = pw′ . Now, U ′z:0 =
pw′:0 = pw′ >

1
n (1 − 2n2δ) (using Lemma 4.3),

while U ′z∗ = 2−dn and U ′z:1 = pw′:1 = 0. Invoking
Lemma 4.4 we get pz:1 = 0, hence p̂(z : 1) = 0
which contradicts (6.34).

• 0 ≤ [αp̂(x : 1) + βp̂(y : 1) + γ] ≤ 1: In this case we
have

max{0 ,min{1 , αp̂(x : 1) + βp̂(y : 1) + γ}}
= αp̂(x : 1) + βp̂(y : 1) + γ,

min{1 ,max{0, αp̂(x : 1) + βp̂(y : 1) + γ}}
= αp̂(x : 1) + βp̂(y : 1) + γ.

Suppose now that

(6.35) p̂(z : 1) > [αp̂(x : 1)+βp̂(y : 1)+γ]+2−cn.

By Lemma 4.5, this implies p̂(t : 1) = 1, so
pt:1 = pt. Given this, U ′w′:0 = pt:1 = pt ≥ 1

n (1 −
2n2δ), while U ′w′∗ = 2−dn and U ′w′:1 = pt:0 = 0.
Lemma 4.4 implies then pw′:1 = pw′∗ = 0, so that
pw′:0 = pw′ . Now, U ′z:0 = pw′:0 = pw′ >

1
n (1−2n2δ)

(using Lemma 4.3), while U ′z∗ = 2−dn and U ′z:1 =
pw′:1 = 0. Invoking Lemma 4.4 we get pz:1 = 0,
hence p̂(z : 1) = 0 which contradicts (6.35). Hence,
(6.33) is satisfied.

To show (6.32), suppose for a contradiction that

(6.36) p̂(z : 1) < [αp̂(x : 1)+βp̂(y : 1)+γ]−2−cn.

From Lemma 4.5 it follows that pt:1 = 0. Given
this, U ′w′:0 = 0, U ′w′:1 = 1/n and U ′w′∗ = 2−dn.
So it follows from Lemma 4.4 that pw′:1 = pw′ .
Now, U ′z:1 = pw′:1 = pw′ >

1
n (1 − 2n2δ) (using

Lemma 4.3), while U ′z:0 = 0, U ′z∗ = 2−dn. So from
Lemma 4.4 we have that pz:1 = pz, and therefore
p̂(z : 1) = 1, which contradicts (6.36). Hence,
(6.32) is satisfied.
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• [αp̂(x : 1) + βp̂(y : 1) + γ] > 1: In this case,

max{0 ,min{1 , αp̂(x : 1) + βp̂(y : 1) + γ}} = 1,
min{1 ,max{0, αp̂(x : 1) + βp̂(y : 1) + γ}} = 1.

So, automatically (6.33) is satisfied. To show
(6.32), suppose for a contradiction that

p̂(z : 1) <(6.37)
max{0,min{1, αp̂(x : 1) + βp̂(y : 1) + γ}} − 2−cn.

The above implies, p̂(z : 1) < [αp̂(x : 1) + βp̂(y :
1) + γ] − 2−cn. From Lemma 4.5 it follows that
pt:1 = 0. Given this, U ′w′:0 = 0, U ′w′:1 = 1/n and
U ′w′∗ = 2−dn. So it follows from Lemma 4.4 that
pw′:1 = pw′ . Now, U ′z:1 = pw′:1 = pw′ >

1
n (1−2n2δ)

(using Lemma 4.3), while U ′z:0 = 0, U ′z∗ = 2−dn.
So from Lemma 4.4 we have that pz:1 = pz, and
therefore p̂(z : 1) = 1, which contradicts (6.37).
Hence, (6.32) is satisfied.

�
Given Lemma F.1, we obtain that all arithmetic

gadgets are highly accurate.

Corollary F.2. Suppose x, y, z ∈ VL ∪ VR, where x,
y are the inputs and z is the output of an arithmetic
game. Then

• if the game is G+, then p̂(z : 1) = min{1 , p̂(x :
1) + p̂(y : 1)} ± 2−cn;

• if the game is G−, then p̂(z : 1) = max{0 , p̂(x :
1)− p̂(y : 1)} ± 2−cn;

• if the game is G×ζ , then p̂(z : 1) = min{1 , ζ · p̂(x :
1)} ± 2−cn;

• if the game is Gζ , then p̂(z : 1) = min{1 , ζ}±2−cn.

Finally, we analyze the boolean operators.

Lemma F.2. Suppose x, y, w, z ∈ VL ∪ VR, where x, y
are the inputs, w is the intermediate node, and z is the
output of a boolean game G∨ or G¬ (as in Figure 3,
Lemma B.5). Then

• if p̂(x : 1), p̂(y : 1) ∈ {0, 1}, the game G∨ satisfies
p̂(z : 1) = p̂(x : 1) ∨ p̂(y : 1);

• if p̂(x : 1) ∈ {0, 1}, the game G¬ satisfies p̂(z : 1) =
1− p̂(x : 1);

Proof of Lemma F.2: We analyze G∨ first. Suppose
that p̂(x : 1), p̂(y : 1) ∈ {0, 1} and p̂(x : 1) ∨ p̂(y : 1) =
1. Then U ′w:1 = px:1 + py:1 ≥ 1

n (1 − 2n2δ) (using
also Lemma 4.3). On the other hand, U ′w∗ = 2−dn

and U ′w:0 = 1
n2−c

′n. Hence, from Lemma 4.4 we get

pw:0 = pw∗ = 0 and pw:1 = pw. Given this, U ′z:0 = 0,
U ′z∗ = 2−dn and U ′z:1 = pw:1 = pw ≥ 1

n (1− 2n2δ) (using
Lemma 4.3). Hence, from Lemma 4.4 we get pz:1 = pz,
i.e p̂(z : 1) = 1 = p̂(x : 1) ∨ p̂(y : 1).

Now, suppose that p̂(x : 1) ∨ p̂(y : 1) = 0. This
implies px:1 = py:1 = 0. Hence, U ′w:1 = px:1 + py:1 = 0,
while U ′w∗ = 2−dn and U ′w:0 = 1

n2−c
′n. From Lemma 4.4

we get pw:1 = 0. Given this, U ′z:1 = 0, while U ′z∗ = 2−dn.
Hence from Lemma 4.4 we get pz:1 = 0, i.e p̂(z : 1) =
0 = p̂(x : 1) ∨ p̂(y : 1).

We proceed to analyze G¬. Suppose that p̂(x : 1) =
1, i.e. px:1 = px. Then U ′w:0 = px:1 = px ≥ 1

n (1− 2n2δ)
(using Lemma 4.3). On the other hand, U ′w∗ = 2−dn

and U ′w:1 = 1
n − px:1 ≤ 2nδ (using Lemma 4.3 again).

Hence, from Lemma 4.4 we get pw:1 = pw∗ = 0 and
pw:0 = pw. Given this, U ′z:1 = 0, U ′z∗ = 2−dn and
U ′z:0 = pw:0 = pw ≥ 1

n (1 − 2n2δ) (using Lemma 4.3).
Hence, from Lemma 4.4 we get pz:1 = 0, i.e p̂(z : 1) =
0 = 1− p̂(x : 1).

Suppose now p̂(x : 1) = 0, i.e. px:1 = 0. Then
U ′w:0 = px:1 = 0, U ′w∗ = 2−dn and U ′w:1 = 1

n − px:1 =
1/n. Hence, from Lemma 4.4 we get pw:0 = pw∗ = 0
and pw:1 = pw. Given this, U ′z:0 = 0, U ′z∗ = 2−dn and
U ′z:1 = pw:1 = pw ≥ 1

n (1 − 2n2δ) (using Lemma 4.3).
Hence, from Lemma 4.4 we have pz:1 = 1, i.e p̂(z : 1) =
1 = 1− p̂(x : 1). �

F.4 Completing the Proof of Theorem 1.1.
From [24], it follows that computing an exact Nash
equilibrium of a bimatrix game is in PPAD. Since ex-
act Nash equilibria are also relative ε-Nash equilibria,
inclusion in PPAD follows immediately. Hence, we only
need to justify the PPAD-hardness of the problem. Given
a pair (C, c), where C is a generalized circuit (see Def-
inition A.1) and c a positive constant (this pair is an
instance of the Approximate Circuit Evaluation
problem defined in Appendix A), we construct a bipar-
tite graphical polymatrix game GG using the reduction
in the proof of Theorem 1.2. The game GG has graph
G = (VL∪VR, E), where VL and VR are the left and right
sides of the bipartition, and consists of the gadgets G+,
G−, G×ζ , Gζ , G>, G∨, G¬. Now, using the reduction
outlined in Section 4.2, we can construct a bimatrix
game G with the following property: Given any relative
ε-Nash equilibrium of the game G, we can compute (us-
ing Equation (4.12)) values {p̂(v : 1)}v∈VL∪VR

for the
nodes of the graphical game, corresponding to approx-
imate evaluations of the gadgets G+, G−, G×ζ , Gζ , G>,
G∨, G¬ (as specified by Corollaries F.1 and F.2, and
Lemma F.2). These values comprise then an approxi-
mate evaluation of the circuit C. Since the Approxi-
mate Circuit Evaluation problem is PPAD-complete
it follows that finding a relative ε-Nash equilibrium is
also PPAD-complete.
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