
MIT Open Access Articles

Near-optimal no-regret algorithms for zero-sum

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. 2011. Near-optimal no-
regret algorithms for zero-sum games. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA '11). SIAM 235-254. SIAM ©2011

As Published: http://dl.acm.org/citation.cfm?id=2133057

Publisher: Society for Industrial and Applied Mathematics

Persistent URL: http://hdl.handle.net/1721.1/73097

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73097

Near-Optimal No-Regret Algorithms for Zero-Sum Games

Constantinos Daskalakis∗ Alan Deckelbaum† Anthony Kim‡

Abstract

We propose a new no-regret learning algorithm. When

used against an adversary, our algorithm achieves average

regret that scales as O
“

1√
T

”
with the number T of rounds.

This regret bound is optimal but not rare, as there are a

multitude of learning algorithms with this regret guarantee.

However, when our algorithm is used by both players of

a zero-sum game, their average regret scales as O
`

ln T
T

´
,

guaranteeing a near-linear rate of convergence to the value of

the game. This represents an almost-quadratic improvement

on the rate of convergence to the value of a game known

to be achieved by any no-regret learning algorithm, and

is essentially optimal as we show a lower bound of Ω
`

1
T

´
.

Moreover, the dynamics produced by our algorithm in the

game setting are strongly-uncoupled in that each player is

oblivious to the payoff matrix of the game and the number

of strategies of the other player, has limited private storage,

and is not allowed funny bit arithmetic that can trivialize

the problem; instead he only observes the performance of

his strategies against the actions of the other player and can

use private storage to remember past played strategies and

observed payoffs, or cumulative information thereof. Here,

too, our rate of convergence is nearly-optimal and represents

an almost-quadratic improvement over the best previously

known strongly-uncoupled dynamics.

1 Introduction

Von Neumann’s min-max theorem [18] lies at the origins
of the fields of both algorithms and game theory.
Indeed, it was the first example of a static game-
theoretic solution concept: If the players of a zero-sum
game arrive at a min-max pair of strategies, then no
player can improve his payoff by unilaterally deviating,
resulting in an equilibrium state of the game. The min-
max equilibrium played a central role in von Neumann
and Morgenstern’s foundations of Game Theory [19],

∗EECS, MIT. Email: costis@csail.mit.edu. Supported by a

Sloan Foundation Fellowship and NSF CAREER Award CCF-
0953960.
†Department of Mathematics, MIT. Email: deckel@mit.edu.

Supported by Fannie and John Hertz Foundation, Daniel Stroock
Fellowship.
‡Oracle Corporation, 500 Oracle Parkway, Redwood Shores,

CA 94065. Email: tonyekim@yahoo.com. Work done while the
author was a student at MIT.

and inspired the discovery of the Nash equilibrium [15]
and the foundations of modern economic thought [14].

At the same time, the min-max theorem is tightly
connected to the development of mathematical pro-
gramming, as linear programming itself reduces to the
computation of a min-max equilibrium, while strong lin-
ear programming duality is equivalent to the min-max
theorem.1 Given the further developments in linear pro-
gramming in the past century [10, 11], we now have ef-
ficient algorithms for computing equilibria in zero-sum
games, even in very large ones such as poker [6, 7].

On the other hand, the min-max equilibrium is a
static notion of stability, leaving open the possibility
that there are no simple distributed dynamics via which
stability comes about. This turns out not to be the case,
as many distributed protocols for this purpose have been
discovered. One of the first protocols suggested for this
purpose is ficticious play, whereby players switch rounds
playing the pure strategy that optimizes their payoff
against the historical play of their opponent (viewed
as a distribution over strategies). This simple scheme,
suggested by Brown in the 1950’s [3], was shown to
converge to a min-max equilibrium of the game by
Julia Robinson [20]. However, its convergence rate has
recently been shown to be exponential in the number of
strategies [2]. Such poor convergence guarantees do not
offer much by way of justifying the plausibility of the
min-max equilibrium in a distributed setting, making
the following questions rather important: Are there
efficient and natural distributed dynamics converging to
the min-max equilibrium? And what is the optimal rate
of convergence?

The answer to the first question is, by now, very
well understood. A typical source of efficient dynam-
ics converging to min-max equilibria is online optimiza-
tion. The results here are very general: If both players
of a game use a no-regret learning algorithm to adapt
their strategies to their opponent’s strategies, then the
average payoffs of the players converge to their min-
max value, and their average strategies constitute an

1This equivalence was apparently noticed by Dantzig and von
Neumann at the inception of the linear programming theory, but
no rigorous account of their proof can be found in the literature.

A rigorous proof of this equivalence has just been recently given
by Ilan Adler [1].

235 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

approximate min-max equilibrium, with the approxima-
tion converging to 0 [4]. In particular, if a no-regret
learning algorithm guarantees average regret g(T, n, u),
as a function of the number T of rounds, the number
n of “experts”, and the magnitude u of the maximum
in absolute value payoff of an expert at each round, we
can readily use this algorithm in a game setting to ap-
proximate the min-max value of the game to within an
additive O(g(T, n, u)) in T rounds, where u is now the
magnitude of the maximum in absolute value payoff in
the game, and n an upper bound on the players’ strate-
gies.

For instance, if we use the multiplicative weights
update algorithm [5, 13], we would achieve approxima-
tion O

(
u
√

logn√
T

)
to the value of the game in T rounds.

Given that the dependence of O(
√

logn√
T

) in the number
n of experts and the number T of rounds is optimal for
the regret bound of any no-regret learning algorithm [4],
the convergence rate to the value of the game achieved
by the multiplicative weights update algorithm is the
optimal rate that can be achieved by a black-box re-
duction of a regret bound to a convergence rate in a
zero-sum game.

Nevertheless, a black-box reduction from the
learning-with-expert-advice setting to the game-
theoretic setting may be lossy in terms of approxi-
mation. Indeed, no-regret bounds apply even when a
forecaster is playing against an adversary; and it may
be that, when two players of a zero-sum game update
their strategies following a no-regret learning algorithm,
faster convergence to the min-max value of the game
is possible. As concrete evidence of this possibility,
take fictitious play (a.k.a. the “follow-the-leader”
algorithm): against an adversary, it may be forced not
to converge to zero average regret; but if both players
of a zero-sum game use fictitious play, their average
payoffs do converge to the min-max value of the game,
given Robinson’s proof.

Motivated by this observation, we investigate the
following: Is there a no-regret learning algorithm that,
when used by both players of a zero-sum game, converges
to the min-max value of the game at a rate faster than
O
(

1√
T

)
with the number T of rounds? We answer

this question in the affirmative, by providing a no-
regret learning algorithm, called NoRegretEgt, with
asymptotically optimal regret behavior of O

(
u·
√

logn√
T

)
,

and convergence rate of O
(
u·logn·(log T+(logn)3/2)

T

)
to

the min-max value of a game, where n is an upper bound
on the number of the players’ strategies. In particular,

Theorem 1.1. Let x1, x2, . . . , xt, . . . be a sequence of

randomized strategies over a set of experts [n] :=
{1, 2, . . . , n} produced by the NoRegretEgt algorithm
under a sequence of payoffs `1, `2, . . . , `t, . . . ∈ [−u, u]n

observed for these experts, where `t is observed after xt
is chosen. Then for all T :

1
T

T∑
t=1

(xt)T`t ≥ max
i∈[n]

1
T

T∑
t=1

(ei)T`t −O
(
u ·
√

log n√
T

)
.

Moreover, let x1, x2, . . . , xt, . . . be a sequence of random-
ized strategies over [n] and y1, y2, . . . , yt, . . . a sequence
of randomized strategies over [m], and suppose that
these sequences are produced when both players of a zero-
sum game (−A,A), A ∈ [−u, u]n×m, use the NoRe-
gretEgt algorithm to update their strategies under ob-
servation of the sequence of payoff vectors (−Ayt)t and
(ATxt)t, respectively. Then for all T :∣∣∣∣∣ 1

T

T∑
t=1

(xt)T(−A)yt − v

∣∣∣∣∣ ≤
O

(
u · log k · (log T + (log k)3/2)

T

)
,

where v is the row player’s value in the game
and k = max{m,n}. Moreover, for all T ,
the pair

(
1
T

∑T
t=1 xt,

1
T

∑T
t=1 yt

)
is an (additive)

O
(
u·log k·(log T+(log k)3/2)

T

)
-approximate min-max equi-

librium of the game.

Our algorithm provides the first (to the best of our
knowledge) example of a strongly-uncoupled distributed
protocol converging to the value of a zero-sum game at
a rate faster than O(1√

T
). Strong-uncoupledness is the

property of a distributed game-playing protocol under
which the players can observe the payoff vectors of their
own strategies at every round ((−Ayt)t and (ATxt)t,
respectively), but:

• they do not know the payoff tables of the game, or
even the number of strategies available to the other
player;

• they can only use private storage to keep track of
a constant number of observed payoff vectors (or
cumulative payoff vectors), a constant number of
mixed strategies (or possibly cumulative informa-
tion thereof), and a constant number of state vari-
ables such as the round number.

The details of our model are discussed in Sec-
tion 1.2. Notice that, without the assumption of strong-
uncoupledness, there can be trivial solutions to the
problem. Indeed, if the payoff tables of the game

236 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

were known to the players in advance, they could just
privately compute their min-max strategies and use
these strategies ad infinitum.2 Furthermore, if the type
of information they could privately store were uncon-
strained, they could engage in a protocol for recover-
ing their payoff tables, followed by the computation of
their min-max strategies. Even if they also didn’t know
each other’s number of strategies, they could interleave
phases in which they either recover pieces of their payoff
matrices, or they compute min-max solutions of recov-
ered square submatrices of the game until convergence
to an exact equilibrium is detected. Arguably, such pro-
tocols are of limited interest in highly distributed game-
playing settings.

And what is the optimal convergence rate of dis-
tributed protocols for zero-sum games? We show that,
insofar as convergence of the average payoffs of the play-
ers to their corresponding values in the game is con-
cerned, the convergence rate achieved by our protocol
is essentially optimal. Namely, we show the following:3

Theorem 1.2. Any strongly-uncoupled distributed pro-
tocol producing sequences of strategies (xt)t and (yt)t for
the players of a zero-sum game (−A,A) such that the
average payoffs of the players, 1

T

∑
t(xt)

T(−A)yt and
1
T

∑
t(xt)

TAyt, converge to their corresponding value of
the game, cannot do so at a convergence rate faster than
an additive Ω(1/T) in the number T of rounds of the
protocol. The same is true for any strongly-uncoupled
distributed protocol whose average strategies converge to
a min-max equilibrium.

Future work. Our no-regret learning algorithm
provides, to the best of our knowledge, the first example
of a strongly-uncoupled distributed protocol converging
to the min-max equilibrium of a zero-sum game at a
rate faster than 1√

T
, and in fact at a nearly-optimal

rate. The strong-uncoupledness arguably adds to the
naturalness of our protocol, since no funny bit arith-
metic, private computation of the min-max equilibrium,
or anything of the similar flavor is allowed. Moreover,
the strategies that the players use along the course of
the dynamics are fairly natural in that they constitute

2Our notion of uncoupled dynamics is stronger than that
of Hart and Mas-Colell [9]. In particular, we do not allow a

player to initially have full knowledge of his utility function, since

knowledge of one’s own utility function in a zero-sum game reveals
the entire game matrix.

3In this paper, we are concerned with bounds on average regret
and the corresponding convergence of average strategy profiles. If
we are concerned only with how close the final strategy profile

is to an equilibrium, then we suspect that similar techniques to
those of our paper can be used to devise a distributed protocol
with fast convergence of final strategy profiles.

smoothened best responses to their opponent’s previ-
ous strategies. Nevertheless, there is a certain degree of
careful choreography and interleaving of these strate-
gies, turning our protocol less simple than, say, the
multiplicative weights update algorithm. So we view
our contribution mostly as an existence proof, leaving
the following as an interesting future research direction:
Is there a simple variant of the multiplicative weights
update protocol which, when used by the players of a
zero-sum game, converges to the min-max equilibrium
of the game at the optimal rate of 1

T ?

1.1 Learning with Expert Advice. In the
learning-with-expert-advice setting, a learner has a set
[n] := {1, . . . , n} of experts to choose from at each
round t = 1, 2, After committing to a distribution
xt ∈ ∆n over the experts,4 a vector `t ∈ [−u, u]n is
revealed to the learner with the payoff achieved by each
expert at round t. He can then update his distribution
over the experts for the next round, and so forth. The
goal of the learner is to minimize his average regret,
measured by the following quantity at round T :

max
i

1
T

T∑
t=1

(ei)T`t −
1
T

T∑
t=1

(xt)T`t,

where ei is the standard unit vector along dimension i
(representing the deterministic strategy of choosing the
i-th expert). A learning algorithm is called no-regret
if the regret can be bounded by a function g(T) which
is o(T), where the function g(T) may depend on the
number of experts n and the maximum absolute payoff
u.

The multiplicative weights update (MWU) algo-
rithm is a simple no-regret learning algorithm for zero-
sum games. In the MWU algorithm, a player maintains
a “weight” for each pure strategy, and continually up-
dates this weight by a multiplicative factor based on how
the strategy would have performed in the most recent
round. The performance of the algorithms is character-
ized by the following:

Lemma 1.1. ([4]) Let (xt)t be the sequence of strategies
generated by the MWU algorithm in view of the sequence
of payoff vectors (`t)t for n experts, where `t ∈ [−u, u]n.
Then for all T :

max
i∈[n]

1
T

T∑
t=1

(ei)T`t −
1
T

T∑
t=1

(xt)T`t ≤
2u√
2− 1

√
lnn
T
.

4We use the notation ∆n to represent the n-dimensional
simplex.

237 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1.2 Strongly-Uncoupled Dynamics. A zero-sum
game is described by a pair (−A,A), where A is a n×m
payoff matrix, whose rows are indexed by the strategies
of the “row” player and whose columns are indexed by
the strategies of the “column” player. If the row player
choses a randomized, or mixed, strategy x ∈ ∆n and
the column player a mixed strategy y ∈ ∆m, then the
row player receives payoff of −xTAy, and the column
player payoff of xTAy. (Thus, the row player aims to
minimize the quantity xTAy, while the column player
aims to maximize this quantity.)5 A min-max or Nash
equilibrium of the game is then a pair of strategies (x, y)
such that, for all x′ ∈ ∆n, xTAy ≤ (x′)TAy, and for
all y′ ∈ ∆m, xTAy ≥ xTAy′. If these conditions are
satisfied to within an additive ε, (x, y) is called an ε-
approximate equilibrium. Von Neumann showed that
a min-max equilibrium exists in any zero-sum game;
moreover, that there exists a value v such that, for all
Nash equilibria (x, y), xTAy = v [18]. Value v is called
the value of the column player in the game. Similarly,
−v is called the value of the row player in the game.

We consider a repeated zero-sum game interaction
between two players. At time steps t = 1, 2, . . ., each
player choses a mixed strategy xt and yt. After a player
commits to a mixed strategy for that round, he observes
the payoff vector −Ayt and ATxt, corresponding to the
payoffs achieved by each of his deterministic strategies
against the strategy of the opponent. We are interested
in strongly-uncoupled efficient dynamics, placing the
following restrictions on the behavior of players:

1. Unknown Game Matrix. We assume that the
game matrix A ∈ Rn×m is unknown to both
players. In particular, the row player does not
know the number of pure strategies (m) available to
the column player, and vice versa. (We obviously
assume that the row player and column player know
the values n and m of their own pure strategies.)
To avoid degenerate cases in our later analysis, we
will assume that both n and m are at least 2.

2. Limited Private Storage. The information that
a player is allowed to record between rounds of the
game is limited to a constant number of payoff vec-
tors observed in the past, or cumulative informa-
tion thereof, a constant number of mixed strate-
gies played in the past, or cumulative information
thereof, and a constant number of registers record-
ing the round number and other state variables of
the protocol. In particular, a player cannot record

5Throughout this paper, if we refer to “payoff” without

specifying a player, we are referring to the xTAy, the value
received by the column player.

the whole history of play and the whole history of
observed payoff vectors, or use funny bit arithmetic
that would allow him to keep all the history of play
in one huge real number, etc.

This restriction is reminiscent of the multiplicative
weights protocol, where the learner only needs to
keep around the previously used mixed strategy,
which he updates using the newly observed payoff
vector at every round. As described in the intro-
duction, this restriction disallows protocols where
the players attempt to reconstruct the entire game
matrix A, in order to privately compute a min-max
equilibrium.

3. Efficient Computations. In each round, a player
can do polynomial-time computation on his private
information and the observed payoff vector.6

Note that the above restrictions apply only for hon-
est players. In the case of a dishonest player (an ad-
versary who deviates from the prescribed protocol in an
attempt to gain additional payoff, for instance), we will
make no assumptions about that player’s computational
abilities, private storage, or private information.

A typical kind of strongly-uncoupled efficient dy-
namics converging to min-max equilibria can be derived
by the MWU algorithm described in the previous sec-
tion. In particular, if both players of a zero-sum game
use the MWU algorithm to update their strategies, we
can bound the average payoffs in terms of the value of
the game.

Corollary 1.1. Let (xt)t and (yt)t be sequences of
mixed strategies generated by the row and column play-
ers using the MWU algorithm under observation of the
sequence of payoff vectors (−Ayt)t and (ATxt)t, respec-
tively. Then

v − C
√

lnm
T
≤ 1
T

T∑
t=1

(xt)TAyt ≤ v + C

√
lnn
T

where v is the value of the column player in the game
and C = 2u√

2−1
. Moreover, for all T , (1

T

∑
t xt,

1
T

∑
t yt)

is a
(

2u√
2−1

√
lnm+

√
lnn√

T

)
-approximate Nash equilibrium

of the game.

Finally, for our convenience, we make the following
assumptions for all the game dynamics described in
this paper. We assume that both players know a
value |A|max, which is an on the largest absolute-value

6We will not address issues of numerical precision in this
extended abstract.

238 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

payoff in the matrix A. (We assume that both the row
and column player know the same value for |A|max.)
This assumption is similar to a typical bounded-payoff
assumption made in the MWU protocol.7 We assume
without loss of generality that the players know the
identity of the “row” player and of the “column” player.
We make this assumption to allow for protocols that
are asymmetric in the order of moves of the players.8

1.3 Outline of Approach. Our no-regret learning
algorithm is based on a gradient-descent algorithm for
computing a Nash equilibrium in a zero-sum game. Our
construction for converting this algorithm into a no-
regret protocol has several stages as outlined below. We
start with the centralized algorithm for computing Nash
equilibria in zero-sum games, disentangle the algorithm
into strongly-uncoupled game-dynamics, and proceed to
make them robust to adversaries, obtaining our general
purpose no-regret algorithm.

To provide a unified description of the game-
dynamics and no-regret learning algorithms in this pa-
per, we describe both in terms of the interaction of two
players. Indeed, we can reduce the learning-with-expert
advice setting to the setting where a row (or a col-
umn) player interacts with an adversarial (also called
dishonest) column (respectively row) player in a zero-
sum game, viewing the payoff vectors that the row (resp.
column) player receives at every round as new columns
(rows) of the payoff matrix of the game. The regret
of the row (respectively column) player is the differ-
ence between the round-average payoff that he received
and the best payoff he could have received against the
round-average strategy of the adversary.

In more detail, our approach for designing our no-
regret dynamics is the following:

• In Section 2, we present Nesterov’s Excessive Gap
Techinique (EGT) algorithm, a gradient-based al-
gorithm for computing an ε-approximate Nash
equilibrium in O(1

ε) number of rounds.

• In Section 3, we “decouple” the EGT algorithm

7We suspect that we can modify our protocol to work in the

case where no upper bound is known, by repeatedly guessing
values for |A|max and thereby slowing the protocol’s convergence

rate by a factor polynomial in |A|max.
8We can augment our protocols with initial rounds of interac-

tion where both players select strategies at random, or according
to a simple no-regret protocol such as the MWU algorithm. As

soon as a round occurs with a non-zero payoff, the player who
received the positive payoff designates himself the “row” player
while the opponent designates himself the “column” player. Bar-

ring degenerate cases where the payoffs are always 0, we can show
that this procedure is expected to terminate very quickly.

to construct the HonestEgtDynamics protocol.
This protocol has the property that, if both players
honestly follow their instructions, their actions will
exactly simulate the EGT algorithm.

• In Section 4.2, we modify the HonestEgtDynam-
ics protocol to have the property that, in an honest
execution, both players’ average payoffs are nearly
best-possible against the opponent’s historical av-
erage strategy.

• In Section 4.3, we construct BoundedEgtDy-
namics(b), a no-regret protocol. The input b is a
presumed upper bound on a game parameter (un-
known by the players) which dictates the conver-
gence rate of the Egt algorithm. If b indeed upper
bounds the unknown parameter and if both play-
ers are honest, then an execution of this protocol
will be the same as an honest execution of Hon-
estEgtDynamics, and the player will detect low
regret. If the player measures higher regret than
expected, he detects a “failure”, which may cor-
respond to either b not upper bounding the game
parameter, or the other player significantly devi-
ating from the protocol. However, the player is
unable to distinguish what went wrong, and this
creates important challenges in using this protocol
as a building block for our no-regret protocol.

• In Section 4.4, we construct NoRegretEgt, a no-
regret protocol. In this protocol, the players re-
peatedly guess values of b and run BoundedEgt-
Dynamics(b) until a player detects a failure. Every
time the players need to guess a new value of b, they
interlace a large number of rounds of the MWU al-
gorithm. Note that detecting a deviating player
here can be very difficult, if not impossible, given
that neither player knows the details of the game
(payoff matrix and dimensions) which come into the
right value of b to guarantee convergence. While we
cannot always detect deviations, we can still man-
age to obtain no-regret guarantees, via a careful
design of the dynamics. The NoRegretEgt pro-
tocol has the regret guarantees mentioned in the
beginning of this introduction (see Theorem 1.1).

2 Nesterov’s Minimization Scheme

In this section, we introduce Nesterov’s Excessive Gap
Technique (EGT) algorithm and state the necessary
convergence result. The EGT algorithm is a gradient-
descent approach for approximating the minimum of
a convex function. In this paper, we apply the EGT
algorithm to appropriate best-response functions of a
zero-sum game. For a more detailed description of this

239 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

algorithm, see Appendix A. Let us define the functions
f : ∆n → R and φ : ∆m → R by

f(x) = max
v∈∆m

xTAv and φ(y) = min
u∈∆n

uTAy.

In the above definitions, f(x) is the payoff arising from
the column player’s best response to x ∈ ∆n, while φ(y)
is the payoff arising from the row player’s best response
to y ∈ ∆m. Note that f(x) ≥ φ(y) for all x and y,
and that f(x) − φ(y) ≤ ε implies that (x, y) is an ε-
approximate Nash equilibrium.

Nesterov’s algorithm constructs sequences of points
x1, x2, . . . and y1, y2, . . . such that f(xk)−φ(yk) becomes
small, and therefore (xk, yk) becomes an approximate
Nash equilibrium. In the EGT scheme, we will approx-
imate f and φ by smooth functions, and then simu-
late a gradient-based optimization algorithm on these
smoothed approximations. This approach for minimiza-
tion of non-smooth functions was introduced by Nes-
terov in [17], and was further developed in [16]. Nes-
terov’s excessive gap technique (EGT) is a gradient al-
gorithm based on this idea. The EGT algorithm from
[16] in the context of zero-sum games (see [7], [8]) is
presented in its entirety in Appendix A.

The main result concerning this algorithm is the
following theorem from [16]:

Theorem 2.1. The xk and yk generated by the EGT
algorithm satisfy

f(xk)− φ(yk) ≤ 4||A||n,m
k + 1

√
DnDm

σnσm
.

In our application of the above theorem, we will
have ||A||n,m = |A|max and DnDm

σnσm
= lnn lnm. Our

first goal is to construct a protocol such that, if both
players follow the protocol, their moves simulate the
EGT algorithm.

3 Honest Game Dynamics

We now use game dynamics to simulate the EGT algo-
rithm, by “decoupling” the operations of the algorithm,
obtaining the HonestEgtDynamics protocol. Basi-
cally, the players help each other perform computations
necessary in the EGT algorithm by playing appropriate
strategies at appropriate times. In this section, we as-
sume that both players are “honest,” meaning that they
do not deviate from their prescribed protocols.

We recall that when the row and column players
play x and y respectively, the row player observes −Ay
and the column player observes xTA. This enables
the row and column players to solve minimization
problems involving Ay and xTA, respectively. The

HonestEgtDynamics protocol is a direct decoupling
of the EGT algorithm.

We illustrate this decoupling idea by an example.
The EGT algorithm requires solving the following op-
timization problem:

x̆ := arg max
x∈∆n

(−xTAyk − µkndn(x)),

where dn(·) is a function, µkn is a constant known by
the row player, and yk is a strategy known by the
column player. We can implement this maximization
distributedly by instructing the row player to play xk

(a strategy computed earlier) and the column player to
play yk. The row player observes the loss vector −Ayk,
and he can then use local computation to compute x̆.

The HonestEgtDynamics protocol decouples the
EGT algorithm exploiting this idea. We present the
entire protocol in Appendix B. In this appendix, we also
prove that the average payoffs of this protocol converge
to the Nash equilibrium value with rate O(log T

T).9

4 No-Regret Game Dynamics

We use the HonestEgtDynamics protocol as a start-
ing block to design a no-regret protocol.

4.1 The No-Regret Property in Game Dynam-
ics. We restate the no-regret property from Section 1.1
in the context of repeated zero-sum player interactions
and define the honest no-regret property, a restriction of
the no-regret property to the case where neither player
is allowed to deviate from a prescribed protocol.

Definition 4.1. Fix a zero-sum game (−A,A)n×m
and a distributed protocol, specifying directions for the
strategy that each player should chose at every time step
given his observed payoff vectors. We call the proto-
col honest no-regret if it satisfies the following prop-
erty: For all δ > 0, there exists a T such that for all
T ′ > T and infinite sequences of strategies (x1, x2, . . .)
and (y1, y2, . . .) resulting when the row and column play-
ers both follow the protocol:

1
T ′

T ′∑
t=1

(−xT
t Ayt) ≥ max

i∈[n]

1
T

T ′∑
t=1

−(ei)TAyt − δ(4.1)

1
T ′

T ′∑
t=1

(xT
t Ayt) ≥ max

i∈[m]

1
T

T ′∑
t=1

xT
t Aei − δ.(4.2)

We call the protocol no-regret for the column player
if it satisfies the following property: For all δ > 0,

9The proof of this convergence is not necessary for the re-

mainder of the paper, since our later protocols will be simpler to
analyze directly. We give it for completeness.

240 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

there exists a T such that for all T ′ > T and infinite
sequences of moves (x1, x2, . . .) and (y1, y2, . . .) resulting
when the column player follows the protocol and the row
player behaves arbitrarily, (4.2) is satisfied. We define
similarly what it means for a protocol to be no-regret for
the row player. We say that a protocol is no-regret if it
is no-regret for both players.

The no-regret properties state that by following
the protocol, a player’s payoffs will not be significantly
worse than the payoff that any single deterministic
strategy would have achieved against the opponent’s
sequence of strategies.

We already argued that the average payoffs in the
HonestEgtDynamics converge to the value of the
game. However, this is not tantamount to the protocol
being honest no-regret.10 To exemplify what goes
wrong in our setting, in lines 17-18 of the protocol, the
column player plays the strategy obtained by solving
the following program, given the observed payoff vector
x̂TA induced by the strategy x̂ of the other player.

ŷ := arg max
y

(x̂TAy − µkmdm(y)).

It is possible that the vector ŷ computed above differs
significantly from the equilibrium strategy y∗ of the
column player, even if the row player has converged to
his equilibrium strategy x̂ = x∗. For example, suppose
that x̂ = x∗, and that y∗ involves mixing between two
pure strategies in a 99%-1% ratio. We know that any
combination of the two pure strategies supported by
y∗ will be a “best response” to x∗. Therefore, the
minimizer of the above expression may involve mixing
in, for example, a 50%-50% ratio of these strategies
(given the canonization term−µkmdm(y) in the objective
function). Since ŷ differs significantly from y∗, there
might be some best response x′ to ŷ which performs
significantly better than x∗ performs against ŷ, and
thus the protocol may end up not being honest no-
regret for the row player. A similar argument shows
that the protocol is not necessarily honest no-regret for
the column player.

4.2 “Honest No-Regret” Protocols. We perform
a simple modification to the HonestEgtDynamics
protocol to make it honest no-regret. The idea is for
the players to only ever play strategies which are very
close to the strategies xk and yk maintained by the

10For an easy example of why these two are not equivalent,

consider the rock-paper-scissors game. Let the row player contin-
uously play the uniform strategy over rock, paper, and scissors,
and let the column player continuously play rock. The average

payoff of the players is 0, which is the value of the game, but the
row player always has average regret bounded away from 0.

EGT algorithm at round k, which—by Theorem 2.1—
constitute an approximate Nash equilibrium with the
approximation going to 0 with k. Thus, for example,
instead of playing ŷ in line 18 of HonestEgtDynam-
ics, the column player will play (1− δk)yk + δkŷ, where
δk is a very small fraction (say, δk = 1

(k+1)2). Since the
row player has previously observed Ayk, and since δk is
known to both players, the row player can compute the
value of Aŷ. Furthermore, we note that the payoff of the
best response to (1− δk)yk + δkŷ is within 2|A|maxδk of
the payoff of the best response to yk. Hence, the extra
regret introduced by the mixture goes down with the
number of rounds k. Indeed, the honest no-regret prop-
erty resulting from this modification follows from this
observation and the fact that xk and yk converge to a
Nash equilibrium in the EGT algorithm (Theorem 2.1).
(We do not give an explicit description of the modified
HonestEgtDynamics and the proof of its honest no-
regret property, as we incorporate this modification to
further modifications that follow.)

4.3 Presumed Bound on
√

lnn lnm. We now be-
gin work towards designing a no-regret protocol. Re-
call from Theorem 2.1 that the convergence rate of the
EGT algorithm, and thus the rate of decrease of the av-
erage regret of the protocol from Section 4.2, depends
on the value of

√
lnn lnm. However, without know-

ing the dimensions of the game (i.e. without knowl-
edge of

√
lnn lnm), the players are incapable of mea-

suring if their regret is decreasing as it should be, were
they playing against an honest opponent. And if they
have no ability to detect dishonest behavior and coun-
teract, they could potentially be tricked by an adver-
sary and incur high regret. In an effort to make our
dynamics robust to adversaries and obtain the desired
no-regret property, we design in this section a protocol,
BoundedEgtDynamics(b), which takes a presumed
upper bound b on

√
lnn lnm as an input. This protocol

will be our building block towards obtaining a no-regret
protocol in the next section.

The idea for BoundedEgtDynamics(b) is
straightforward: since a presumed upper bound b on√

lnn lnm is decided, the players can compute an
upper bound on how much their regret ought to be
in each round of the Section 4.2 protocol, assuming
that b was a correct bound. If a player’s regret in a
round is ever greater than this computed upper bound,
the player can conclude that either b <

√
lnn lnm,

or that the opponent has not honestly followed the
protocol. In the BoundedEgtDynamics protocol, a
participant can detect two different types of failures,
“YIELD” and “QUIT,” described below. Both of these
failures are internal state updates to a player’s private

241 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

computations and are not communicated to the other
player. The distinction between the types of detectable
violations will be important in Section 4.4.

• YIELD(s)- A YIELD failure means that a violation
of a convergence guarantee has been detected. (In
an honest execution, this will be due to b being
smaller than

√
lnn lnm.) Our protocol can be

designed so that, whenever one player detects an
YIELD failure, the other player detects the same
YIELD failure. A YIELD failure has an associated
value s, which is the smallest “presumed upper
bound on

√
lnn lnm” which, had s been given as

the input to BoundedEgtDynamics instead of b,
the failure would not have been declared.11

• QUIT- A QUIT failure occurs when the opponent
has been caught cheating. For example, a QUIT
failure occurs if the row player is supposed to play
the same strategy twice in a row but the column
player observes different loss vectors. Unlike a
YIELD failure, which could be due to the presumed
upper bound being incorrect, a QUIT failure is
a definitive proof that the opponent has deviated
from the protocol.

For the moment, we can imagine a player switching
to the MWU algorithm if he ever detects a failure.
Clearly, this is not the right thing to do as a failure
is not always due to a dishonest opponent, so this will
jeopardize the fast convergence in the case of honest
players. To avoid this, we will specify the appropriate
behavior more precisely in Section 4.4.

We explicitly state and analyze the BoundedEgt-
Dynamics(b) protocol in detail in Appendix C. The
main lemma that we show is the following regret bound:

Lemma 4.1. Let (x1, x2, . . .) and (y1, y2, . . .) be se-
quences of strategies played by the row and column
players respectively, where the column player used the
BoundedEgtDynamics(b) protocol to determine his
moves at each step. (The row player may or may not
have followed the protocol.) If, after the first T rounds,
the column player has not yet detected a YIELD or
QUIT failure, then

max
i∈[m]

1
T

T∑
t=1

xT
t Aei ≤

1
T

T∑
t=1

xT
t Ayt

+
19|A|max

T
+

20|A|maxb ln (T + 3)
T

.

The analogous result holds for the row player.

11The returned value s will not be important in this section,
but will be used in Section 4.4.

Note that the value of b does not affect the strate-
gies played in an execution of the BoundedEgtDy-
namics(b) protocol where both players are honest, as
long as b >

√
lnn lnm. In this case, no failures will ever

be detected.

4.4 The NoRegretEGT Protocol. In this section,
we design our final no-regret protocol, NoRegretEgt.
The idea is to use the BoundedEgtDynamics(b) pro-
tocol with successively larger values of b, which we will
guess as upper bounds on

√
lnn lnm. Notice that if we

ever have a QUIT failure in the BoundedEgtDynam-
ics protocol, the failure is a definitive proof that one
of the players is dishonest. In this case, we instruct the
player detecting the failure to simply perform the MWU
algorithm forever, obtaining low regret.

The main difficulty is how to deal with the YIELD
failures. The naive approach of running the Bound-
edEgtDynamics algorithm and doubling the value of
b at every YIELD failure is not sufficient; intuitively,
because this approach is not taking extra care to ac-
count for the possibility that either the guess on b is too
low, or that the opponent is dishonest in a way prevent-
ing the dynamics from converging. Our solution is this:
every time we would increase the value of b, we first per-
form a number of rounds of the multiplicative weights
update method for a carefully chosen period length. In
particular, we ensure that b is never greater than 4

√
T

(for reasons which become clear in the analysis).
Now we have the following: If both players are hon-

est, then after finitely many YIELD failures, b becomes
larger than

√
lnn lnm. From that point on, we observe

a failure-free run of the BoundedEgtDynamics pro-
tocol. Since this execution is failure-free, we argue that
after the original finite prefix of rounds the regret can
be bounded by Lemma 4.1. The crucial observation is
that, if one of the players is dishonest and repeatedly
causes YIELD failures of the BoundedEgtDynamics
protocol, then the number of rounds of the MWU al-
gorithm will be overwhelmingly larger than the number
of rounds of the BoundedEgtDynamics (given our
careful choice of the MWU period lengths), and the no-
regret guarantee will follow from the MWU algorithm’s
no-regret guarantees.

We present the NoRegretEgt protocol in detail
in Appendix D. The key results are the following two
theorems, proved in the appendix. Together they imply
Theorem 1.1.

Theorem 4.1. If the column player follows the NoRe-
gretEgt protocol, his average regret over the first T
rounds is at most O

(
|A|max

√
lnm√

T

)
, regardless of the

row player’s actions. Similarly, if the row player follows

242 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

the NoRegretEgt protocol, his average regret over the
first T rounds is at most O

(
|A|max

√
lnn√

T

)
, regardless of

the column player’s actions.

Theorem 4.2. If both players honestly follow the
NoRegretEgt protocol, then the column player’s av-
erage regret over the first T rounds is at most

O

(
|A|max

√
lnn lnm lnT
T

+
|A|max(lnm)3/2 lnn

T

)

and the row player’s average regret over the first T
rounds is at most

O

(
|A|max

√
lnn lnm lnT
T

+
|A|max(lnn)3/2 lnm

T

)
.

5 Lower Bounds on Optimal Convergence Rate

In this section, we prove Theorem 1.2. The main idea is
that since the players do not know the payoff matrix A
of the zero-sum game, it is unlikely that their historical
average strategies will converge to a Nash equilibrium
very fast. In particular, the players are unlikely to play
a Nash equilibrium in the first round and the error from
that round can only be eliminated at a rate of Ω(1/T),
forcing the Ω(1/T) convergence rate for the average
payoffs and average strategies to the min-max solution.

Proof. [Proof of Theorem 1.2] We show that there exists
a set of zero-sum games such that when a zero-sum
game is selected randomly from the set, any strongly-
uncoupled distributed protocol’s convergence to the
corresponding value of the game is Ω(1/T) with high
probability. We assume that n and m are at least 2
to avoid degenerate cases. For i = 1, . . . , n, let Ai be
the all-ones matrix except the i-th row which is the
all zero vector. Note that the Nash equilibrium value
of the game (−Ai, Ai) is 0 for both players, and that
all Nash equilibria are of the form (ei, y), where ei is
the deterministic strategy of choosing the i-th expert
and y ∈ ∆m. Given any strongly-uncoupled protocol,
consider choosing a game uniformly at random from the
set A = {(−A1, A1), . . . , (−An, An)}. Since the row
player does not know the payoff matrix A in advance,
the strategies x1 and y1 played in the first round of the
protocol will have expected payoff E[(x1)T (−A)y1] =
−1+1/n. (Thus, the first-round payoff is at most −1/3
with probability at least 1 − 3

2n ≥ 1/4.) Since the
Nash equilibrium value of the game is 0, and the row
player’s payoffs are never strictly positive, the average
payoffs 1

T

∑
t x

T
t (−A)yt and 1

T

∑
t x

T
t Ayt converge to 0

(the value of the game) at expected rate no faster than
Ω(1/T) in the number T of rounds. A similar argument

can be applied to bound on the rate that average
strategies can converge to a min-max equilibrium in
strongly-uncoupled dynamics.

Acknowledgements. We thank Robert Kleinberg for
useful discussions.

References

[1] I. Adler. On the Equivalence of Linear Programming
Problems and Zero-Sum Games. Optimization Online,
2010.

[2] F. Brandt, F. Fischer, and P. Harrenstein. On the Rate
of Convergence of Fictitious Play. In 3rd International
Symposium on Algorithmic Game Theory, 2010.

[3] G. W. Brown. Iterative solution of games by fictitious
play. Activity analysis of production and allocation,
1951.

[4] N. Cesa-Bianchi and G. Lugosi. Prediction, learning,
and games. Cambridge University Press, 2006.

[5] Y. Freund and R. Schapire. Adaptive Game Playing
Using Multiplicative Weights. Games and Economic
Behavior, 29:79–103, 1999.

[6] A. Gilpin, J. Peña, and T. Sandholm. First-Order Algo-
rithm With O(ln(1/ε)) Convergence for ε-Equilibrium
in Two-Person Zero-Sum games. In Proceedings of the
23rd National Conference on Artificial Intelligence,
2008.

[7] A. Gilpin, S. Hoda, J. Peña, and T. Sandholm.
Gradient-based Algorithms for finding Nash Equilib-
ria in Extensive Form Games. In Proceedings of the
Eighteenth International Conference on Game Theory,
2007.

[8] A. Gilpin, S. Hoda, J. Peña, and T. Sandholm. Smooth-
ing Techniques for Computing Nash Equilibria of Se-
quential Games. Optimization Online, 2008.

[9] S. Hart and A. Mas-Colell. Uncoupled Dynamics Do
Not Lead to Nash Equilibrium. American Economic
Review, 93:1830–1836, 2003.

[10] N. Karmarkar. A New Polynomial-Time Algorithm
for Linear Programming. In Proceedings of the 16th
Annual ACM Symposium on Theory of Computing,
1984.

[11] L. G. Khachiyan. A Polynomial Algorithm in Lin-
ear Programming. Soviet Math. Dokl., 20(1):191–194,
1979.

[12] G. Lan, Z. Lu, and R. Monteiro. Primal-Dual First-
Order Methods with O(1/ε) iteration-complexity for
cone programming. Math. Program., Ser. A, 2009.

[13] N. Littlestone and M. Warmuth. The Weighted Major-
ity Algorithm. Information and Computation, 108:212–
261, 1994.

[14] R. B. Myerson. Nash Equilibrium and the History
of Economic Theory. Journal of Economic Literature,
1999.

[15] J. Nash. Noncooperative Games. Ann. Math., 54:289–
295, 1951.

243 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[16] Y. Nesterov. Excessive Gap Technique in Nons-
mooth Convex Minimization. SIAM J. on Optimiza-
tion 16(1):235–249, May 2005.

[17] Y. Nesterov. Smooth Minimization of Non-Smooth
Functions. Math. Program., 103(1):127–152, May 2005.

[18] J. von Neumann. Zur Theorie der Gesellschaftsspiele.
Math. Annalen, 100:295–320, 1928.

[19] J. von Neumann and O. Morgenstern. Theory of Games
and Economic Behavior. Princeton University Press,
1944.

[20] J. Robinson. An iterative method of solving a game.
Annals of mathematics, 1951.

A Nesterov’s EGT Algorithm

In this appendix, we explain the ideas behind the
Excessive Gap Technique (EGT) algorithm and we show
how this algorithm can be used to compute approximate
Nash equilbria in two-player zero-sum games. Before we
discuss the algorithm itself, we introduce some necessary
background terminology.

A.1 Choice of Norm. When we perform Nesterov’s
algorithm, we will use norms || · ||n and || · ||m on the
spaces ∆n and ∆m, respectively.12 With respect to the
norms ||·||n and ||·||m chosen above, we define the norm
of A to be

||A||n,m = max
x,y

{
xTAy : ||x||n = 1, ||y||m = 1

}
.

In this paper, we will choose to use `1 norms on ∆n

and ∆m, in which case ||A||n,m = |A|max, the largest
absolute value of an entry of A.

A.2 Choice of Prox Function. In addition to
choosing norms on ∆n and ∆m, we also choose smooth
prox-functions, dn : ∆n → R and dm : ∆m → R which
are strongly convex with convexity parameters σn > 0
and σm > 0, respectively.13 These prox functions will
be used to construct the smooth approximations of f
and φ. Notice that the strong convexity of our prox
functions depends on our choice of norms || · ||n and
|| · ||m. Without loss of generality, we will assume that
dn and dm have minimum value 0.

Furthermore, we assume that the prox functions dn
and dm are bounded on the simplex. Thus, there exist
Dn and Dm such that

max
x∈∆n

dn(x) ≤ Dn

12We use the notation ∆n to represent the n-dimensional
simplex.

13Recall that dm is strongly convex with parameter σm if, for

all v and w ∈ ∆m,
(∇dm(v)−∇dm(w))T(v − w) ≥ σm||v − w||2m.

and
max
y∈∆m

dm(y) ≤ Dm.

A.3 Approximating f and φ by Smooth Func-
tions. We will approximate f and φ by smooth func-
tions fµm and φµn , where µm and µn are smoothing
parameters. (These parameters will change during the
execution of the algorithm.) Given our choice of norms
and prox functions above, we define

fµm
(x) = max

v∈∆m

xTAv − µmdm(v)

φµn(y) = min
u∈∆n

uTAy + µndn(u).

We see that for small values of µ, the functions
will be a very close approximation to their non-smooth
counterparts. We observe that since dn and dm are
strongly convex functions, the optimizers of the above
expressions are unique.

As discussed above, for all x ∈ ∆n and y ∈ ∆m

it is the case that φ(y) ≤ f(x). Since fµm(x) ≤ f(x)
and φµn

(y) ≥ φ(y) for all x and y, it is possible that
some choice of values µn, µm, x and y may satisfy the
excessive gap condition of fµm

(x) ≤ φµn
(y). The key

point behind the excessive gap condition is the following
simple lemma from [16]:

Lemma A.1. Suppose that

fµm
(x) ≤ φµn

(y).

Then
f(x)− φ(y) ≤ µnDn + µmDm.

Proof. For any x ∈ ∆n and y ∈ ∆m, we have fµm(x) ≥
f(x)− µmDm and φµn

(y) ≤ φ(y) + µnDn. Therefore

f(x)− φ(y) ≤ fµm
(x) + µmDm − φµn

(y) + µnDn

and the lemma follows immediately.

In the algorithms which follow, we will attempt to
find x and y such that fµn(x) ≤ φµn(y) for µn, µm
small.

A.4 Excessive Gap Technique (EGT) Algo-
rithm. We now present the gradient-based excessive
gap technique from [16] in the context of zero-sum
games (see [7], [8]). The main idea behind the exces-
sive gap technique is to gradually lower µm and µn
while updating values of x and y such that the invariant
fµm

(x) ≤ φµn
(y) holds.

The following gradient-based algorithm uses the
techniques of [16], and is presented here in the form

244 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

from [8]. In Appendix B, we show how to implement
this algorithm by game dynamics.

In the algorithm which follows, we frequently en-
counter terms of the form

dm(x)− xT∇dm(x̂).

We intuitively interpret these terms by noting that

ξm(x̂, x) = dm(x)− dm(x̂)− (x− x̂)T∇dm(x̂)

is the Bregman distance between x̂ and x. Thus, when
x̂ is fixed, looking at an expression such as

arg max
x∈∆n

−xTAy0 + µ0
n(xT∇dn(x̂)− dn(x))

should be interpreted as looking for x with small
Bregman distance from x̂ which makes −xTAy0 large.
Loosely speaking, we may colloquially refer to the opti-
mal x above as a “smoothed best response” to Ay0.

The key point to this algorithm is the following
theorem, from [16]

Theorem A.1. The xk and yk generated by the EGT
algorithm satisfy

f(xk)− φ(yk) ≤ 4||A||n,m
k + 1

√
DnDm

σnσm
.

A.5 Entropy Prox Function and the `1 Norm.
When we simulate the EGT algorithm with game dy-
namics, we will choose to use the `1 norm and the en-
tropy prox function, as defined below. (This choice of
norm and prox function was mentioned in [17].)

dn(x) = lnn+
n∑
i=1

xi lnxi

dm(y) = lnm+
m∑
j=1

yj ln yj

||x||n =
n∑
i=1

|xi|

||y||m =
m∑
j=1

|yj |

From Lemma 4.3 of [17], we know that the above
choice of norms and prox functions satisfy:

σn = σm = 1
Dn = lnn
Dm = lnm

||A||n,m = |A|,

1: function EGT
2: µ0

n := µ0
m := ||A||n,m√

σnσm

3: x̂ := arg minx∈∆n
dn(x)

4: y0 := arg maxy∈∆m
x̂TAy − µ0

mdm(y)
5: x0 := arg maxx∈∆n

−xTAy0 + µ0
n(xT∇dn(x̂) −

dn(x))
6:

7: for k = 0, 1, 2, . . . do
8: τ := 2

k+3
9:

10: if k is even then /* Shrink µn */
11: x̆ := arg maxx∈∆n −xTAyk − µkndn(x)
12: x̂ := (1− τ)xk + τ x̆
13: ŷ := arg maxy∈∆m

x̂TAy − µkmdm(y)
14: x̃ := arg maxx∈∆n

− τ
1−τ x

TAŷ +
µknx

T∇dn(x̆)− µkndn(x)
15: yk+1 := (1− τ)yk + τ ŷ
16: xk+1 := (1− τ)xk + τ x̃
17: µk+1

n := (1− τ)µkn
18: µk+1

m := µkm
19: end if
20:

21: if k is odd then /* Shrink µm */
22: y̆ := arg maxy∈∆m yTATxk − µkmdm(y)
23: ŷ := (1− τ)yk + τ y̆
24: x̂ := arg maxx∈∆n

−xTAŷ − µknd(x)
25: ỹ := arg maxy∈∆m

τ
1−τ y

TATx̂ +
µkmy

T∇dm(y̆)− µkmdm(y)
26: xk+1 := (1− τ)xk + τ x̂
27: yk+1 := (1− τ)yk + τ ỹ
28: µk+1

m := (1− τ)µkm
29: µk+1

n := µkn
30: end if
31: end for
32: end function

245 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

where |A| is the largest absolute value entry of A. (In
the EGT algorithm, it suffices to replace ||A||n,m with
|A|max, an upper bound of |A|. When we make this
change, we will simply replace ||A||n,m with |A|max in
the above theorem.)

There are three main benefits of choosing these
prox functions. The first reason is that this choice
will make our convergence bounds depend on the same
parameters as the MWU convergence bounds, and thus
it will be easy to compare the convergence rates of these
technique.

The second reason is that in the first step of the
EGT algorithm, we set µ0

n := µ0
m := ||A||n,m√

σnσm
. Since

σn = σm = 1 under our choice of prox functions and `1
norm, this step of the algorithm simply becomes

µ0
n := µ0

m := |A|max,

which is a known constant.
The third reason is that all of the required optimiza-

tions have simple closed-form solutions. In particular,
our algorithm requires us to solve optimization problems
of the form

arg max
x∈∆n

xTs− µndn(x)

where s ∈ Rn is some fixed vector. In this case, the
solution has a closed form (see [17]). The solution is the
vector x, with jth component

xj =
esj/µn∑n
i=1 e

si/µn
.

The analogous result holds for optimizations over y ∈
∆m.

B The Honest EGT Dynamics Protocol

In this appendix, we present the entirety of the Hon-
estEGTDynamics protocol, introduced in Section 3,
and compute convergence bounds for the average pay-
offs. Note that throughout the appendix, we present the
HonestEgtDynamics protocol, and protocols which
follow, as a single block of pseudocode containing in-
structions for both row and column players. However,
this presentation is purely for notational convenience,
and our pseudocode can clearly be written as a proto-
col for the row player and a separate protocol for the
column player.

For notational purposes, most lines of our pseu-
docode begin with either a “R” or a “C” marker. These
symbols refer to instructions performed by the row or
column player, respectively. A line which begins with
the “R,C” marker is a computation performed indepen-
dently by both players. An instruction such as “PLAY

xTAy” is shorthand for an instruction of “PLAY x” in
the row player’s protocol, and “PLAY y” in the column
player’s protocol.

We compute convergence bounds for the average
payoff in the HonestEgtDynamics protocol, assum-
ing that both players honestly follow the protocol.
These bounds are slightly more difficult to compute
than the bounds for the BoundedEgtDynamics(∞)
protocol (which also converges quickly towards a Nash
equilibrium when both players follow the protocol.)
We include these bounds on the (less efficient) Hon-
estEgtDynamics protocol for the sake of complete-
ness.

We will use Theorem 2.1 to bound the payoffs every
time the players play a round of the game. Our goal is
to prove that the average payoffs in HonestEgtDy-
namics converge to the Nash Equilibrium value quickly
(with convergence rate O(lnT

T)).
In what follows, we let P = (x∗)TAy∗ be the Nash

equilibrium payoff (for the row player) of the game. For
ease of notation, in the analysis which follows we let

εk =
4|A|max

√
lnn lnm

k + 1
.

We now have the following bounds on the payoffs,
where we analyze each line of HonestEgtDynamics
separately:

• Line 5- We simply bound this payoff by

−|A|max ≤ x̂TAȳ ≤ |A|max.

• Line 11

Using Theorem 2.1, we have

P − εk ≤ (xk)TAyk ≤ P + εk.

• Line 16-

We notice that x̂TAyk ≤ (1 − τ)(xk)TAyk +
τ |A|max. This will enable us to bound on x̂TAyk

by using Theorem 2.1. Note that

x̂TAyk ≤ (1− τ)(P + εk) + τ |A|max
≤ P + τ |A|max + (1− τ)εk + τ |A|max

≤ P + εk +
4|A|max
k + 3

.

Therefore, we have the bounds

P − εk ≤ x̂TAyk ≤ P + εk +
4|A|max
k + 3

.

246 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1: function Honest EGT Dynamics
2: R : µ0

n := |A|max C: µ0
m := |A|max

3: R : x̂ := arg minx∈∆n dn(x)
4: C : Pick ȳ ∈ ∆m arbitrary
5: PLAY: x̂TAȳ
6: C : y0 := arg maxy∈∆m

x̂TAy − µ0
mdm(y)

7: R :

x0 := arg max
x∈∆n

−xTAy0 + µ0
n(xT∇dn(x̂)− dn(x))

8:

9: for k = 0, 1, 2, . . . do
10: R, C: τ := 2

k+3

11: PLAY: (xk)TAyk

12:

13: if k is even then /* Shrink µn */
14: R: x̆ := arg maxx∈∆n

−xTAyk − µkndn(x)
15: R: x̂ := (1− τ)xk + τ x̆
16: PLAY: x̂TAyk

17: C: ŷ := arg maxy∈∆m
x̂TAy − µkmdm(y)

18: PLAY x̂TAŷ
19: R:

xk+1 := (1− τ)xk + τ(arg max
x∈∆n

{− τ

1− τ
xTAŷ

+ µkn(xT∇dn(x̆)− dn(x))})

20: C: yk+1 := (1− τ)yk + τ ŷ
21: R: µk+1

n := (1− τ)µkn
22: C: µk+1

m := µkm
23: end if
24:

25: if k is odd then /* Shrink µm */
26: C: y̆ := arg maxy∈∆m

yTATxk−µkmdm(y)
27: C: ŷ := (1− τ)yk + τ y̆
28: PLAY: (xk)TAŷ
29: R: x̂ := arg maxx∈∆n

−xTAŷ − µkndn(x)
30: PLAY: x̂TAŷ
31: C:

yk+1 := (1− τ)yk + τ(arg max
y∈∆m

{ τ

1− τ
yTATx̂

+ µkm(yT∇dm(y̆)− dm(y))})

32: R: xk+1 := (1− τ)xk + τ x̂
33: C: µk+1

m := (1− τ)µkm
34: R: µk+1

n := µkn
35: end if
36: end for
37: end function

• Line 18- We notice that, since ŷ :=
arg maxy∈∆m

x̂TAy − µkmdm(y), we have

x̂TAŷ ≥ arg max
y∈∆m

{x̂TAy} − µkmDm

Furthermore, since arg maxy∈∆m
{x̂TAy} ≥ P , this

gives us the bound

P − µkm lnm ≤ x̂TAŷ.

Now we determine the value of µkm. Notice that k
is even at Line 18, and therefore

µkm = µ0
m ·

k−1∏
i=1, i odd

(1− 2
i+ 3

)

= µ0
m ·

k−1∏
i=1, i odd

i+ 1
i+ 3

=
2|A|max
k + 2

.

To obtain an upper bound, we notice that

x̂ := (1− τ)xk + τ(arg max
x∈∆n

{−xTAyk −µkndn(x)}).

Therefore,

x̂TAŷ ≤ (1− τ)(xk)TAŷ + τ |A|max
≤ P + εk + 2τ |A|max

= P + εk +
4|A|max
k + 3

.

Putting these bounds together, we have

P − 2|A|max lnm
k + 2

≤ x̂TAŷ ≤ P + εk +
4|A|max
k + 3

.

• Line 28-

By the same analysis as Line 16, we have

P − εk −
4|A|max
k + 3

≤ (xk)TAŷ ≤ P + εk.

• Line 30-

The analysis is nearly identical to the analysis from
Line 18. The only difference is that, since k is odd,
we have

µkn = µ0
n ·

k−1∏
i=0, i even

i+ 1
i+ 3

=
|A|max
k + 2

.

247 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Therefore, we have the bound

P − εk −
4|A|max
k + 3

≤ x̂TAŷ ≤ P +
|A|max lnn
k + 2

.

By using these bounds, we can obtain the following
lemma, which we prove below:

Lemma B.1. For all K ≥ 1, the average payoff of
playing the HonestEgtDynamics for a total of 3K+1
rounds is bounded by

P − |A|m
K
− 24|A|m ln (K + 1)

3K + 1
(
√

lnn lnm+ lnm+ 1)

≤ Average Payoff ≤

P +
|A|m
K

+
24|A|m ln (K + 1)

3K + 1
(
√

lnn lnm+ lnn+ 1)

where P = (x∗)TAy∗ is the Nash equilibrium value of
the game and |A|m = |A|max.

Comparing this lemma to Corollary 1.1, we observe
that the average payoffs of HonestEgtDynamics have
better asymptotic convergence (in the number of rounds
played) to a Nash equilibrium than the MWU algo-
rithm.

Proof. We see that we can lower bound the sum of
the three payoffs obtained for any fixed value of k (the
payoffs received in lines 11, 16, and 18 if k is even, and
in lines 11, 28, and 30 if k is odd) by

3P − 3εk −
8|A|max
k + 3

− 2|A|max lnm
k + 2

.

Therefore, we lower bound the average payoff by

1
3K + 1

(
−|A|max +

K−1∑
k=0

(3P − 3εk −
8|A|max
k + 3

−2|A|max lnm
k + 2

)
)

≥ 1
3K + 1

(
−|A|max + 3KP − 3

K−1∑
k=0

εk

−|A|max(8 + 2 lnm)
K−1∑
k=0

1
k + 2

)

≥ 1
3K + 1

(
−|A|max + 3KP − |A|max

(
12
√

lnn lnm

+8 + 2 lnm
)K−1∑
k=0

1
k + 1

)

≥ 1
3K + 1

(
(−2|A|max + (3K + 1)P)

−|A|max(1 + lnK)(12
√

lnn lnm+ 8 + 2 lnm)
)

≥ 1
3K + 1

(
− 2|A|max + (3K + 1)P

−|A|max(2 ln (K + 1))(12
√

lnn lnm+ 8 + 2 lnm)
)

= P − 1
3K + 1

{
2|A|max +

(
24|A|max

√
lnn lnm

+4|A|max lnm+ 16|A|max
)

ln (K + 1)
}
.

Similarly, we can upper bound the sum of the three
payoffs obtained for any fixed value of k by

3P + 3εk +
8|A|max
k + 3

+
|A|max lnn
k + 2

.

Therefore, by similar calculations as to those above, we
can upper bound the average payoff received over the
first 3K + 1 rounds by

P +
1

3K + 1

{
2|A|max +

(
24|A|max

√
lnn lnm

+ 2|A|max lnn+ 16|A|max
)

ln (K + 1)
}
.

The statement of the lemma follows.

C The BoundedEgtDynamics(b) Protocol

In this appendix, we describe and analyze the Bound-
edEgtDynamics protocol in detail. For clarity, we
break the algorithm apart into subroutines. The overall
structure is very similar to the HonestEgtDynamics
protocol, but the players continually check for evidence
that the opponent might have deviated from his instruc-
tions.

248 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

C.1 The Initialization Routine. We first describe
the Initialization routine. This routine sets the values
of x0, y0, µ0

n, and µ0
m. It is identical to lines 2 through

7 of the HonestEgtDynamics protocol.

1: function Initialization /* R sets x0 and µ0
n. C

sets y0 and µ0
m */

2: R : µ0
n := |A|max C: µ0

m := |A|max
3: R : x̂ := arg minx∈∆n

dn(x)
4: C : Pick ȳ ∈ ∆m arbitrary
5: PLAY: x̂TAȳ
6: C : y0 := arg maxy∈∆m x̂TAy − µ0

mdm(y)
7: R : x0 := arg maxx∈∆n

−xTAy0 +
µ0
n(xT∇dn(x̂)− dn(x))

8: end function

C.2 The CheckConv Routine. We now describe
the CheckConv routine. The goal of this routine is to
verify if (xk, yk) is indeed an (additive) εk-approximate
Nash equilibrium.14 In this routine, the row player is
given an opportunity to play a move which gives him
more than εk payoff against yk than he would obtain
by playing xk. If he cannot find such a move, then the
column player is given a chance. If (xk, yk) is indeed an
εk-approximate Nash equilibrium, then this routine will
simply consists of three rounds of (xk)TAyk.

C.3 The SafePlay Routines. The key to making
our protocol no-regret is the SafePlay routines. These
routines are used to replace instructions such as “PLAY
x̂TAyk” from the HonestEgtDynamics protocol. In
these routines, the players verify several properties,
including that the payoffs fall within the expected
bounds.

Before running the SafePlay routines, we assume
that (xk)TAyk has been already been played at some
point in the protocol, so that the row player knows
the loss vector Ayk and the column player knows the
loss vector (xk)TA. Both players know a value εk, and
they currently believe (xk, yk) to be an εk-approximate
Nash equilibrium.15 They both know P̂ , the value of
(xk)TAyk, which they will use as an estimate of the
Nash equilibrium value.

The idea of the routines is that instead of playing
x̂, the row player will play δkx̂ + (1 − δk)xk, where δk
is some (small) value known to both players. Since the

14More precisely, the row player verifies that his best response to
yk gives him no more than εk additional payoff over −(xk)TAyk.

The column player then checks an analogous property.
15These beliefs have been established by the CheckConv

routine.

column player will have already observed the loss vector
(xk)TA, we will be able to determine the vector x̂TA.

We now define the SafePlayRow routine (for the
row player to convey a loss vector to the column player)
and the SafePlayCol routine (for the column player
to convey a loss vector to the row player).

1: function SafePlayRow(x, P̂ , εk, δk, (xk)TA,
Ayk)

2: /* Protocol for the row player to convey xTA to
the column player */

3: /* (xk)TA is a loss vector previously observed
by the column player */

4: /* Ayk is a loss vector previously observed by
the row player */

5: /* P̂ , εk, δk known by both players */
6: PLAY (δkx + (1 − δk)xk)TAyk. Call this value
p. Let uT be the loss vector observed by the column
player, and let v be the loss vector observed by the
row player.

7: C: Set ans = uT−(1−δk)(xk)TA
δk

8: C: If any entry of ans has absolute value greater
than |A|max, QUIT.

9: R: If v 6= Ayk, QUIT.
10: R, C: If |P̂ − p| > εk + 2|A|maxδk, YIELD(|P̂ −

p| − 2|A|maxδk).
11: C: Conclude that xTA = ans
12: end function

Notice that the check on line 8 of the SafePlay-
Row routine ensures that the loss vector uT is very close
to (xk)TA. This is a key property for showing that the
protocol is no-regret (since it ensures that the payoff of
a best response to the loss vector uT and the payoff of
a best response to the loss vector (xk)TA differ by no
more than 2δk|A|max.) In particular, it means that yk

is very close to a best response to the loss vector uT.

C.4 The BoundedEgtDynamics(b) Protocol.
We now describe the BoundedEgtDynamics proto-
col using the above subroutines. This protocol is nearly
identical in structure to the HonestEgtDynamics
protocol. If a YIELD or QUIT failure is detected, the
players switch to the MWU algorithm.

C.5 Bounding the Regret. We will show that the
protocol is no-regret for the column player. (The
analysis for the row player is nearly identical.) As a
corollary, we will obtain a bound on the convergence
rate of the average payoffs. We split our analysis into
two cases. The first case is that the column player
declares a YIELD or QUIT failure at some point in the
algorithm. We notice that if a failure is detected, then

249 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1: function CheckConv(xk, yk, εk) /* Check if (xk, yk) is εk-Nash.*/
2: /* If no failures occur, returns the value of (xk)TAyk */
3: PLAY: (xk)TAyk

4:

5: R: ẋ := arg maxx∈∆n
−xTAyk

6: R: If (−ẋTAyk) > (−(xk)TAyk) + εk, ẍ := ẋ. Else ẍ := xk

7:

8: PLAY ẍTAyk

9:

10: R: If the observed loss vectors Ayk in lines 3 and 8 differ, QUIT.
11: R, C: If ẍTAyk < ((xk)TAyk)− εk, YIELD(((xk)TAyk−ẍTAyk)(k+1)

4|A|max
).

12: C: If ẍTAyk 6= ((xk)TAyk) and ẍTAyk ≥ ((xk)TAyk)− εk, QUIT.
13:

14: C: ẏ := arg maxy∈∆y ((xk)TAy)
15: C: If (xk)TAẏ > ((xk)TAyk) + εk, ÿ := ẏ. Else ÿ := yk

16:

17: PLAY (xk)TAÿ
18:

19: C: If the observed loss vectors (xk)TA in lines 3 and 17 differ, QUIT.
20: R, C: If (xk)TAÿ > ((xk)TAyk) + εk, YIELD(((xk)TAÿ−(xk)TAyk))(k+1)

4|A|max
).

21: R: If (xk)TAÿ 6= ((xk)TAyk) and (xk)TAÿ ≤ ((xk)TAyk) + εk, QUIT.
22: return (xk)TAyk

23: end function

1: function SafePlayCol(y, P̂ , εk, δk, (xk)TA,
Ayk)

2: /* Protocol for the column player to convey Ay
to the row player */

3: /* (xk)TA is a loss vector previously observed
by the column player */

4: /* Ayk is a loss vector previously observed by
the row player */

5: /* P̂ , εk, δk known by both players */
6: PLAY (xk)TA(δky+ (1− δk)yk). Call this value
p. Let uT be the loss vector observed by the column
player, and let v be the loss vector observed by the
row player.

7: R: Set ans = v−(1−δk)A(yk)
δk

8: R: If any entry of ans has absolute value greater
than |A|max, QUIT.

9: C: If uT 6= (xk)TA, QUIT.
10: R, C: If |P̂ − p| > εk + 2|A|maxδk, YIELD(|P̂ −

p| − 2|A|maxδk).
11: R: Conclude that Ay = ans
12: end function

the column player switches to the MWU algorithm after
some finite number of rounds. Therefore, the no-regret
property will follow immediately from the fact that the
MWU algorithm is a no-regret strategy.

Now we consider some execution of the protocol in
which the column player never detects a failure and look
at all sections of the BoundedEgtDynamics protocol
where the game was played. In this analysis, we will
prove a stronger claim than the no-regret property. In-
stead of showing that column player has no single strat-
egy which would have performed significantly better
against the opponent’s historical average, we show that
the column player has no sequences of strategies which
would have performed significantly better against the
opponent’s strategy history. (Thus, if we were to tell
the column player in advance all of opponent’s moves
in order, and allowed the column player to change his
move from round to round, he would still not be able to
perform significantly better.)

• Line 2 -The Initialization routine is only played
once during the entire execution. We can lower
bound the payoff received in this round by
−|A|max. By deviating, it is possible that the col-
umn player could changed his payoff to no more
than |A|max, and therefore the column player could
have gained at most 2|A|max by deviating.

250 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1: function BoundedEgtDynamics(b) /* b is presumed upper bound on
√

lnn lnm */
2: Run Initialization
3:

4: while No YIELD or QUIT failures have occurred do
5:

6: for k = 0, 1, 2, . . . do
7: R, C: τk := 2

k+3

8: R, C: εk := 4|A|maxb
k+1

9: R, C: δk := 1
(k+1)2

10: Run CheckConv(xk, yk, εk). R and C set P̂ := (xk)TAyk

11:

12: if k is even then /* Shrink µn */
13: R: x̆ := arg maxx∈∆n −xTAyk − µkndn(x)
14: R: x̂ := (1− τk)xk + τkx̆
15: SafePlayRow(x̂, P̂ , εk, δk, (xk)TA,Ayk)
16: C: ŷ := arg maxy∈∆m

x̂TAy − µkmdm(y)
17: SafePlayCol(ŷ, P̂ , εk, δk, (xk)TA,Ayk)
18: R: xk+1 := (1− τk)xk + τk(arg maxx∈∆n{− τk

1−τk
xTAŷ + µkn(xT∇dn(x̆)− dn(x))})

19: C: yk+1 := (1− τk)yk + τkŷ
20: R: µk+1

n := (1− τk)µkn
21: C: µk+1

m := µkm
22: end if
23:

24: if k is odd then /* Shrink µm */
25: C: y̆ := arg maxy∈∆m

yTATxk − µkmdm(y)
26: C: ŷ := (1− τk)yk + τky̆
27: SafePlayCol(ŷ, P̂ , εk, δk, (xk)TA,Ayk)
28: R: x̂ := arg maxx∈∆n

−xTAŷ − µkndn(x)
29: SafePlayRow(x̂, P̂ , εk, δk, (xk)TA,Ayk)
30: C: yk+1 := (1− τk)yk + τk(arg maxy∈∆m{ τk

1−τk
yTATx̂+ µkm(yT∇dm(y̆)− dm(y))})

31: R: xk+1 := (1− τ)xk + τ x̂
32: C: µk+1

m := (1− τ)µkm
33: R: µk+1

n := µkn
34: end if
35: end for
36: end while
37: Use the multiplicative weights update algorithm in all subsequent rounds.
38: end function

251 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

• Line 10 - Since the protocol never failed, it must
be the case that every time line 10 of Bound-
edEgtDynamics is reached, the moves (xk)TAyk

are played three times in succession. Furthermore,
since the column player always sets ÿ := yk in line
15 of the CheckConv protocol, it must be the case
that, by deviating, the column player could have
improved his payoff by no more than εk in each of
the three rounds.

• Line 15 - This is a SafePlayRow routine. Notice
that, in line 8 of the SafePlayRow routine,
the column player ensures that each entry in the
vector |uT − (1 − δk)(xk)TA| has absolute value
no more than δk|A|max. In particular, for all
j ∈ {1, 2, . . . ,m}, we have

|uT − (xk)TA|j ≤ |uT − (1− δk)(xk)TA|j
+ |δk(xk)TA|j

≤ 2δk|A|max.

Therefore, we know that payoff of the column
player’s best response against the loss vector uT he
observes in this round differs from the payoff of the
best response to the loss vector (xk)TA (observed
previously) by no more than 2δk|A|max. Since the
column player has already verified that yk is within
εk of a best response to (xk)T, we conclude that
by deviating in this round the column player could
have improved his payoff by at most 2δk|A|max+εk.

• Line 17- In this line, the players perform a Safe-
PlayCol routine. In this routine, the column
player played the strategy δky + (1 − δk)yk. We
know that the payoff of playing δky + (1 − δk)yk

against any move x is within 2δk|A|max of playing
yk against x. Since the payoff of yk is within εk of
the maximum possible payoff against xk, we con-
clude that the payoff received by the column player
in this round is within 2δk|A|max + εk of his best
response to the opponent’s move.

• Line 27- The analysis of this round is identical to
the analysis of line 17. Therefore, we conclude
that by deviating the column player could have
improved his payoff in this round by no more than
2δk|A|max + εk.

• Line 29- The analysis is identical to line 15. By
deviating, the column player could have improved
his payoff by no more than 2δk|A|max + εk.

This analysis gives us Lemma 4.1, which we for-
mally prove below. The lemma, combined with the fact
that the BoundedEgtDynamics(b) protocol instructs

a player to use the multiplicative weights update al-
gorithm if he ever declares a YIELD or QUIT failure,
implies the following corollary:

Corollary C.1. For any fixed value of b, the protocol
BoundedEgtDynamics(b) is no-regret. Furthermore,
if b ≥

√
lnn lnm and if both players honestly follow

the protocol, then the average payoff received in the
first T rounds of the protocol will differ from the Nash
equilibrium payoff by at most

O

(
|A|max

√
lnn lnm ln (T + 3)

T

)
.

Proof. [Proof of Lemma 4.1]
We obviously have the inequality

max
y∈∆m

T∑
t=1

xT
t Ay ≤

T∑
t=1

max
y∈∆m

xT
t Ay.

We now upper bound the right hand side of the
above expression.16 From above, we know that

max
y∈∆m

xT
1 Ay ≤ xT

1 Ay1 + 2|A|max.

In all later rounds, we have

max
y∈∆m

xT
t Ay ≤ xT

t Ayt + 2δk|A|max + εk,

where k = b t−2
5 c. (Note that there are 5 rounds played

for each value of k.) Therefore, we can bound

T∑
t=1

max
y∈∆m

xT
t Ay ≤

T∑
t=1

xT
t Ay + 5

bT−2
5 c∑

k=0

(2δk|A|max + εk)

=
T∑
t=1

xT
t Ay + 10|A|max

bT−2
5 c∑

k=0

1
(k + 1)2

+ 5
bT−2

5 c∑
k=0

4|A|maxb
k + 1

.

We now use the bound

10|A|max
bT−2

5 c∑
k=0

1
(k + 1)2

≤ 10|A|max
∞∑
k=0

1
(k + 1)2

=
10|A|maxπ2

6
< 17|A|max

16In general, maxy
P
xT

t Ay may be significantly smaller thanP
maxy xT

t Ay. In this particular case, however, the expressions
will be very close to each other. The reason is that, since no

failures have been detected, the xt will be very close to Nash
equilibrium strategies.

252 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

and the bound

5
bT−2

5 c∑
k=0

4|A|maxb
k + 1

= 20|A|maxb
b t−2

5 c+1∑
s=1

1
s

≤ 20|A|maxb(1 + ln (
T + 3

5
)).

Note that

1 + ln ((T + 3)/5) = ln e+ ln ((T + 3)/5) ≤ ln (T + 3).

The result of the lemma now follows.

D The NoRegretEgt Protocol

We present the NoRegretEgt protocol.

1: function NoRegretEGT
2: Run Initialization
3: R,C: b := 1, k := 0
4:

5: while no QUIT errors have occurred do
6: Run BoundedEgtDynamics(b), starting

from line 7 of that protocol, using the most recent
values of k, xk, yk. Continue until a YIELD(s) fail-
ure occurs

7: R, C: Run an additional (max(2b, s))4

rounds of the MWU algorithm.
8: R, C: Set b := max(2b, s).
9: end while

10: R, C: Run the MWU algorithm forever
11: end function

D.1 Bounding the Regret. Let us look at some
execution of the NoRegretEgt algorithm where the
column player plays honestly (we make no assumptions
about the row player at the moment), and suppose
that T total rounds of the game have been played thus
far. We will now formally bound the column player’s
total regret. (His total regret is the difference between
the payoff of his optimal single strategy against the
opponent’s history and his payoff actually received.) We
can write T = TEGT +TMW , where TEGT is the number
of rounds of the game which have been played when
the column player was in line 6 of the NoRegretEgt
protocol, and TMW is the number of rounds which have
been played during lines 7 or 10 of the protocol.

Let b be the largest (most recent) value which has
been used as the input to BoundedEgtDynamics(b)
on line 6 of NoRegretEgt. Notice that, if we ignore
the rounds of the game which occurred closely before
YIELD failures, the the remaining rounds from line 6

constitute a failure-free execution of BoundedEgtDy-
namics(b).17

There have been at most log2 b total YIELD failures
thus far, since we at least double the value of b in
line 8 of NoRegretEgt. Since we restart from line 7
of the BoundedEgtDynamics protocol every time
there is a YIELD failure (regardless of the particular
line of BoundedEgtDynamics on which the failure
occurred), it is possible that at most the 5 rounds prior
to the failure will be “redone” when we restart after the
failure.18 For simplicity, we will (unnecessarily loosely)
upper bound the regret during each of these “redone”
rounds as 2|A|max. Let the total number of “redone”
rounds be Tredone.

From Lemma 4.1, we can upper bound the column
player’s total regret during the TEGT rounds from line 6
by

19|A|max + 20|A|maxb ln
(
(TEGT − Tredone) + 3

)
+ 2|A|maxTredone.

Since Tredone ≤ 5 log2 b (since at most 5 rounds are
“redone” after a YIELD failure), we can upper bound
this total regret by

19|A|max + 20|A|maxb ln (TEGT + 3) + 2|A|max log2 b.

During the TMW rounds of the game for which the
column player was on lines 7 or 10 of NoRegretEgt,
we can upper bound the total regret using Lemma 1.1
by

2|A|max
√
TMW lnm√

2− 1
≤ 5|A|max

√
TMW lnm.

Therefore, the column player’s average regret over the
T rounds is upper bounded by

1
T

(
19|A|max + 20|A|maxb ln (TEGT + 3)

+ 2|A|max log2 b+ 5|A|max
√
TMW lnm

)
17The key point is that these rounds constitute a failure-free

execution of BoundedEgtDynamics(b) even if, when they were
played, the “presumed upper bound” input to BoundedEgtDy-

namics was something other than b. This is because the value

of b only impacts the execution of BoundedEgtDynamics in the
case that a YIELD error occurs.

18Since we restart from line 7 of BoundedEgtDynamics, it is

possible that we will redo at most 5 rounds of the game after we
readjust the b value. Also, note that, for example, the row player’s
move on line 8 of the CheckConv routine differs depending on

whether or not a YIELD failure will be declared after the next
round. This is one of the lines which will be “redone.”

253 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

and hence is upper bounded by

1
T

(
19|A|max + 20|A|maxb ln (T + 3) + 2|A|max log2 b

+ 5|A|max
√
T lnm

)
.

The key observation is that, because of the relation on
line 8, we will always have b ≤ 4

√
T . Therefore, we can

upper bound the average regret by

19|A|max
T

+
20|A|max 4

√
T ln (T + 3)
T

+
2|A|max log2 (4

√
T)

T
+

5|A|max
√

lnm√
T

≤ 19|A|max
T

+
20|A|max 4

√
T ln (T + 3)
T

+
|A|max ln (T)

T

+
5|A|max

√
lnm√

T
.

We can use a nearly identical argument to upper bound
the row player’s average regret in the case that the row
player is honest, regardless of the actions of the column
player.

This yields Theorem 4.1.

D.2 Convergence with Honest Players. We now
consider an execution of the NoRegretEgt protocol
in which both the row and column players honestly fol-
low the prescribed protocol. The key observation is that
once b becomes greater than

√
lnn lnm, there will never

be any YIELD failures. Therefore, the total number of
YIELD failures will be at most log2 (2

√
lnn lnm).

Furthermore, the total number of rounds with the
players in the MWU phase (line 7 of NoRegretEgt)
is at most

log2 (2
√

lnn lnm)∑
l=1

(2l)4 ≤ 2(2
√

lnn lnm)4

= 32(lnn)2(lnm)2.

Furthermore, in this honest execution of the NoRe-
gretEgt protocol, at most 5 log2 (2

√
lnn lnm) rounds

of BoundedEgtDynamics will be “redone” following
YIELD errors (see Section D.1). Therefore, using Lem-
mas 1.1 and 4.1, (and bounding the regret by 2|A|max
during each “redone” round) we can upper bound the
column player’s total regret over T rounds by

10|A|max log2 (2
√

lnn lnm)

+ 5|A|max
√

32(lnn)2(lnm)2
√

lnm+

+ 19|A|max + 20|A|max
√

lnn lnm ln (T + 3).

This yields the final theorem of the paper, Theo-
rem 4.2.

254 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

