Thermal Management of Electronics – Energy Conversion Issues

Avram Bar-Cohen

Department of Mechanical Engineering University of Maryland

Rohsenow Symposium – MIT

Cambridge, Mass May 16th 2003

Drivers for Thermal Packaging

- Air as the Ultimate Heat Sink
- Market-Driven Thermal Solutions
 Price volume weight reliability
- Environmentally-Friendly Design
 - Low power consumption
 - > Semiconductor devices
 - Packaging and cooling
 - Low noise: acoustic and EMI
 - Recyclability
- Feature-Rich Design Tools
 - Integrated with product CAD system
 - Parametric optimization

- "spreading" + natural convection/radiation
- Entropy generation minimization
- Least-material optimization
- Least-energy optimization

Work allocation factor, ξ_{pp}

= Pumping work/Total cooling work = W_{DD} / $[W_M + W_{PP}]$

Design for Sustainability Metrics

Coefficient of Performance

$$COP = q_T / IP$$

$$IP = V_{air} \times \Delta P$$

Total Work Coefficient of Performance

$$COP_T = q_T t_1 / W_T$$

$$W_T = W_M + W_{PP}$$

$$W_M = 85 M \text{ (aluminum-estimated)}$$

High Performance Heat Sink Arrays

(a) Bonding

(b) Folding

(d) Forging 5/16/03

(e) Skiving WMR-ABC

(f) Machining 5

Heat Sink Coefficient of Performance

Maximum heat transfer design

5/16/03

Least material design

 $L = W = 0.1 \text{ m}, H = 0.05 \text{ m/H}_{BB} = 5 \text{ K}, k = 200 \text{ W/m-K}$

COP_T Comparison

Forced convection SISE plate-fins

L= W = 0.1 m, H = 0.05 m, θ_b = 25 K, k = 200 W/m-K

Least material design

$$COP_T = q_T t_1 / W_T$$

Maximum heat transfer design

$$\mathbf{W}_{\mathrm{T}} = 85\,\mathrm{M} + \mathrm{IP}\,\mathbf{t}_{1}$$

COP_T Comparison

Forced convection SISE plate-fins

L= W = 0.1 m, H = 0.05 m, θ_b = 25 K, k = 200 W/m-K

$$COP_T = q_T t_1 / W_T$$

$$\mathbf{W}_{\mathrm{T}} = 85\,\mathbf{M} + \mathbf{IP}\,\mathbf{t}_{1}$$

COP_T Optimization

SISE plate-fins, $W_T = 10 \text{ kWh}$, $t_1 = 6000 \text{h}$

Refrigeration Technologies for **Microelectronics Epoxy** interfaces PNPNPNPNPN **Thermoelectric** module -Kry oC avity Cap **Thermal** paste Chip Substrate Outlet Inlet Therma Oil Interface Bus Temperature Display E∨aporator DeCap Grease Chip Al/Cu Hat Compressor C-Ring Thin Film Ceramic Substrate Condenser Base **Kryotech** IBM S/390 G4

Issues in Refrigerated Packaging

- CMOS Chip/CPU Performance
- Performance Driven by" Hot Spots"
- "Cost" of Refrigeration System
 - ➤ Life Cycle Cost
 - ➤ Volume, Mass
 - Power Consumption
- Reliability of Refrigeration/Packaging
 - Refrigeration Hardware
 - ➤ Condensation on PCBs + Refrigerant Lines
 - ➤ Vibration

FundamentalThermal Packaging Research

- Low-cost, high-k packaging materials
- Low-cost, reliable PCM's
- Enhancement of convection/boiling/spray
- Heat Sink/HX Manufacturing processes
- Compact liquid cooling/refrigeration systems
- Improved solid state refrigeration
- Low environmental impact systems
- Integrated modeling tools

Concluding Thoughts

- Growing energy consumption in electronic systems
- Thermal Management significant fraction of energy consumption
- Promise of local energy conversion
- Design for sustainability requires:
 - Passive cooling where feasible
 - Optimization of COP for active cooling
 - Optimization of COP_T for all systems