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Abstract

We present a new approach to deformation invariant im-
age matching. Our matcher (a) aligns templates to targets
over a broad range of nonlinear deformations, (b) factors
the total deformation into spectral categories, where low
wavenumber deformations are smooth and global and high
wavenumbers are turbulent and local, and (c) weighs the
reduction in template-target misfit within each category to
differentiate between relevant and irrelevant deformations.

It accomplishes this by aligning images in a scale-
cascaded fashion, with more complex, local deformations
following simpler, more global ones. Each step of the
cascade involves finding an iterative solution to a nonlin-
ear optimization problem using a Gabor deformation basis.
Cascaded alignment makes deformation invariant matching
feasible and efficient. Our approach is applied to recognize
the flexible bodies of salamanders from a large database;
results indicate that the method is very promising.

1. Introduction

Algorithms to recognize animals and plants from their

photographs hold great promise for the study of migratory

behavior and for the development of conservation plans [8].

However, a vast number of animals and plants deform in

highly nonlinear ways, which makes recognizing them dif-

ficult. Indeed, the well-known trade-off between invari-

ance and selectivity teaches us that a sparsely parameterized

model for handling deformations found in nature will be

impossible for object recognition. As invariance to a larger

range of deformations is accomplished, perceptually unre-

lated objects are just as completely and easily related to one

another as perceptually related ones [9].

∗This material is funded in part by NSF DBI-0640529, NSF CNS-

0540259, and Lincoln Labs #7000074210. Any opinions, findings and

conclusions or recommendations expressed in this material are the au-

thor(s) and do not necessarily represent those of the sponsors.
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Figure 1. (a) A rectangle is nonlinearly and iteratively deformed to

a cross using viscous alignment. Although powerful, such meth-

ods cannot be used for recognition. (b) Using our method, the

same rectangle can be diffeomorphically aligned but with interme-

diate states useful for image matching and recognition. (c) A trans-

lated and rotated cross elicits a complex explanation from viscous

alignment. (d) Our method prefers simpler explanations, which

recovers the translation and rotation without losing the flexibility

of viscous alignment. No correspondences are involved.

Let us suppose that objects can be recognized by match-

ing their images. In the following discussion, we will also

assume that a total deformation vector-field q nonlinearly

maps a 2D template X into a target Y discretized on a do-

main Ω. Using p = (x, y) as a position coordinate we

may define X ◦ q ≡ X(p − q(p)) to be the deforma-

tion of the template, evaluated if necessary using interpo-

lation. This deformation field will typically be the solu-

tion of an optimization procedure of the form: J(q) :=
1
2 ||Y −X ◦ q||2R +L(q), where R is a covariance defining
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Figure 2. Summary of scale-cascaded alignment. The template (a) is completely warped into the target using viscous alignment, producing a

total deformation field (b). Our method factors the total deformation into spectral categories, which start with translations (b0) and become

increasingly more local (b4). The template (a) can be advected by the component categories in a cascade, generating the intermediate states

shown in (a0)–(a3). The deformation within each category (b0)–(b4) is obtained by iteratively solving a nonlinear optimization problem,

using a Gabor deformation basis. The corresponding error sequences (d0)–(d4) can be weighed to discriminate between categories of

deformations by their relevance to object similarity.

the norm and L(q) expresses constraints on the deformation

field. In this paper, we are particularly interested in diffeo-

morphic alignment using smoothness, non-divergence and

other low order fluid-like or higher order differential con-

straints [3, 4, 10, 19], that we shall refer to here as viscous
alignment methods.

To match images, the first apparent measure of similar-

ity is the residual after deforming the template into the tar-

get. But this measure is problematic. As shown in Fig-

ure 1(a), viscous alignment can be used to easily, automati-

cally, and unambiguously warp the rectangle into the cross.

But now there is a total loss of selectivity; the two cannot

be distinguished. A second measure of similarity can be

constructed when an object category exhibits characteristic

deformations. But this is also problematic. Characteristic-

deformations change between categories or they may be

sufficiently varied within a single object category. Thus, a

more universal deformation model may be warranted. Vis-

cous alignment is a powerful approach in this regard, but

its “invariance,” the ability to align under highly nonlinear

deformations, is obtained at the cost of selectivity, as the

following example shows.

Let us merely choose L(q) to prefer smooth and non-

divergent deformations [3, 4, 10, 19], which are the simplest

constraints for diffeomorphic alignment (see Figure 1(a)).

Applying this approach to a simple problem can be disas-

trous, as shown in Figure 1(c). The translated and rotated

cross elicits a lot more than a translation and a rotation as

an explanation, evident from the complicated intermediate

states as the optimizer iteratively aligns the template to the

target. As we shall see, this problem does not really arise

from the optimizer but is more fundamentally related to the

constraints. And we cannot, obviously, terminate the opti-

mization midway in a naı̈ve attempt to “control” the defor-

mation because intermediate states may bear no meaningful

resemblance to the template or the target, see Figure 1(a,c).

Is there a way to align flexibly, as powerfully as viscous

alignment, and yet have the ability to discriminate and rec-

ognize? The principal contribution of this paper is to ad-

dress this dichotomy by converting diffeomorphic viscous

alignment into an image matching tool appropriate for ob-

ject recognition. Our deformation invariant matcher has the

following properties: (a) It aligns images over a broad range

of nonlinear deformations. (b) It factors the total deforma-
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tion into “universal” categories ranging from translation to

turbulence. (c) It weighs the reduction in template-target

misfit within each category to differentiate between relevant

and irrelevant deformations. In this way, an image match-

ing tool for whole images or image patches around distin-

guished locations is proposed.

The key elements of our approach are outlined in Fig-

ure 2, illustrated here with the sequence shown in Fig-

ure 1(a,b). The template (a) is aligned with the target by

a total deformation (b) obtained as a solution to an opti-

mization problem with smooth, non-divergent regularizing

constraints. The result is a deformed template (c). However,

as argued, neither the output (c) nor the deforming field (b)

are useful as is for recognition.

In our approach, the total deformation (b) is factored into

spectral categories that start with translations (b0) and be-

come progressively more local and turbulent (b4). Each de-

formation (b0 through b4) is the result of iteratively solving

an optimization problem using Gabor filters. The error be-

tween template and target within each category is reduced

over several iterations, and error sequences are shown in d0

through d4. The deformations b0 through b4 are produced

and applied in a cascade, depicted by the sequences shown

from a0 through a3 (and in the sequences in Figure 1(b,d)).

We call this scale-cascaded alignment (SCA).

Although SCA also produces a diffeomorphically

aligned template, it produces better explanations for the er-

ror between template and target (Figure 1(d)) and generates

more meaningful intermediate states (Figure 1(b)). This

makes it a robust alignment tool which retains invariance to

a broad range of nonlinear deformations. Additionally, the

error sequences (d0 through d4) can be weighed to discrim-

inate between categories of deformations by their relevance

to object similarity. We can, for example, easily discard or

accept the contributions of deformations (b1) and beyond,

depending on whether such higher order deformations are

natural modes of variability of the rectangle or not.

The resulting matcher is simply parameterized, powerful

and can be used for matching without detecting correspond-

ing features and possibly with sparse measurements. To the

best of our knowledge, such an approach to deformation

invariant matching has not been shown before. To demon-

strate the utility of our approach, we apply it to recognize

the marbled salamander, a flexible animal, using over 6000
photographs collected by field biologists over six years. The

results improve existing work and are very promising.

2. Related Work
Deformable templates were introduced with Widrow’s

rubber masks [24] and Fischler and Elschlager’s spring-

loaded templates [7] (also see [13]). Of particular interest

are free-form deformable models [5, 12, 14, 17, 20]. These

models all tend to be low-dimensional in the types of defor-

mations they can produce or describe. Our scale-cascaded

alignment, in contrast, is easily parameterized to encompass

deformations from simple translation to turbulence.

Correspondence-based deformation warps images by

corresponding a small set of features and constructing a

global warp based on that correspondence [2, 22]. Our

method uses no feature correspondence and thus is appli-

cable for whole image matching. Alternatively, this method

can be adapted by matching the neighborhood of potential

correspondences.

Fluid alignment model [4, 19] are related to this work.

Our work shares the viscous fluid model, but develops a

cascaded approach to jump the gap between alignment and

matching. Our spectral interpretation is related to Heeger’s

spatio-temporal filters [11], but the deformable model for-

mulation is different. Gramkow and Bro-Nielsen’s [10] use

convolution filters to improve Christensen’s computations,

and Thirion [21] uses a Gaussian to regularize. There is

no connection to image matching in these papers. Amit et

al. [1] present a cascaded alignment, but our method does

not use a Green’s function approach. Our filters are local-

ized, and the solution uses no stochastic sampling or KL

expansions. Most significantly, we cascade completely and

weigh the error reductions, rather than truncate the cascad-

ing by truncating the terms in the KL expansion.

Our work draws motivation from Ling and Jacobs [16],

who use the geodesic-intensity histogram (GIH) as a local

descriptor that is deformation invariant. There are similar-

ities to the effect of their invariance parameter α and our

spectral parameterization, but both the representations and

problem formulations are entirely different.

3. Deformation Invariant Matching
In order to use diffeomorphic alignment for matching,

we will start by reviewing “viscous” alignment. Using the

notation in Section 1, we may formulate the alignment prob-

lem as a search for a deformation field q that maximizes

the a posteriori probability P (q|X, Y ). Using Bayes’ rule

we write: P (q|X, Y ) ∝ P (Y |X,q)P (X)P (q). The RHS

has a data likelihood, an amplitude prior (assumed indepen-

dent of displacements), and a displacement prior. We will

suppose that the component densities are Gaussian and thus

produce a quadratic objective:

J(q) =
1
2

∑
r∈Ω

∑
s∈Ω

{ [Y (r)−X(r − q(r))]C(r, s)

× [Y (s)−X(s− q(s))]}
+L(q) (1)

Here C is field associated with the inverse covariance

C = R−1, which we assume in this paper to be static for
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the optimization. The displacement prior is based on an

energy function L(q) modeled with divergence and non-

smoothness penalties [19]:

L(q) =
w1

2

∑
z∈Ω

[∇q(z)T∇q(z)]+
w2

2

∑
o∈Ω

[∇·q(o)]2 (2)

The Euler-Lagrange equation of the objective (Equa-

tion 1) is a highly nonlinear PDE, so we solve iteratively.

In particular,

Xi(p) ← X(p− q0:i−1(p)) (3)

δXi
.= C [Y −Xi] (4)

∂L(qi(r))
∂qi(r)

= ∇Xi(r)δXi(r) (5)

.= fi(r) (6)

Here q0:i−1 is the total deformation field at the start of

iteration i and qi is the instantaneous displacement at the

end of iteration i. The image Xi is obtained by applying

the total deformation to the original (template) image. The

vectors Y and Xi are the target and the evolving template

respectively, rasterized to vector form. The field q0:i−1 is

advected by qi to obtain q0:i. Thus, at iteration i, by fixing

fi, we have a linear system

w1∇2qi(p) + w2∇(∇ · qi(p))− fi(p) = 0 (7)

Gqi = fi (8)

Here G is the sparse matrix representing the differential op-

erators, and the vectors qi and fi are obtained from the cor-

responding fields. This system represents diffeomorphic,

fluid-like flows, which we term “viscous” alignment.

Christensen solved Equation 7 using SOR [4], which was

improved using convolution filters [10], and conjugate gra-

dients have been suggested [3]. However, we use spectral

methods (the FFT diagonalizes G), which are exact, rel-

atively efficient and pose no issues representing homoge-

neous dirichlet boundary conditions. The approach may be

implemented on a pyramid for even better computational

efficiency [10].

Because X(p − q(p)) is not linearized as in optic flow,

complex deformations are produced by advecting the evolv-

ing deformation field with the instantaneous displacement

field at each iteration (and optionally with restarts, see [4]).

The solution, to be sure, is still local. Nevertheless, defor-

mations of amazing complexity with no correspondences

whatsoever can be generated.

This should not be surprising because Equation 7 rep-

resents Navier’s equation in equilibrium [18], with an im-

age driven body force. If we drop the Laplacian term, it

is a proper (inertia-less) fluid. If we drop the continuity

term, we have the Laplace-Beltrami operator. We can thus

represent viscoelastic, viscous and fluid-like motions. This

flexibility is the basis for success in aligning objects with

complex deformations.

3.1. Spectral Interpretation

The spectral interpretation also shows exactly why vis-

cous alignment is a limitation for matching images to rec-

ognize objects. In what follows, we drop the explicit no-

tation for iteration i and simply use q to denote the in-

stantaneous displacement. Let us suppose the vector field

q(p) .= (qx(p) qy(p)) and p
.= (x, y) with a Fourier

transform pair Q(ω) .= (Qx(ω) Qy(ω)) with ω
.= (m, n).

Similarly, let f ↔ F be a transform pair. We can then

write a solution to Equation 8 in wavenumber space, exactly

(m 	= 0 and n 	= 0) of the form:

[Qx

Qy

]
=

[Ha Hb

Hb Hc

] [Fx

Fy

]
(9)

For the sake of simplicity, let us set w2 = 0, which

leads to Laplace-Beltrami (but the problem obviously re-

mains well-regularized to produce complex deformations).

This is the resulting filter

Hp = Ha = Hb = − 1
w1(m2 + n2)

(10)

Equation 10 is simply the Fourier transform of the Lapla-

cian and clearly prescribes a power-law energy spectrum

for instantaneous deformations. Thus, this filter is capable

of producing complex deformations because Q can have

very high frequencies (see Figure 1 and Figure 3). High

frequency deformations may thus arise even when the solu-

tions are apparently “‘simpler,” as shown in Figure 1. How

then do we leverage power-law spectra for recognition?

3.2. Deformation Filters and Cascaded Alignment

We answer this question by approximating viscous align-

ment with a set of filters that collectively have the power of

diffeomorphic alignment, but can be arranged or selected in

special ways to factor the total deformation into meaningful

parts. This approach is developed in three steps: (i) a tun-

able and non-singular approximation of the power law, (ii)

a Gabor filter basis implementation of the approximation,

and (iii) scale-cascaded alignment (SCA). SCA will imme-

diately become useful for image matching, and be discussed

in Section 3.3.

i. Laplace Approximation of Power Law: In the vis-

cous formulation, w1 only controls the convergence rate

(provided stability is maintained, see [19]) but not the shape

of the spectrum1. As a first step, we build a tuner to control

the shape of the filter.

1We may choose w1 to be anisotropic and space-varying, but that is

difficult to design.
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Figure 3. An exponential envelope (red) approximates the power-

law envelope (blue) from Equation 10. The basis filters H are

attenuated by the exponential envelope, shown here in 1D.

The tuner is constructed by approximating Equation 10

with the Laplace “distribution”: e(r) = βe−|r|/2α2
, where

r =
√

m2 + n2. This approximation overcomes the singu-

larity in the power law and it can reasonably approximate

any power law using the parameters β (gain) and α (band-

width), thus producing instantaneous displacements ranging

from translations to turbulence. A comparison of the origi-

nal filter and the tunable approximation is shown in Figure 3

for a power-law of 2.

ii. Gabor filter basis for deformations. The next step

in the process is similar to the design and use of Gabor fil-

ters for texture. The deformation spectrum is decomposed

using a Gabor basis (see Figure 3). The peak power of a

filter in the basis is the power of the Laplace approximation

at the filter’s center frequency. The entire filter bank is an

approximate implementation of a power law. Filters in the

bank can also be applied in select sequences, which is cen-

tral deformation invariant matching. Here we discuss the

design of the Gabor basis (see Figure 4).

Let us consider frequency rings labelled R0 to RN , with

N chosen to be logarithmic in the size of the image. On

each ring at a radius ri = r(Ri), we place ni Gaussians

Gj , j = 1 . . . ni azimuthally at θj and all with scale σi. Let

us parameterize a Gaussian as G(r, θ, σ) and thus the filter

bank at ring Ri is:

Hi = H(Ri) =
1
ℵi

ni∑
j=1

G(ri,
2π

ni
j, σi) (11)

where ℵi is a normalizing constant.

We now construct a scale-cascaded filter bank. The ra-

dius r0 = r(R0) = 0 and r1 = 1/2 cycle and ri+1 = 2ri,

σ1 = 1/2, σi+1 = 2σi, and ni+1 = 2ni. The amplitudes

of filters in the bank are scaled by the magnitudes of the

Laplace approximation, as discussed. Thus,

H =
N∑

i=0

βe−|ri|/2α2H(Ri) (12)

This filter bank has two parameters and we choose β = 1
and α = 1

8 for our experiments. Figure 4 shows the
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Figure 4. The 1-σ contours of the filters in the Gabor filter bank in

frequency domain. Each ring uses twice the number of filters than

the previous ring. Similarly, each ring also doubles σ.

1-σ contours of the filters in the filter bank. Note that

the original kernel is real and so is our filter bank. We

thus rewrite Equation 9 as Qx =
∑N

i=0H(Ri)Fx and

Qy =
∑N

i=0H(Ri)Fy . Such a reparameterization of vis-

cous alignment has not hitherto been proposed.

Note that the off-diagonal termHb of Equation 9 is omit-

ted here becauseHa andHc sufficiently regularize the prob-

lem. The off-diagonal term, which is also real and exhibits

similar power-law behavior can, if necessary, be easily in-

corporated.

Algorithm 1 Scale-cascaded alignment.

1: INPUTS: Template X , Target Y , Filter bankH
2: X0 ← X
3: for i = 0 to N do
4: q0:0 ← 0, j ← 1
5: while has not converged and j < limit do
6: Calculate Fx

j ,Fy
j using Y , Xi(p− q0:j−1(p))

7: Solve: Qx
j = HiFx

j

8: Solve: Qy
j = HiFy

j

9: Update: q0:j using qj and q0:j−1

10: j ← j + 1
11: end while
12: Xi+1(p) ← Xi(p− q(p))
13: end for

Scale-Cascaded Alignment on the Gabor bank: Algo-

rithm 1 describes the scale-cascaded alignment procedure.

It sequentially applies filters in the bank from DC to the

highest frequencies. Because there are multiple filters at

each radius, we can assert even finer control over the de-

formation by selecting a subset (or even a single one) from

among them. Such fine-grained control is neither necessary

in the application nor is it developed here. Further, although
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Figure 5. Error sequences for (a) rectangle-to-cross [Figure 1(a,b)]

and (b) translating-rotating cross [Figure 1(c,d)]. Red curves show

the error sequence using viscous alignment; blue curves show the

error sequence using the scale-cascaded approach (SCA). Conver-

gence rates of viscous alignment are not correlated to perceptual

similarity.

certain applications may require filters at alternate center

frequencies, the overall cascaded procedure will remain the

same.

Once filters across scale have sequentially been applied

in their entirety, SCA will implement a diffeomorphic align-

ment and produce a final state (or deformed image) that is

close to the result of viscous alignment. However, SCA

holds certain advantages. In Figure 5, the red error curve

represents viscous alignment, shown in the sequence in Fig-

ure 1(a). The blue one (Figure 1(b)), with its characteris-

tic drops, depicts the dissipation of error energy from the

lower to higher frequency. For the rectangle-to-cross case,

viscous alignment converges relatively quickly, but there

is no way to factor the error into perceptually relevant de-

formation classes. The cascaded approach converges more

weakly, but we can see exactly what the contributions of

filters at each radius are2. For the translating and rotating

cross, viscous alignment ironically takes much longer to

converge, explaining the rotation and translation with very

high frequency deformations. The scale-cascaded align-

ment approach converges rapidly, identifying the translation

and then rotation, leaving negligible numerical residue for

higher wavenumber filters to resolve.

Because the dissipation of error energy is tied to a spec-

tral radius, we may “stop” the process at a desired spec-

tral radius or weigh the errors at different radii differently.

There is no way to be selective in the original viscous align-

ment approach, and this difference is key to how scale-

cascaded alignment can be adapted for deformation invari-

ant matching.

3.3. Deformation Invariant Matching

Let us say that the error sequence due to scale-cascaded

alignment is Δ(X,Y ) = [Δ0 Δ1 . . .ΔN ], corresponding

to the dissipation of the optimization objective energy by

2These filters were run to their iteration limit.

each filter H0 . . .HN . The entire sequence can be thought

of as a vector, as shown for example in the plot in Figure 5.

Deformations are scored as a weighted sum with a scor-

ing curve, that is e(X,Y ) = Δ(X, Y )W . There are sev-

eral ways to choose W . As a primer, consider three im-

age patches in Figure 6(a,b,c). Though it is obvious to the

reader that template (b) is the true match to the target (a),

the template (c) is a better match with multiscale PCA (see

Section 4). Note that PCA is a special case of the objec-

tive (Equation 1) sans the regularization constraint. Thus,

as shown in Figure 6(d), the starting point of the error se-

quence shows the wrong template to be a better match. But

as we run the scale-cascaded alignment, the correct tem-

plate aligns itself rapidly while the incorrect one struggles.

As the alignment proceeds to higher wavenumbers, the error

reduction is dominated by work done “undoing” the effects

of nuisance variables (specularity and noise, for example).

This must be discounted. It appears that there is a band

within the error sequence that accurately depicts the relative

“perceptual closeness” of the two targets to the template. Its

active region corresponds roughly toH0,H1 andH2.

Thus, we choose a parameterization of W with j ≥ 0 as

the iteration sequence (concatenated over the cascade)

W (j; σc, O) =
(

j

σc

)( 2
O )

e−( j
σc

)O

(13)

Here, σc is the cut-off point and O is the order of the weight

curve. For the three-patch example, the scoring curve is

also shown in Figure 6, obtained by setting σc = 600 and

O = 10.

Scoring functions can be designed (or learned) to reflect

any set of preferences for deformation invariance. For ex-

ample, we might prefer to be invariant to global transfor-

mations and turbulent motion (i.e. noise) but be sensitive

to all other deformations. Or we may continually discard

higher-frequency deformations in favor of lower ones. This

is difficult to model in other approaches, such as Ling and

Jacobs [16], but presents no difficulty in the scale-cascaded

approach. Further, note that we do not simply terminate

alignment at a preset spectral radius, though that is useful

if alignment were the main objective. For recognition, we

argue for fully applying SCA (i.e. completely “morph” tem-

plate to target) and then post process the error curves with

W .

4. Application
We apply our method to a problem in conservation bi-

ology that requires the recognition of individual marbled

salamanders [8]. A database of over 6000 images was col-

lected over six years in the field by trapping individual sala-

manders and photographing them (see Figure 7(b)). The

scientific objective is to track their movement individually
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Figure 6. Error sequences generated by aligning (b) to (a) and (c)

to (a) are shown in (d) in red and blue respectively. The scoring

curve is shown in dashed green. Although (b) is the true match, it

has higher initial and terminal error than (c).

so that we may establish migratory patterns and thus de-

velop appropriate conservation strategies. For our purpose,

we need to index the database by matching individuals.

As shown in Figure 7(b), marbled salamanders have

highly deformable bodies. The images themselves are

blurry, noisy, and specular (see Figure 6). To solve the ani-

mal pose problem, Gamble et al. [8] artificially straighten

the salamanders along the medial axis, removing large

lower-order deformations. Then the authors extract patches

between key features (the feet) and match them using mul-

tiscale PCA [8]. The ROC curve of this method is shown in

blue in Figure 7(a), determined using relevance judgements

provided by users who examined the top N = 20 retrievals

over 150 queries.

The primary difficulties in improving the performance of

their system are still the existence of specularity and nonlin-

ear deformations (see Figure 6 and Figure 8). Specularity

is difficult to explicitly marginalize in this application be-

cause the color of light and the color of the salamander are

the same (see Figure 7(b)). Fortunately, specularity is local-

ized and very high frequency deformations are necessary to

“paint” out differences between images due to specularity.

This suggests that we may be able to compensate further

by down-weighting the contributions of large wavenum-

ber deformations in W . The nonlinearity in pose remains

as a difficulty but, due to “straightening”, it does not oc-

cupy the high frequencies required to marginalize noise and

specularity. Indeed, the application of SIFT features to the

recognition problem on the straightened images produces a

slightly worse result than MS-PCA (see Figure 7(a)), which

further highlights the existence of local variability. We sup-

posed that a mid frequency portion of the deformation spec-
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Figure 7. (a) ROC curve for deformation invariant matcher (red),

MS-PCA (blue), and SIFT (green). The dashed lines show the

variance for each method over 150 queries. (b) Salamanders have

highly deformable bodies; images are varied in background and

specular effects.

trum is worth exploring and apply the scale-cascaded align-

ment with the scoring curve shown in Figure 6 (dotted green

curve).

We used the score to re-rank the top 20 ranks for which

relevance judgements were available using the same 150
queries. The ROC shows marked improvement. Figure 8

shows examples of two retrievals. In each case, we show

the target, the top few MS-PCA retrievals (right) and the

corresponding ranks of the deformation invariant matcher

(left). The Label “Y01C1S2P932” indicates that the sala-

mander is from year 2001. Thus, matches are found across

many years. Although both SIFT and MS-PCA match well

(as can be seen in Figure 7(a)), our scale-cascaded approach

ranks the retrievals better by ignoring the errors correspond-

ing to low and high frequency deformations.

5. Conclusion

We demonstrate a new approach to deformation invari-

ant matching. Our approach retains the benefits of vis-

cous alignment and introduces the selectivity necessary for

recognition. It is a simply parameterized model, and can

be efficiently implemented using spectral methods. It does

not require explicit correspondence and can be easily tuned

to prefer simpler or specific explanations of the template-

target misfit. This allows us to mitigate the effects of non-

linear deformations in a recognition task, producing a clear

and substantial improvement.

There are several areas to explore: (a) Explicitly incor-

porating a changing uncertainty C (Equation 1), as align-

ment progresses [3, 19]. (b) Examining ways to learn W ,
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Figure 8. Two sample retrievals comparing the deformation invari-

ant matcher and MS-PCA. The queries are marked (a) and (b) and

the retrievals proceed in rank order down a column per method

(self-matches are omitted and appear at rank 1). Mismatches are

highlighted in red and their labels are crossed out.

and learn sparse-prior models for learning activations of H
or the filter bank itself. (c) Using this approach to calcu-

late deformation statistics better [3]. (d) Extending PCA-

SIFT [15], and (e) reformulating our approach with mutual

information measures [6, 23].
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