OPERATIONS RESEARCH CENTER
Working Paper

ORC: Ordered Rules for Classification
A Discrete Optimization Approach to Associative Classification

by
Dimitris Bertsimas
Allison Chang
Cynthia Rudin

OR 386-11 October 2011

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Submitted to the Annals of Statistics

ORDERED RULES FOR CLASSIFICATION:
A DISCRETE OPTIMIZATION APPROACH TO
ASSOCIATIVE CLASSIFICATION*

By DiMITRIS BERTSIMAS, ALLISON CHANG, AND CYNTHIA RUDIN

Massachusetts Institute of Technology

We aim to design classifiers that have the interpretability of asso-
ciation rules yet match the predictive power of top machine learning
algorithms for classification. We propose a novel mixed integer op-
timization (MIO) approach called Ordered Rules for Classification
(ORQC) for this task. Our method has two parts. The first part mines
a particular frontier of solutions in the space of rules, and we show
that this frontier contains the best rules according to a variety of
interestingness measures. The second part learns an optimal ranking
for the rules to build a decision list classifier that is simple and in-
sightful. We report empirical evidence using several different datasets
to demonstrate the performance of this method.

1. Introduction. Our goal is to develop classification models that are
on par in terms of accuracy with the top classification algorithms, yet are
interpretable, or easily understood by humans. This work thus addresses a
dichotomy in the current state-of-the-art for classification: On the one hand,
there are algorithms such as support vector machines (SVM) [Vapnik, 1995]
that are highly accurate but not interpretable; for instance, trying to explain
a support vector kernel to a medical doctor is not likely to persuade him
to use an SVM-based diagnostic system. On the other hand, there are algo-
rithms such as decision trees [Breiman et al., 1984, Quinlan, 1993] that are
interpretable, but not specifically optimized to achieve the highest accuracy.
For applications in which the user needs an accurate model as well as an
understanding of how it makes predictions, we develop a new classification
model that is both intuitive and optimized for accuracy.

Our models are designed to be interpretable from multiple perspectives.
First, the models are designed to be convincing: for each prediction, the algo-
rithm also provides the reasons for why this particular prediction was made,
highlighting exactly which data were used to make it. To achieve this, we
use “association rules” to build “decision lists,” that is, ordered sets of rules.

*Supported by NSF Grant 11S-1053407.
AMS 2000 subject classifications: Primary 68T05; secondary 90C11
Keywords and phrases: Association rules, associative classification, integer optimization

1

2 BERTSIMAS, CHANG, AND RUDIN

The second way our models are interpretable involves their size: these mod-
els are designed to be concise. Psychologists have long studied human ability
to process data, and have shown that humans can simultaneously process
only a handful of cognitive entities, and are able to estimate relatedness of
only a few variables at a time [e.g. Miller, 1956, Jennings et al., 1982]. Thus
conciseness contributes to interpretability, and our formulations include two
types of regularization towards concise models. The first encourages rules
to have small left-hand-sides, so that the reasons given for each prediction
are sparse. The second encourages the decision list to be shorter. That is,
the regularization essentially pulls the default rule (the rule that applies if
none of the rules above it apply) higher in the list. We aim to construct a
convincing and concise model that limits the reasoning required by humans
to understand and believe its predictions. These models allow predictions to
more easily be communicated in words, rather than in equations.

The principal methodology we use in this work is mixed integer optimiza-
tion (MIO), which helps our classification algorithm achieve high accuracy.
Rule learning problems suffer from combinatorial explosion, in terms of both
searching through a dataset for rules and managing a massive collection of
potentially interesting rules. A dataset with even a modest number of fea-
tures can contain thousands of rules, thus making it difficult to find useful
ones. Moreover, for a set of L rules, there are L! ways to order them into
a decision list. On the other hand, MIO solvers are designed precisely to
handle combinatorial problems, and the application of MIO to rule learning
problems is reasonable given the discrete nature of rules. However, design-
ing an MIO formulation is a nontrivial task because the ability to solve an
MIO problem depends critically on the strength of the formulation, which
is related to the geometry of the feasible set of solutions. This is consider-
ably more challenging than linear optimization, which has a similar form
but without integrality constraints on the variables. We develop MIO for-
mulations for both the problem of mining rules and the problem of learning
to rank them. Our experiments show predictive accuracy on a variety of
datasets at about the same level as the current top algorithms, as well as
advantages in interpretability.

In Section 2, we discuss related work. In Section 3, we state our nota-
tion and derive MIO formulations for association rule mining. In Section 4,
we present a learning algorithm, also an MIO formulation, that uses the
generated rules to build a classifier. In Section 5, we show results on clas-
sification accuracy, and in Section 6, we demonstrate the interpretability of
our classifiers. In Section 7, we discuss the application of our methodology
to large-scale data. We conclude in Section 8.

ORDERED RULES FOR CLASSIFICATION 3

2. Related Work. Association rule mining was introduced by Agrawal
et al. [1993] to aid market-basket analysis, the purpose of which was to dis-
cover sets of items, or itemsets, that were often purchased together, such
as the well-known (though probably fictitious) correlation between sales of
beer and diapers [Biichter and Wirth, 1998]. To help increase store profit
and customer satisfaction, these easy-to-understand patterns could be used
to guide the management of store layout, customer segmentation, and items
for sale. Consider the rule {i,j} = k, where s% of customers purchased
items 4, 7, and k, and ¢% of customers who purchased items ¢ and j also
purchased item k. In this case, {i,j} is the body of the rule, k is the head,
s is the support, and c is the confidence. In general, the most challenging
part of rule mining is to first generate all itemsets with support exceeding a
specified threshold, called frequent itemsets. Frequent itemsets have a down-
ward closure property, that is, any subset of a frequent itemset must also
be frequent. Even so, the problem of counting the number of maximal fre-
quent itemsets, or itemsets that are not subsets of other frequent itemsets,
is #P-complete, suggesting that the problem of enumerating all frequent
itemsets can in general be hard [Yang, 2004]. Since the introduction of the
Apriori method by Agrawal and Srikant [1994], researchers have proposed
many algorithms for frequent pattern mining that apply heuristic techniques
to traverse the search space, which grows exponentially with the number of
items in the dataset [Han et al., 2007, Hipp et al., 2000, Goethals, 2003].

Frequent itemset generation often leads to an overwhelming number of
rules, making it difficult to distinguish the most useful rules. To make sense
of such an enormous collection of rules, users typically rank them by a
measure of “interestingness,” which can be defined in many different ways.
There is a large body of literature on interestingness measures, such as
lift, conviction, Laplace, and gain [review articles include those of Tan and
Kumar, 2000, McGarry, 2005, Geng and Hamilton, 2006]. The existence of so
many interestingness measures introduces another problem of how to select
an interestingness measure for a particular task. Bayardo and Agrawal [1999]
showed that if the head of the rule is fixed, then a number of interestingness
metrics are optimized by rules that lie along the upper support-confidence
border, where a rule on this border has the highest confidence among rules
with equal or higher support. They proposed an algorithm to mine only
this border, which indeed produces a reduced set of rules. In this paper, we
extend the idea of an optimal border to general rules, not just the case of
rules with fixed heads, and we use MIO to find the border.

Association rules were originally designed for data exploration, and later
associative classification developed as a framework to use the rules for clas-

4 BERTSIMAS, CHANG, AND RUDIN

sification, with algorithms such as CBA, CMAR, and CPAR [Liu et al.,
1998, Li et al., 2001, Yin and Han, 2003, Simon et al., 2011]. Reviews of
the different approaches are given by Thabtah [2007], Riickert [2008], and
Vanhoof and Depaire [2010]. Methods to build a classifier using a sorted set
of association rules fall into two categories: those that predict based on an
ensemble of rules, and those that predict based on a single rule in a ranked
list of rules. The first category uses more information by classifying based
on a sort of majority vote of rules, but typically has two disadvantages: first,
it ignores the dependency between rules, so even two rules that are almost
exactly the same have two separate votes instead of one; and second, the
model loses some interpretability by combining rules together. Boosted de-
cision trees share a related problem—they no longer have the interpretability
of single decision trees. Examples of rule ensemble classifiers are in Friedman
and Popescu [2008] and Meinshausen [2010]. These models are similar to the
Logical Analysis of Data (LAD) model [Boros et al., 2000], though the LAD
model uses only rules that have confidence equal to one, so that even rules
with confidence 0.99 are discarded, which could lead to overfitting. The sec-
ond category of sorted-rule-based classification algorithms produces decision
lists [see Rivest, 1987, Klivans and Servedio, 2006, Sokolova et al., 2003, An-
thony, 2005, Long and Servedio, 2007, Marchand and Sokolova, 2005, Rudin
et al., 2011]. These classifiers are simple to understand and use the highest
ranked rules for prediction. However, if the list is not properly ordered, it
may not yield an accurate classifier. Decision lists are commonly created
by ordering rules according to an interestingness measure. In this work, we
learn the ordering of rules from data instead. Learning the rule list has the
potential to be substantially more accurate in terms of misclassification er-
ror than ranking rules by an arbitrary choice of interestingness measure. As
far as we know, there are no other mathematical programming approaches
to creating decision lists in the literature.

3. Mining Optimal Association Rules. In this section, we describe
an MIO method to generate the rules that form the building blocks for
the classifier. First, we derive constraints that characterize the full set of
possible rules for a dataset. Then, we present an MIO algorithm to find a
set of general rules. Finally, we address the special case of mining rules for
binary classification, for which the rules have a particular form.

3.1. Interestingness and the Frontier. We use the following standard no-
tation: Let Z = {1,...,d} be a set of items, and let D be a dataset in which
each observation is some subset of items in Z. Let there be n observations in
D. An association rule has the form X = Y, where X, Y C Z and XNY = (.

ORDERED RULES FOR CLASSIFICATION 5

We want to formulate a set of constraints that define the space P of
possible rules. In what follows, the ¢; are data, while b, h, x;, y;, and z; are
variables. The binary vector ¢; € {0, 1}d represents observation :

1<i<n, 1<j<d

tij = 1[observation ¢ includes item j]»

The binary vectors b, h € {0,1}% represent the body and head respectively
of a given rule X = Y. That is, for j =1,...,d,

bj = 1[j€X} and hj = 1[j€Y}’
We also use variables x;, y;, and z;, for ¢ = 1,...,n, to represent
Z; = l[observation iincludes X]» Yi = l[obsorvation i includes Y7» and

Zi = 1[observation i includes X and Y-

P is constrained by (1) through (10). Note that e4 is the d-vector of ones.
Each constraint is explained below.

(1) bj+h; <1, Vj,

(2) z; <14 (tij — 1)b;, Vi, j,
(3) zi > 14 (ti —eq)'d, Vi,
(4) yi <14 (tij —Dhy, Vi, j,
(5) yi > 1+t —eq)'h, Vi,
(6) 2z < x, Vi,

(7) zi < yi, Vi,

(8) zi > xi+y— 1, Vi,

9) b, hy € {01}, Vj,

(10) 0 <,y <1, Vi.

Since an item cannot be in both the body and head of a rule (X NY = (),
b and h must satisfy (1). To understand (2), consider the two cases b; = 0
and b; = 1. If b; = 0, then the constraint is just z; < 1, so the constraint
has no effect. If b; = 1, then the constraint is z; < ¢;;. That is, if b; = 1
(item j is in X)) but ¢;; = 0 (item j is not in observation i), then z; = 0.
This set of constraints implies that x; = 0 if observation ¢ does not include
X. We need (3) to say that x; = 1 if observation i includes X. Note that
tT'b is the number of items in the intersection of observation i and X, and
el is the number of items in X. Constraint (3) is valid because

d d
t?b = Z tijbj § Z bj = egb,
1 j=1

j=

6 BERTSIMAS, CHANG, AND RUDIN

TABLE 1
The body X of the rule is in observation i since (2) and (3) are satisfied.

t; (1if item j in observation i, 0 otherwise) | 1
b (1 if item j in body of rule, 0 otherwise) | 1

[en] Ran) [} V)
Ol | w .
==
O O Ot

where equality holds if and only if observation ¢ includes X and otherwise
tF'y < eI'b — 1. Table 1 helps to clarify (2) and (3). Constraints (4) and (5)
capture the y; in the same way that (2) and (3) capture the z;. The z; are 1 if
and only if z; = y; = 1, which is captured by (6) through (8). Constraints (9)
and (10) specify that b and h are restricted to be binary, while the values of
x, 1, and z are restricted only to be between 0 and 1.

Each point in P corresponds to a rule X = Y, where X = {j : b; = 1}
and Y = {j : h; = 1}. There are 2d binary variables and 3n continuous
variables. Computationally, it is favorable to reduce the number of integer
variables, and here we explain why x, y, and z are not also restricted to be
integral. There are two cases when deciding whether X is in observation i.
If it is, then (3) implies z; > 1, so z; = 1. If it is not, then there exists j
such that t;; = 0 and b; = 1, so (2) implies z; < 0, or z; = 0. Thus, in either
case, x; is forced to be an integer, regardless of whether we specify it as an
integer variable. The argument is similar for y;. For z;, there are two cases
when deciding whether X and Y are both in observation ¢. If they are, then
x; =y; = 1, so (8) implies z; > 1, or z; = 1. If they are not, then either (6)
or (7) implies z; < 0, or z; = 0. Thus, z; is also always integral.

P grows exponentially in the number of items d = |Z|. It includes the full
set of association rules, which is many more than we usually need or wish to
collect. In order to generate only the potentially interesting rules, we judge
each rule according to three of its fundamental properties, namely

1 & 1< 1<
sx ==Y i, sy=— y, and s=—1% z,
= s s

called coverage, prevalence, and support respectively. When we refer to these
measures for a particular rule r, we use the notation sx(r), sy (r), and s(r);
we omit the parenthetical “(r)” when referring to them in general. We now
define a partial order <, over the set of possible rules to rank them in order
of interestingness. Given two rules r and r*, we have r <, r*, or 7* is at
least as interesting as r if and only if:

sx(r) > sx(r®), sy(r)>sy(r®), and s(r)<s(r’).

ORDERED RULES FOR CLASSIFICATION 7

Moreover, r =, r* if and only if sx(r) = sx(r*), sy(r) = sy(r*), and
s(r) = s(r*). In words, “r <, r*” means the coverage and prevalence of r*
are no greater than that of r, but the support of r* is at least that of r. Let
F* be the set of rules that are not dominated by any other rules, that is,

F* = {r: There does not exist any 7 such that r <, 7.}.

The rules r € F* fall along a three dimensional frontier in sy, sy, and s.
For intuition on why this frontier reasonably captures interestingness,
consider the interestingness measure of confidence, which is the empirical
probability of Y given X. Refer to the data in Tables 2 and 3. Suppose we
have 20 observations, and we wish to compare the interestingness of two
rules: a {chips}=-{guacamole} and b {cookies}=-{milk}. In Case 1 in the
table, the two rules have equal coverage sx = 2%, but the support s is higher
for a (55 versus o), so a has higher confidence (a is more interesting). In
Case 2, the rules have equal support s = 2—50, but the coverage sx is lower
for b (£ versus 33), so b has higher confidence (b is more interesting).
This example shows that higher support and lower coverage increase the
confidence of a rule; for other measures, lower prevalence also often increases

the interestingness.

TABLE 3
TABLE 2 Support, coverage, and confidence
Number of observations containing certain of rules a {chips}=-{guacamole}
items (assume 20 observations total in both and b {cookies}={milk}.

Case 1 and Case 2). | | | Case 1 | Case 2 |

| | Case 1 Case 2 | supp 7/20 5/20

{chips} 8 10 a | cov 8/20 10/20
{cookies} 8 8 conf 7/8 5/10
{chips, guacamole} 7 5 supp 5/20 5/20
{cookies, milk} 5 5 b | cov 8/20 8/20
conf 5/8 5/8

The point is that many measures in addition to confidence, including
those in Table 4, increase with decreasing sx (holding sy and s constant),
decreasing sy (holding sx and s constant), and increasing s (holding sx
and sy constant). Thus, the rules that optimize each of these measures is in
the frontier F*, and this is the set of rules that we focus on generating.

3.2. MIO Algorithm for General Association Rule Mining. We can find
each rule on the frontier 7* corresponding to <, by putting upper bounds
on both sy and sy, and then maximizing s. We vary the bounds over all

8 BERTSIMAS, CHANG, AND RUDIN

TABLE 4
Interestingness measures. The notation P(A) means the fraction, or empirical
probability, of observations containing set A.

Measure Definition |
Confidence/Precision P(Y]X) N
5
Recall P(X]Y) —
sy
Accuracy P(XUY)+ P(X°UY*) 1—sx —sy +2s
P(XUY) s
Lift /Int t —_——
ift /Interes PIX)P(Y) P
Conviction PX)PIYT) i) 4
v P(XUY®) 1—s/sx
P(XUY)+1 1
Laplace Correction %, k is # of classes %—:-k
Piatetsky-Shapiro P(XUY)—-P(X)P(Y) 5 — SxSy

possible values to produce the entire frontier. In particular, Formulation (11)
maximizes the “scaled support” (n-s) for a certain choice sx and sy, which
denote the user-specified upper bounds on the “scaled coverage” (n-sx) and
“scaled prevalence” (n - sy) respectively.

(11)

b7h7w7y7z

n n n d d
max Z zZi — Rgen-xy <Z T; + Z y2> - Rgen_bh Z bj + Z hj
i=1 i=1 i=1 =1 =1
n
s.t. Z z; < 8x,
=1

Zyz é §Y7
i=1
(b,h,z,y,z) € P.

The first term in the objective is the scaled support. The second set of
terms >, x; + > i y; correspond to the coverage sy and prevalence sy;
if there are multiple rules with optimal support, we want those with smaller
coverage and prevalence since otherwise we would be generating rules not on
the frontier. The third set of terms Z;l:l b+ Z;l:l h; are for regularization,
and correspond to the sparsity of the rule; if there are multiple rules that
maximize s and have equal sx and sy, we want those with smaller bodies
and heads, that is, more zeros in b and h. The parameters Rgen xy and Rgen bh
control the weight of these terms in the objective, where the former ensures
that we properly trace out the frontier, and the latter could potentially trade

ORDERED RULES FOR CLASSIFICATION 9

off sparsity for closeness to the frontier.

Solving (11) once for each possible pair (5x, 5y) does not yield the entire
frontier since there may be multiple optimal rules at each point on the
frontier. To find other optima, we add constraints making each solution
found so far infeasible, so that they cannot be found again when we re-solve.
Specifically, for each pair (5x,35y), we iteratively solve the formulation as
follows: Let (h*,b*) be the first optimum we find for (11). In each iteration,
we add the constraint

(12) Zb+Zl—b+Zh+Zl—

VB b* VB b*—l VB h’f—O VE h’f_l

to the formulation. This constraint says that in either the vector b or the
vector h, at least one of the components must be different from in the pre-
vious solution; that is, at least one of the zeros must be one or one of the
ones must be zero. The previous solution b; = b7 and h; = hj is infeasible
since it would yield 0 > 1 in (12). After adding this constraint, we solve
again. If the optimal value of § = ;" | z; decreases, then we exit the loop.
Otherwise, we have a new optimum, so we repeat the step above to generate
another constraint and re-solve.

3.3. MIO Algorithm for Associative Classification. As our main goal is
to use association rules to construct a decision list for binary classification,
we show in this section how to use MIO to mine rules for this purpose. In
this case, the rules are of a specific form, either X = 1 or X = —1. That is,
we prespecify the heads Y of the rules to be a class attribute, 1 or —1. Our
rule generation algorithm mines two separate frontiers of rules, one frontier
for each class.

Suppose we want rules on the frontier for a fixed class y € {—1,1}. Let
S = {i: observation i has class label y}. Then s = 13, o ;. Since sy =
|S| is equal for all rules of interest, we simplify the partial order (2) so that
given two rules r and r*, we have r <, r* if and only if:

sx(r) > sx(r*) and s(r) < s(r).

Also, r =, r* if and only if sx(r) = sx(r*) and s(r) = s(r*). Each rule
on the corresponding two dimensional frontier in sx and s can be found by
upper bounding sx and maximizing s. Since Y is fixed, we do not need the
h, y, or z variables from (11). Formulation (13) finds a rule with maximum s

10 BERTSIMAS, CHANG, AND RUDIN

for a given upper bound sx on n - sx.

n d
(13) max Z x; — Rgen x Z i — Rgenp Z b;
i=1 j=1

bz €8

n
s.t. E::m < sy,
i=1
z; <1+ (tij — Db;, Vi, J,
;> 1+ (ti —eg)tb, Vi,
b; € {0,1}, V5,
0<az; <1, Vi

The first term in the objective corresponds to support, and the others
correspond to coverage and sparsity, similar to the terms in (11). Solving (13)
once for each value of 5x does not yield the entire frontier since there may
be multiple optima. Analogous to the general case, we solve the formulation
iteratively: Start by setting s§x = n since the largest possible value of the
scaled coverage is n. Let b* be the first optimum. Add the “infeasibility
constraint”

(14) Yoobi+ > (1-b)=>1

j:b;f:O j:b;:l

to the formulation, and solve again. If we find another optimum, then we
repeat the step above to generate another constraint and re-solve. If the
optimal value of 5§ =, g x; decreases, then we set the upper bound on 5x
to a smaller value and iterate again. Note that we can set this new value to
be the minimum of > 7" ; z; and $x —1 (previous bound minus one); we know
that no rule on the remainder of the frontier has scaled coverage greater than
i, @i, so using this as the bound provides a tighter constraint than using
sx — 1 whenever > 1 | z; < 5x — 1.

Thus our rule generation algorithm, called “RuleGen,” generates the fron-
tier, one rule at a time, from largest to smallest coverage. The details are
shown in Figure 1. RuleGen allows optional minimum coverage thresholds
mincov_; and mincovy to be imposed on each of the classes of rules. Also,
iter_lim limits the number of times we iterate the procedure above for a
fixed value of sx with adding (14) between iterates. To find all rules on the
frontiers, set mincov_; = mincovy = 0 and iter_lim = oo.

To illustrate the steps of the algorithm, Figure 2 shows the following
fictitious example:

ORDERED RULES FOR CLASSIFICATION 11

Set mincov_;, mincov;, iter_lim.
For Y in {-1,1}
Initialize sX < n, iter < 1, s « O.
Initialize collection of rule bodies Ry = 0.
Repeat
If iter = 1 then
Solve (13) to obtain rule X =Y.
s Z x[i]
ies
iter <— iter +1
Ry <+ RyUX
Add new constraint (14).
If iter < iter_lim then
Solve (13) to obtain rule X =Y.

If Zx[i] <'s then

i€s

sX < min <i x[i],sX — 1)

i=1
iter <1
Else iter <— iter+1
Else
sX <+ sX—1
iter +— 1

While sX > n-mincovy

F1c 1. RuleGen algorithm. (Note sX=5x and s=3.)

a. Suppose we are constructing the frontier for data with n = 100. Initial-
ize sX to n and solve (13). Assume the first solution has), g z; = 67.
Then the algorithm adds the first rule to Ry and sets s to 67. It adds
the infeasibility constraint (14) to (13) and re-solves. Assume the new
rule still has) ;. g x; = 67, so the algorithm adds this rule to Ry, then
adds another infeasibility constraint to (13) and re-solves.

b. Assume the new rule has }_,c g x; = 65 and Y ;' x; = 83 (correspond-
ing to the support and coverage respectively). Since } ", ; decreased,
the algorithm sets sX to min (3_/; x;,sX — 1) = min(83,99) = 83 be-
fore re-solving to obtain the next rule and adding it to Ry.

c. This process continues until the minimum coverage threshold is reached.

12 BERTSIMAS, CHANG, AND RUDIN

I -

A-—————————

S ----—-—----e-

(4]
"

sX r
n mincov n

(a) (b) (c)

sX

Fic 2. Illustrative example to demonstrate the steps in the RuleGen algorithm.

4. Building a Classifier. Suppose we have generated L rules, where
each rule £ is of the form X, = —1 or X, = 1. Our task is now to rank
them to build a decision list for classification. Given a new observation, the
decision list classifies it according to the highest ranked rule ¢ such that Xj
is in the observation, or the highest rule that “applies.” In this section, we
derive an empirical risk minimization algorithm using MIO that yields an
optimal ranking of rules. That is, the ordering returned by our algorithm
maximizes the (regularized) classification accuracy on a training sample.

We always include in the set of rules to be ranked two “null rules:”
() = —1, which predicts class —1 for any observation, and () = 1, which
predicts class 1 for any observation. In the final ranking, the higher of the
null rules corresponds effectively to the bottom of the ranked list of rules;
all observations that reach this rule are classified by it, thus the class it
predicts is the default class. We include both null rules in the set of rules
because we do not know which of them would serve as the better default,
that is, which would help the decision list to achieve the highest possible

classification accuracy; our algorithm learns which null rule to rank higher.
We use the following parameters:

1 if rule ¢ applies to observation i and predicts its class correctly,
pie = ¢ —1 if rule £ applies to observation i but predicts its class incorrectly,

0 if rule ¢ does not apply to observation i,

Vig = 1[ru10 £ applies to observation i] — |pi€|7
R,ank = regularization parameter, trades off accuracy with conciseness,

and decision variables:

r¢ = rank of rule £,

r, = rank of higher null rule,

Uip = l[rule £ is the rule that predicts the class of observation]+

ORDERED RULES FOR CLASSIFICATION 13

The r, variables store the ranks of the rules; r, is the rank of the default
rule, which we want to be high for conciseness. The u;y variables help capture
the mechanism of the decision list, enforcing that only the highest applicable
rule predicts the class of an observation: for observation 7, u;; = 0 for all
except one rule, which is the one, among those that apply, with the highest
rank ry. The formulation to build the optimal classifier is:

n L
(15) max Z Zpiﬁuif + RrankTs
T, g,U, S, 3 =1 =1
L
(16) st Y wg=1, Vi,
/=1
(17) gi > vyre, Vi, b,
(18) 9i < wvre + L(1 —ug), Vi, ¥,
(19) Ujp = 1- gi + Vg, vz‘ugu
(20) Uip < Vit \V/Z, Ev
L
(21) Ty = Z kSgk, V@,
k=1
L
(22) Z s =1, VU,
k=1
L
(23) ZS@k =1, Vk,
(=1
(24) Ty 2> TA,
(25) Ty 2> B,
(26) e —1ra < (L—1)a,
(27) ra—71e < (L—1)a,
(28) Ty —TB < (L - 1)57
(29) rg—r« < (L—1)5,
(30) a+ =1,
(31) Ujp < 1- Tz : 71,57 v/i7€7
, Uigy Sek S {07 1}7 v/i7€7 k7
0<p<1,

TgE{l,Q,...,L}, V.

14 BERTSIMAS, CHANG, AND RUDIN

TABLE 5
Observation t; is represented by {1 0 1 1 0}, and its class is —1. The highest rule that
applies is the one ranked 8th (r; = 8) since {1 0 1 0 0}C{1 0 1 1 0} (the rules ranked
10th and 9th do not apply). Thus uie =1 for this rule. This rule has p;e = 1 since the
rule applies to t; and correctly predicts —1, so the contribution of observation i to the
accuracy part of the objective in (15) is Zle Pietie = 1.

Observation ¢;: {1 01 1 0}, class=—1

Ranked rules Die Te Ui
01001 = 1 0 10 0
{01100} =1 0 9 0
{10100} = —1 1 8 1
{10001} = —1 0 7 0
{00000} = 1 1 6 0
{00110} = —1 1 1 0

The first term in the objective corresponds to classification accuracy.
Given an ordering of rules, the quantity ¢; = Z%:l pieuip equals 1 if the
resulting decision list correctly predicts the class of observation i and —1
otherwise. Thus, the number of correct classifications is

Zn:(cigl) :%<n+§ci>.

i=1

So to maximize classification accuracy, it suffices to maximize

n

n L
Z Ci = Z Zpieuz’é-
i=1 '

i=1/4=1

Table 5 shows an example of the parameters (p;;) and variables (ry, u;e) for
a particular ranking of rules and observation to be classified.

Constraint (16) enforces that for each i, only one of the wu; variables
equals one while the rest are zero. To capture the definition of the wu;, we
also use auxiliary variables g;, which represent the highest rank of the rules
such that X is in observation i. Through (17) and (18), there is only one ¢
such that u;; = 1 is feasible, namely the ¢ corresponding to the highest value
of v;pry. Constraints (19) and (20) help improve the linear relaxation and
thus are intended to speed up computation. We assign the integral ranks ry
using (21) through (23), which imply sy = 1 if rule ¢ is assigned to rank k.
The matching between ranks and rules is one-to-one.

We add regularization in order to favor a shorter overall list of rules.
That is, our regularizer pulls the rank of one of the null rules as high as

ORDERED RULES FOR CLASSIFICATION 15

possible. If r4 is the rank of) = —1 and rp is the rank of () = 1, then we
add 7, to the objective function, where r, is the maximum of r4 and rp.
The regularization coefficient of r, in the objective is Ry.n. We capture r,
using (24) through (30): Either « = 1 and =0 or f =1 and a = 0. If
a =1, then r, = rp. If § =1, then r, = r4. Since we are maximizing, r,
equals the higher of r 4 and rp. Note that if « is binary, then £ need not be
binary because the constraint o + 3 = 1 forces integral values for 3. If the
rank 7, of rule £ is below r,, then u;; = 0 for all i, so (31) is also valid, and
we include it to help speed up computation.

The Ordered Rules for Classification (ORC) algorithm consists of gener-
ating rules using the method shown in Figure 1, computing the p;; and vy,
and then solving (15). The rule generation step could also be replaced by a
different method, such as Apriori [Agrawal and Srikant, 1994]. We use our
integer optimization approach in the experiments. Note that (13) and (15)
are not restricted to binary classification problems; both formulations can
be directly applied in the multi-class setting.

5. Computational Results. We used a number of publicly available
datasets to demonstrate the performance of our approach. Eight are from
the UCI Machine Learning Repository: Breast Cancer Wisconsin (Origi-
nal), Car Evaluation, Haberman’s Survival, Mammographic Mass, MONK'’s
Problem 2, SPECT Heart, Tic-Tac-Toe, and Congressional Voting Records
[Asuncion and Newman, 2007]. Crimel and Crime2 are derived from a study
funded by the US Department of Justice [Courtney and Cusick, 2010]. Ti-
tanic is from a report on the sinking of the “Titanic” [British Board of Trade,
1990]. For each dataset, we divided the data evenly into three folds and used
each fold in turn as a test set, training each time with the other two folds.
The training and test accuracy were averaged over these three folds. We
compared the ORC algorithm with six other classification methods—logistic
regression [see Hastie et al., 2001, Dreiseitl and Ohno-Machado, 2002], Sup-
port Vector Machines (SVM) [Vapnik, 1995, Burges, 1998], Classification
and Regression Trees (CART) [Breiman et al., 1984], C4.5 [Quinlan, 1993]
(J48 implementation), Random Forests [Breiman, 2001], and AdaBoost [Fre-
und and Schapire, 1995]—all run using R 2.15.0. We used the radial basis
kernel and regularization parameter C' = 1 for SVM, and decision trees as
base classifiers for AdaBoost. The ORC algorithm was implemented using
ILOG AMPL 11.210 with the Gurobi solver.!

1For B.Cancer, Mammo, MONK?2, and TicTacToe, we used Gurobi 3.0.0 on a computer
with two Intel quad core Xeon E5440 2.83GHz processors and 32GB of RAM. For the other

datasets, we used Gurobi 4.5.2 on a computer with an Intel quad core Xeon E5687 3.60GHz
processor and 48GB of RAM.

16 BERTSIMAS, CHANG, AND RUDIN

Here we explain how we chose the parameter settings for the ORC exper-
iments; these parameters were the same for all datasets. In generating rules
with (13), we wanted to ensure that Rgen x was small enough that the solver
would never choose to decrease the scaled support » ;g x; just to decrease
the scaled coverage » i z;. That is, Rgen x should be such that we would
not sacrifice maximizing s for lower sx; this required only that this param-
eter be a small positive constant, so we chose Rgen x = 071. Similarly, we
did not want to sacrifice maximizing s or lowering sx for greater sparsity,
so we chose Rgen 1, = %. In order to not sacrifice classification accuracy for
a shorter decision list in ranking the rules with (15), we chose Ryanx = %
We also used a minimum coverage threshold of 0.05, and iterated up to five
times at each setting of sy (mincov_; = mincov; = 0.05, iter_lim = 5);
these choices were based on preliminary experiments to determine parame-
ters that would yield a reasonable number of rules.

Table 6 shows the average training and test classification accuracy for
each dataset; corresponding standard deviations are in the appendix. Bold
indicates the highest average in the row. Table 7 shows the dataset sizes as
well as average number of rules generated by RuleGen and average runtimes
for our algorithms (+one standard deviation); runtimes for the other meth-
ods were too small to be a significant factor in assessment. Time; is the total
time for generating all rules; Times is the time when the final solution was
found, either before solving to optimality or before being terminated after a
specified time limit. We generally terminated the solver before (15) solved
to provable optimality. The appendix includes more detail about the exper-
iments. Table 8 shows a pairwise comparison of the ORC algorithm to the
other algorithms; for each of the other methods, the table contains a count
of the number of datasets for which the method is more accurate, equally
accurate, or less accurate than ORC. These results show that in terms of

accuracy, the ORC algorithm is on par with top classification methods.

6. Interpretability. Interpretability is subjective, but in this section,
we aim to demonstrate that the ORC classifier performs well in terms of
being easy to understand. Classifiers generated by CART and C4.5 are in-
terpretable because of their decision tree structure. Other methods are not
as easily interpreted. For example, the logistic regression model is

1

P T e BetpTt

where p is the probability that the class of observation ¢ is 1. The SVM
model is a hyperplane that maximizes the margin between the hyperplane
and the closest point to it from both classes; by using kernels, we can raise

Classification accuracy (averaged over three folds).

ORDERED RULES FOR CLASSIFICATION

TABLE 6

17

| [IR | SVM [CART | C45 RF | ADA | ORC]
B.Cancer train 0.9780 0.9846 0.9561 0.9671 0.9876 0.9693 0.9766
test 0.9502 0.9619 0.9488 0.9590 0.9575 0.9605 0.9532

CarEval train 0.9580 0.9821 0.9659 0.9907 0.9997 0.9959 0.9598
test 0.9485 0.9728 0.9618 0.9815 0.9826 0.9890 0.9508

Crimel train 0.8427 0.8439 0.8380 0.8932 0.9918 0.8885 0.8897
test 0.7394 0.7394 0.7488 0.7465 0.7629 0.7723 0.7817

Crime2 train 0.6812 0.7477 0.6858 0.7409 0.8211 0.7156 0.7133
test 0.6722 0.6354 0.6171 0.5941 0.6239 0.6630 0.6699

Haberman train 0.7712 0.7876 0.7680 0.7745 0.7892 0.7712 0.7680
test 0.7582 0.7386 0.7418 0.7386 0.7386 0.7320 0.7582

Mammo train 0.8482 0.8687 0.8422 0.8596 0.8837 0.8560 0.8536
test 0.8374 0.8217 0.8301 0.8301 0.8289 0.8422 0.8337

MONK2 train 0.6470 0.6736 0.7500 0.9317 0.9907 0.7940 0.8299
test 0.6019 0.6713 0.6690 0.8866 0.6528 0.6389 0.7338

SPECT train 0.8783 0.8633 0.8390 0.8801 0.9363 0.8839 0.8970
test 0.7978 0.8464 0.7828 0.7940 0.8090 0.8052 0.7753

TicTacToe train 0.9833 0.9494 0.9348 0.9796 1.0000 0.9917 1.0000
test 0.9823 0.9165 0.8873 0.9259 0.9781 0.9770 1.0000

Titanic train 0.7783 0.7906 0.7862 0.7906 0.7906 0.7862 0.7906
test 0.7783 0.7847 0.7846 0.7906 0.7833 0.7797 0.7906

Votes train 0.9816 0.9747 0.9598 0.9724 0.9954 0.9701 0.9747
test | 0.9586 | 0.9563 0.9540 | 0.9586 | 0.9586 | 0.9586 | 0.9563

TABLE 7

Number of observations (n), number of items (d), average number of rules generated,
average time to generate all rules (Timei), average time to rank rules (Timesz).

| Dataset | n d | #Rules Time; (sec) Time: (sec)

B.Cancer 683 27 | 198.3+£16.2 616.3+£57.8 12959.3 +1341.9
CarEval 1728 21 58.0 706.3 £177.3 7335.3 £2083.7
Crimel 426 41 | 100.7 £15.3 496.0 £88.6 12364.0 £ 7100.6
Crime2 436 16 27.3+£29 59.3 £30.4 2546.0 + 3450.6

Haberman | 306 10 153+ 0.6 14.7+ 4.0 6.3 £23
Mammo 830 25 58.3+1.2 670.7 £ 34.5 3753.3 £ 3229.5
MONK?2 432 17 45.3+£4.0 124.0 £11.5 5314.3 £ 2873.9
SPECT 267 22 | 145372 71.7+£9.1 8862.0 £ 2292.2
TicTacToe | 958 27 53.3+3.1 1241.3 £38.1 4031.3 £ 3233.0
Titanic 2201 8 24.0+£1.0 92.0£15.1 1491.0 £ 1088.0
Votes 435 16 | 266.0 + 34.8 108.3 £5.0 21505.7 £ 1237.2

the dimension of the model and achieve high accuracy, but not interpretabil-
ity. Though there is work devoted to interpreting SVMs, the result is usually
a smaller set of nonlinear features, still within a linear combination [Sonnen-
burg et al., 2005]. AdaBoost combines weak classifiers—decision trees in our
experiments—by minimizing an exponential loss function; thus, even though
the base classifiers may be interpretable, the final model is not necessarily

18 BERTSIMAS, CHANG, AND RUDIN

TABLE 8
Number of datasets for which each algorithm exceeded, tied, or fell below ORC in
classification accuracy.

| [>ORC =0ORC <ORC]

LR
SVM
CART
C45
RF
ADA

Tk O N W
SO = O =
[S230N 62 IENeREN i e))

TABLE 9
Average number of leaves for CART and C4.5, average length of decision list for ORC.

| | CART C4.5 ORC |

B.Cancer 5 5.3 12.7
CarEval 14 27.7 12.7
Crimel 11.3 16.3 21
Crime2 8.3 16.3 9.3
SPECT 6.3 7.7 18

Haber 4.7 3.7 4.3
Mammo 4 8.7 12.3
MONK?2 14.7 29.3 19.7
TicTacToe 21 34.7 9
Titanic 3.7 5 3.3
Votes 3 4.7 7.3
Average 8.7 14.5 11.8
Standard Deviation 5.8 11.3 5.9

as interpretable. Random Forests also combines trees.

Recall that we want our models to be concise because simpler models
are easier to understand. Though we cannot exactly compare conciseness
among different types of models, one reasonable measure for decision trees
and lists is the number of rules. Table 9 shows the number of rules in the
models generated by CART, C4.5, and ORC for each dataset, averaged over
the three folds. For CART and C4.5, the number of rules is the number of
leaves; for ORC, it is the number of rules above and including the default.
In general, the ORC decision lists are larger models than those produced by
CART, but can be significantly smaller than those produced by C4.5. The
standard deviations in the bottom row of Table 9 also indicate that ORC
produces a more consistently small model compared to C4.5.

In the remainder of this section, we show the decision lists for a few of the
datasets from Section 5 as examples of the interpretability of the decision
lists produced by ORC.

ORDERED RULES FOR CLASSIFICATION 19

TABLE 10
Rules for predicting whether a patient survived at least five years (+5) or not (<5).
| | S Sx | Rule |
1] 80 93 | Number of nodes = 0 = b+
2| 53 83 | 1 < Number of nodes <9 = 5+
3| 18 55 | 40 < Age <49 = <5
41 20 71 | 50 < Age < 59 = <5
5| 147 204 | Default = 5+

6.1. Haberman’s Survival. In this dataset, each “observation” represents
a patient who underwent surgery for breast cancer. The goal is to predict
whether the patient survived at least five years (5+) or not (< 5). Table 10
shows the ORC classifier from training on Folds 1 and 2. We can easily state
in words how this classifier makes predictions:

1. If the patient has no more than nine positive axillary nodes, then she
is classified as 5+.

2. If she has more than nine nodes and is in her 40s or 50s, then she is
classified as <5.

3. Otherwise, she is classified as 5+.

6.2. Crime. The Crimel and Crime2 datasets were derived from a study
of crime among youth as they transition to adulthood. There were three
waves of interviews—the first when the youth were between 17 and 18 years
of age, the second when they were between 19 and 20, and the third when
they turned 21. Table 11 shows some of the binary variables from the first
two waves. Using the data, we can design a number of prediction problems.
The two problems corresponding to Crimel and Crime2 are:

e Crimel: Based on the 41 binary variables from Waves 1 and 2, predict
whether or not a youth is arrested between the Wave 2 and Wave 3 in-
terviews. There were 426 observations after removing those with miss-
ing values.

e Crime2: Based on the 16 variables in the top half of Table 11 that
describe the background of the youth, predict whether a youth reports
a violent offense at any of the Wave 1, 2, or 3 interviews. There were
432 observations after removing those with missing values.

As an example of the kind of interpretable result we can obtain from the
Crime2 data, Table 12 shows the decision list from training on Folds 1 and 3.

20

BERTSIMAS, CHANG, AND RUDIN

TABLE 11
Variable descriptions.

Variable | Description
Female Respondent is female
Male Respondent is male
Hispanic Respondent is hispanic
White Respondent is white
Black Respondent is black
OtherRace Respondent is mixed or other race

AlcoholOrSubstanceAbuse
MentalHealthDiagnosis
TeenageParent
SexAbuseVictim
InFosterCare_W1
InKinshipCare_W1
InGroupCare_W1
IndependentOtherCare_ W1
NoMomOrStepmom
NoDadOrStepdad

Alcohol or substance abuse diagnosis
Mental health diagnosis

Respondent is a teenage parent

Victim of sex abuse

In foster care at Wave 1

In kinship care at Wave 1

In group care at Wave 1

Independent living or other care at Wave 1
No mom or stepmom

No dad or stepdad

PropertyDamage_ W1
StoleOver50_W1
SoldMarijuanaOrDrugs_W1
BadlyInjuredSomeone_W1
UsedWeapon_-W1
ViolentOffense_W1
NonviolentOffense_W1
ViolentOffense_ W2
NonviolentOffense_W?2
ArrestedBetween W1land W2
InSchool_.W1
Employed W1
InSchool W2
Employed W2

Deliberately damaged property at Wave 1
Stole something worth >$50 at Wave 1
Sold marijuana or other drugs at Wave 1
Badly injured someone at Wave 1

Used or threatened to use a weapon at Wave 1
Violent offense at Wave 1

Nonviolent offense at Wave 1

Violent offense at Wave 2

Nonviolent offense at Wave 2

Arrested since Wave 1 at Wave 2

In school at Wave 1

Employed at Wave 1

In school at Wave 2

Employed at Wave 2

Rules for predicting whether there is a violent offense in any wave (1) or not (—1).

TABLE 12

| | s | Sx | Rule |
1] 29 41 | InGroupCare_ W1 =
2|1 13 19 | Female, SexAbuseVictim, IndependentOtherCare W1 = —1
3| 13 16 | AlcoholOrSubstanceAbuse, MentalHealthDiagnosis =
4| 14 26 | Female, Black, InFosterCare_W1 = -1
5 103 | 154 | Black =
6 | 32 53 | Female, White = -1
7| 41 58 | AlcoholOrSubstanceAbuse =
8 | 119 | 291 | Default = -1

ORDERED RULES FOR CLASSIFICATION 21

6.3. Titanic. Each row of this dataset represents one of the 2201 passen-
gers aboard the Titanic, a passenger liner that sank in 1912 after striking
an iceberg. The features of the dataset are: social class (first, second, third,
crew), age (adult, child), and gender (male or female). We want to predict
whether or not each passenger survived. Table 13 shows the decision list from
training on Folds 2 and 3. This result makes sense in light of the “women
and children first” policy and the fact that little effort was made to help the
third-class passengers.

TABLE 13
Rules for predicting whether a passenger survived the Titanic sinking (1) or not (—1).

| | s | Sx | Rule |
1 | 341 462 | Third Class = -1
888 | 1108 | Adult, Male = -1
3 | 477 | 1467 | Default = 1

6.4. Tic-Tac-Toe. Our final example is the Tic-Tac-Toe dataset. Each
data point represents a board configuration at the end of a Tic-Tac-Toe
game where player x played first, and the classification problem is to identify
whether player x won. This is an easy task for a human, who needs only
to determine if there are three x’s in a row. There are nine features in
the original data, each representing a square on a Tic-Tac-Toe board. The
possible values for each feature are: x, o, or b (player x, player o, or blank).

This example demonstrates that for certain datasets, the ORC algorithm
may have a substantial advantage by optimizing both accuracy and concise-
ness. Figure 3 shows the CART classifier from training on Folds 1 and 2.
The notation 0.5 means ‘0’ in box 5, x.7 means ‘x’ in box 7, etc. Figure 4
shows the C4.5 classifier. The ORC classifier, shown in Figure 5, decides
the class of a board the same way a typical human would: if the board has
three x’s in a row, which can occur in eight different configurations, then
player x wins; otherwise, player x does not win. It achieves perfect accuracy
in training and testing; the accuracies of CART and C4.5 are about 0.94
and 0.99 respectively for training and 0.88 and 0.93 respectively for testing.
The ORC classifier is much more concise than either of those produced by
CART or C4.5. It has only nine rules, versus 21 for CART and 36 for C4.5.

7. Large-Scale Models. MIO is computationally intensive, as illus-
trated in Table 7. Nevertheless, even for large datasets, our MIO approach
has the potential to order rules into an accurate decision list. The runtimes
in the Times column of Table 7 could in fact be substantially shorter if we

22 BERTSIMAS, CHANG, AND RUDIN

no
yes

yes no
3]
.

yes

no
:

1
no,
0
(nowin) ne / \ yes (no(\]/vin) 0.83 1 " e
0 (win) (win) 0.93
yes . 0. .
no (NOwin) yes no - . (win)
0.26 - no yes
x.8 0
(nowin) | x8 | 026 1 (nowin) 0-88 [0s]
no, yes e) (win)
yes no (nowin) (win) yes no yes o
0.21 0.84
0.47 1
9 : 0 :
(nawin) (win) {nowin) (win) (nowin) (win) m 1
(win)
yes
0 1

(nowin) (win)

Fic 3. CART Classifier for Tic-Tac-Toe dataset (predicted class in parentheses).

na yes
7]
{nowin) m
2]
(2]

{win) m
{win) m m i i)
{nowin} {nowin}

e
- {nowin) {win)
{win) {win) (nowin} {win)

(nowin) | =8 |
=]

{win) {nowin) {no win)
{rowiny {nowin)
(win) {win) {no win) {win)
0.4 (win)
‘wm)‘nu win} (nowin} {win) (it} e .
{nowin)
(win) {nowin) {nowin)

Fic 4. C4.5 Classifier for Tic-Tac-Toe dataset (predicted class in parentheses), left branch
always means ‘no’ and right branch always means ‘yes.’

ORDERED RULES FOR CLASSIFICATION 23

win X win X win x| x| x
1| 5=54 X 2| =61 X 3| §=42
Sx=b4 X 5x=061 X Sx=42
win win X win X
4| 5=h4 5| §=57 X 6| s=61 X
Sx=b4 X| x| x Sx=H7 bd 5x=61 X
win X win no win
7| 5=54 X 8| 5=5b5 x| x| x 9| 5=215
S5x=5b4 X S5x=55 S5x =638

F1G 5. Rules for predicting whether player x wins a Tic-Tac-Toe game.

were seeking just a good solution rather than an optimal solution. The MIO
solver typically finds a good solution quickly, but takes longer to improve
upon it and to finally prove optimality. As it was not our goal to obtain a
solution in the shortest time possible, we allowed the solver to search for the
best solution it could find in a reasonable amount of time. For larger datasets
than those shown in Section 5, we can run (15) just until we obtain a good
solution, or let it run for a longer period of time to obtain better solutions.
As the speed of computers continues to advance exponentially, and also as
cloud computing becomes more accessible, we expect our MIO approach to
produce high quality solutions with decreasing computing effort.

In this section, we show results on an additional dataset from the UCI
Repository, Wine Quality, which has n = 4898 observations and d = 44
items, yielding a data table with nd = 215,512 entries. The largest dataset
in Section 5 was CarEval, which had nd = 36,288. The large size of the
Wine dataset caused long runtimes for (13), which we did want to solve to
optimality to obtain rules on the frontier. Thus we used Apriori to generate
the rules instead. We ran Apriori using R, and specified minimum support
thresholds of 0.006 and 0.1 for the positive and negative class rules respec-
tively to generate a reasonable number of rules. Otherwise, our experimental
setup was the same as for the other datasets; we divided the data into three
folds, and to rank the rules, we used (15) with Rk = % We let (15) run
for approximately 20 hours. Figure 6 shows the accuracy of the solutions
found by the solver over time. (Trainl2 refers to training on Folds 1 and 2,
Trainl3 refers to training on Folds 1 and 3, and Train23 refers to training
on Folds 2 and 3.) The figure illustrates how a good solution is often found
relatively quickly but then improves only slowly. Averaged over three folds,
we generated 71.3 rules, and the time to find the final solution of (15) be-
fore termination was 57258.3 seconds. Table 14 shows the accuracy of the

24 BERTSIMAS, CHANG, AND RUDIN

algorithms. ORC achieves about the same accuracy as SVM and AdaBoost,
though Random Forests achieved the highest accuracy for this dataset.

In terms of interpretability, ORC produces a much more concise model
than C4.5. Averaged over three folds, the C4.5 trees have 184.7 leaves,
whereas the ORC lists have 25.3 rules in addition to higher test accuracy
than C4.5. (CART was even more concise, with an average of 4.7 leaves,
but it lost accuracy.) This is another example of the consistency of the ORC
algorithm in producing classification models that have interpretability ad-
vantages and compete well against the best methods in accuracy.

Accuracy Along Solution Paths

<]
-
@ | T S .
S e
> 1
3 1
S 1
g 94
< © \
S 1
o
£ X
g =4
B o B I R
a :
© !
O o
~ G
o
— Trainl2
- - Trainl3
o Train23
S

T T T T T
0 5 10 15 20

Time (hours)

Fic 6. Accuracy of solutions found by ORC algorithm over time for Wine data.

TABLE 14
Classification accuracy for Wine dataset (averaged over three folds).

[[LR | SVM | CART | C4.5 | RF | ADA | ORC]

Wine train | 0.8040 | 0.8460 | 0.7850 | 0.9129 | 0.9918 | 0.8432 | 0.8304
test | 0.7987 | 0.8105 | 0.7842 | 0.8085 | 0.8608 | 0.8105 | 0.8103

8. Conclusion. In this work, we developed algorithms for producing
interpretable, yet accurate, classifiers. The classifiers we build are decision
lists, which use association rules as building blocks. Both of the challenges
addressed in this work, namely the task of mining interesting rules, and the
task of ordering them, have always been hampered by “combinatorial ex-
plosion.” Even with a modest number of items in the dataset, there may

ORDERED RULES FOR CLASSIFICATION 25

be an enormous number of possible rules, and even with a modest num-
ber of rules, there are an enormous number of ways to order them. On the
other hand, MIO methods are naturally suited to handle such problems;
they not only encode the combinatorial structure of rule mining and rule
ordering problems, but also are able to capture the new forms of regular-
ization introduced in this work, that is, favoring more compact rules and
shorter lists. Our computational experiments show that ORC competes well
in terms of accuracy against the top classification algorithms on a variety of
datasets. In our paper, we used only one setting of the parameters for all of
the experiments to show that even an “untuned” version of our algorithm
performs well; however, by varying these parameters, it may be possible to
achieve still better predictive performance. Since our paper is among the
first to use MIO methods for machine learning, and in particular to create
decision lists using optimization-based (non-heuristic) approaches, it opens
the door for further research on how to use optimization-based approaches
for rule mining, creating interpretable classifiers, and handling new forms of
regularization.

APPENDIX A: DETAILS FROM COMPUTATIONAL EXPERIMENTS

As explained in Section 3, each observation in our data is represented
by a binary vector. Six of the datasets used in our experiments had only
categorical variables: CarEval, MONK2, SPECT, TicTacToe, Titanic, and
Votes. Thus it was straightforward to transform them into binary features.
Here we describe how we transformed the other datasets:

1. Breast Cancer Wisconsin (Original). The dataset has 699 rows.
There are 683 remaining observations after removing rows with missing
values. There are nine original features, each taking integer values
between 1 and 10. We used categorical variables to capture whether
each feature is between 1 and 4, 5 and 7, or 8 and 10.

2. Crimel and Crime2. The derivation of these datasets is described
in Section 6.

3. Haberman’s Survival. The dataset has three features: age, year of
operation, and number of positive axillary nodes. We removed the
second feature since it did not seem to be predictive of survival and
thus would not contribute to interpretability. We split the age feature
into five bins by decades: 39 and under, 40 to 49, 50 to 59, 60 to 69,
and 70 and over. We also split the nodes feature into five bins: none,
1t09, 10 to 19, 20 to 29, and at least 30.

4. Mammographic Mass. The dataset has 961 rows, each representing
a patient. There are 830 remaining observations after removing rows

26 BERTSIMAS, CHANG, AND RUDIN

with missing values. The only feature that is not categorical is patient
age, which we split into seven bins: 29 and under, 30 to 39, 40 to 49,
50 to 59, 60 to 69, 70 to 79, and 80 and over.

5. Wine Quality. We used the data for white wine. All features were
continuous, so we binned them by quartiles. A wine was in class 1 if
its quality score between 7 and 10, and class —1 if its quality score
was between 1 and 6.

Table 15 shows the standard deviations that correspond to the averages in
Table 6. Table 16 shows the following results for each dataset (Trainl2 refers
to training on Folds 1 and 2, Train13 refers to training on Folds 1 and 3, and
Train23 refers to training on Folds 2 and 3): L_; and L4 are the numbers of
rules generated by RuleGen for class —1 and class 1 respectively. Time; is
the total time for generating all L_y 4+ Lj rules; Time, is the time when the
final solution was found, either before solving to optimality or before being
terminated after a specified amount of time. Table 16 also shows the time
limit we used for each of the different datasets. For some datasets, the time
limit was significant longer than Time,, illustrating how it can take a long
time for the solver to reach provable optimality even though the solution
appears to have converged. Note that in running (15) for the TicTacToe
dataset, Train12 solved to optimality in 1271 seconds; Train12 and Train23
had optimality gaps of about 0.02% and 0.01% respectively when the final
solutions were found.

Table 17 shows the average classification accuracy for three methods, two
of which are SVM and ORC from Table 6. The other is a tuned version of
SVM, where we varied the C' parameter and chose the one with the best
average test performance in hindsight. The overall performance of the un-
tuned ORC algorithm is still on par with that of the tuned SVM algorithm.

REFERENCES

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules.
In Proceedings of the 20th International Conference on Very Large Databases, pages
487499, 1994.

Rakesh Agrawal, Tomasz Imieliiski, and Arun Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 207-216, 1993.

Martin Anthony. Decision lists. Technical report, CDAM Research Report LSE-CDAM-
2005-23, 2005.

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL
http://www.ics.uci.edu/ mlearn/MLRepository.html.

Roberto J. Bayardo and Rakesh Agrawal. Mining the most interesting rules. In Proceedings

ORDERED RULES FOR CLASSIFICATION 27

TABLE 15
Standard deviation of classification accuracy.

| [LR | SVM | CART | C45 | RF | ADA | ORC

B.Cancer train | 0.0114 | 0.0022 | 0.0110 | 0.0137 | 0.0064 | 0.0116 | 0.0108
test | 0.0417 | 0.0142 | 0.0091 0.0167 | 0.0198 | 0.0274 | 0.0091

CarEval train | 0.0027 | 0.0018 | 0.0035 | 0.0018 | 0.0005 | 0.0018 | 0.0093
test | 0.0027 | 0.0066 | 0.0046 | 0.0044 | 0.0076 | 0.0044 | 0.0036

Crimel train | 0.0108 | 0.0318 | 0.0070 | 0.0073 | 0.0020 | 0.0054 | 0.0073
test | 0.0244 | 0.0141 0.0147 | 0.0070 | 0.0267 | 0.0041 | 0.0186

Crime2 train | 0.0217 | 0.0169 | 0.0484 | 0.0273 | 0.0066 | 0.0219 | 0.0258
test | 0.0559 | 0.0369 | 0.0366 | 0.0402 | 0.0376 | 0.0438 | 0.0700

Haberman train | 0.0247 | 0.0221 0.0221 0.0321 | 0.0225 | 0.0172 | 0.0242
test | 0.0442 | 0.0204 | 0.0453 | 0.0484 | 0.0283 | 0.0204 | 0.0442

Mammo train | 0.0136 | 0.0088 | 0.0076 | 0.0036 | 0.0020 | 0.0089 | 0.0165
test | 0.0249 | 0.0245 | 0.0217 | 0.0097 | 0.0115 | 0.0240 | 0.0202

MONK2 train | 0.0256 | 0.0035 | 0.0284 | 0.0361 | 0.0053 | 0.0231 | 0.0217
test | 0.0526 | 0.0145 | 0.0729 | 0.0743 | 0.0208 | 0.0139 | 0.0356

SPECT train | 0.0399 | 0.0366 | 0.0227 | 0.0117 | 0.0032 | 0.0141 | 0.0471
test | 0.0297 | 0.0619 | 0.0425 | 0.0507 | 0.0195 | 0.0234 | 0.0389

TicTac train | 0.0080 | 0.0133 | 0.0047 | 0.0072 | 0.0000 | 0.0048 | 0.0000
test | 0.0148 | 0.0262 | 0.0061 0.0066 | 0.0156 | 0.0095 | 0.0000

Titanic train | 0.0037 | 0.0054 | 0.0055 | 0.0054 | 0.0054 | 0.0087 | 0.0054
test | 0.0074 | 0.0143 | 0.0106 | 0.0108 | 0.0120 | 0.0101 | 0.0108

Votes train | 0.0190 | 0.0020 | 0.0105 | 0.0103 | 0.0020 | 0.0121 | 0.0072
test | 0.0276 | 0.0080 | 0.0159 | 0.0138 | 0.0000 | 0.0000 | 0.0080

Wine train | 0.0037 | 0.0019 | 0.0047 | 0.0107 | 0.0013 | 0.0009 | 0.0007
test | 0.0142 | 0.0050 | 0.0055 | 0.0029 | 0.0053 | 0.0120 | 0.0035

of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 145-154, 1999.

Endre Boros, Peter L. Hammer, Toshihide Ibaraki, Alexander Kogan, Eddy Mayoraz, and
Ilya Muchnik. An implementation of logical analysis of data. IEEE Transactions on
Knowledge and Data Engineering, 12(2):292-306, 2000.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification
and Regression Trees. Wadsworth, 1984.

British Board of Trade. Report on the loss of the ‘Titanic’ (s.s.). In British Board of
Trade Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing, 1990.

Oliver Biichter and Riidiger Wirth. Discovery of association rules over ordinal data: A
new and faster algorithm and its application to basket analysis. 1394:36—-47, 1998.

Christopher J.C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121-167, 1998.

Mark E. Courtney and Gretchen Ruth Cusick. Crime during the transition to adulthood:
How youth fare as they leave out-of-home care in Illinois, lowa, and Wisconsin, 2002-
2007. Technical report, Ann Arbor, MI: Inter-university Consortium for Political and
Social Research [distributor], 2010.

Stephan Dreiseit]l and Lucila Ohno-Machado. Logistic regression and artificial neural net-
work classification models: a methodology review. Journal of Biomedical Informatics,
35:352-359, 2002.

Yoav Freund and Robert Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Computational Learning Theory, 904:23-37, 1995.

28 BERTSIMAS, CHANG, AND RUDIN

TABLE 16
Number of rules generated for the negative (L—1) and positive (L1) classes, average time
in seconds to generate all rules (Timei), average time in seconds to rank rules (Timez),
time limit on ranking rules.

| [L.1 Li Time; Timep; Limit on Time; |

Trainl2 123 66 551 12802
B.Cancer Trainl3 | 136 53 637 11703 14400 (4 hours)
Train23 135 82 661 14373
Trainl2 45 13 598 8241
CarEval Trainl3 45 13 610 4952 21600 (6 hours)
Train23 48 10 911 8813
Trainl2 60 58 582 15481
Crimel Trainl3 70 25 501 17373 18000 (5 hours)
Train23 43 46 405 4238
Trainl2 17 12 94 6489
Crime2 Trainl3 15 14 47 1071 7200 (2 hours)
Train23 13 11 37 78
Trainl2 6 10 19 9
Haber Trainl3 4 11 11 5 600 (10 minutes)
Train23 5 10 14 5
Trainl2 33 26 637 1340
Mammo Trainl3 29 28 706 2498 10800 (3 hours)
Train23 29 30 669 7422
Trainl2 28 21 135 2786
MONK2 Trainl3 30 16 125 8440 10800 (3 hours)
Train23 27 14 112 4717
Trainl2 10 127 73 9611
SPECT Trainl3 6 144 62 10686 10800 (3 hours)
Train23 10 139 80 6289
Trainl2 11 43 1278 1232
TicTacToe Trainl3 14 36 1202 3292 10800 (3 hours)
Train23 12 44 1244 7570
Trainl2 13 10 75 295
Titanic Trainl3 15 10 104 1756 7200 (2 hours)
Train23 15 9 97 2422
Trainl2 110 116 103 22899
Votes Trainl3 137 146 109 20536 25200 (7 hours)
Train23 141 148 113 21082
Trainl2 34 41 - 58978
Wine Trainl3 35 34 - 39483 74000 (~20 hours)
Train23 35 35 - 73314

Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule ensembles. The
Annals of Applied Statistics, 2(3):916-954, 2008.

Ligiang Geng and Howard J. Hamilton. Interestingness measures for data mining: a survey.
ACM Computing Surveys, 38, September 2006.

Bart Goethals. Survey on frequent pattern mining. Technical report, Helsinki Institute
for Information Technology, 2003.

Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining: current
status and future directions. Data Mining and Knowledge Discovery, 15:55-86, 2007.
Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The elements of statistical

learning: data mining, inference, and prediction. Springer, New York, 2001.
Jochen Hipp, Ulrich Giintzer, and Gholamreza Nakhaeizadeh. Algorithms for association

ORDERED RULES FOR CLASSIFICATION

29

TABLE 17
Results of tuned SVM (highest in row highlighted in bold).
[Dataset | | SVM (default C =1) | SVM (hindsight) C | ORC |
B.Cancer train 0.9846 £ 0.0022 0.9868 £+ 0.0044 1.2 0.9766 £+ 0.0108
test 0.9619 £ 0.0142 0.9634 + 0.0203 0.9532 £ 0.0091
CarEval train 0.9821 £+ 0.0018 1 7.2 0.9598 £ 0.0093
test 0.9728 £ 0.0066 0.9988 + 0.0010 0.9508 £ 0.0036
Crimel train 0.8439 £ 0.0318 0.9648 £+ 0.0035 4.6 0.8897 £ 0.0073
test 0.7394 £+ 0.0141 0.7512 4+ 0.0361 0.7817 +0.0186
Crime2 train 0.7477 £ 0.0169 0.6996 4+ 0.0216 0.4 0.7133 £ 0.0258
test 0.6354 £ 0.0369 0.6445 £+ 0.0391 0.6699 + 0.0700
Haberman | train 0.7876 £ 0.0221 0.7761 £+ 0.0279 0.4 0.7680 £ 0.0242
test 0.7386 £ 0.0204 0.7582 4+ 0.0442 0.7582 4 0.0442
Mammo train 0.8687 £ 0.0088 0.8608 £ 0.0095 0.6 0.8536 £ 0.0165
test 0.8217 £ 0.0245 0.8313 £+ 0.0197 0.8337 4+ 0.0202
MONK2 train 0.6736 £ 0.0035 0.6736 4 0.0035 1 0.8299 £+ 0.0217
test 0.6713 £ 0.0145 0.6713 4+ 0.0145 0.7338 +0.0356
SPECT train 0.8633 £ 0.0366 0.8745 4+ 0.0319 1.2 0.8970 £0.0471
test 0.8464 £+ 0.0619 0.8502 + 0.0566 0.7753 £ 0.0389
TicTacToe | train 0.9494 £+ 0.0133 0.9901 4 0.0009 6 1
test 0.9165 £ 0.0262 0.9844 4+ 0.0143 1
Titanic train 0.7906 £ 0.0054 0.7906 £ 0.0054 1 0.7906 £ 0.0054
test 0.7847 £ 0.0143 0.7847 4+ 0.0143 0.7906 4+ 0.0108
Votes train 0.9747 £+ 0.0020 0.9793 4+ 0.0034 1.4 0.9747 £ 0.0072
test 0.9563 £ 0.0080 0.9586 + 0.0069 0.9563 £ 0.0080
Wine train 0.8460 £+ 0.0019 0.9117 £ 0.0079 4.8 0.8304 £ 0.0007
test 0.8105 £ 0.0050 0.8348 + 0.0035 0.8103 £ 0.0035

rule mining - a general survey and comparison. SIGKDD FExplorations, 2:58-64, June

2000.

Dennis L. Jennings, Teresa M. Amabile, and Lee Ross. Informal covariation assessments:
Data-based versus theory-based judgements. In Daniel Kahneman, Paul Slovic, and
Amos Tversky, editors, Judgment Under Uncertainty: Heuristics and Biases,, pages
211-230. Cambridge Press, Cambridge, MA, 1982.

Adam R. Klivans and Rocco A. Servedio. Toward attribute efficient learning of decision
lists and parities. Journal of Machine Learning Research, 7:587-602, 2006.

Wenmin Li, Jiawei Han, and Jian Pei. CMAR: Accurate and efficient classification based
on multiple class-association rules. IEEFE International Conference on Data Mining,
pages 369-376, 2001.

Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule
mining. In Proceedings of the 4th International Conference on Knowledge Discovery
and Data Mining, pages 80-96, 1998.

Philip M. Long and Rocco A. Servedio. Attribute-efficient learning of decision lists and
linear threshold functions under unconcentrated distributions. In Advances in Neural
Information Processing Systems (NIPS), volume 19, pages 921-928, 2007.

Mario Marchand and Marina Sokolova. Learning with decision lists of data-dependent
features. Journal of Machine Learning Research, 2005.

Ken McGarry. A survey of interestingness measures for knowledge discovery. The Knowl-
edge Engineering Review, 20:39-61, 2005.

Nicolai Meinshausen. Node harvest. The Annals of Applied Statistics, 4(4):2049-2072,
2010.

30 BERTSIMAS, CHANG, AND RUDIN

George A. Miller. The magical number seven, plus or minus two: Some limits to our
capacity for processing information. The Psychological Review, 63(2):81-97, 1956.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229-246, 1987.

Ulrich Riickert. A Statistical Approach to Rule Learning. PhD thesis, Technischen Uni-
versitdt Miinchen, 2008.

Cynthia Rudin, Benjamin Letham, Ansaf Salleb-Aouissi, Eugen Kogan, and David Madi-
gan. Sequential event prediction with association rules. In Proceedings of the 24th
Annual Conference on Learning Theory (COLT), 2011.

Gyorgy J. Simon, Vipin Kumar, and Peter W. Li. A simple statistical model and as-
sociation rule filtering for classification. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 823-831,
2011.

Marina Sokolova, Mario Marchand, Nathalie Japkowicz, and John Shawe-Taylor. The
decision list machine. In Advances in Neural Information Processing Systems (NIPS),
volume 15, pages 921-928, 2003.

Soren Sonnenburg, Gunnar Rétsch, and Christin Schéfer. Learning interpretable svms for
biological sequence classification. 3500(995):389-407, 2005.

Pang-Ning Tan and Vipin Kumar. Interestingness measures for association patterns: a per-
spective. Technical report, Department of Computer Science, University of Minnesota,
2000.

Fadi Thabtah. A review of associative classification mining. The Knowledge Engineering
Review, 22:37-65, March 2007.

Koen Vanhoof and Benoit Depaire. Structure of association rule classifiers: a review.
In Proceedings of the International Conference on Intelligent Systems and Knowledge
Engineering (ISKE), pages 9-12, 2010.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New
York, 1995.

Guizhen Yang. The complexity of mining maximal frequent itemsets and maximal fre-
quent patterns. In Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 344-353, 2004.

Xijaoxin Yin and Jiawei Han. CPAR: Classification based on predictive association rules.
In Proceedings of the 2008 SIAM International Conference on Data Mining, pages 331—
335, 2003.

OPERATIONS RESEARCH CENTER
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MA 02139
E-MAIL: dbertsim@mit.edu
aachang@mit.edu
rudin@mit.edu

	OR386-11.pdf
	OR386-11-Updated9-12(asSent).pdf

