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Abstract
Several theoretical advances are presented, with the common theme of helping better
understand and guide recent experiments in biophysical chemistry. In Chapter 2, I
consider a recent criticism of the Jarzynski equality, notably that a breakdown in
the connection between work and changes in the Hamiltonian for time-dependent
systems causes the Jarzynski equality to produce unphysical results. I discuss the
relationship between two possible definitions of free energy and demonstrate that it
is indeed possible to obtain physically relevant free energy profiles from the Jarzynski
equality, thereby resolving the recent questions in the literature. Next, I consider
several aspects of coherent resonance energy transfer. In Chapter 3, I present a
theory for coherent resonance energy transfer based on classical electrodynamics and
demonstrate how it is able to capture dynamics in the coherent regime, the incoherent
regime, and in between these two limits. In Chapter 4, I present a quantum theory for
resonant energy transfer based on using a variational polaron transform to optimally
split the Hamiltonian into a zeroth-order part and a perturbation. I then apply
a quantum master equation to obtain the dynamics of energy transfer for various
parameters. Finally, in Chapter 5, I examine whether it is possible to use the known
exact equilibrium state of the system to improve the variational procedure.
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Chapter 1

Introduction

Advances in experimental techniques over the past 10–20 years have enabled a wide

range of new experiments in physical chemistry. Many of the novel experiments being

performed today probe matter in ways that would previously have been restricted to

the realm of thought experiments. In particular, atomic force microscopy has pro-

gressed so far into the nanoscale that we are now able to pull on individual molecules

and measure their force response [1–6]. Meanwhile, two-dimensional electronic spec-

troscopy is able to probe electronic excitations as they move coherently from state to

state in biological systems [7–10].

These experimental advances provide many opportunities for related advances

in theoretical chemistry. New theoretical tools are needed to fully understand the

results of these experiments, and to guide the direction of future experiments. In

this thesis, I present some new theoretical results that have as a common theme the

understanding and interpretation of recent experiments in biophysical chemistry. I

now briefly overview the results that will be presented here.

First, I present some results on the Jarzynski equality. The relatively recent

Jarzynski equality is a relation between work and free energy for a nonequilibrium

system [11] and has found application in the interpretation of biomolecule-pulling

experiments [3, 4, 12–14]. There has been some controversy regarding the Jarzynski

equality, from whether it is fundamentally correct or even well-defined to whether it

can be practically applied. A resolution of these open questions regarding the Jarzyn-

15



ski equality is important so that experimenters can understand when and whether

it can be applied to interpret their experiments. In Chapter 2, I briefly review the

Jarzynski equality and examine one particular criticism that has been directed toward

it—namely that an ambiguity in the Hamiltonian for time-dependent systems causes

the Jarzynski equality to produce arbitrary and unphysical results. In particular, I

demonstrate that this particular criticism of the Jarzynski is unfounded and that the

Jarzynski equality is indeed fundamentally correct. Much of the work in this chapter

was published in Ref. [15].

Next, I present a few recent results on the general topic of coherent resonance

energy transfer. One of the most interesting discoveries made with two-dimensional

electronic spectroscopy has been the observation of long-lived coherence between pro-

tein pigments in photosynthetic complexes [7, 8]. These results have spurred a great

deal of interest in the mechanisms of energy transfer in such systems, in particular on

the role that quantum coherence plays in the energy-transfer process [16]. In order to

answer these questions, it is important to have theories that can predict and explain

the dynamics of energy transfer in biologically relevant parameter ranges [17]. It is

the development of such theories that is the focus of the remaining chapters.

In Chapter 3, I present a model for coherent resonance energy transfer based on

classical electrodynamics. I then show how this model can capture dynamics in the

fully coherent regime, in the fully incoherent regime, and in between these two limits.

These results show that it is possible to obtain coherent energy transfer dynamics

from a classical model. Thus, while biological molecules are certainly fundamentally

quantum mechanical, the observation of oscillations in the energy transfer may not be

a fundamentally quantum property of the system. Much of the work in this chapter

was published in Ref. [18].

In Chapter 4, I turn to a quantum model for energy transfer with the goal of

obtaining semiquantitative results for coherent energy transfer. One of the challenges

of modeling coherent energy transfer in the biologically relevant regime is that many

of the parameters of the system are of approximately the same magnitude. It is thus

difficult to find an appropriate perturbative parameter, and most existing perturba-
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tive techniques perform well only in limited parameter regimes. In this chapter, I

present a variational technique to select an appropriate perturbation and apply the

result to calculate the dynamics of resonance energy transfer. This theory is both

computationally inexpensive and gives reasonable results over a wide range of pa-

rameter values. Much of the work in this chapter forms the second half of a paper

currently in press [19].

Finally, in Chapter 5, I continue with the variational polaron transform and briefly

explore an alternative method for selecting the optimal transformation. In particular

I use exact equilibrium results obtained by a different method as input to the min-

imization procedure, with the goal of improving the results at a modest increase in

computational cost. While the results perform reasonably well at small system–bath

interaction, they perform worse than the theory in Chapter 4 at large system–bath

interaction. These results are then briefly discussed and explained. As of this writing,

the material in this chapter has not yet been submitted for publication.
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Chapter 2

Jarzynski Equality

Significant portions of this chapter are reprinted with permission from: E. N. Zi-

manyi and R. J. Silbey. The work-Hamiltonian connection and the usefulness of the

Jarzynski equality for free energy calculations. J. Chem. Phys. 130, 171102 (2009).

Copyright 2009, American Institute of Physics.

2.1 Introduction

The free energy difference between two thermodynamic states can be expressed in

terms of the work exerted on the system along a reversible path from one state to

the other. In particular, if AS is the Helmholtz free energy of state S, and w is an

amount of work performed on the system, then we have at constant temperature and

volume

AS2 − AS1 =
∫ S2

S1
dw, (2.1)

provided we perform the integration along a reversible path from S1 to S2.

We now make two observations about Eq. (2.1):

• Since the integral is along a reversible path, the system is in equilibrium at all

times during the integration. As such, the initial state, the final state, and the

path are fully defined in terms of thermodynamic quantities and we do not need

to consider any microstates of the system in order to compute the integral.
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• The existence of Eq. (2.1) depends on the fact that the work performed along a

reversible path is a state function; as such, the integral can be performed along

any reversible path from S1 to S2 and will yield the same free energy difference.

Eq. (2.1) provides a method of experimentally determining free energy differences

by measuring work, provided one can find an experimentally accessible reversible path

between the states of interest.

In 1997, Jarzynski derived another relation between work and free energy that has

come to be known as the “Jarzynski equality” [1]. Just as in Eq. (2.1), the Jarzynski

equality is an expression for the free energy difference between two equilibrium ther-

modynamic states. Where the Jarzynski equality differs, however, is that it expresses

this free energy difference in terms of the work along an irreversible path.

In order to more concretely introduce the Jarzynski equality, we consider a closed

system with a Hamiltonian H(x, p;λ), where (x, p) represents a microstate of the

system with coordinates x and momenta p, and λ represents an external parameter

(or a set of many external parameters). Suppose that we fix λ = λ1 and allow the

system to come to equilibrium at a fixed temperature T , such as by putting it in

contact with a heat bath. The system will then be in a well-defined thermodynamic

state; there will be a time-invariant phase-space distribution of (x, p) corresponding

to this state. We can of course similarly define another state with λ = λ2, and the

free energy difference between these two states is a perfectly well-defined quantity.

Changing λ will in general perform work on the system, and we can then measure

the work performed on the system as we change λ according to some protocol. There

are of course many ways to change λ from λ1 to λ2. We may do so reversibly by making

infinitesimal changes in λ and allowing sufficient time for the system to equilibrate

between successive changes. The work measured during such a procedure will of

course be the reversible work and will equal to the free energy difference between the

states with λ = λ1 and λ = λ2.

More generally, we may define any arbitrary protocol for changing λ in time,

which we write as λ(t). Since the system is no longer in equilibrium throughout

the process, the work performed on the system is no longer fully defined in terms of
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thermodynamic quantities, but depends on the particular microstates through which

the system passes. Of course, if we specify the initial microstate of the system and

the work protocol λ(t), then the further dynamics of the system are fully determined

by Hamilton’s equations of motion and the work performed on the system is likewise

precisely defined.

Usually, however, we do not prepare the system in a particular microstate but

rather in a particular thermodynamic state. The initial microstate will be taken

from the phase space distribution of that thermodynamic state, and will in general

be different for each realization of the process. As a result, even if we define an

initial equilibrium state and a work protocol λ(t), we will obtain a different value

of work each time we perform the experiment and so we speak of a distribution of

work values. The shape and width of this distribution will of course depend on the

particular system and work protocol under consideration.

For macroscopic systems, the work distribution is typically sharp and fluctuations

in the work are frequently ignored. Indeed, introductory textbooks often ignore this

distribution in work values and instead speak of a single value for the work along an

irreversible path. Of course, this approximation is of exactly the same nature as when

one speaks of the energy of an ideal gas at a fixed volume and temperature; there

is most certainly still a distribution of energies, but it is overwhelmingly improbable

that one will observe an energy that deviates significantly from the average.

The Jarzynski equality states that

e−β∆Gt = 〈e−βWt〉, (2.2)

where β−1 = kBT , ∆Gt is the free energy between two well-defined thermodynamic

states and Wt is the work performed as the external parameters of the system are

changed from λ1 to λ2 according to some protocol λ(t). The free energy difference is

between the equilibrium states with λ = λ1 and λ = λ2, both at temperature T . The

average is over the distribution of work values obtained by repeating the experiment

a large number of times, always starting in the equilibrium state with λ = λ1 and

25



always using the same work protocol λ(t).

The derivation of the Jarzynski equality relies on the fact that the volume of phase

space is the same in both the initial and final states. If phase space volume is not

conserved, such as in the expansion or compression of a gas, the Jaryznski equality

does not apply [2, 3]; in these cases, it is sometimes possible to find an alternate

description of the system that does preserve phase space and to which the Jarzynski

equality does apply [4].

We note that while one of the reference states for the free energy is the equilibrium

state with λ = λ2, the system is never actually in this state; at the end of the

experiment λ = λ2 but the system will in general be in a nonequilibrium state (though

of course could be allowed to relax to equilibrium given a heat bath and sufficient

time). In addition, the temperature in the Jarzynski equality is the temperature of

the two reference states, and thus also of the initial state in the experiment, but

during the experiment the system will not generally be at the same temperature or

even have a well-defined temperature. These points have caused some confusion in

the literature, and have been carefully explained by Jarzynski [5, 6].

Jarzynski’s result has garnered much interest, as it is one of the few exact results in

nonequilibrium statistical mechanics. While Jarzynski’s initial derivation considered a

closed system undergoing Hamiltonian dynamics as described here, the result has been

extended to other cases, including systems strongly coupled to a thermal environment

and systems undergoing thermalized dynamics [7–10].

There has also been much discussion about the convergence properties of the

Jarzynski equality. In particular, while Eq. (2.2) may be exactly correct, the amount

of sampling necessary for the work average to converge is an important practical

consideration. Indeed, the presence of the exponential of the work in Eq. (2.2) can

cause highly improbable paths to make important contributions to the average and

thus to the free energy difference [4, 11–14]. For the purposes of this chapter, however,

we will be more interested in the fundamental properties of the Jarzynski equality

and refer the reader to the literature for discussions of its convergence properties.

In addition to theoretical interest, the Jarzynski equality also suggested another
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way of experimentally determining free energies by measuring work, even if the ex-

periment cannot be done reversibly. In particular, single molecule experiments, such

as the stretching of a polymer molecule using an atomic force microscope or laser

tweezers, have become common in the last decade [15–19]. The goal is often the

determination of the free energy surface along some coordinate of the molecular po-

tential energy surface. Hummer and Szabo have derived an extension to the Jarzynski

equality that is particularly suited to extracting free energy profiles from molecular

pulling experiments [20] and which has been used in the analysis of the aforementioned

pulling experiments.

Although there has been some controversy about the Jarzynski equality and re-

lated theoretical advances, it is fair to say that their use in interpreting nano-scale

single molecule experiments is widespread. Thus any question that they may be

fundamentally in error must be carefully examined.

Recently, questions have been raised about the connection between work and

changes in the Hamiltonian for a system with a time-dependent Hamiltonian, casting

doubt on the applicability of the Jarzynski equality for computing free energy changes.

In particular, Vilar and Rubi have claimed that the connection between work and

changes in the Hamiltonian breaks down for systems with a time-dependent Hamil-

tonian and that this causes the Jarzynski equality to give unphysical results [21–25].

Here, we discuss these questions and show that the Jarzynski equality can be usefully

applied to determine physically relevant free energy changes.

2.2 Choice of system and environment

Consider a system with Hamiltonian H0(x, p), where x represents the coordinates

of the system and p the corresponding momenta, and suppose that this system is

subject to a time-dependent force f(t) acting along some coordinate z(x). From the

perspective of classical mechanics, we have two options for treating the force. We

may consider it as an external force not included in the Hamiltonian of the system;

in this case, we study the evolution of a system governed by H0(x, p) under the effect
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of the external force f(t) acting along z(x). Alternatively, we may include the force

in the Hamiltonian of the system and study the evolution of a system governed by

the time-dependent Hamiltonian H(x, p, t) = H0(x, p)− z(x)f(t).

In the first case, we are considering a time-independent Hamiltonian under the

effect of an external force f(t). According to classical mechanics, the differential

work done by an external force is equal to the value of the external force times the

differential of its conjugate coordinate; in this case yielding fdz. The total work up

to time τ is then

W (τ) =
∫ t=τ

t=0
f(t)d{z[x(t)]} (2.3)

and we have the usual result that the work done on the system equals the change in

its energy,

H0[x(t2), p(t2)]−H0[x(t1), p(t1)] = W (t2)−W (t1). (2.4)

The free energy change appropriate for this first description of the system is

G(z2)−G(z1) = − log
[∫

dxδ[z(x)− z2]e−H0(x)∫
dxδ[z(x)− z1]e−H0(x)

]
(2.5)

(kBT = 1 throughout this chapter). We note that this free energy is a function of the

coordinate z and does not depend at all on the external force f .

In the second case, we consider the time-dependent Hamiltonian H(x, p, t) =

H0(x, p) − z(x)f(t). In this description of the system, f(t) is an internal force and

there should be no expectation that the work done by f(t) equals the change in energy

of the system. Here we consider the thermodynamic work,

Wt(τ) =
∫ τ

0
dt
∂H
∂t

. (2.6)

As the system in not subject to any external forces, Hamilton’s equations of motion

imply that [26]
dH
dt

= ∂H
∂t

, (2.7)

and we immediately see that Wt equals the total change in energy of the system. The
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appropriate free energy change to consider for this description of the system is

∆Gt(τ) = Gt(τ)−Gt(0) = − log
[∫

dxe−H(x,τ)∫
dxe−H(x,0)

]
. (2.8)

This free energy depends on the full time-dependent Hamiltonian H(x, t), including

the exerted force f . Since f(t) is the only time-dependent term in the Hamiltonian,

we could just as well written this free energy as a function of the force f .

We note, as suggested by Vilar and Rubi [21], that this second description of the

system is not unique—adding a term g(t) to the Hamiltonian has no effect on the

dynamics of the system but changes the values of Wt and ∆Gt.

In considering the change in free energy when a force f is applied to a harmonic

spring of force constant k, Vilar and Rubi describe the system according to the first

picture and obtain ∆G = W = f 2/2k while Horowitz and Jarzynski use the second

picture and obtain ∆Gt = Wt = −f 2/2k [22, 23]. Both of these results are correct

in their respective descriptions, and mean different things. In particular, Vilar and

Rubi are describing the free energy change associated with changing the length of the

spring in the absence of an external force; the force is only a tool used to measure

the free energy profile of the free spring. Meanwhile, Horowitz and Jarzynski are

describing the free energy change of the combined force–spring system as a function

of the force. The discrepancy between the definitions of work in these two papers has

previously been noted [27].

The Jarzynski equality is framed in the second of our descriptions and expresses

a relation between Wt and ∆Gt [1],

e−∆Gt = 〈e−Wt〉. (2.9)

The validity of this expression is not in question—only its utility in describing free

energy changes in a system. Vilar and Rubi point out that ∆Gt depends on the

arbitrary choice of g(t) in the Hamiltonian and leads to arbitrary free energy changes.

If all that can be extracted from the Jarzynski equality is this arbitrary ∆Gt, then

the Jarzynski equality seems to be of little use. We shall show, however, that this is
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not the case.

Peliti has also examined in some detail the effects of adding a term g(t) to the

Hamiltonian [27]. He has claimed that such a term is in fact not arbitrary but is

unambiguously determined by the particular experimental setup used to manipulate

the system; accordingly, he has claimed that one should not be concerned that g(t)

shows up in free energy differences. Here, we take a different approach and show

that the term g(t) in fact naturally drops out of any physically relevant free energy

changes.

2.3 Description of pulling experiment

Consider a single-molecule pulling experiment, for which the Jarzynski equality has

frequently been applied [15–18]. In studying the unfolding of a biomolecule, one is

often interested in the free energy profile G(z) as a function of end-to-end distance

z. We could map the free energy by reversibly pulling the ends of the molecule and

measuring the work exerted by the external force as a function of z. This is of course

the classic method and corresponds to Vilar and Rubi’s analysis of the harmonic

spring.

We could also try to get the free energy profile using the Jarzynski equality. Direct

application of the Jarzynski equality to yield ∆Gt gives the free energy difference be-

tween the free molecule and the molecule with a certain force applied to it. This is not

in itself a particularly useful quantity and is not the free energy profile. Hummer and

Szabo have, however, shown how to obtain free energy profiles from single-molecule

pulling experiments [20].

Consider an unperturbed system described by a Hamiltonian H0(x, p). When

a time-dependent perturbation is applied along some coordinate z(x), we write the

new Hamiltonian as H0(x, p) + H′(z, t). Hummer and Szabo have shown that the

unperturbed free energy profile along coordinate z can then be reconstructed as

G(z0) = − log〈δ[z(t)− z0]e−Wt(t)+H′(z,t)〉, (2.10)
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where the average is over all trajectories of the system in the presence of the pertur-

bation [20].

We now apply this result to an ideal, deterministic spring and show how the

Jarzynski equality can be used to calculate G(z), thereby reconciling the results of

Horowitz and Jarzynski with those of Vilar and Rubi. Our model is

H0(x, p) = p2/2m+ kx2/2 (2.11)

and

H(x, p, t) = H0(x, p)− f0tx/τ. (2.12)

This Hamiltonian describes an ideal spring under the effect of an external force which

increases uniformly from 0 to f0 over a time 0 < t < τ .

Applying Hummer and Szabo’s result to our model, we obtain

G(z) = − log〈δ[x(τ)− z]e−Wt(τ)−f0x(τ)〉, (2.13)

where we have used the fact that in this case our coordinate of interest z(x) is just x.

The Hamiltonian equations of motion for the system are ṗ = −kx + f0t/τ and

ẋ = p/m, and have the solution

x(t) = f0t

mω2τ
+ x0 cosωt+

(
p0

mω
− f0

mω3τ

)
sinωt, (2.14)

where x0 is the initial position, p0 is the initial momentum, and ω2 = k/m. We

assume without loss of generality that both sinωτ and cosωτ are nonzero; a similar

calculation yields the same results for these two special cases.

We perform the average over trajectories in Eq. (2.13) by integrating over (x0, p0)

weighted by the initial Boltzmann distribution,

e−G(z) =
∫
dx0dp0δ[x(τ)− z]e−Wt−f0x(τ)e−H0(x0,p0). (2.15)
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The delta function can be used to eliminate the integral over p0, yielding

e−G(z) = mω

| sinωt|

∫
dx0e

−Wt−f0z−H0(x0,p0) (2.16)

where now p0 is now a function of x0, defined implicitly according to Eq. (2.14) and

the condition x(τ) = z. The factor in front of the integral comes from the coefficient

of p0 in the delta function.

Using the definition of Wt from Eq. (2.6), we find that

Wt(τ) = −f0

τ

∫ τ

0
x(t)dt, (2.17)

which yields upon integration

Wt = − f 2
0

2mω2 −
f0 [mω2(x0 + z)− f0] tan

(
ωτ
2

)
mω3τ

. (2.18)

We can now calculate the exponent in Eq. (2.16), which after some rearrangement

results in

−Wt − f0z −H0(x0, p0) = −1
2mω

2z2 − 1
2mω

2 csc2(ωτ) (x0 + x̃)2 , (2.19)

where

x̃ = ωτ (f0 −mω2z) cosωτ − f0 sinωτ
mω3τ

. (2.20)

The first term in Eq. (2.19) is independent of x0 while the second results in a

Gaussian integral when put into Eq. (2.16). We then obtain

e−G(z) =
√

2πme− 1
2mω

2z2
, (2.21)

and thus

G(z) = 1
2mω

2z2 − log
√

2πm. (2.22)

The second term in G(z) is independent of z and simply defines the zero of the overall
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free energy profile, but does not affect relative free energies. Since the free energy

is only defined up to an overall additive constant, we are free to drop this term and

obtain

G(z) = 1
2mω

2z2 = 1
2kz

2. (2.23)

This agrees with Vilar and Rubi and is the expected result for the free energy profile

of an ideal spring. This result demonstrates that a correct application of the Jarzynski

equality does indeed give the correct free energy profile of an ideal spring.

Consider now the effect of adding an arbitrary g(t) to the general Hamiltonian.

The effect on ∆Gt is easily seen from Eq. (2.8) to be

∆Gnew
t (τ) = ∆Gt(τ) + [g(τ)− g(0)], (2.24)

showing that relative free energies are indeed affected by a term g(t) in the Hamil-

tonian, as noted earlier in this chapter and by Vilar and Rubi. Since the term g(t)

redefines the zero of energy at each point in time, it is expected that ∆Gt(τ) will

be affected as it is comparing free energies at two different times. Before ascribing

a physical interpretation to ∆Gt, it must be corrected by subtracting this arbitrary

change in the zero of energy.

We now examine the effect of an arbitrary g(t) on the free energy profile G(z)

computed via Jarzynski’s equality. We then have the new Hamiltonian and the new

work as

H′new(x, t) = H′(x, t) + g(t) (2.25)

and

W new
t = Wt + g(τ)− g(0). (2.26)

The free energy profile given by Eq. (2.10) then becomes

Gnew(z0) = − log〈δ[z(t)− z0]e−Wt+H′(z,t)+g(0)〉, (2.27)
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which can be simplified to

Gnew(z0) = G(z0)− g(0). (2.28)

So adding a time-dependent term g(t) shifts the overall free energy profile G(z) by

an additive constant, but has no effect on relative free energies.

We can also express our current arguments in the language of thermodynamics.

For a system at constant entropy S and volume V , the thermodynamic potential

of interest is the internal energy, U(S, V ). If instead of constant volume, the sys-

tem is held at constant pressure P , it is more convenient to consider the enthalpy

H(S, P ) obtained by a Legendre transform as H = U − PV . In the case of constant

temperature rather than constant entropy, one instead considers free energies: the

Helmholtz free energy A(T, V ) for a system at constant volume and the Gibbs free

energy G(T, P ) for a system at constant pressure. Each of these free energies is ob-

tained by a Legendre transformation of the corresponding constant entropy potential,

A = U − ST and G = H − ST [28].

Here, being interested in a one-dimensional system, we consider length instead of

volume and force instead of pressure, but the principles are the same. Indeed, the

free energy of Vilar and Rubi, Gt(f), is analogous to a Gibbs free energy while the

free energy profile G(z) is analogous to a Helmholtz free energy. The method of Vilar

and Rubi is constructed to measure G as a function of position, G(z), while Horowitz

and Jarzynski are calculating Gt as a function of f , Gt(f). If the fluctuations in

x are small at a given f (i.e., we are in the thermodynamic limit), we can use the

Legendre transform relation G(z) = Gt(f)+fz to convert between the two quantities.

Jarzynski’s equality, however, is usually applied in a regime where fluctuations are

important. In this regime, there is not a simple relation between Gt(f) and G(z) but

the method of Hummer and Szabo discussed above can be used to reconstruct G(z)

from pulling experiments.
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2.4 Conclusion

In conclusion, we have reconciled a recent dispute in the literature by carefully showing

how different authors were using different definitions of free energy. In particular, we

have demonstrated that by properly applying the Jarzynski equality, the textbook

result for the free energy profile of a spring is correctly recovered. More generally, we

have shown that free energy profiles computed using the Jarzynski equality and the

results of Hummer and Szabo do not depend on arbitrary terms in the Hamiltonian.

Most importantly, in light of recent doubts, we have reaffirmed the applicability of

the Jarzynski equality to the analysis of single-molecule pulling data.
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Chapter 3

Classical Energy Transfer

Significant portions of this chapter, including Figs. 1–4, are reprinted with permission

from: E. N. Zimanyi and R. J. Silbey. Unified treatment of coherent and incoherent

electronic energy transfer dynamics using classical electrodynamics. J. Chem. Phys.

133, 144107 (2010). Copyright 2010, American Institute of Physics.

3.1 Introduction

Resonance energy transfer (RET), the transfer of electronic energy via nonradiative

dipole–dipole coupling, is ubiquitous in chemistry and biology [1–3]. For a system

to undergo RET, it must have a donor chromophore and an acceptor chromophore;

the donor is initially excited and transfers its energy to the acceptor chromophore.

Until recently, most studies involving RET were limited to situations where quantum

coherence between the donor and acceptor molecules could be neglected. The theory

of RET in this limit was first proposed by Förster, who derived an expression for the

rate of energy transfer from a donor to an acceptor molecule [4, 5].

The Förster rate depends on only two quantities: (1) the overlap between the

donor emission spectrum and the acceptor absorption spectrum and (2) the distance

between the donor and acceptor molecules. As a result, the theory is conceptually

simple and depends on a small number of experimentally accessible parameters. While

Förster’s original derivation was quantum mechanical, it was later shown that the

41



same result can be obtained from a completely classical picture [6].

Of course, Förster theory cannot be applied in all situations—a good overview of

the limitations of this theory and generalizations is found in Ref. [7]. In particular,

the incoherent theory of RET relies on Fermi’s golden rule, and predicts a constant

rate of energy transfer from the donor to the acceptor. Fermi’s golden rule will break

down if the coupling between the donor and acceptor is too strong, or if the acceptor

does not have a high enough density of states. In such situations, the energy of

the donor does not transfer unidirectionally to the acceptor, but oscillates coherently

between the donor and the acceptor.

Recent experiments on RET in photosynthetic systems have revealed evidence of

quantum coherence on picosecond timescales [8–11]. Understanding energy transfer

in these systems will require a theory that can account for both quantum coherence

and irreversible energy transfer. While some progress has been made in understand-

ing RET in the coherent regime [12–18], none of the theories proposed to date rival

the conceptual simplicity of Förster’s theory. In particular, all of the available the-

ories of coherent RET depend on a rather detailed knowledge of the environment

surrounding the molecules of interest. This is in contrast to Förster’s theory, where

the environment is only included through its effect on the spectra of the molecules of

interest.

A conceptually simple framework for describing coherent RET using only a few

experimentally accessible properties of the donor and acceptor molecules would be

highly desirable. In light of this, we wish to examine whether it is possible to describe

coherent RET using a model that is based on classical electrodynamics. Many prop-

erties of condensed phase systems have been accurately described by using classical

electrodynamics to treat the interaction between molecules. In particular, classical

electrodynamics has been successfully applied to calculate the optical properties of

molecular crystals, polymers, and polarizable fluids [19–23]. One can also use a purely

classical model to obtain information on the frequency shifts of oscillating molecules

due to their interaction [24, 25]. Finally, much of the work leading up to the classical

derivation of Förster theory dealt with calculating changes in lifetime of an emitting

42



dipole when placed near a reflective surface [26].

In these classical models, one generally considers each molecule in the system to

have a known linear response to an electric field; upon application of an electric field

to the system, each molecule responds to both this external field and to the field due

to the resulting polarizations of all other molecules. The result is a set of coupled

linear equations for the polarizations of all of the molecules in the system, which are

then solved to obtain the overall electric response of the condensed phase.

With respect to energy transfer, classical models have been use to derive Förster

theory [6], as well as to study more complicated situations such as energy transfer

between microspherical droplets [27]. The classical theory of energy transfer was also

extended by the inclusion of higher multipoles and anisotropic media [28].

While classical models have been successfully applied in many situations, to date

no such model exists for coherent RET. A typical quantity of interest in coherent

RET is the energy of the acceptor molecule as a function of time after an electric field

is applied to the donor. The energy of the acceptor molecule depends quadratically

on the electric field applied to the donor; a classical theory of RET would then be

required to calculate a second-order response function of the system, whereas most

classical theories to date have only dealt with linear response functions.

Kryvohuz and Cao have shown, however, that for a harmonic system the classical

and quantum response functions are equal to all orders [29]. The systems of interest

in coherent RET are not exactly harmonic, however, and thus we cannot expect

the quantum and classical response functions to be exactly equal. Nonetheless, if

the response of each molecule can be appropriately described by linear response,

the system can be approximately replaced by a collection of Drude oscillators with

appropriate frequencies. Such a system of Drude oscillators will behave harmonically

on timescales where dissipation is negligible, meaning that quantum and classical

response functions will be equivalent. The response functions of this system of Drude

oscillators will only approximately describe the real quantum system; the replacement

of the actual system by a collection of Drude oscillators is an approximation that will

not be valid in all circumstances.
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Of course, coherent RET is relevant only when the donor and acceptor are strongly

coupled; it is not a priori clear that one can replace each molecule with a collection

of Drude oscillators in such a situation. Furthermore, it is not obvious whether it

will be possible to describe irreversible energy transfer if dissipation is required to be

negligible on timescales of interest. These are questions that will need to be answered

by any classical theory of coherent RET. Indeed, the preceding considerations do not

prove that one can describe coherent RET with a classical theory, but rather provide

motivation for why it might be possible to do so. In the following, we will actually

develop such a theory and consider a few simple examples to show that it can indeed

provide an accurate description of RET in situations of interest.

In section 3.2, we derive a classical theory for RET. In section 3.3, we show how this

classical theory can be derived from quantum mechanics. In section 3.4, we present

results obtained using our classical theory and compare them to those obtained using

other methods. In section 3.5, we summarize our results and give some concluding

remarks.

3.2 Classical theory

In the classical derivation of Förster theory, the donor molecule is considered to be

an oscillating dipole. This oscillating dipole radiates an electric field which then

impinges on the acceptor molecule. The acceptor molecule absorbs energy from the

electric field, and the rate of this energy absorption is the rate of energy transfer from

the donor to the acceptor [6]. Förster’s incoherent theory requires a knowledge of the

emission spectrum of the donor in its environment and the absorption spectrum of

the acceptor in its environment. Förster theory does not endeavor to calculate either

of these spectra, but assumes them to be known, either from experiment or from a

separate calculation.

In this paper, we will generalize Förster theory to include coherence between the

donor and the acceptor. Förster’s theory requires a knowledge of the absorption

spectrum of the acceptor, which is proportional to the imaginary part of its complex
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polarizability [30]. In order to account for coherence, our theory will require a knowl-

edge of the full complex polarizabilities of the donor and acceptor molecules. In the

same spirit as Förster, we assume these to be known either from experiment or from

another calculation.

We first consider the effect of an electric field E on a molecule embedded in a

medium of dielectric constant ε0. Within the regime of linear response, the resulting

polarization, p, of the molecule will be

p(ω) = ε0χ(ω)E(ω), (3.1)

where χ(ω) is the complex polarizability of the molecule. In general, χ(ω) will be

a tensor, and the polarization of the molecule will depend on its orientation in the

perturbing field. In the following, the explicit dependence of the above terms on ω

will be omitted except where needed for clarity.

Let us now consider a situation where there are two molecules embedded in the

medium, a donor (D) at position rD and an acceptor (A) at position rA. Applying

Eq. (3.1) separately to each molecule, we obtain a system of two equations for the

polarizations of the two molecules, pD and pA,


pD = ε0χDE(rD)

pA = ε0χAE(rA).
(3.2)

The notation E(rD) represents the total electric field at the position of the donor (and

similarly for the acceptor). This electric field can be decomposed into an externally

applied field, Eext, and the field due to the presence of the other dipole, Eint,


E(rD) = Eext(rD) + Eint(rD)

E(rA) = Eext(rA) + Eint(rA).
(3.3)

In order to calculate the contribution to the field at each molecule due to the

presence of the other molecule, we need an expression for the electric field produced by
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an oscillating dipole. In general, this is a problem of time-dependent electrodynamics

and we must account for the retardation of the field. In particular, McLachlan has

examined in detail the effect of retardation on dispersion forces between molecules

[31]. Nevertheless, if the size of each dipole and the distance between the dipoles

are both much smaller than the wavelength of light at frequencies of interest, it is

appropriate to compute the instantaneous dipole as a problem of electrostatics; the

details of this approximation are provided in Appendix 3.6.

For configurations relevant to coherent energy transfer, the size of each dipole

and the distance between dipoles will each be at most a few nanometers, while the

relevant wavelength of light will be of the order of several hundred nanometers [8, 9].

We are thus justified in using the expression from electrostatics for the electric field

of a dipole,

E(r) = 3n̂(p · n̂)− p
4πε0|r− r0|3

, (3.4)

where r0 is the position of the source dipole and n̂ is the unit vector directed from r0

to r.

Defining the tensor Φ as

Φ = 3n̂n̂− 1
4πε0|rA − rD|3

, (3.5)

where n̂ is the unit vector directed from rD to rA, we can now write the polarization

of the two molecules as


pD = ε0χD[Eext(rD) + ΦpA]

pA = ε0χA[Eext(rA) + ΦpD].
(3.6)

The two equations are now closed, and the polarization of each molecule can

be found in terms of the applied external fields. In order to simplify the following

treatment, we will assume that each molecule is only polarizable along a single axis n̂i
and that the external field applied to each molecule is along this axis of polarization.

As a result, we have χi = χin̂in̂i, pi = pin̂i, and Eext(ri) = Ei,extn̂i.
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We can then recast Eq. (3.6) in terms of scalar quantities,


pD = ε0χD[ED,ext + φpA]

pA = ε0χA[EA,ext + φpD],
(3.7)

where φ is a new scalar coupling between the dipoles and is defined by

φ = n̂D · Φ · n̂A = 3(n̂ · n̂D)(n̂ · n̂A)− n̂D · n̂A
4πε0|rA − rD|3

. (3.8)

Consistent with our interest in energy transfer, we will suppose that only the donor

is irradiated by an external field and study the transfer of energy to the acceptor.

Then solving Eq. (3.7) with ED,ext = E and EA,ext = 0, we obtain

pD(ω) = ε0E(ω)χD(ω)
1− φ2ε20χD(ω)χA(ω) (3.9a)

and

pA(ω) = φε20E(ω)χD(ω)χA(ω)
1− φ2ε20χD(ω)χA(ω) . (3.9b)

We note that the expressions for pD(ω) and pA(ω) have poles that are shifted from

the poles of the bare response functions χD(ω) and χA(ω) by the interaction φ.

At this point, we have found the polarization of each molecule in the presence of

an external field; as discussed in the introduction, similar results have been obtained

in other contexts [19–22]. We now present the main new contribution of our paper,

which is to use these polarizations to calculate the rate of energy transfer from the

donor to the acceptor. From our current perspective of classical electrodynamics,

energy transfer occurs when one of the molecules absorbs energy from the electric

field set up by the other molecule.

In order to calculate the rate of energy transfer to the acceptor molecule, we

consider the Poynting vector

S = E×H, (3.10)

which represents the electrodynamical energy flux; the symbol H represents the mag-
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netic field. In order to consider the rate of energy entering or leaving a volume in

space, we compute the divergence of the Poynting vector within the region of the ac-

ceptor molecule. Using Maxwell’s equations and assuming the absence of free currents

or charges, we can write [32]

R ≡ −∇ · S = ∂B
∂t
·H + ∂D

∂t
· E, (3.11)

where B is the magnetic induction and D is the electric displacement.

We then express D = ε0E + P and B = µ0H, where P is the polarization per

unit volume of the acceptor molecule and we have neglected any magnetization of the

acceptor molecule, to obtain

R = µ0
∂H
∂t
·H + ε0

∂E
∂t
· E + ∂P

∂t
· E. (3.12)

We can then split R into the part due to the presence of the acceptor, Ra, and

the part that would be present in free space, R0,

R = R0 +Ra, (3.13)

where

R0 = µ0
∂H
∂t
·H + ε0

∂E
∂t
· E (3.14)

and

Ra = ∂P
∂t
· E. (3.15)

In order to obtain the rate of energy flow to the acceptor we need to integrate Ra

over the volume of the acceptor molecule. We assume that the field changes negligibly

over the volume of the acceptor molecule, such that only the polarization per unit

volume P needs to be integrated. But the integral of P over the acceptor molecule

simply yields the dipole moment of the acceptor molecule, and we thus have that the
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rate of absorption of energy by the acceptor is

Q̇A = EA(t)ṗA(t), (3.16)

where EA(t) is the electric field acting on the acceptor at time t and we have used

our assumption that the fields and polarizations are along the same axis to replace

the vectors with scalars.

Finally, we can use EA(t) = φpD(t) to write an expression for the energy absorbed

by the acceptor as a function of time,

Q̇A(t) = φpD(t)ṗA(t). (3.17)

Of course, Eq. (3.17) depends on the polarizations of the molecules in the time

domain while our earlier analysis has produced equations for them in the frequency

domain. Transforming Eq. (3.17) into the frequency domain yields

˜̇QA(ω) = −iφ
∫ ∞
−∞

dω′ω′p̃D(ω − ω′)p̃A(ω′). (3.18)

When considering simple models for the response functions, it may be possible to

evaluate this convolution analytically and obtain a closed-form expression for Q̃A(ω).

In most cases, however, it will be more fruitful to numerically transform p̃D and p̃A
to the time domain so that they can be directly used in Eq. (3.17). We will use this

latter approach here.

Before proceeding, however, we will first show how Förster theory can be recovered

from Eq. (3.18) in the appropriate limit. First, we rewrite p̃A = φε0χAp̃D to obtain

˜̇QA(ω) = −iφ2ε0

∫ ∞
−∞

dω′ω′p̃D(ω − ω′)χA(ω′)p̃D(ω′). (3.19)

In order to compare with the Förster rate, we need to integrate out oscillations in

the transfer rate and consider only the constant piece of the rate; this corresponds to

taking the ω = 0 component of Eq. (3.19). Using the fact that p̃D(−ω) = p̃∗D(ω), we
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obtain
˜̇QA(0) = −iφ2ε0

∫ ∞
−∞

dω′ω′p̃∗D(ω′)χA(ω′)p̃D(ω′). (3.20)

The symmetry properties of the integrand allows us to rearrange this result as

˜̇QA(0) = 2φ2ε0

∫ ∞
0

dωωp̃D(ω)χ′′A(ω)p̃∗D(ω), (3.21)

where χ′′A(ω) is the imaginary part of χA(ω) and we have used the fact that χD(−ω) =

χ∗D(ω).

We see that the energy transfer rate can be expressed as the overlap between

χ′′A(ω) and p̃D(ω)p̃∗D(ω), which is (up to a multiplicative constant) the overlap between

the acceptor absorption spectrum and the donor emission spectrum. Furthermore,

Eq. (3.21) exactly reproduces the result of Chance et al. for the rate of energy transfer

in the incoherent limit [6]. After deriving their result, Chance et al. show that it can

be recast into a form identical to that of Förster; the same treatment applies here

and the reader is referred to Ref. [6] for details. We note that the present theory

predicts the donor emission spectrum to be identical to its absorption spectrum,

thereby neglecting any Stokes shift. If the donor emission spectrum is known, it can

be used in place of the donor absorption spectrum in the incoherent theory; the result

is then identical to Förster theory and also includes the Stokes shift of the donor. A

more detailed discussion of donor relaxation is given in section 3.4.

Starting from χD and χA, we have applied classical electrodynamics to arrive at

an expression for the rate of energy transfer between the molecules as a function of

time. We have proceeded in the same spirit as Förster and have obtained a theory

that logically extends Förster theory to the coherent regime.

3.3 Quantum mechanical theory

We now present a quantum mechanical approach to the problem presented in the last

section, with the goal of understanding what approximations are inherent in our clas-

sical approach. First, we comment briefly on the correspondence between quantum
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and classical results. As discussed in the introduction, the results of Kryvohuz and

Cao guarantee that a collection of Drude oscillators will have identical classical and

quantum response functions in the absence of dissipation [29].

While the results of Kryvohuz and Cao have motivated our present investigation,

we have taken a different approach here. Indeed, our classical theory was not derived

by explicitly calculating response functions, which would have involved writing a

Hamiltonian and computing several Poisson brackets. Rather, we first calculated the

polarizations of the donor and acceptor using their linear response functions; we then

used these polarizations to calculate the time-dependent energy transfer rate.

In this section, we will provide a quantum mechanical derivation that proceeds in

the same manner as our classical derivation. The goal will be to see what approx-

imations are required to obtain the results of the previous section from a quantum

derivation. The results of this section will also allow us to later discuss how a classical

model is able to capture features of quantum coherence.

Our system again consists of two molecules. The Hamiltonian for the donor

molecule in its environment is HD, while that for the acceptor molecule in its environ-

ment is HA. We assume that the environments are distinct, with no environmental

degree of freedom appearing in both HD and HA, which means that

[HD, HA] = 0. (3.22)

The molecules are assumed to interact via a dipole–dipole term,

HDA = −φd̂Dd̂A, (3.23)

where d̂D(A) represents the dipole operator for the donor (acceptor). In writing the

interaction term in this form, we are implicitly including the same assumptions as in

the previous section. Namely, we are assuming that each molecule is only polarizable

along a single axis; the φ that appears here is identical to that in the previous section.
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We also allow for an external field E(t) to act on the donor by including the term

Hext = −E(t)d̂D. (3.24)

The total Hamiltonian is then

H = HD +HA +HDA +Hext. (3.25)

We wish to find the expectation values of d̂D(t) and d̂A(t). We shall call these

expectation values pD(t) and pA(t) in order to clearly distinguish them from their

corresponding operators.

We will apply linear response, using H0 = HD +HA as our zeroth-order Hamilto-

nian and treating HDA +Hext as a perturbation. All of the linear response functions

will be of the general form

Rα(t, t′) = i lim
η→0

fα(t, t′)eη(t′−t)θ(t− t′) (3.26)

where θ(t) is the Heaviside step function and η is a small positive constant. As a

result, we will define each response function Rα(t, t′) by only giving the corresponding

function fα(t, t′).

Applying standard linear response theory, the polarization of the donor is then

computed to be

pD(t) =
∫ ∞
−∞

dt′RD(t, t′)E(t′) + φ
∫ ∞
−∞

dt′Rint(t, t′), (3.27)

where

fD(t, t′) = 〈ψ|[d̂D(t), d̂D(t′)]|ψ〉 (3.28)

and

fint(t, t′) = 〈ψ|[d̂D(t), d̂D(t′)d̂A(t′)]|ψ〉. (3.29)

The time evolution of operators is in the interaction picture of H0, and |ψ〉 is the
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initial state of the system before the perturbation is turned on.

We recognize RD(t, t′) as the dipole response function of the donor in the medium,

χD, which we assume to be known or experimentally determined. Turning now to

fint(t, t′), we can take d̂A(t′) out of the commutator, since operators acting on different

molecules commute. This leaves

fint(t, t′) = 〈ψ|[d̂D(t), d̂D(t′)]d̂A(t′)|ψ〉. (3.30)

Since our zeroth-order Hamiltonian does not include any coupling between the

two molecules, the ground state of the system can be expressed as a product of a

donor state and an acceptor state. The same is true if the initial state |ψ〉 is taken to

be a Boltzmann distribution over the zeroth-order Hamiltonian, since e−β(HD+HA) =

e−βHDe−βHA . It is then easy to show that one can factor Eq. (3.30) to obtain

fint(t, t′) = 〈ψ|[d̂D(t), d̂D(t′)]|ψ〉〈ψ|d̂A(t′)|ψ〉. (3.31)

The term 〈ψ|d̂A(t′)|ψ〉 is equal to zero. The operator d̂(t′) is in the Heisenberg

picture and evolves only under the zeroth-order Hamiltonian. It is then easy to show

that the expectation value of this operator in the ground state will be zero at all

times, since the ground state is assumed to have no permanent dipole.

The fact that fint = 0 is not surprising, as this term is describing the response

of the donor to the polarization of the acceptor. The acceptor itself only becomes

polarized due to the field of the donor, so fint is describing a second-order effect and

is expected to be zero in linear response.

Rather than proceed to a higher order of perturbation theory, we will attempt to

include the interaction between the donor and acceptor in a self-consistent way. In

Eq. (3.31), we will replace the zeroth-order polarization of the acceptor, 〈ψ|d̂A(t′)|ψ〉,

with pA(t′), the polarization of the acceptor that includes (at least approximately)

the effects of the perturbation. Of course, pA(t′) is not known a priori, but will be

solved for self-consistently.
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We obtain as a result

Rint(t, t′) = χD(t, t′)pA(t′), (3.32)

and the expression for the polarization of the donor then becomes, in Fourier space,

p̃D(ω) = χD(ω)E(ω) + φχD(ω)p̃A(ω). (3.33)

The same method and approximations can be used to find an expression for p̃A,

p̃A(ω) = φχA(ω)p̃D(ω). (3.34)

(There would of course be a term depending on the external field had we chosen

to allow an external field to act on the acceptor.) We recognize these equations as

identical to those derived from classical mechanics in the previous section.

Now we would like to look not only at the expectation value of the dipole moment

operator for the two molecules, but also at the energies of the two molecules as a

function of time. The method is in principle identical to the one used above to find

the dipoles as a function of time—we use linear response with H0 = HD +HA as the

zeroth-order Hamiltonian and the rest of the terms as a perturbation.

We would like to calculate the energy of the acceptor as a function of time, given

that we already know pD(t) and pA(t). Applying linear response, we have

QA(t) ≡ 〈HA(t)〉 = φ
∫ ∞
−∞

dt′Rβ(t, t′), (3.35)

where

fβ(t, t′) = 〈ψ|[HA, d̂D(t′)d̂A(t′)]|ψ〉. (3.36)

We note that HA is independent of time in the Heisenberg picture since it commutes

with the zeroth-order Hamiltonian.
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We again factor this expression to obtain

fβ(t, t′) = 〈ψ|[HA, d̂A(t′)]|ψ〉〈ψ|d̂D(t′)|ψ〉. (3.37)

This expression as written is equal to zero, for the same reasons as discussed after

Eq. (3.31). Again, it is not surprising that a direct application of linear response

predicts no energy transfer to the acceptor molecule, since energy transfer is a second-

order effect.

Our remedy will be the same as before; we will replace the zeroth-order terms

〈ψ|[HA, d̂A(t′)]|ψ〉 and 〈ψ|d̂D(t′)|ψ〉 with the terms ṗA(t′) and pD(t′) which (approxi-

mately) include the effect of the interaction. We then obtain (taking η → 0)

Rβ(t, t′) = ṗA(t′)pD(t′)θ(t− t′). (3.38)

Our final expression for QA(t) is then

QA(t) = φ
∫ t

−∞
dt′ṗA(t′)pD(t′). (3.39)

This expression is equivalent to the expression for Q̇A(t) derived in the previous

section using classical electrodynamics.

Now that we have explicitly derived our classical theory from quantum mechanics

and seen the inherent approximations, we are in a position to evaluate the circum-

stances under which our classical theory will be valid.

The most important assumption in our treatment is that of linear response. We

assume that both the external field applied to the molecules as well as the fields the

molecules exert on one another are weak enough to be correctly treated via linear

response.

If we choose the external field to be a delta function in time, E(ω) = E, then the

only effect of this field is to prepare the initial state of the system. In an alternate

treatment, one might explicitly prescribe the initial state of the system without dis-

cussing the external field that brought it to this state; in the present treatment, it is
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more convenient to use a delta-function impulse at time t = 0 to achieve the same

effect.

Consider a simple model system for energy transfer, consisting of four states: the

ground state, |0〉; the state with the donor excited, |d〉; the state with the acceptor

excited, |a〉; and the state with both donor and acceptor excited, |da〉. In general, we

will consider the system to start in state |d〉 and we will be interested in the transfer

of population to state |a〉.

Suppose that a delta function pulse at t = 0 prepares the system in a state

α|0〉+ β|d〉, after which the system evolves in the absence of an external field. When

the external field is not present, the Hamiltonian H of the system will be block

diagonal—states |d〉 and |a〉 will be coupled but will not interact with states |0〉 and

|da〉. The populations of states |d〉 and |a〉 at a later time t are then

Pd(t) = β〈d|eiHt|d〉 (3.40)

and

Pa(t) = β〈a|eiHt|d〉. (3.41)

We notice that Pd(t) and Pa(t) have a very simple linear dependence on β. The

dynamics of the energy transfer between |d〉 and |a〉 do not depend on β; the only

effect of β is to scale the total amount of excitation in the excited states. Thus

even if we wish to study energy transfer starting in the pure state |d〉, it is perfectly

acceptable to start in any linear superposition α|0〉+ β|d〉 as long as we scale up the

final results by β−1.

Because of the previous argument, we may make the external field E in our model

as weak as desired and thus only slightly excite the donor molecule but still obtain

dynamics as if the donor molecule were completely excited. Thus if we assume that

the external field applied to the donor is a delta function in time, there is no further

approximation involved in treating the response of the system to this field by linear

response.

We must still consider whether it is appropriate to treat the fields the molecules
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exert on one another by linear response. In the next section, we will check the validity

of this approximation by comparing our results with those obtained from a more exact

quantum mechanical theory.

3.4 Results

In this section, we will apply the theory developed in the previous sections to a few

simple but representative cases. In each case, we first construct the complex response

functions χD(ω) and χA(ω) from the excitation frequencies of the donor and acceptor

molecules. The lineshapes are taken to be Lorentzian, such that

χ(ω) = e2

me

∑
k

2ωkp2
0k

(ω + ωk + iγk/2)(ω − ωk + iγk/2) , (3.42)

where e is the charge of the electron,me is the mass of the electron, ωk is the transition

frequency from the ground state to state k, γk is the radiative decay rate of state k,

p0k is the transition dipole moment between the ground state and state k, and the

sum is over all excited states of the molecule. The ωk, γk, and p0k are for the molecule

in its environment, and thus any effect of the environment is already included in these

quantities.

We choose an initial perturbation of the donor that is a delta function in time,

E(ω) = 1. The amount of energy absorbed by the donor under this perturbation

follows from Eq. (3.16),

Eabs = 2ε0
∫ ∞

0
dωωχ′′D(ω). (3.43)

Once we have computed the response functions of the molecules, we can use

Eq. (3.9) to obtain pD(ω) and pA(ω). Numerically inverting the Fourier transform of

iωpD(ω) and pA(ω) then yields ṗD(t) and pA(t). Next, we use Eq. (3.17) to obtain

Q̇A(t) and perform a numerical integration to obtain QA(t), the energy absorbed by

the acceptor. Finally, we divide QA(t) by the total amount of energy that the system

absorbs from the initial impulse to obtain the fraction of energy transferred as a

function of time.
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In order to judge the accuracy of our results, we also compute the fraction of

energy transferred as a function of time using quantum mechanics. We include in

our calculation all states in which either the donor or the acceptor is singly excited;

these are of course the same excited states used to calculate χD(ω) and χA(ω) in the

classical method. The matrix element of the Hamiltonian between a state where the

donor is in its excited state k and a state where the acceptor is in its excited state m

is

H = φpd,kpa,m, (3.44)

where φ is given by Eq. (3.8), pd,k is the transition dipole moment between the ground

state of the donor and its excited state k, and pa,m is the transition dipole moment

between the ground state of the acceptor and its excited state m. The matrix element

of the Hamiltonian between two states where the same molecule is excited is zero,

and the diagonal terms in the Hamiltonian are the energies of the excited states.

For all of the examples considered here, the number of states will be small enough

that we can exactly diagonalize the Hamiltonian and thus compute the state of the

system at time t as

|ψ(t)〉 = e−iHt|ψ(0)〉, (3.45)

where |ψ(0)〉 is the initial state of the system at time t = 0. The energy of the

acceptor molecule is defined as

QA(t) =
∑
k

~ωkPk(t), (3.46)

where Pk and ~ωk are, respectively, the population and energy of state k, and the sum

is over all states where the acceptor is excited. Dividing QA(t) by the total energy of

the system then yields the fraction of energy transferred as a function of time.

We note that the classical treatment includes a mechanism for excited states to

decay to the ground state through the radiative rate γk, but that no such mechanism

is included in the quantum treatment. In order to compare the two treatments, we

can either set γk = 0 in the classical treatment or include radiative decay in the
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quantum model, at least in an approximate way. For the examples considered here,

however, the timescales of interest are much shorter than the radiative lifetime of the

excited states so that radiative decay plays a negligible role in the results. We can

thus compare the quantum and classical results without explicitly including radiative

decay in our quantum model. While all of our examples will consider a donor molecule

with only one excited state, the results are readily generalized to situations where the

donor molecule has several excited states.

We first consider the case where the donor and acceptor molecules each have only

one excited state. We suppose that the donor has an excited state at ~ωd = 1.6600 eV

and the acceptor has an excited state at ~ωa = 1.6539 eV. The molecules are taken

to be separated by a distance r = 9 Å and the dielectric constant is taken to be that

of the vacuum. The transition dipole moment for both molecules is taken to be 1 in

atomic units.
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Figure 3-1: Fraction of energy transferred as a function of time for a donor with
a single excited state ~ωd = 1.6600 eV and an acceptor with a single excited state
~ωa = 1.6539 eV. Parameters: r = 9 Å, ε = ε0, all transition dipole moments
are 1 in atomic units. The radiative decay rate is (80 ns)−1 for all dipoles in the
classical model; no radiative decay is included in the quantum model. The solid
line is calculated using quantum mechanics and the circles are calculated using our
classical method.
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Figure 3-2: Fraction of energy transferred as a function of time for a donor with a
single excited state ~ωd = 1.66 eV and an acceptor with a continuum of 75 excited
states evenly spaced in the range ~ωa = 1.635 eV to ~ωa = 1.685 eV. The transition
dipole moments are 1 for the donor and 0.1 for all acceptor states. Parameters: r =
9 Å, ε = ε0. The radiative decay rate is (80 ns)−1 for all dipoles in the classical model;
no radiative decay is included in the quantum model. The solid line is calculated using
quantum mechanics and the circles are calculated using our classical method.

The results are given in Fig. 3-1, and show quantitative agreement between the

quantum and classical results. In particular, we see that the classical method properly

accounts for the quantum coherence between the molecules, correctly predicting both

the frequency and amplitude of the energy oscillations.

In our first example, the energy is never permanently transferred to the acceptor

molecule. In order to ensure that our model properly accounts for this limit, we will

consider a case where the donor is weakly coupled to a quasi-continuum of acceptor

states. We suppose that the acceptor molecule has 75 states evenly spaced in the

energy range ~ω = 1.635 eV to ~ω = 1.685 eV, and that each of these states has a

transition dipole of 0.01 in atomic units. All other parameters are the same as in

our first example. The results are given in Fig. 3-2, and again show quantitative

agreement between the quantum and classical results.
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Figure 3-3: Fraction of energy transferred as a function of time for a donor with a
single excited state ~ωd = 1.66 eV and an acceptor with a continuum of 75 excited
states evenly spaced in the range ~ωa = 1.635 eV to ~ωa = 1.685 eV. The transition
dipole moments are 1 for the donor and 0.1 for all acceptor states, except the acceptor
state at ~ω = 1.6539 eV which has a transition dipole moment of 1. Parameters: r =
9 Å, ε = ε0. The radiative decay rate is (80 ns)−1 for all dipoles in the classical model;
no radiative decay is included in the quantum model. The solid line is calculated using
quantum mechanics and the circles are calculated using our classical method.
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Figure 3-4: (Top) Fraction of energy transferred as a function of time for a donor
with a single excited state ~ωd = 1.661 eV and an acceptor with a continuum of 2800
states evenly spaced in the range ~ωa = 1.64 eV to ~ωa = 1.68 eV. The square of the
transition dipole moment is 0.35 for the donor. The square of the transition dipole
moments for the acceptor are a Lorentzian with maximum of 0.13 at ~ωa = 1.66 eV
and width of ~ωa = 0.0019 eV. Parameters: r = 15 Å, ε = ε0. The radiative decay
rate is (30 ns)−1 for all dipoles in the classical model; no radiative decay is included
in the quantum model. The solid line is calculated using quantum mechanics and
the circles are calculated using our classical method. (Bottom) Imaginary part of the
response function for the donor and acceptor.
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Next, we consider a hybrid of the first two situations in which the energy oscillates

between the two molecules but eventually transfers completely to the acceptor. We

do so by taking this last example and making one of the states in the continuum have

a transition dipole moment of 1 such that it is strongly coupled to the donor; the

state we choose is at ~ω = 1.6539 eV. The results are given in Fig. 3-3.

Finally, in Fig. 3-4, we consider a situation where the donor molecule again has

only a single excited state, but the absorption spectrum of the acceptor is now a

Lorentzian composed of many states. Again, the energy is seen to oscillate at early

times but eventually transfers completely to the acceptor.

While the present theory is based on classical electrodynamics, it is clear from the

results presented here that it nonetheless captures features of the quantum coherence

between the two molecules. In particular, the energy oscillations in Fig. 3-1, which are

a signature of quantum coherence between the donor and acceptor, are reproduced

identically in the quantum and classical models.

It is not in itself surprising that a classical model can account for back-and-forth

energy transfer—two coupled classical springs or two coupled antennae will clearly

exhibit such a behavior. In this case, however, the classical model is quantitatively

reproducing the quantum results in a regime where quantum coherence is important.

It seems then that we are implicitly including the quantum coherence in our classical

treatment, though we are of course not calling it as such.

It is well known that classical models can accurately predict the polarizations of

molecules in an external field. It is thus not surprising that our model would produce

correct values of pA and pD. The new and interesting aspect of our theory is that

these polarizations can be used to accurately calculate the coherent energy transfer

between the molecules, and we now turn to understanding why this is the case.

The time evolution of the energy on molecule 2 can be written exactly as

〈H ′A(t)〉 = φ〈d̂D(t)d̂′A(t)〉, (3.47)

where a prime symbol represents a time derivative. While the classical theory enables
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us to compute 〈d̂D〉 and 〈d̂′A〉, it does not provide us with 〈d̂D(t)d̂′A(t)〉. Indeed, in

our classical derivation, we take

Q̇A(t) = φpD(t)ṗA(t), (3.48)

which is only valid if

〈d̂D(t)d̂′A(t)〉 = 〈d̂D(t)〉〈d̂′A(t)〉. (3.49)

Clearly such a factorization is not generally valid for two quantum operators, but let’s

examine whether it is valid here.

Consider a model system, where the donor and acceptor each have only one excited

state. The energy of the donor excited state |D〉 is E0 + ∆
2 , the energy of the acceptor

excited state |A〉 is E0− ∆
2 , and the energy of the ground state |0〉 is 0. As usual, the

donor and acceptor are coupled by a term φd̂Dd̂A, where

d̂D = qD(|0〉〈D|+ |D〉〈0|), (3.50)

d̂A = qA(|0〉〈A|+ |A〉〈0|), (3.51)

and qD(A) is the transition dipole moment for the donor (acceptor). We assume that

E0 � φ and thus ignore doubly excited states.

We can then solve explicitly,

〈d̂D(t)d̂′A(t)〉 = i(E0 + ∆
2 )qDqA[ei∆tρDA − e−i∆tρAD] (3.52)

and

〈d̂D(t)〉〈d̂′A(t)〉 = i(E0 + ∆
2 )qDqA[ei∆tρ0AρD0 − e−i∆tρ0DρA0], (3.53)

where the ρ is the density matrix for the system in the interaction picture (using

φd̂Dd̂A as the perturbation). We have assumed that E0 � ∆ and integrated out

oscillations on timescales of E−1
0 .

The key feature of this result is that 〈d̂D(t)d̂′A(t)〉 depends on ρDA, while 〈d̂D(t)〉〈d̂′A(t)〉

depends on ρ0D and ρ0A. The first of these is expected, as it means that rate of energy
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transfer between |D〉 and |A〉 depends on the coherence between |D〉 and |A〉. The

second is also expected, since it means that the polarization of the donor depends on

the coherence between the ground state and the excited donor state (and similarly

for the acceptor).

While ρ0D and ρ0A are coherences, they can be interpreted classically as the po-

larizations of the two molecules. The coherence ρDA does not, however, have a direct

classical interpretation. For a pure state, however, the idempotency of the density

matrix requires that ρDA = ρ0AρD0/ρ00; Eqs. (3.52) and (3.53) then become equiva-

lent. Thus as long as the system remains in a pure state, the two sides of Eq. (3.49)

are indeed equivalent and we can compute the energy transfer rate knowing only the

classical polarizations of the two molecules.

While our example here is a simple system where the donor and acceptor each

have only one excited state, the same principles apply when each molecule has many

excited states, and the factorization in Eq. (3.49) is again valid. We note that we have

assumed that E0 � ∆ and E0 � φ, meaning that the average energy of the excited

state manifold is much larger than both the energy splittings between excited states

and the couplings between excited states; this is the case for all examples considered

here. We have also assumed that the system remains in a pure state, which will be

the case as long as we include all relevant states in our quantum description.

For systems where our classical treatment is valid, the energy transfer proceeds

just as with classical antennae. While an appropriate quantum treatment would

certainly correctly predict the energy transfer dynamics, what we have shown here

is that such systems can also be described by classical mechanics. This is not to say

that the systems are not quantum mechanical, but rather that the coherent energy

transfer dynamics can also be described by a classical model.

Finally, we point out one aspect of the problem that is not included in the present

theory. Our method of treating the bath has been to include it as part of the system,

and to work in terms of eigenstates of the combined system–bath Hamiltonian. This

means that once we excite the donor molecule to an excited state of the donor–bath

system, there is no mechanism in our theory for population to nonradiatively transfer
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to another excited state of the donor–bath system. The initial pulse may populate

several excited states of the donor–bath Hamiltonian, but once these excited states are

populated they do not transfer energy among themselves. We are in essence assuming

that the Stokes shift for the donor molecule is small on timescales of interest—in our

model, the energy absorbed into a given excited state must necessarily be emitted

from the same state. This approximation is a direct result of our using linear response,

as a perturbation at one frequency can only cause a response at that same frequency.

In reality, of course, the situation is more complicated. Immediately after the

initial excitation pulse, the excited state populations of the donor molecule will corre-

spond to its absorption spectrum. The excited states will then transfer energy among

themselves until the excited state populations correspond to the emission spectrum.

While this energy transfer is happening, the excited state populations correspond to

neither the absorption nor the emission spectrum. Förster’s theory for incoherent

RET uses the emission spectrum for the donor, thereby assuming that the donor

molecule has completely relaxed to its emitting state before any energy transfer oc-

curs; this is generally a good approximation in the weak-coupling limit where Förster

theory is valid. In the present work, we make the opposite assumption, and ignore

any internal relaxation of the donor molecule. Our approximation will be good as

long as we are looking at energy transfer on timescales faster than the internal relax-

ation of the donor molecule. An alternative would be to modify the donor response

function such that the excitation pulse directly excites the donor to its emitting state;

this method would be equivalent to assuming instantaneous relaxation as in Förster

theory. The issue of donor relaxation does not arise in the examples considered here,

as the donor molecule has only one excited state and there is thus no way for the

donor to nonradiatively relax from one excited state to another.

Förster theory has been generalized to include the time-dependence of the donor

emission spectrum [33, 34]. It may be possible to apply a similar approach to the

present problem, by allowing the response functions of each molecule to depend on

time. Of course, in order to calculate how the response function of each molecule

evolves in time, one would likely need detailed information about the bath of the
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molecules. One of the attractive features of our present theory is that such a detailed

knowledge of the bath is not required—only the experimentally determined χD and

χA are needed. An alternative might be to use experimentally measured information

on the time-dependent Stokes shift of the separated donor and acceptor molecules

as an input to the theory; this approach would be in keeping with the spirit of the

present theory, whereby the bath is not included explicitly but only through its effect

on measurable properties.

3.5 Conclusion

We have presented a classical theory for understanding RET in the coherent limit

that is both intuitively simple and depends on a small number of experimentally ac-

cessible parameters. In particular, our results only require knowledge of the complex

polarizabilities of the molecules and the distance between them; the environment is

included only through its effect on the polarizabilities. As a result, our theory natu-

rally follows in the same spirit as Förster theory. By applying our theory in situations

of interest for RET, we have shown that quantitative agreement with quantum me-

chanics is obtained. We have explained how our theory, while being classical, can

nonetheless quantitatively reproduce energy oscillations in a regime where quantum

coherence is important.

Given the recent interest in the role that quantum mechanics plays in coherent

RET in biological systems, we find it particularly interesting that a classical model

can correctly predict energy transfer dynamics in the coherent regime. Of course, it

is clear that the photosynthetic complexes are inherently quantum mechanical in the

sense that they obey the laws of quantum mechanics and are able to be described

by quantum models. The relevant question is whether their efficient energy transfer

relies on the quantum nature of the system, and in particular whether a classical

theory could produce similar results. The results here suggest that, at least for the

simple models considered here, one can think of coherent energy transfer in terms of

interacting antennae that exchange energy as they oscillate in and out of phase. Of
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course, as emphasized earlier, a quantum theory may be required in order to under-

stand the internal structure of each antenna; notheless, their interaction is governed

by a classical mechanism.

Our classical theory has made certain assumptions about the system, the most

important being (1) that the interaction between the molecules is weak enough to be

treated via linear response, (2) that the environments of the molecules are uncorre-

lated, and (3) that the timescale of interest for energy transfer is much faster than

the timescale for internal relaxation of each molecule. While there will certainly be

situations in which these assumptions fail and a more detailed model is needed, for sit-

uations within its limits of validity our classical model provides a simple and intuitive

way of calculating energy transfer rates. Furthermore, the examples presented here

have shown that our model is indeed valid for many physically realistic situations. It

would nonetheless be interesting to examine in the future whether it is possible to

relax the above assumptions while still retaining the simplicity and intuitive appeal

of our model.

3.6 Appendix—Static Approximation

We use the general expression for the field radiated by a system with time-dependent

charge density ρ(r, t),

E(r, t) = 1
4πε0

∫ [
ρ(r′, tr)
R2 R̂ + ρ̇(r′, tr)

cR
R̂ − J̇(r′, tr)

c2R

]
dr′, (3.54)

where R = r− r′ and tr = t−R/c [35].

Now ρ̇ ∼ ωρ, where ω is the frequency of oscillation of the dipole. So the second

term is of order Rω/c = R/λ, where λ is the wavelength of light at frequency ω. In

the third term, we can write J = ρv where v is the velocity of the charge in the

dipole; then J̇ = ρ̇v + ρv̇. If a is the spatial size of the dipole, then v ∼ ωa and
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v̇ ∼ ω2a; then J̇ ∼ ρω2a. So the third term is of order Raω2/c2 = Ra/λ2. Finally,

ρ(r′, t−R/c) ≈ ρ(r′, t)− R

c
ρ̇(r′, t), (3.55)

so to order R/λ we can also ignore the ignore the retardation in the first term.

In the cases we will consider, the λ will be a few hundred nanometers, while a

and R will be at most 1 or 2 nm. As a result, we can keep only the first term in the

above expression and ignore the retardation. We are then left with

E(r, t) = R̂
4πε0

∫ ρ(r′, tr)
R2 dr′. (3.56)

This is just the instantaneous field produced by the static charge distribution ρ(r).

69



70



Bibliography

[1] P. G. Wu and L. Brand. Resonance energy transfer: Methods and applications.

Analytical Biochemistry 218, 1 (1994).

[2] G. D. Scholes. Long-range resonance energy transfer in molecular systems. Annu.

Rev. Phys. Chem. 54, 57 (2003).

[3] D. W. Piston and G.-J. Kremers. Fluorescent protein FRET: the good, the bad

and the ugly. Trends Biochem. Sci. 32, 407 (2007).

[4] T. Förster. Delocalized excitation and excitation transfer. In Modern Quantum

Chemistry, O. Sinanoğlu, Ed. (Academic, New York, 1965), pp. 93–137.

[5] T. Förster. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc.

27, 7 (1959).

[6] R. R. Chance, A. Prock, and R. Silbey. Comments on the classical theory of

energy transfer. J. Chem. Phys. 62, 2245 (1975).

[7] D. Beljonne, C. Curutchet, G. D. Scholes, and R. J. Silbey. Beyond Förster

resonance energy transfer in biological and nanoscale systems. J. Phys. Chem.

B 113, 6583 (2009).

[8] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng,

R. E. Blankenship, and G. R. Fleming. Evidence for wavelike energy transfer

through quantum coherence in photosynthetic systems. Nature 446, 782 (2007).

[9] H. Lee, Y.-C. Cheng, and G. R. Fleming. Coherence dynamics in photosynthesis:

Protein protection of excitonic coherence. Science 316, 1462 (2007).

71



[10] G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen,

R. E. Blankenship, and G. S. Engel. Long-lived quantum coherence in photo-

synthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. U.S.A.

107, 12766 (2010).

[11] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D.

Scholes. Coherently wired light-harvesting in photosynthetic marine algae at am-

bient temperature. Nature 463, 644 (2010).

[12] M. Yang and G. R. Fleming. Influence of phonons on exciton transfer dynamics:

comparison of the Redfield, Förster, and modified Redfield equations. Chem.

Phys. 282, 163 (2002).

[13] S. Jang, Y.-C. Cheng, D. R. Reichman, and J. D. Eaves. Theory of coherent

resonance energy transfer. J. Chem. Phys. 129, 101104 (2008).

[14] S. Jang. Theory of coherent resonance energy transfer for coherent initial condi-

tion. J. Chem. Phys. 131, 164101 (2009).

[15] A. Ishizaki and G. R. Fleming. Unified treatment of quantum coherent and inco-

herent hopping dynamics in electronic energy transfer: Reduced hierarchy equa-

tion approach. J. Chem. Phys. 130, 234111 (2009).

[16] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik. Environment-

assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129,

174106 (2008).

[17] P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik.

Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009).

[18] V. I. Novoderezhkin, M. A. Palacios, H. van Amerongen, and R. van Grondelle.

Energy-transfer dynamics in the LHCII complex of higher plants: Modified Red-

field approach. J. Phys. Chem. B 108, 10363 (2004).

72



[19] G. D. Mahan. Optical properties of molecular crystals. In Electronic structure of

polymers and molecular crystals, J.-M. André and J. Ladik, Eds. (Plenum, New

York, 1975), pp. 79–157.

[20] H. DeVoe. Optical properties of molecular aggregates. I. Classical model of elec-

tronic absorption and refraction. J. Chem. Phys. 41, 393 (1964).

[21] H. DeVoe. Optical properties of molecular aggregates. II. Classical theory of the

refraction, absorption, and optical activity of solutions and crystals. J. Chem.

Phys. 43, 3199 (1965).

[22] J. Cao and B. J. Berne. Theory and simulation of polar and nonpolar polarizable

fluids. J. Chem. Phys. 99, 6998 (1993).

[23] J. Cao and B. J. Berne. Theory of polarizable liquid crystals: Optical birefrin-

gence. J. Chem. Phys. 99, 2213 (1993).

[24] V. L. Lyuboshitz. Scattering of electromagnetic waves by a system of dipole

centers. Sov. Phys. JETP 25, 612 (1967).

[25] V. L. Lyuboshitz. Resonance interaction between two identical dipole emitters.

Sov. Phys. JETP 26, 937 (1968).

[26] R. R. Chance, A. Prock, and R. Silbey. Decay of an emitting dipole between two

parallel mirrors. J. Chem. Phys. 62, 771 (1975).

[27] A. C. Pineda and D. Ronis. Classical model for energy transfer in microspherical

droplets. Phys. Rev. E 52, 5178 (1995).

[28] R. R. Chance, A. Prock, and R. Silbey. Comments on the classical theory of

energy transfer. II. Extension to higher multipoles and anisotropic media. J.

Chem. Phys. 65, 2527 (1976).

[29] M. Kryvohuz and J. Cao. Quantum-classical correspondence in response theory.

Phys. Rev. Lett. 95, 180405 (2005).

73



[30] J. D. Jackson. Classical Electrodynamics, 3rd edition (Wiley, New York, 1999),

pp. 309–316.

[31] A. D. McLachlan. Retarded dispersion forces between molecules. Proc. R. Soc.

London A 271, 387 (1963).

[32] L. D. Landau and E. M. Lifshitz. Electrodynamics of Continuous Media (Perga-

mon Press, Oxford, 1960), pp. 253–255.

[33] S. Mukamel and V. Rupasov. Energy transfer, spectral diffusion, and fluorescence

of molecular aggregates: Brownian oscillator analysis. Chem. Phys. Lett. 242,

17 (1995).

[34] S. Jang, Y. Jung, and R. J. Silbey. Nonequilibrium generalization of Förster–

Dexter theory for excitation energy transfer. Chem. Phys. 275, 319 (2002).

[35] D. J. Griffiths. Introduction to Electrodynamics, 3rd edition (Prentice Hall, Upper

Saddle River, N.J., 1999), p. 427.

74



Chapter 4

Variational polaron transform

4.1 Introduction

While the last chapter developed a classical theory able to explain coherent resonant

energy transfer, at least in simple cases, here we turn our attention to a quantum

theory of coherent energy transfer. There is of course a large body of work in the

literature on the question of understanding energy transfer between electronic states,

which will be briefly reviewed in this section as we introduce the necessary ideas to

explain the new contribution of this chapter. For the purposes of this chapter, we

will consider a two-state system, however the results are not fundamentally limited

to systems with only two electronic states.

To be concrete, we consider a two-state system with Hamiltonian

H =

∆0
2 J

J −∆0
2

 , (4.1)

where ∆0 and J are real parameters and the matrix is written in the basis of two

electronic states |1〉 and |2〉, which are the electronic states between which energy

transfer occurs. These two states have an energy splitting ∆0 and an interaction

matrix element J .

The dynamics such a two-state system in the absence of an environment are of
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course trivially solvable; the energy transfers back and forth between the two states

forever. Such a solution necessarily does not capture dissipation or eventual local-

ization of the energy on one site or the other, features that are present in the real

systems that we intend to model. Indeed, it is the interaction between the system

and the environment that allows a rich range of dynamics to occur, and also that

makes the problem difficult.

In order to include environmental effects on the dynamics of a quantum system,

one need not explicitly include the environment. Instead, one could suppose that the

parameters of the Hamiltonian fluctuate randomly as a result of the evolution of the

(unknown) environment. This stochastic approach to treating environmental effects

was pioneered by Kubo in his study of magnetic resonance lineshapes [1, 2].

Haken, Strobl, and Reineker have developed a theory for energy transfer by treat-

ing the energy of each site as a stochastic variable [3, 4]. By assuming the fluctuations

on each site to be Gaussian and Markovian, and the fluctuations on different sites to

be uncorrelated, they were able to arrive at an exactly solvable model that nonethe-

less captures many of the qualitative features of energy transfer. More recently, the

model of Haken et al. has been to include fluctuations in the off-diagonal matrix

elements as well as correlated fluctuations [5].

While the technique of using a stochastic Hamiltonian can provide insightful re-

sults, the parameters of the stochastic process generally remain phenomenological

parameters of the model. One can more directly consider the influence of the en-

vironment by including it in the quantum Hamiltonian; this of course requires an

explicit model for the environment.

The environment is, by definition, all of the degrees of freedom that we have

ignored in writing down the system Hamiltonian. Since the system Hamiltonian

considers only electronic excitations, the environment must include rotational and

vibrational modes, both of the molecule containing the electronic excitations and of

surrounding molecules. Typically, one invokes the Born–Oppenheimer approximation

to decouple the fast electronic degrees of freedom from the slower rotational and

vibrational degrees of freedom; the electronic state provides a potential surface on
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which the nuclei evolve. Sufficiently near the minimum, the potential surface can

be taken as quadratic; by expanding the surface around the minimum one obtains a

description of the environment in terms of a collection of normal modes.

In the case of two electronic states, there will be two potential surfaces and in

general a different minimum for each surface. We can expand the potential surface

around the average of the two minima, and if we assume that the two minima are

reasonably close together a quadratic expansion should still suffice. Of course here

we are not expanding around a minimum of either potential surface so there will

generally be a linear exciton–phonon coupling term.

The model we have just outlined is expressed by the spin–boson Hamiltonian:

H =

HB + ∆0
2 +B1 J

J HB − ∆0
2 +B2

 , (4.2)

where

HB =
∑
j

~ωj
(
b†jbj + 1

2

)
, (4.3)

B1 =
∑
j

~ωjg1j(b†j + bj), (4.4)

and similarly for B2. b†j and bj are, respectively, phonon creation and annihilation

operators, while g1j, g2j, and ωj are real numbers. The term HB describes the har-

monic modes of the environment, while B1 and B2 describe the coupling between the

environment and electronic states 1 and 2, respectively.

We now make several remarks about this Hamiltonian. First, the assumption of

linear exciton–phonon coupling will break down if there are environmental modes

that couple strongly to the electronic subsystem. One could go to higher order and

consider quadratic exciton–phonon coupling as has been done in a different context

[6]. If there are a small number of strongly coupled bath modes, one could also choose

to treat them explicitly as part of the system Hamiltonian. We shall limit ourselves

to linear coupling as there is still a rich range of dynamics to be studied for this case.
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The quantities g1j, g2j, and ωj will often enter our equations in the combination

η1(2)(ω) =
∑
j

ω2
j g

2
1(2)jδ(ω − ωj), (4.5)

called the spectral density of the phonon modes. We are often interested in the

behavior of η(ω) at small omega,

η(ω) ∼ ωp ω → 0. (4.6)

The spectral density is called ohmic when p = 1, subohmic when p < 1, and super-

ohmic when p > 1.

Of course, while we have written down a Hamiltonian in terms of microscopic

properties of the system and its environment, the actual determination of the appro-

priate parameters remains a nontrivial problem. This is in contrast to Förster theory,

which is expressed in terms of simple and experimentally accessible quantities—the

emission spectrum of the donor, the absorption spectrum of the acceptor, and the

donor–acceptor distance. Nonetheless, progress has been made in determining the

appropriate parameters for several systems of interest [7–9].

We will generally be interested in the evolution of the electronic excitation as a

function of time; while the environment plays in important role in these dynamics,

one is not usually interested in the actual state of the environment but only in the

state of the system. Instead of computing the entire density matrix of the system,

ρ, we shall instead focus on the reduced density matrix of the system, obtained by

tracing over the degrees of freedom of the environment, ρS = TrBρ.

The Hamiltonian in Eq. (4.2) cannot be exactly diagonalized, and it is impossi-

ble to exactly solve for the dynamics of the reduced density matrix except in cer-

tain limiting cases. Leggett et al. have been able to obtain exact results for some

limited parameter regions and approximate results in other cases through their non-

interacting blip approximation [10]. In the case of degenerate electronic states, it is

possible to formally diagonalize the Hamiltonian by applying a Fulton–Gouterman
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transformation, however the results are of little practical use for computing dynamics

unless approximations are made [11–13]. Finally, Ishizaki and Fleming have recently

developed technique using hierarchical equations that is able to obtain exact results

in the case of ohmic spectral density [14]. In addition to the limitation of ohmic spec-

tral density, their method also assumes that the bath modes coupling the two sites

are uncorrelated and is also very computationally expensive. There is some evidence

that correlated fluctuations may play an important role in excitation energy transfer

in biological systems[15, 16].

Beyond these few exact cases, we will need to rely on approximate equations

for the reduced density matrix. In particular, we will use a perturbative technique

in order to obtain approximate results at modest computational cost. Obtaining a

perturbative solution for the reduced density matrix generally follows the prescription:

(1) partition the Hamiltonian into a zeroth-order part and a perturbation; (2) obtain

an expansion for reduced the density matrix in powers of the perturbation, usually

in the form of a quantum master equation. The accuracy of a technique of course

depends on both of these steps; one can improve the accuracy of a method by either

choosing a better density matrix expansion or by choosing a better partitioning of

the Hamiltonian.

4.2 Perturbations

In order to approximately solve for the dynamics generated by Eq. (4.2), we now

examine perturbative techniques that can be used. If the system–bath coupling were

absent (g1k = g2k = 0), then the dynamics would trivially solvable. This suggests

dividing the Hamiltonian into an exactly solvable zeroth-order part,

H0 =

HB + ∆0
2 J

J HB − ∆0
2

 , (4.7)
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and a perturbation

H1 =

B1 0

0 B2

 . (4.8)

This perturbation is very popular when the environment has only a weak influence

on the system, and has the advantage of fully including the donor–acceptor matrix

element in the zeroth-order term. It was used by Redfield to explain relaxation in

spin systems [17] and has also been widely applied to study energy transfer [18, 19].

Of course, by the nature of the perturbation, it will break down once the system–bath

coupling becomes large compared to other parameters in the system; this point was

recently emphasized by Ishizaki and Fleming [20].

For systems with strong coupling between electronic and vibrational degrees of

freedom, one can apply a polaron transform to the system and obtain a description

of the system in a new basis:

H̃ = eG1+G2He−G1−G2 , (4.9)

where

Gk =
∑
j

gkj(b†j − bj)|k〉〈k|, (4.10)

for k = 1, 2.

The resulting Hamiltonian is

H̃ =

HB + ∆
2 − Ep1 JeG1e−G2

JeG2e−G1 HB − ∆
2 − Ep2

 , (4.11)

and

Epk = ~
∑
j

g2
kjωj (4.12)

is called the polaron shift of state k.

Recalling our earlier description of the environment, the effect of this transfor-

mation is to expand the nuclear potential surface for each electronic state around its

respective minimum. Since the expansion is always around a minimum, there are no

80



linear exciton–phonon coupling terms in the Hamiltonian. Of course, by expanding

around a different point for each electronic state, the basis states with which we de-

scribe the bath depend on which electronic state we are in. As a result, the site–site

coupling is no longer simply J but now also contains factors relating to the overlap

between basis states.

In the trivial case of non-interacting molecules, J = 0, the Hamiltonian has been

exactly diagonalized. In the general case, the off-diagonal terms JeG1e−G2 (and its

complex conjugate) prevent an exact solution for the dynamics an one instead applies

a perturbative approach. Rather than perturb directly in this term, one typically in-

cludes the average 〈JeG1e−G2〉 in the zeroth-order Hamiltonian and perturbs in the

difference JeG1e−G2 − 〈JeG1e−G2〉. The average is with respect to an equilibrium

phonon bath at the temperature of interest. (One is of course not required to in-

clude the average of the perturbation in the zeroth-order Hamiltonian but doing so

only slightly adds to the computational effort and can greatly reduce the size of the

perturbation.) The result is then H = H0 + V , where

H0 =

HB + ∆
2 − Ep1 〈JeG1e−G2〉

〈JeG2e−G1〉 HB − ∆
2 − Ep2

 (4.13)

and

V =

 0 JeG1e−G2 − 〈JeG1e−G2〉

JeG2e−G1 − 〈JeG2e−G1〉 0

 . (4.14)

As the name suggests, the polaron transform was first used to study the motion

of electrons in crystal lattices [21–24]. It has also been used to study energy transfer

in the incoherent regime [25], and has recently been applied to the study of coherent

resonance energy transfer [26–28].

The nature of this approximation is to first create polaron states composed of an

exciton coupled to a cloud of phonons, and to then (approximately) consider energy

transfer between these polaron states. As a result, the polaron transform is most

effective when the coupling of each molecule to its environment is more important

than the coupling between the molecules, just as in Förster theory. In fact, it is

81



worth pointing out that one can derive a special case of Förster theory directly from

Eq. (4.11) by assuming uncoupled baths and applying Fermi’s Golden Rule to treat

the off-diagonal elements JeG1e−G2 .

Finally, we note that if the spectral density of the bath is ohmic, the average

〈JeG1e−G2〉 is always exactly zero, regardless of how weak the system–bath coupling

is. This means that the donor–acceptor coupling is entirely absent from the zeroth-

order Hamiltonian and is only treated perturbatively; one therefore cannot capture

donor–acceptor coherence at any reasonable order of perturbation. Aslangul et al.

have studied the spin–boson model with ohmic spectral density using the polaron

transform [29, 30].

4.3 Model

While many of the existing theories have been successful in limited parameter ranges,

it is particularly desirable to develop a theory for energy transfer that can correctly

describe the dynamics over a wide range of parameter values. Förster theory and

related theories are perturbative in the electronic coupling and cannot correctly de-

scribe the coherent dynamics that result from strong coupling. On the other hand,

many of the master equation approaches developed recently instead use the linear

system–phonon coupling as a perturbation; these theories are of course unsuitable

when the system–bath coupling becomes large, unless one can go to high order in the

perturbation [14, 31–33].

In order to provide a second order perturbation method that will give good results

in both the weak coupling and strong coupling limit, we will use the variational po-

laron method for such problems that was introduced by Yarkony and Silbey and used

by Silbey and Harris [34–37]. Recently, we learned that McCutcheon and Nazir [38, 39]

have also done a calculation with this method. Their results and ours coincide for

the same parameter set.

We use the two-state Hamiltonian introduced earlier in Eq. (4.2) as our starting

point. This Hamiltonian assumes linear coupling between the electronic states and
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the bath, but is otherwise quite general. In particular, we have allowed both elec-

tronic states to interact with the same phonon modes; we can also treat the case of

independent baths as a special case by requiring either g1k or g2k to be zero for each k

such that each mode only couples to one of the electronic states, or have correlation

between the modes on different sites.

Before proceeding to look in more detail at this system, we rewrite the Hamiltonian

in the following form:

H =

HB + ∆
2 +B J

J HB − ∆
2 −B

 , (4.15)

where

HB =
∑
k

~ωk
(
b†kbk + 1

2

)
, (4.16)

B =
∑
k

~ωkgk(b†k + bk), (4.17)

and

gk = g1k − g2k

2 . (4.18)

We have simply written the Hamiltonian in a form where the coupling to the bath is

treated in a symmetric manner. It is always possible to write a Hamiltonian of the

form of Eq. (4.2) in this manner by performing a polaron transform

H → eḡk(b†
k
−bk)He−ḡk(b†

k
−bk) (4.19)

where

ḡk = 1
2(g1k + g2k), (4.20)

and by redefining the zero of energy if necessary. A nice feature of this Hamiltonian

is that it does not depend on g1k and g2k individually, but only on their difference.

At this point, one could solve for the dynamics of this Hamiltonian by perturbing

in the system–bath interaction, as was done by Redfield [17]. Alternatively, if the

system–bath coupling is large, one could perform the polaron transform introduced
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in Eq. (4.10) and instead perturb in Jθ − J〈θ〉. For ohmic spectral densities, J〈θ〉 is

always zero and there is no coherence in the zeroth-order Hamiltonian; as a result,

the polaron transform technique always yields completely incoherent dynamics and is

qualitatively incorrect at small system–bath coupling. At large system–bath coupling,

a polaron transform is required since directly perturbing in the large system–bath

coupling will not yield good results.

In the case of intermediate system–bath coupling, it is not always clear which of

these two approaches will yield better results. A method that can interpolate between

the two limiting cases would thus be very useful, particularly at intermediate system–

bath coupling. It is such a method that is presented here.

4.4 Variational polaron transform

4.4.1 Partial polaron transform

In the context of finding an appropriate perturbation for intermediate system–bath

coupling, we now introduce the partial polaron transform. This partial polaron trans-

form was first introduced by Yarkony and Silbey [34, 35], and later used by Harris

and Silbey [36, 37]. Instead of choosing between a complete polaron transform and no

polaron transform at all, one can only partially transform each of the phonon modes

as follows,

eGσzHe−Gσz where G =
∑
k

fk(b†k − bk), (4.21)

for some set of parameters fk. We note that choosing fk = gk corresponds to per-

forming a complete polaron transform as introduced earlier, while choosing fk = 0

corresponds to performing no polaron transform at all. In general, the fk will be

between these two limits and we will only partially transform the phonon modes.

We then obtain

H =

∆
2 +Bd +HB Je2G

Je−2G −∆
2 −Bd +HB

 (4.22)
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where

Bd =
∑
k

~ωkgdk(b†k + bk) and gdk = gk − fk. (4.23)

We note that there will be a polaron shift added to both states, but it will be of the

same magnitude and sign for both states so we have not included it.

Our Hamiltonian is now in a suitable form for a perturbative expansion, H =

H0 + V . We take as our zeroth order Hamiltonian

H0 =

∆
2 Jp

Jp −∆
2

 (4.24)

where Jp = J〈e2G〉 and the angle brackets indicate an average over the bath in thermal

equilibrium.

Our perturbation is then:

V =

 Bd Je2G − Jp
Je−2G − Jp −Bd

 (4.25)

We note again that the thermal average of our perturbation is zero by explicit con-

struction, just as it was in the full polaron case.

For later convenience, we will express the perturbation as

uxVx + uyVy + uzVz, (4.26)

where the ui act only on the bath subspace, and the Vi = σi are Pauli matrices that

act only in the system subspace. We will refer to the system operators as Vi rather

than σi to avoid confusion with the reduced density matrix σ. Specifically, we have

ux = J

2
[
e2G + e−2G

]
− J〈e2G〉, (4.27)

uy = iJ

2
[
e2G − e−2G

]
, (4.28)
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and

uz = Bd =
∑
k

~ωkgdj(b†k + bk). (4.29)

4.4.2 Variational condition

Our choice of H0 and V depends on our choice of the parameters fk; it will of course

be desirable to choose the fk in a manner that will minimize the perturbation V .

It is clear from the variational principle of quantum mechanics that we will obtain

the best ground state for our system by minimizing the ground state energy. We

are, however, interested in dynamics among many states and it makes sense for our

variational criterion to also include contributions from excited states of the system

that will be populated at the temperature of interest. We will follow the suggestion

of Silbey and Harris who suggested choosing the fk such that the free energy of H0

is a minimum [36].

Briefly, Gibbs and Bogoliubov have shown that upon partitioning a Hamiltonian

as H = H0 + V and defining free energies

A = β−1e−βH A0 = β−1e−βH0 , (4.30)

one has

A ≤ A0 + 〈V 〉0, (4.31)

where the average is with respect to the canonical distribution of H0 [40]. As we

have explicitly chosen V such that 〈V 〉0 = 0, we can ignore that term in the Gibbs–

Bogoliubov inequality. Of course, at zero temperature our free energy bound becomes

the well-known energy bound but at finite temperature it allows some contribution

from excited states.

Choosing the fk to minimize A0 yields [37]

fk = gk

1 +
2J2

p coth (βωk/2) tanh β
√

∆2 + J2
p

~ωk
√

∆2 + J2
p


−1

. (4.32)
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We note that Jp itself depends on our choice of fk and so this equation is not an

explicit formula for fk, but rather a self-consistent equation. The main results of this

chapter do not depend on the particular choice of fk; while we will use Eq. (4.32)

throughout the chapter, it may be interesting in the future to look at other criteria

for minimizing the perturbation.

4.5 Perturbative solution of dynamics

4.5.1 Overview

The variational polaron transform introduced in the last section was used by Silbey

and Harris to obtain some analytical results on the tunneling dynamics of optical

isomers, which can be described by the same spin–boson Hamiltonian we are using

here. The technique proved very powerful at predicting the transition from coherent

to incoherent motion in these systems, and was used to obtain some very simple

dynamics [36, 37]. Despite these early successes, an application of the variational

polaron transform to the calculation of energy transfer dynamics has not been fully

explored.

The development to this point has provided us with a zeroth-order Hamiltonian

and a perturbation, which we can use to solve perturbatively for the dynamics. Several

types of master equations have been used in the past to solve for the reduced density

matrix of the system; we choose to apply the second-order time-convolutionless master

equation, which we now write down in the form used by Ishizaki and Fleming [41],

dσ̃

dt
= − 1

~2

∑
mn

∫ t

0
dsVm(t)×

[
Smn(t− s)Vn(s)× − i~

2 χmn(t− s)Vn(s)◦
]
σ̃(t). (4.33)

All of the operators are in the interaction representation with respect to H0 and we

have introduced the notation V × ≡ [V, ·] and V ◦ ≡ {V, ·} for the commutator and

anticommutator. The correlation functions χ(t) and S(t) are defined as:

Smn(t) ≡ 1
2〈{um(t), un(0)}〉 χmn(t) ≡ i

~
〈[um(t), un(0)]〉, (4.34)
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where the averages are over a canonical distribution at the temperature of interest.

Since all of the ui are Hermitian, we have the property that

Snm(t) = Smn(−t) and χnm(t) = −χmn(−t), (4.35)

and there are only 6 independent correlation functions.

A concise derivation of the time-convolutionless master equation is presented by

Hashitsume [42], and it has frequently been used to study energy transfer [26, 41, 43].

Eq. (4.33) is an equation of motion for the reduced density matrix of the system in

the interaction representation of H0, σ̃(t). We make a few observations about this

equation

• The term σ̃(t) is not affected by the integral over s—the equation is therefore

time-local. (This is of course in contrast to the related time-convolution master

equation.)

• The coefficient of σ̃(t) in the master equation is time-dependent and the equation

is thus non-Markovian.

In order to derive this form of the time-convolutionless master equation, one must

assume that the bath is initially in equilibrium. Jang et al. have looked in detail at

the effect of including the initial condition in the time-convolutionless master equation

for a similar system; including the initial condition effects made some small changes

to their results but did not qualitatively change the energy transfer dynamics [26]. It

would nonetheless be interesting in the future to examine the effect of nonequilibrium

initial state on the present theory.

4.5.2 Correlation functions

Many of the correlation functions needed to solve the time-convolutionless master

equation are already known. In particular, the correlation functions of uz are known

from treating the problem without a polaron transform [41], while the correlation

functions involving ux and uy are known from the theories which perform a full
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polaron transform [26]. The cross-correlation functions between (ux, uy) and uz are

new to this work but can be computed straightforwardly.

In order to express these correlation functions, we define three new spectral den-

sities in terms of the system–bath coupling terms and the variational parameters,

ηd(ω) =
∑
j

ω2
j g

2
djδ(ω − ωj), (4.36)

ηp(ω) =
∑
j

ω2
j f

2
j δ(ω − ωj), (4.37)

and

ηm(ω) =
∑
k

ω2
kfkgdkδ(ω − ωk). (4.38)

All of the correlation functions can now be expressed in terms of these spectral

densities. The correlation functions of ux and uy are expressed in terms of two aux-

iliary functions,

µ(t) = 4
∫ ∞

0
dω
ηp(ω) sin(ωt)

ω2 (4.39)

and

ν(t) = 4
∫ ∞

0
dω
ηp(ω) cos(ωt)

ω2 coth
(
β~ω

2

)
. (4.40)

As can be seen from the above equation, it is possible for the integral for ν(t)

to diverge at small ω; in particular, this happens for ohmic spectral density. In the

case where ν(0) and ν(t) are both infinite, but ν(0)− ν(t) remains finite, we can still

obtain finite correlation functions:

Sxx(t) = J2

2 cos[µ(t)]e−[ν(0)−ν(t)] (4.41)

χxx(t) = J2

~
sin [µ(t)] e−[ν(0)−ν(t)] (4.42)

Syy(t) = J2

2 cos [µ(t)] e−[ν(0)−ν(t)] (4.43)

χyy(t) = J2

~
sin [µ(t)] e−[ν(0)−ν(t)]. (4.44)
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In the case where ν(0) and ν(t) are both finite, we find that

Sxx(t) = J2e−ν(0) {cos[µ(t)] cosh[ν(t)]− 1} (4.45)

χxx(t) = 2J2e−ν(0)

~
sin[µ(t)] sinh[ν(t)] (4.46)

Syy(t) = J2e−ν(0) cos[µ(t)] sinh[ν(t)] (4.47)

χyy(t) = 2J2e−ν(0)

~
sin[µ(t)] cosh[ν(t)]. (4.48)

Finally, Sxy(t) = χxy(t) = 0 in all cases.

Turning now to the correlation functions of uz, we obtain

Szz(t) = ~2
∫ ∞

0
dωηd(ω) cos(ωt) coth

(
β~ω

2

)
(4.49)

and

χzz(t) = 2~
∫ ∞

0
dωηd(ω) sin(ωt). (4.50)

Finally, we can obtain the cross-correlation functions between (ux, uy) and uz as

Szy(t) = 2~Je−ν(0)/2
∫
dω
ηm(ω)
ω

sin(ωt) coth(β~ω/2) (4.51)

χzy(t) = −4Je−ν(0)/2
∫
dω
ηm(ω)
ω

cos(ωt). (4.52)

Both of the correlation functions Szx(t) and χzx(t) vanish. Finally, in the case where

ν(0) is infinite, all of the cross-correlation functions vanish.

4.5.3 Commutators

The operators, Vm(t)× and Vn(t)◦ are just commutators and anticommutators of Pauli

matrices transformed to the interaction picture and are likewise easily computed. For

completeness, we include these commutators in this section. All of the commutators

are written in Liouville space in the basis {σx, σy, σz, I} and all of the operators act

in the basis of eigenstates of H0. We have defined θ such that J = ∆
2 tan θ and ωe as
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the exciton frequency, ~−1
√

∆2 + 4J2
p .

The commutators of σx are:

σ̃x(t)× = 2i



0 − sin θ − cos θ sinωet 0

sin θ 0 − cos θ cosωet 0

cos θ sinωet cos θ cosωet 0 0

0 0 0 0


(4.53)

and

σ̃x(t)◦ = 2



0 0 0 cos θ cosωet

0 0 0 − cos θ sinωet

0 0 0 sin θ

cos θ cosωet − cos θ sinωet sin θ 0


(4.54)

The commutators of σy are:

σ̃y(t)× = 2i



0 0 cosωet 0

0 0 − sinωet 0

− cosωet sinωet 0 0

0 0 0 0


(4.55)

and

σ̃y(t)◦ = 2



0 0 0 sinωet

0 0 0 cosωet

0 0 0 0

sinωet cosωet 0 0


(4.56)

Finally, the commutators of σz are

σ̃z(t)× = 2i



0 − cos θ sin θ sinωet 0

cos θ 0 sin θ cosωet 0

− sin θ sinωet − sin θ cosωet 0 0

0 0 0 0


(4.57)
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and

σ̃z(t)◦ = 2



0 0 0 − sin θ cosωet

0 0 0 sin θ sinωet

0 0 0 cos θ

− sin θ cosωet sin θ sinωet cos θ 0


(4.58)

We now have all of the required pieces in order to compute energy transfer dy-

namics using Eq. (4.33).

4.6 Results

4.6.1 Ohmic bath

We will now apply the theory outlined here to a few cases of interest. Recently,

Ishizaki and Fleming have looked at the rate of energy transfer as a function of

system–bath coupling using several of the existing theories [41]. We will use the same

parameters as they did so that our results can be compared to theirs. In particular,

we will choose ∆ = 100 cm−1, J = 20 cm−1, and T = 300 K. The two sites are

coupled to independent bath modes with the same spectral density

η1(2)(ω) ≡
∑
k

ω2
kg

2
k1(2)δ(ω − ωk) = 2~λω

πγ

γ2

ω2 + γ2 , (4.59)

for γ = 53 cm−1. We will examine the dynamics for various values of λ, which is the

reorganization energy of the bath.

For these parameters, the dynamics are mainly incoherent and thus it makes sense

to define a rate of population transfer. In Fig. 4-1, we plot the rate of population

transfer from site 1 to site 2 as a function of reorganization energy, calculated using the

variational polaron transform method outlined here. For comparison, we also plot the

results obtained by performing a full polaron transform and by performing no polaron

transform. (The case of no polaron transform was considered by Ishizaki and Fleming

and our results agree with theirs [41].) As expected, the results obtained without
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performing a polaron transform are qualitatively incorrect at large reorganization

energy, but the polaron transform result correctly shows a decreasing rate as the

reorganization energy becomes very large.

More interestingly, the variational polaron transform interpolates between these

results and obtains reasonable results for all values of the reorganization energy.

Our variational polaron transfer rates are very similar to those obtained using the

hierarchical equation approach of Ishizaki and Fleming [41]. We also point out that for

these parameters, the full polaron transform actually predicts the transfer rates quite

well over the whole range of reorganization energies considered, but the variational

technique does introduce some minor corrections at small λ.

Finally, we note that for λ & 5 cm−1 the variational polaron results are identical

to the full polaron results. This is because for large enough reorganization energy

the solution to the variational condition, Eq. (4.32), is Jp = 0 and fk = gk; thus

a full polaron transform is performed even in the variational calculation. As was

shown analytically by Silbey and Harris, Jp does not go continuously to zero but does

so abruptly when a critical value of λ is reached. It is for this reason that we see

a discontinuous jump around λ = 5 cm−1 in the rates predicted by the variational

calculation.

Next, we consider a case where coherence is important by setting J = 100 cm−1

and leaving all other parameters the same (again following Ishizaki and Fleming [41]).

Since the energy transfer has coherent oscillations in this case, it is not as useful to

think about a rate of energy transfer and we instead look the dynamics as a function

of time when the system is started in state 1. Fig. 4-2 shows the population of site 1

as a function of time for four different values of the reorganization energy, λ.

For the two smallest values of the reorganization energy, the results obtained from

the variational polaron transform are essentially identical to those obtained without

performing a polaron transform. These results are in reasonable agreement with

those obtained by Ishizaki and Fleming using the hierarchical techniques developed

by Tanimura and Kubo [32, 33, 41]. We point out that for these two cases, the full

polaron result is qualitatively incorrect, yielding unphysical results for λ = 2 cm−1
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Figure 4-1: Rate of population transfer as a function of reorganization energy for a
dimer with asymmetry ∆ = 100 cm−1, coupling J = 20 cm−1, ohmic spectral density
as in Eq. (4.59) with inverse bath correlation time γ = 53 cm−1, and temperature
T = 300 K. The solid line is calculated by performing a full polaron transform, the
crosses are calculated without performing a polaron transform, and the open circles
are calculated using the variational technique explained in the text.
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Figure 4-2: Population of donor state as a function of time for a dimer with asymmetry
∆ = 100 cm−1, coupling J = 100 cm−1, ohmic spectral density as in Eq. (4.59) with
inverse bath correlation time γ = 53 cm−1, and temperature T = 300 K. The
dynamics are plotted for four different values of the bath reorganization energy λ.
The dotted line is computed without performing a polaron transform, while the solid
line is computed using the variational polaron transform introduced in the text. The
dashed line for λ = 20 cm−1 is computed using a full polaron transform. (The full
polaron transform result is not included on the other plots as it yields unphysical
results for λ = 2 cm−1 and is identical to the variational result for λ = 100 cm−1 and
λ = 500 cm−1.)
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Figure 4-3: Renormalized electronic coupling, Jp as a function of reorganization en-
ergy for a dimer with asymmetry ∆ = 100 cm−1, coupling J = 100 cm−1, ohmic
spectral density as in Eq. (4.59) with inverse bath correlation time γ = 53 cm−1, and
temperature T = 300 K. Jp is computed using the variational polaron transformation
described in the text.

and failing to predict any coherence for λ = 20 cm−1.

For the two largest values of reorganization energy, the variational result is the

same as the full polaron transform result, for the reasons discussed earlier. These

polaron transform dynamics correctly show a decrease in the rate of energy transfer

at large reorganization energy. In contrast, the results without a polaron transform

show a qualitatively incorrect timescale for large reorganization energy, as was also

seen in Fig. 4-1. We also note that the results from Ishizaki and Fleming’s hierarchical

technique show non-exponential kinetics at short times as well as a few coherent

oscillations at λ = 100 cm−1 that are not reproduced by our variational technique.

Nonetheless, the overall timescale of population transfer from our method agrees quite

well with that of Ishizaki and Fleming [41].

Finally, we note that for the parameters in Fig. 4-2, the variational method always

yields results that are identical to either performing a full polaron transform or not

performing a polaron transform. We emphasize, however, that this is not always
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the case; in particular, our results at low reorganization in Fig. 4-1 show that the

variational method can indeed give results distinct from the two limiting cases.

In general, we expect the variational method to be distinct from the two limiting

cases when Jp is intermediate between 0 and J . When the reorganization energy is

zero, Jp = J ; as the reorganization energy increases, Jp decreases continuously until

a critical reorganization energy is reached, at which point Jp jumps discontinuously

to zero. As a concrete example, Fig. 4-3 plots Jp vs. reorganization energy for the

same parameters as in Fig. 4-2.

For these particular parameters, we see that Jp has barely decreased from J before

this discontinuous jump and thus Jp is never truly intermediate between 0 and J ; the

variational method thus always essentially reproduces one of the limiting cases. For

other parameters (such as those in Fig. 4-1), Jp does decrease significantly from J

before jumping to zero; for those parameters where Jp is intermediate, the variational

calculation will yield results that are distinct from both limiting cases.

4.6.2 Superohmic bath

We now demonstrate the general applicability of our method by using it to treat a

system with a superohmic bath. Again, in order to compare our new method with

existing methods in the literature, we choose the same parameters as Jang et al. [26].

In particular, we consider a dimer coupled to a bath with spectral density

ηd(ω) = ηω3

6ω2
c

e−ω/ωc , (4.60)

in units where ~ = ωc = kBT = 1. In this case, we are allowing correlated fluctuations

between the two sites, so there is a single bath with the above spectral density to

which both electronic states couple. Starting with an initially excited donor state,

we plot the population of the donor state as a function of time for various values

of the energy difference ∆ and electronic coupling J . The results are presented for

two values of η—in Fig. 4-4, we present the results for η = 1 while in Fig. 4-5 we

present the results for η = 3. Our results for the full polaron calculation are of course
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Figure 4-4: Population of donor state as a function of time for a dimer coupled to a
bath with superohmic spectral density given by Eq. (4.60) with η = 1. The dynamics
are plotted for four different values of the energy splitting ∆ and coupling J , as
indicated on each figure. The dotted line is computed without performing a polaron
transform, the dashed line for is computed using a full polaron transform, and the
solid line is computed using the variational polaron transform introduced in the text.
Units are such that ~ = ωc = kBT = 1.

identical to those of Jang et al. but we also present results for the case of no polaron

transform and for the variational polaron transform.

We now make several observations about these results. For the two graphs on the

left side of Fig. 4-4, where ∆ = ±1 and J = 0.5, we see that all three results are very

similar. For these parameters, both the electronic copuling J and the system–bath

coupling are less significant than the energy splitting ∆ and it does not make a large

difference which perturbation one chooses. In contrast to the results for ohmic spec-

tral density, the full polaron transform preserves donor–acceptor coherence for weak

enough system–bath coupling. Turning now to the two graphs on the right side of

Fig. 4-4, we see that for this larger value of J the full-polaron and no-polaron trans-
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Figure 4-5: Population of donor state as a function of time for a dimer coupled to a
bath with superohmic spectral density given by Eq. (4.60) with η = 3. The dynamics
are plotted for four different values of the energy splitting ∆ and coupling J , as
indicated on each figure. The dotted line is computed without performing a polaron
transform, the dashed line for is computed using a full polaron transform, and the
solid line is computed using the variational polaron transform introduced in the text.
Units are such that ~ = ωc = kBT = 1.
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form results are significantly different. The variational result is essentially identical

to the results obtained without performing a polaron transform, suggesting that this

is the better perturbation for these particlar parameters.

For the larger system–bath coupling η = 3, there is a difference between the full-

polaron and no-polaron transform results at ∆ = ±1 and J = 0.5, as seen in the

graphs on the left side of Fig. 4-5. For these parameters, the variational polaron

transform yields results similar to, but not identical to, those obtained from the full

polaron transform. Just as in Fig. 4-4, upon moving to larger donor–acceptor coupling

J we observe that the variational results approach those obtained without performing

a polaron transform.

Our results for J = 2 suggest that coherence plays a larger role for these particular

parameters than the polaron-transformed result would suggest. As discussed earlier,

the polaron-transformed result should perform better when the system–bath coupling

is more important than the electronic coupling; conversely, the results without a

polaron transform should perform better when the electronic coupling is dominant.

For the intermediate parameters considered here, it would be difficult to predict

which of the two perturbations should yield better results, but the variational polaron

transform provides an objective method of selecting a suitable perturbation. The

results are particularly interesting in that they suggest that many of the situations

treated with a polaron transform by Jang et al. might actually be better studied

without a polaron transform.

We also observe in Figs. 4-4 and 4-5 that the eventual equilibrium state of the

system depends somewhat on the particular perturbation chosen. This dependence

is of course expected as the zeroth-order Hamiltonian largely controls the eventual

equilibrium state. This result suggests that if one knows the expected equilibrium

state, it may be possible to use such knowledge to help select the best perturbation.
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4.7 Conclusion

We have presented a method for computing the dynamics of excitonic energy transfer

that combines a variational polaron transform with the second-order time-convolutionless

master equation. By variationally minimizing the perturbation, we were able to ap-

ply a second-order master equation to obtain energy transfer dynamics at small,

intermediate, and large reorganization energies from a single theory. Our theory has

the advantage of being conceptually simple and easily computable while still being

applicable over a wide range of parameter values. The theory does leave room for

improvement, as the variational minimization often rapidly jumps between no po-

laron transform and a full polaron transform, with intermediate transformations only

occurring in limited parameter ranges. It would be interesting to examine alter-

nate variational criteria with the goal of improving performance in the intermediate

system–bath coupling regime.
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Chapter 5

Alternative Variational

Transformations

5.1 Introduction

Chapter 4 presented a technique for studying coherent energy transfer by applying a

variational polaron transform to a spin–boson Hamiltonian. As a result, this method

was able to produce reasonable results for energy transfer dynamics over a wide range

of parameters. In particular, the model appropriately selected to perturb in the

bath for small system–bath coupling and to perform a polaron transform for large

system–bath coupling. For intermediate system–bath coupling, a partial polaron

transform was performed, although this partial polaron transform sometimes differed

only slightly from either a full polaron transform or no polaron transform.

While these results are certainly very promising, they also leave some room for im-

provement. In particular, the transition from no polaron transform to a full polaron

transform was quite abrupt, particularly for ohmic spectral densities. As a result,

while the model gives reasonable results for all parameters examined, there is not a

large region of parameter space where the model produces results that could not have

been obtained from existing theories. Also, comparison to the exact results available

for ohmic spectral densities [1] showed that while our theory certainly produces good

results over a wide range of parameters, there are some noticeable differences between
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our results and the exact results. In particular, our theory produced completely inco-

herent dynamics for parameters where the exact calculation shows some oscillations

in the energy transfer.

One aspect of the variational polaron transform that was pointed out in Chapter 4

is that the particular transformation chosen affects the equilibrium state to which

the system eventually relaxes. Recently, Moix and coworkers have developed a path-

integral method for efficiently computing the exact equilibrium reduced density matrix

of a system in contact with a harmonic bath [2]. This method has since been applied

to study the equilibrium density matrix for the same spin–boson model we used

in Chapter 4. In particular, Lee and coworkers compared the equilibrium density

matrix predicted by the variational polaron transform to that obtained from the

exact calculation [3]. While they examined only superohmic spectral densities, their

results agree largely with the observations in the last chapter—the variational polaron

transform approximately predicts the correct equilibrium state for all parameters

considered, but does comparatively poorly in the intermediate system–bath coupling

regime. Given these recent results, it is thus reasonable to suppose that using a known

equilibrium state as input to the calculation could improve the results.

5.2 Polaron transformation

Our starting Hamiltonian will be the same as that in the last chapter,

H =

HB + ∆
2 +B J

J HB − ∆
2 −B

 , (5.1)

with bath Hamiltonian

HB =
∑
k

~ωk
(
b†kbk + 1

2

)
(5.2)

and system–bath coupling

B =
∑
k

~ωkgk(b†k + bk). (5.3)
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Upon performing a partial polaron transform, we arrive at the form H = H0 +V ,

with

H0 =

∆
2 Jp

Jp −∆
2

 (5.4)

and

V =

 Bd Je2G − Jp
Je−2G − Jp −Bd

 . (5.5)

We have defined

Bd =
∑
k

~ωkgdk(b†k + bk), (5.6)

G =
∑
k

fk(b†k − bk), (5.7)

gdk = gk − fk, (5.8)

and Jp = J〈e2G〉. The angle brackets indicate an average over the bath in thermal

equilibrium.

At this point, the fj in the polaron transform are arbitrary. While the last chapter

always used the Gibbs–Bogoliubov free energy bound to select the optimal values of

fj, the method is not restricted to that particular choice of variational condition. In

fact, one is free to choose the fj in any desired manner; one can think of performing

a full polaron transform as prescribing fj = gj for all j, and performing no polaron

transform as prescribing fj = 0 for all j. Here, we will use the exact equilibrium

reduced density matrix in order to inform our choice of fj.

Given the equilibrium reduced density matrix of a system, ρeq, we can define an

effective Hamiltonian as

Heff = −β−1 log ρeq = ∆eff

2 σz + Jeffσx, (5.9)

where β−1 is the temperature of the system. Romero-Rochin and Oppenheim have

used projection operators to study in detail the dynamics of a system in contact

with a bath; they have shown that it is not always possible to write the equilibrium

reduced density matrix of the system in terms of an effective system Hamiltonian
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[4]. In cases where the system and bath are taken to be initially uncorrelated, as

is assumed here, this concern does not arise. Furthermore, we will not be using the

results of Eq. (5.9) as an effective Hamiltonian, but rather to guide our choice of

zeroth-order Hamiltonian and perturbation.

Our goal will be to select the fj in our partial polaron transform such that the

zeroth-order Hamiltonian H0 is as close as possible to Heff. Our variational trans-

formation as written cannot change the energy splitting between the two states—we

see from Eq. (5.4) that the zeroth-order Hamiltonian always has the same energy

splitting ∆ as the original system. One could use a more general polaron transform,

such as by allowing the displacements on the two sites to have different magnitudes as

has been considered by Allen and Silbey [5]. (This in contrast to the transformation

considered here, where the displacements on the two sites are ±fj and thus have the

same magnitude but opposite signs.) Such a more general transformation would allow

the energy splitting in the zeroth-order Hamiltonian to deviate from ∆.

In many cases of interest, however, the effective Hamiltonian has approximately

the same splitting as the original Hamiltonian, even for large system–bath coupling.

This is largely due to the symmetric form that we have chosen for the Hamiltonian—

each bath mode couples to the two sites with equal magnitude but opposite sign.

(Remembering of course that we showed in Chapter 4 that a more general system can

always be transformed into this form.) As such, we will for the moment ignore any

small changes in the effective splitting ∆eff and focus on selecting the fj such that

electronic coupling in the zeroth-order Hamiltonian matches that in Heff. In other

words, we will attempt to select fj such that Jp = Jeff.

Of course, our system is highly overdetermined—we can vary infinitely many pa-

rameters fj in order to make Jp achieve its desired value. As such, we will impose

further restrictions on the fj. We found in the last chapter that the Gibbs-Bogoliubov

bound produced the optimal fj as

fj = gj

1 +
2J2

p coth (βωj/2) tanh β
√

∆2 + J2
p

~ωj
√

∆2 + J2
p


−1

. (5.10)
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The first thing we notice about this result is that the system–bath coupling for each

mode, gj, enters only as a multiplicative factor. The relative displacement of each

mode, ζj ≡ fj/gj, is then a function of only ωj and of a few overall system parameters.

(Of course, Jp itself depends on the properties of each mode, but once it has been

determined we can view it as a single parameter of the system.)

Here, we focus on the dependence of ζj on ωj. As ωj increases from 0 to infinity, ζj
increases from 0 to 1. This behavior is not surprising, as it means that we generally

directly perturb in low frequency modes and treat higher-frequency modes via polaron

transform. Looking at the small and large ωj limits, we obtain

ζ(ω) ∼ ω2 ω → 0 (5.11)

and

ζ(ω)→ 1 ω →∞. (5.12)

We are of course not required to choose a form of ζ(ω) that matches that produced

by the Gibbs-Bogoliubov bound; nonetheless, we choose to do so since such behavior

is physically reasonable and produced good results in the last chapter. A simple

functional form that exhibits the general behavior just enumerated is

ζ(ω) = tanh2(αω). (5.13)

Here α is a parameter that will be varied in an attempt to satisfy Jp = Jeff.

We can explicitly compute the average J〈e2G〉 in order to write Jp in terms of ζ(ω)

and the spectral density η(ω) as

Jp = J exp
[
−2

∫ ∞
0

dω

ω2 η(ω) tanh2(αω) coth
(
β~ω

2

)]
. (5.14)

For α = 0, we obtain Jp = J ; we have of course not performed a polaron transform

in this case. For finite α > 0, the integrand is positive and we always obtain Jp < J .

For ohmic spectral density, the integral would diverge at ω → 0 if not for the term
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tanh2(αω), which exactly cancels the divergence for any value of α <∞. This means,

however, that the integral will diverge in the limit α → 0, and that and Jp → 0 in

this limit. (This is of course the limit of performing a full polaron transform, where

it is well known that the renormalized coupling Jp = 0.) For ohmic spectral density,

then, we know that for any Jeff satisfying 0 < Jeff < J there will be an α such that

Jp = Jeff.

For superohmic spectral density, the integral remains finite as α → ∞ (provided

of course that we suitably cut off the spectral density η(ω) at large ω). This means

that there is some minimum value of Jp; if Jeff is less than this minimum, there will be

no value of α that can satisfy Jp = Jeff. Nonetheless, for all of the cases we considered,

a suitable value of α can be found.

It is a simple matter to numerically determine the value of α required such that

Jp = Jeff. The partial polaron transform is then fully defined and one can then use the

partitioning of the Hamiltonian in Eq. (5.4) and (5.5) in any perturbative quantum

dynamics.

5.3 Results

Here, we present some results for the dynamics and rate of energy transfer obtained

using the partial polaron transformation described in the last section. Just as in

Chapter 4, the dynamics are computed using the time-convolutionless master equa-

tion.

First, we look at the rate of energy transfer for a dimer with splitting ∆ =

100 cm−1 and coupling J = 20 cm−1. Each site is independently coupled to a bath

with Drude–Lorentz spectral density,

η(ω) = 2~λω
πγ

γ2

ω2 + γ2 , (5.15)

with γ = 100 cm−1, and the temperature is T = 300 K. The dynamics are largely

incoherent for these parameters, and Fig. 5-1 shows the rate of energy transfer as a
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Figure 5-1: Rate of population transfer as a function of reorganization energy for a
dimer with asymmetry ∆ = 100 cm−1, coupling J = 20 cm−1, ohmic spectral density
as in Eq. (5.15) with inverse bath correlation time γ = 100 cm−1, and temperature
T = 300 K. The open circles are calculated by the variational minimization described
in Chapter 4 while the crosses are calculated using the equilibrium technique in this
chapter.

function of reorganization energy λ. The first thing that we observe about the results

is that the discontinuous jump in rate that exists in the Gibbs–Bogoliubov results is

absent from the equilibrium-optimized results. We also observe that the rates a large

reorganization energy are increased by a factor of two or three.

Since the variational polaron transform was shown in Chapter 4 to perform very

well at large reorganization energy, there is reason to be cautious of the results at

large reorganization energy. The larger transfer rate is a direct result of the fact that

the equilibrium coupling Jeff decreases rather slowly at large reorganization energy.

Indeed, while the Gibbs–Bogoliubov minimization causes Jp to abruptly go to zero

around λ ≈ 8 cm−1, the equilibrium minimization still has a Jp = 6.8 cm−1 at the

largest reorganization energy considered, λ = 400 cm−1.

Of course, the results of Lee et al. showing that the variational polaron transform

produces approximately the correct equilibrium density matrix at large reorganization

energy were only for superohmic spectral density η(ω) ∼ ω3. We next look at some
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parameters similar to those examined by Lee et al. In particular, we use a superohmic

spectral density

η(ω) = λ

2π
ω3

ω3
c

e−ω/ωc , (5.16)

where the cutoff frequency is ωc = 0.75. We consider a dimer with energy splitting

∆ = 1 and coupling J = 3/2, in units where ~ = β = 1. In Fig. 5-2, we plot

the energy transfer dynamics for several values of λ. The results follow the same

general trend as in the ohmic case; for small to intermediate values of the system–

bath coupling, there are some differences between the Gibbs–Bogoliubov and the

equilibrium-optimized dynamics, but the overall rate of transfer is comparable. At

large, system–bath coupling, however, the equilibrium-optimized dynamics predict a

significantly larger transfer rate than the Gibbs–Bogoliubov dynamics. Just as in the

ohmic case, this result is understandable by looking at the effective coupling, Jp, for

the two transformations. For λ = 15, the Gibbs–Bogoliubov minimization results in

Jp being effectively zero, while the equilibrium density matrix results in Jeff = 0.2.

The much larger effective coupling in the equilibrium-optimized results is of course

leading to the much larger transfer rate. Indeed, for both ohmic and superohmic

spectral density, the effective coupling extracted from the equilibrium density matrix

is much larger than the effective coupling obtained from the Gibbs–Bogoliubov bound.

5.4 Conclusion

This chapter briefly presented an alternative method of selecting a partial polaron

transform to study quantum dynamics of the spin–boson Hamiltonian. In particu-

lar, we used the exactly known equilibrium reduced density matrix for the system to

determine an effective Hamiltonian for the system; we then chose our polaron trans-

form such that the resulting zeroth-order Hamiltonian approximated the effective

Hamiltonian as closely as possible.

One of the motivations for exploring alternatives to the Gibbs–Bogoliubov choice

of polaron transform was the presence of a discontinuous jump in energy transfer

rates as a funcion of bath reorganization energy. While the method presented in
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Figure 5-2: Population of donor state as a function of time for a dimer with splitting
∆ = 1 and coupling J = 3/2. The system is coupled to a bath with superohmic
spectral density given by Eq. (5.16), with ωc = 0.75. The dynamics are plotted
for four different values of the system–bath coupling λ, as indicated on each figure.
Units are such that ~ = kBT = 1. The solid lines are calculated by the variational
minimization described in Chapter 4 while the dashed lines are calculated using the
equilibrium technique in this chapter.
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this chapter does eliminate this jump, it appears to largely overestimate the rate

of energy transfer at large system–bath coupling. This overestimation can be traced

back to the fact that the effective coupling Jeff extracted from the equilibrium reduced

density matrix is general much larger than the renormalized coupling Jp obtained from

the Gibbs–Bogolioubov minimization. Thus, while it may be possible to find other

ways of using equilibrium information to improve the variational transformation, the

straightforward method presented here actually performs worse than the method in

Chapter 4 when it comes to accurately predicting dynamics over a wide range of

parameters.
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