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ABSTRACT

Although one million new breast cancer cases arise each year worldwide, therapies to
treat the disease are limited. Conventional treatments including the chemotherapeutic
agent, Tamoxifen, have had only limited success, often showing uncomfortable side
effects. Our group has proposed a new scheme for a rational drug design. This scheme
utilizes recent findings on the mechanism of cisplatin, the drug found to cure in excess of
93% of all testicular cancer cases. Cisplatin forms DNA adducts that are toxic. The
toxicity of these adducts is enhanced by the recruitment of proteins that bind to the
adducts and impede adduct repair. This thesis was an attempt to duplicate this "repair
shielding" mechanism with another cytotoxin. Specifically, this toxin will be
programmed to kill breast cancer cells. Breast cancer cells often overexpress the estrogen
receptor protein. By synthesizing a drug that not only binds and damages the DNA but
also binds the abundant proteins in the cells, thereby blocking the damaged site from
DNA repair proteins, a selective treatment of cancer cells can be achieved.

In this study, the human estrogen receptor (hER) and the ligand binding domain of the
hER genes were cloned into baculovirus expression vectors, establishing a system where
a large quantity of the proteins can be expressed. The proteins expressed in insect cells
were purified in one step, using the FLAG-epitope, yielding homogeneous proteins. The
proteins were tested for binding to p-estradiol and were confirmed to be functional in
ligand binding. They were also tested for their ability to bind the novel drugs synthesized
to bind both the protein and the DNA. It was found that the ligand binding domain of the
hER was capable of binding the drugs adducted to the DNA. In an effort to elucidate the
mechanism of the protein-drug-DNA complex formation, an association experiment was
carried out, which showed that the drug more readily bound to the protein than to DNA.
However, a significant amount of the drug-protein complex still bound the DNA, if the
ratio of the protein to the drug did not exceed 1.5.

Thesis Supervisor: John M. Essigmann
Title: Professor of Chemistry and Toxicology
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Chapter I. Introduction and Background

Research objectives

Each year, one million new cases of breast cancer are reported in the United

States and approximately 400,000 people die from the disease. Most anti-cancer

treatments available today have limited success. Many of the chemotherapeutic agents

are not tumor-selective, causing many side effects during the treatment.

Chemotherapeutic agents often kill dividing cells by damaging DNA. These drugs are

not only lethal to cancer cells, but also to non-cancerous cells, causing many side effects.

Moreover, in most cases, these treatments extend life, but do not completely eradicate

cancer. One exception is cisplatin, which cures >93% of testicular cancers. Cisplatin

displays its toxicity by binding to and damaging DNA (1). Proteins may bind to the drug

adducts (2,3), blocking the lesion from being repaired by DNA repair enzymes. This

information has become the foundation of an effort to design drugs that selectively kill

tumor cells.

If a drug can form adducts on DNA and also can bind to a tumor tissue specific

protein, it would result in an unrepairable lesion. Such drug would give tumor specificity

during chemotherapy. The target tumor chosen for this was breast cancer cells, which

often overexpress estrogen receptors.

Compounds containing estradiol-like moiety were synthesized and were tested in

cell lines overexpressing estrogen receptor. However, as the research expanded, the need

for homogeneous human estrogen receptor in the laboratory increased. The calf uterus

cell extract as the source of the protein was inadequate, because of the low concentration
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of the estrogen receptor among countless other cellular proteins in the extract. The main

objective of this study was to develop and optimize the protein expression system that

would produce a large quantity of the protein competent to bind ligands. The resulting

purified protein was used to test the ability of the ER to bind the mechanism-based drugs

synthesized in the laboratory, an important step in identifying potential new drugs.

This dissertation will be organized in the following manner:

Chapter I. Introduction and Background will focus on the background of the project

including the features of the baculovirus expression.

Chapter II. Material and Methods will elaborate the details of the experiments.

Chapter III. Results will present the outcomes of the experiments.

Chapter IV. Discussion will summarize the conclusions that could be made from the

experimental data.

Breast cancer and conventional therapy

Breast cancer is the number one cause of cancer death in women in the United

States, with 45,000 women dying of the disease in 1998 and one million new cases of the

disease expected to be reported around the world each year. Despite recent increases in

awareness of the importance of early detection by regular mammography and self-

examination has decreased the number of deaths, the disease continues to be a formidable

public health problem.

The conventional course of action to treat breast cancer consists of surgical

removal of the tumor, followed by radiation and chemotherapy. A long-term regimen of

Tamoxifen, which acts to keep the tumor in remission, follows the combined treatment.
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Although this multi-staged treatment has shown to decrease the breast cancer mortality, it

is not without an expense. The initial chemotherapy gives rise to many widely known

adverse side effects, such as bone marrow decimation, nausea and hair loss. It has been

reported that Tamoxifen, although it is shown to decrease the tumor recurrence by 45%,

increases the risk of endometrial cancer in women who take the drug. Thus, it is of

essence that a new approach to the treatment of the cancer is explored. The laboratory

has been working on designing drugs that would selectively kill tumor, therefore

eliminating such side effects during chemotherapy.

Tumor selective genotoxins

The intellectual basis for the project of designing tumor selective anti-cancer

chemotherapeutic agent stemmed from the study of the biochemical mechanisms of

cisplatin (cis-diamminedichloroplatinum(II)). Regimens including cisplatin are widely

used for the treatment of testicular cancer and have been shown to cure almost all of the

patients treated with the drug (4), an impressive effect unseen in most other anti-cancer

agents. Despite continuing efforts to elucidate the mechanisms of action of cisplatin, its

biochemical workings at molecular level are still not fully understood. However, it has

been shown that cisplatin kills cells, in part, by damaging the DNA of the cells (1).

Subsequently, a group of proteins was identified that binds the DNA adduct formed by

cisplatin (2,3). These proteins show a selective affinity for the DNA adducts (3),

suggesting that the proteins play a role in cisplatin toxicity. One of the models suggested

to explain this phenomenon was the "repair shielding" theory, which proposed that the

binding of these proteins to the drug adduct physically blocks the damaged site from
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DNA repair proteins thereby heightening the potency of the drug. It is this model that the

design scheme of novel drugs selective toward cancer cells is based.

Many cancer cells are known to express proteins specific to the tissue type or

cancer. By synthesizing compounds that recognize the tumor specific protein and also

damage DNA, tumor selectivity can be achieved (Figure 1). These drugs, if

administered into non-cancerous cells, will damage DNA, but the lesions will be readily

repaired by the DNA repair machinery due to the absence of the proteins. The system

chosen to test this approach was breast cancer cells. Many breast cancers overexpress

estrogen receptor, providing a good target for the project. The compounds are composed

of two domains, the DNA-reactive domain, or "warhead," and the protein recognition

domain. The two domains are connected by a linker. The functional group selected for

the warhead was a nitrogen mustard, which was known historically to form adducts and

damage DNA. The protein recognition group was derived from, or functionally mimics,

estradiol, the natural ligand of the tumor specific protein. Figure 2 shows the structures

and the names of the compounds synthesized according to this scheme and used in

experiments described in this dissertation.

The theory behind the scheme was confirmed in the study where 2PI-C6NC2

(Figure 2, B) was tested for its toxicity in ER(+) and ER(-) cells. The drug showed

increased toxicity in ER-expressing cancer cells (5). It was calculated that

approximately 20-25% of the DNA adducts would associate with the ER in vivo, thereby

blocking the repair. It has since been demonstrated, that the DNA lesions associated with

ER were repaired slower than the lesions formed in ER(-) cell line (Croy and Essigmann,

unpublished data).
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Estrogen receptor

The target protein for the tumor specific genotoxins developed in the laboratory is

the estrogen receptor, a protein belonging to the nuclear hormone receptor superfamily.

These proteins act as transcriptional regulators, which bind to specific DNA elements and

activate transcription in response to the binding of a steroid hormone (6). The ER is a

67kDa protein found in a wide variety of species and is involved in the regulation of gene

expression in tissues of female sex organs (7). It has been reported that more than 50%

of human breast cancers overexpress the ER.

The human ER (hER) cDNA was cloned and completely sequenced by Green and

the co-workers in 1986 (7). The hER cDNA is 1.8kb long and codes for a protein with

595 amino acid residues. Analogous to the typical structural scheme of the nuclear

receptors, the ER is divided into 6 domains, designated A through F, classified according

to the functions of each region (8). The N-terminal domains A and B contain the

constitutive transcriptional activation function, AF-1. The C domain is the DNA binding

domain (DBD), which shows a high degree of homology to the DNA binding domains of

other nuclear hormone receptors (8). The D domain is designated as the "hinge" domain.

The E domain is the ligand binding domain (LBD), which recognizes the hormone; the

LBD, upon binding ligand, transforms the receptor to a transcriptionally active state (9).

Finally, the F domain is the carboxy-terminal domain, which has variable homology

among the receptor proteins.

The hormone ligand, as mentioned earlier, is estradiol (Figure 2A). Estradiol

binds to ER tightly with the Kd of 0.35 nM (10). When estradiol is bound to the ligand

binding domain of the ER, two molecules of the protein form a homodimer. This
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complex, when bound to a specific region of the promoter, activates the transcription of

gene connected to the promoter (11).

Figure 3A is a representation of the ER-LBD homodimer containing two

molecules of estradiol in its binding domain. It was rendered from the crystal structure

coordinates reported by Tanenbaum and co-workers (12). The structure of the protein

was solved in complex with estradiol, giving insights into the interactions between the

receptor and the ligand at the molecular level. Figure 3B illustrates the interactions in

detail. The ligand is held in the binding cavity by a number of hydrogen bonds with the

amino acid residues and water molecules. The D-ring hydroxyl group of the estradiol

forms a hydrogen bond with His5 11. The phenyl hydroxyl group of the hormone makes

a hydrogen bond with the carboxylate of Glu353 and a water-mediated hydrogen bond

supported by Arg394. The same three residues were implicated as being important for

ligand binding in an earlier study (13), confirming the structure of the binding cavity of

the protein.

Figure 4 shows the ER-LBD binding E2-C6NC2 (Figure 2D), one of the drugs

designed according to the strategy described earlier in this chapter. The drug molecule

was docked into the protein rendered from the crystal coordinates reported by

Tanenbaum et al. (12), and the complex was energy-minimized in water using the

molecular modeling software, Insight II (Biosym). Since the protein recognition domain

of the drug is estradiol, it is hypothesized that the interactions in the binding cavity of the

protein would closely resemble the interactions between the protein and estradiol.
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Baculovirus expression system

In the past, the estrogen receptor was obtained for work in this laboratory from a

calf uterus cell extract. In addition to the unpleasantness of the preparation, the cell

extract was not an adequate source of the protein, because it yielded only limited quantity

of the protein. Also, because the extract contains other cellular proteins, the possibility of

proteins other than estrogen receptor acting on the system could not be eliminated.

Lastly, only bovine estrogen receptor, not human estrogen receptor, could be obtained

from the preparation. Thus, there was a great need for a recombinant human protein

expression system.

The baculovirus expression system has become widely used for recombinant

eukaryotic protein production because of its ability to produce large quantities of

biologically active eukaryotic proteins (14). By placing the gene coding for the protein

of interest under the control of a strong baculoviral promoter, a high expression level of

the protein can be achieved in insect cells. The proteins expressed in the cells can be

purified using many protein purification tools commercially available, including the

products developed for the purification of FLAG® epitope (Sigma) tagged proteins. In

this section, a general overview and the features of the baculovirus expression system

will be discussed. Also, a brief description of the isolation of the recombinant virus will

be introduced.

The baculovirus vector uses the highly expressed and regulated Autographa

californica nuclear polyhedrosis virus (AcMNPV) polyhedrin promoter (15) modified for

the insertion of foreign genes. Insect cells provide an eukaryotic environment for

posttranslational modification and folding which may be essential for producing
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biologically active proteins (16). Posttranslational modifications of the gene products

achieved by baculovirus expression systems closely resemble glycosylation, fatty acid

acylation and phosphorylation normally present in their native forms (17). Baculoviruses

infect insects and insect cells and they are not pathogenic to vertebrates or plants (18),

making them safe and easy to handle. The stability of the recombinant viruses allows a

long-term storage of the viruses.

The structure and the life cycle of the baculovirus makes it well suited for the use

in protein expression. AcMNPV contains a double-stranded, circular, supercoiled DNA

genome of approximately 134 kb (19). During AcMNPV infection, the viral genome is

expressed in four different stages - immediate early, early, late and very late -- at which

different genes are transcribed. The very late stage spans from approximately 18 hour

post-infection until cell lysis. Two viral proteins are produced in large quantities during

the very late phase, eventually amounting to -50% of all cellular proteins. These are the

polyhedrin protein, a viral structural protein of 29 kDa, and the p10 gene product, a non-

structural protein of 10 kDa. Both proteins are non-essential for replication and

formation of virus particles (20,21) and therefore have been targeted for use in expression

vectors. In many of the widely used baculovirus expression vectors, the polyhedrin gene

is replaced with the recombinant gene and the strong polyhedrin promoter will drive the

transcription of the foreign gene, expressing the recombinant protein during the very late

phase of the infection (22).

The host cells for the baculovirus, Spodopterafrugiperda (Sf) cells, were

originally derived from pupal ovarian tissue of the fall armyworm (23). Spodoptera

frugiperda IPLB-Sf-21AE (Sf21) cells and a cloned version of this cell line (Sf9) are
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commonly used for the expression system. These cells can be grown either as a

monolayer or in suspension culture at 25 to 28'C in a low protein media containing fetal

bovine serum and antibiotics.

The first step to recombinant protein expression is the construction of the

baculovirus transfer vector containing the gene of interest. The size of the AcMNPV

genome is too large for routine molecular biological manipulations such as restriction

digests and ligation. Instead, the target gene is inserted into a transfer vector (size <10

kb) and the completed plasmid is co-transfected into insect cells along with the AcMNPV

viral DNA. Inside the cell, a complete expression vector is formed via homologous

recombination between the transfer vector and the viral DNA.

Clontech's BacPAK6 system applied a number of modifications to the virus

genome in order to improve the frequency of recombination. As illustrated in Figure 5,

three Bsu36I sites were introduced into the viral DNA. It linearized the genome, which

increased the frequency of recombination in insect cells (24). The Bsu36I digests also

disrupt ORF 1629 gene, a gene essential for viral replication in host cells (25). Infectious

viruses are formed only when a successful recombination takes place between the viral

DNA and the transfer vectors such as pBacPAK8 and pBacPAK9 containing the ORF

1629 gene, giving rise to an intact ORF 1629. On the other hand, recircularized viral

DNA is not viable because it lacks ORF 1629. The Bsu36I digest also eliminates the

polyhedrin promoter from the viral DNA, which is also restored, along with the target

gene, by the recombination with the transfer vector. These features of Clontech's

BacPAK6 system drastically increases the recombination frequency, reducing the need to

screen many viral clones to obtain the desired recombinant virus.
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Once the recombinant virus is produced by co-transfection, the virus is screened

via plaque assay to acquire a pure stock of the virus. The production of clear, well-

defined plaques during the assay demonstrates the viability and high titers of the

recombinant virus. The production of the correct protein by the isolated virus is

confirmed by Western blot analysis of the cell extracts from a small-scale infection.

Then the virus expressing the target protein is amplified for further use. The details of

these steps will be described in the next chapter, Materials and Methods.

The purification of the proteins expressed in the insect cells can be conducted in

one step, using the FLAG epitope. The purification of a FLAG-tagged protein can be

greatly simplified by using an anti- FLAG immunoaffinity column (16). FLAG sequence

is an 8-amino acid peptide (DYKDDDDK), which can be easily detected by

commercially available tools such as anti-FLAG monoclonal antibody and anti-FLAG

immunoaffinity column resin. Production of FLAG-tagged protein is achieved by using

transfer vectors, pSK277 or pSK278, which contain internal sequences coding for FLAG

epitope (16). Because they are derivatives of pBacPAK8 and pBacPAK9, respectively,

they contain all the features of the transfer vectors and can be co-transfected into insect

cells with viral DNA to generate viruses expressing N-terminal FLAG-tagged proteins.

The baculovirus expression system, therefore, is an excellent system for the

purpose of this project. Its capacity to yield a large quantity of the protein via quick and

easy purification procedure will be able to fulfill the demands for the estrogen receptor.
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Chapter II. Materials and Methods

Materials used

The pSV2NeoCMV vector containing hER cDNA was a gift from Dr. Ruth Sager.

The baculovirus expression vectors pBacPAK9 (Clontech) and pSK278 were gifts from

Dr. Sang Seok Koh of the Whitehead Institute. The E.coli strain DH5a [F-,

#80dlacZAM15, recA1, endA1, gyrA96, thi-1, hsdR17 (rK., mK+), supE44, re/A1, deoR,

A(lacZYA- argF) U 169] was used for the production of plasmids. All enzymes were

purchased from New England Biolabs. pGEM plasmid preparation and [14C]Hexene

synthesis were carried out by Dr. Robert Croy.

Subcloning of hER and hER-LBD into baculovirus vector

The hER cDNA was amplified from pSV2NeoCMV-hER (7). Oligomers ALOl

(5'-CGCGGATCCATGACCATGACCCTCCACACCAAA-3') and ALO2 (5'-

CCGCTCGAGTCAGACTGTGGCAGGGAAACCCTC-3') were used as primers for

PCR reaction to obtain full-length hER cDNA. The fragment was double digested with

BamHI and XhoI and inserted into baculovirus expression vectors, pBacPAK9 and

pSK278, between the same sites to give ER and FLAG-ER, respectively. Oligomers

ALO3 (5'-CGCGGATCCATGTCTGCTGGAGACATGAGAGCTGCC-3') and ALO2

were used as primers for PCR reactions to obtain the ligand binding domain (LBD) of

hER. The PCR product was inserted into pBacPAK9 between BamHI and XhoI sites to

give LBD. Similarly, PCR product obtained with oligomers ALO4 (5'-

CGCGGATCCTCTGCTGGAGACATGAGAGCTGCC-3') and ALO2 was inserted into
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BamHI and XhoI sites of pSK278 to give FLAG-LBD. The positive clones were

confirmed by BamHI/XhoI digestion and the plasmids were isolated using Qiagen

Plasmid Maxi Kit.

Culturing of Sf21 cells

Sf21 cells were cultured in ExCell420 (JRH Biosciences) insect cell media

containing 10% Fetal Bovine Serum, 50 pg/mL Penicillin-Streptomycin (Life

Technologies) and 2.5 pg/mL Fungizone (Life Technologies). The cells were grown at

27'C on 150x25 mm tissue culture plates or in suspension. For suspension cultures,

0.1% of Pluronic-F68 (Sigma) was added to the media.

Isolation of recombinant baculovirus

In order to produce a large quantity of the full-length and the ligand binding

domain of hER protein in insect cells, recombinant baculoviruses expressing the proteins

were constructed. The plasmids coding for ER (pAL3), LBD (pAL4), FLAG-ER (pAL5)

and FLAG-LBD (pAL6) were co-transfected into Sf21 cells along with BacPAK6 viral

DNA BsuI36 digest (Clontech) to produce recombinant viruses. The recombinant viruses

were isolated by plaque assay and the expression of the appropriate proteins was

confirmed by Western blot analysis of the whole cell extract from the Passage One (P1)

virus. The virus was then amplified through subsequent passages in preparation of the

large-scale expression and purification.
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1. Co-transfection

For each construct containing estrogen receptor gene, 0.5 pg of plasmid DNA and

5 pl of BacPAK6 viral DNA were incubated at room temperature with Bacfectin

provided by Clontech to form DNA-lipofectin complexes. The complexes were co-

transfected into exponentially growing Sf21 cells on 6-well plates and the cells were

incubated at 27 0 C. After 72 hours, the media containing the recombinant viruses was

collected.

2. Plaque assay

Densely plated Sf21 cells were infected with co-transfection supernatant at

various dilutions. The cell monolayer was overlaid with low-melting agarose (1% Sea

Plaque agarose from FMC) into which cells can grow. Media was added after the

agarose layer was set and the plates were incubated at 270 C. After 5 days, the cells were

stained with Neutral Red (Life Technologies) and developed overnight. Plaques well

isolated from the surrounding plaques were selected. Four plaques per construct were

picked and placed in media overnight to release the virus from the agarose plug.

3. Passage one and whole cell extract preparation

Sf21 cells were infected with the virus released from the plaques. After 4 days,

the media was collected and the cells were harvested. The media containing Passage one

(P1) virus was stored at 4'C. The whole cell extract (WCE) was prepared by lysing the

cells with lysis buffer (50 mM Tris-Cl pH7.6, 150 mM NaCl, 2 mM EGTA, 1% Nonidet

P-40, 0.25% sodium deoxycholate, 1 mM PMSF, 2 mM benzamidine, 0.6 tM leupeptin,
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2 pM pepstatin A, and 2 tg/mL chymostatin), pelleting out the cell debris and collecting

the resulting supernatant.

4. Western blot analysis

The expression of the appropriate proteins was confirmed by immunoblotting.

Whole cell extracts were separated on SDS-PAGE gels and the proteins were transferred

to nitrocellulose membranes. The membranes were incubated with anti-hER raised

against DNA binding domain (Affinity Bioreagents, Inc. MA 1-3 10), "hinge" region

(StressGen, SRA-1000) or ligand binding domain (StressGen, SRA-10 10) in order to

detect virus expressing proteins with the respective functional regions. WCE from

baculoviruses derived from pAL5 (FLAG-ER) and pAL6 (FLAG-LBD) were blotted

with anti-FLAG antibody (Sigma, F3165) as well, in order to confirm that the FLAG tag

was intact in these proteins. The blots were incubated with anti-mouse IgG-HRP

secondary antibodies. The signals were developed using SuperSignal ECL kit (Pierce)

and were visualized by exposure to film.

5. Passage two preparation

The P1 viruses that expressed the correct proteins were pooled together and the

viruses were amplified. 1.4x 107 cells plated on 150x25 mm plates were infected with 2

mL of P1 virus and incubated at 270 C. After 4 days, the media containing the viruses

(Passage two--P2) were collected and were ready to be used for large-scale infection and

purification of the proteins.
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Expression and purification of FLAG-ER and FLAG-LBD

1. Large scale infection

Sf21 cells grown in suspension to a density of 1.8x10 6 cells/mL were infected

with P2 viruses. 500 mL of cells were harvested and the cell pellet was resuspended in

50 mL of P2 virus. Infection mixture was incubated at room temperature for 1 hour with

occasional swirling. The volume was brought up to 500 mL with fresh media and the cell

culture was grown at 27 'C for 60-66 hours. Cells were harvested and washed with

phosphate-buffered saline. The media, the Passage three (P3) virus, was collected and

stored at 4'C.

2. Cell extract preparation

The harvested cell pellets were resuspended in 7 mL of MTB 100 buffer (50 mM

HEPES-KOH pH 7.3, 100 mM KOAc, 25 mM MgOAc, 5 mM EGTA, 10% glycerol, 1

[tM DTT, 0.01% Nonidet P-40, 1 mM PMSF, 2 mM benzamidine, 0.6 pM leupeptin, 2

pM pepstatin A, and 2 ptg/mL chymostatin) and the cells were lysed by sonication. The

lysate was centrifuged in the ultracentrifuge at 28,000 rpm, 4'C for 3 hours in the SW41

rotor. The resulting supernatant was the cell extract containing the recombinant proteins.

An aliquot of the extract was saved for Western blot analysis.

3. Protein purification

The column with lmL anti-FLAG resin (Sigma, A1205) was equilibrated at 4'C.

The column was washed with 100 mM glycine-HCl pH 3.5 and then with MTB300 buffer

(same as MTB 100, except 300 mM KOAc). The salt concentration of the cell extract
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was adjusted to 300 mM with 5 M KOAc. The cell extracts were loaded onto the column

4 times to maximize the retention of the proteins by the resin. The column was washed

with MTB300 buffer and then with MTB 100 to bring the salt concentration back to 100

mM. The proteins were eluted with MTB 100 buffer containing FLAG peptide (Sigma,

F3290) in eight 1 mL-fractions. The presence of the proteins in each fraction was

monitored by Bradford assay (26) and the fractions containing the proteins were pooled

together. The excess salts, FLAG peptide and buffer were eliminated from the eluate

using Centricons concentrators.

4. Protein quantification

The purified proteins were quantified by performing the Bradford Assay, using

bovine serum albumin as the standard. The purity and the quantity of the purified

proteins were determined by SDS-PAGE analysis. The protein bands were visualized by

Coomassie stain.

Protein expression time course

50 mL of Sf21 cells per time point per protein were seeded on tissue culture plates

at 0.7x106 cells/mL. 2 mL of P2 virus were used to infect 3.5x10 7 cells at room

temperature. The cells were grown at 27'C and were harvested every 6 hours between 36

and 72 hours post-infection for FLAG-ER and every 12 hours between 36 and 72 hours

post-infection for FLAG-LBD. The extracts were prepared as described above and

Western blot analysis was performed with anti-LBD antibodies to detect the protein

expression level at each time point.
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Ligand binding assay

1. Estradiol competition

The purified FLAG-ER and FLAG-LBD proteins were diluted to 2.34 nM with

BSA solution (10 mg/mL) and a stock solution of 100 nM [3H]estradiol (1 mCi/pl, New

England Nuclear) was prepared. Serial dilutions of unlabeled estradiol ranging from 20

ptM to 0.02 ptM were made in 50% DMF. The reactions containing 2.1 nM protein, 5 nM

of [3H]estradiol and varying concentration of unlabeled estradiol in a total reaction

volume of 50 pl were incubated overnight at 4C. Fifty pl of Dextran/charcoal mixture

(0.5% Dextran, 0.5% charcoal in 10 mM Tris pH 7.6) was added to each tube and the

tubes were incubated on ice for 30 minutes with occasional vortexing. The tubes were

centrifuged at 4'C for 5 minutes and 75 1tl of supernatant was counted in 5 mL of

scintillation fluid.

2. Drug binding assay

In lieu of unlabeled estradiol, dilutions of Heptene (for FLAG-LBD only),

Hexene and Amine Mustard (AM) were added to the competition reaction described

above. From 1 mM stock solution of each drug, dilutions ranging from 20 pM to 0.1 IM

were prepared for the reaction. The concentration of the test compound necessary to

reduce receptor-bound radioactivity by 50%, the concentration at the inflection point, was

determined from the plot of drug concentration vs. [3H]estradiol CPM. The relative

binding affinity (RBA) was determined by multiplying the molar ratio of the inflection

point of estradiol and the test compound by 100 (5).
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Gel mobility shift assay

1. Target preparation

Oligonucleotides Cl (5'-TTCTGGCCTCCTCT-3') and C2 (5'-

CGCTCGAGAGGAGGCCAGAATTCGGA-3') were 5' phosphorylated with [y- P]

ATP (New England Nuclear) to give radiolabeled target DNA. Twenty pmol of each

oligonucleotide were incubated at 37'C for 1 hour with 40 pCi [y- P] ATP, T4

polynucleotide kinase and lOx kinase buffer. The Cl oligomer previously modified with

one molecule of Heptene, called Hep 1, was phosphorylated similarly. Free [32P] ATP

was eliminated by G25 columns at the completion of the reaction.

Labeled Cl was annealed with unlabeled C2, and unlabeled Cl was annealed with

labeled C2 to give duplexes with one labeled strand and one unlabeled strand. The

annealing reactions were carried out by heating to 80'C and cooling to room temperature

overnight. The duplexes were called ClD and C2D respectively. Also, the duplex of

Hep 1 with unlabeled C2 was called ClD-Hep 1. Cl D-Hep 1 was prepared by incubating at

4'C in 0.5 M NaCl and 25 mM Tris pH 8.0 overnight.

2. Drug reaction

Both ClD and C2D were allowed to react with drugs Heptene or Phenylindole (PI)

to give DNA with drug lesions. Ten pmol of each duplex DNA were incubated with

Heptene or PI at 37'C for 12-16 hours. The drug-adducted DNA was isolated by phenol-

chloroform extraction followed by ethanol precipitation. The presence of the drug-

adducted DNA duplex was confirmed by running a 16% denaturing gel and visualizing it

on phosphorimager screen.
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3. GMSA

Binding reaction of the protein to adducted DNA was performed in DNA binding

buffer (15 mM Tris pH 7.9, 80 mM KCl, 4 mM DTT, 0.2 mM EDTA and 10% glycerol)

with 10 pg of BSA and 1 pg of p(dIdC) carrier DNA as specified in Nardulli et al. (27).

Twenty-five ng of FLAG-LBD and DNA duplex displaying approximately 15,000 CPM

counts were added to the reaction. The reaction mixtures were incubated at 37'C for 20

min. The results were visualized by on a native, low salt, 5% polyacrylamide gel.

Protein-drug-DNA association mechanism

Reactions contained 15 pg of BSA, Ipg of pGEM (0.5 pmol), 0.15, 0.3, 0.45 or

0.6 ptg of FLAG-LBD protein (4.5, 9,13.5, 18 pmol, respectively) in IM TE pH 8.0.

[ 4 C]Hexene (specific activity of 53 mCi/mmol) was added to a final concentration of

200 pM. The reactions were incubated at 37'C for ihour. Proteins in the reactions were

eliminated by phenol/chloroform extractions and the DNA was recovered by ethanol

precipitation in the presence of 6 pg of glycogen. The DNA pellet was resuspended in 10

pl of TE pH 8.0 and half of the recovered DNA was separated on a 0.8% agarose gel.

After visualizing the bands with UV, the gel was dried and exposed on phosphorimager

screen for 36 hours for imaging.
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Chapter III. Results

Subcloning of hER and hER-LBD into baculovirus vector

The subeloning of full-length and ligand binding domain of the hER into

baculovirus expression vectors was carried out as illustrated in Figure 6. The PCR

reaction with pSVNeoCMV as the template and ALOl and ALO2 as the primers gave a

1.8 kb fragment with a flanking BamHI restriction site at the 5' end and a XhoI

restriction site at the 3' end. The fragment was double digested with BamHI/XhoI and

ligated into BamHI/XhoI-digested pBacPAK9 and pSK278 baculovirus expression

vectors. The 7.3 kb plasmids that resulted from the reaction were designated pAL3 and

pAL5, respectively, and served as the construct for the ER and FLAG-ER baculoviruses,

respectively.

The amino acid residues 282 to 595 code for the "hinge" region and the ligand

binding region of the estrogen receptor protein (28). This region was subcloned into the

baculovirus expression vectors to produce the ligand binding domain (LDB) of the

estrogen receptor. The PCR reaction with pSVNeoCMV, ALO3 and ALO2 gave a 0.94

kb fragment also with BamHI and XhoL sites. Because the ligand binding domain is

located near the C-terminus of hER, it does not contain an internal start codon (ATG)

from which the protein can be translated. The codon was included in the primer, ALO3,

so that the resulting PCR product would have a start codon immediately following the

BamHI restriction site. The PCR product was inserted into pBacPAK9 as above and the

6.5 kb plasmid construct for LBD was named pAL4.
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The PCR reaction with pSVNeoCMV, ALO4 and ALO2 yielded a 0.94 kb

fragment that was used for the subcloning of FLAG-LBD. Because pSK278, a

baculovirus expression vector with a built-in FLAG sequence, already contained a start

codon (16), the PCR primer did not need to contain a separate start codon. ALO4 and

ALO2 amplified the ligand binding domain and created BamHI and XhoI sites at the 5'

and 3' ends, respectively. Restriction digest and ligation into pSK287 yielded a 6.5 kb

plasmid expressing FLAG-LBD and it was designated pAL6.

Generation of baculovirus expressing ER and LBD

The recombinant viruses expressing ER, LBD, FLAG-ER and FLAG-LBD were

produced by co-transfecting BacPAK6 with pAL3, pAL4, pAL5 and pAL6, respectively.

Plaque pick assay enabled the visualization of the recombinant viruses' infection of Sf21

cells and isolation of the viruses. All viruses gave numerous well-defined plaques at all

dilutions of the co-transfection supernatant. Four plaques for each virus were picked

from wells infected with 10-3 or 104 dilutions of the cotransfection supernatant, because

those dilutions gave most well-isolated plaques.

The viruses expressing the correct proteins were identified by Western blot

analysis. The WCE of the cells expressing ER and FLAG-ER were blotted against anti-

ER (raised against the DNA binding domain) antibody. FLAG-ER was blotted against

anti-FLAG antibody to check for the presence of the FLAG tag. None of the 4 clones of

ER displayed signals on the anti-ER blot (data not shown). The clones of FLAG-ER

expressed the 67 kDa full-length protein (Figure 7A). Several smaller bands also

appeared on the blot, recognized by both anti-ER and anti-LBD antibodies. These were
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truncated forms of FLAG-ER containing the intact FLAG-tag, which is at the N-terminal

end of the protein, and the DNA binding domain, which is in the front half of the protein.

The P1 virus for FLAG-ER was pooled and was named ALBV1. The WCE from ER-

expressing cells were blotted against anti-ER (anti-DNA binding domain) antibody. The

Western analysis gave no signals for any of the four clones (data not shown). The

production of the recombinant virus for ER was attempted again, starting from

subcloning of the plasmid construct. The yet-to-be-confirmed recombinant virus was

named ALBV3.

The WCE of the cells expressing LBD and FLAG-LBD were blotted against anti-

ER (raised against LBD or the "hinge" region) antibody. FLAG-LBD extracts were also

blotted against anti-FLAG antibody. The clones of FLAG-LBD expressed the 33 kDa

protein with the intact FLAG tag. Similarly, the clones of LBD yielded the 33 kDa

protein (Figure 7B). The Western blot analysis showed that the FLAG-LBD protein was

slightly larger than LBD due to the 8 amino acid FLAG tag. FLAG-LBD and LBD

viruses were named ALBV2 and ALBV4, respectively.

Expression and purification of FLAG-ER and FLAG-LBD

The full-length, FLAG-tagged ER protein was purified using the anti-FLAG

affinity resin. One major band and two minor bands co-eluted near 67 kDa (Figure 8).

The major band was approximately 80% of the total proteins eluted. The truncated

proteins which contained the intact FLAG-tag may have co-purified with the full-length

FLAG-ER, but would have been removed in the concentration step where Centricon-50

eliminated everything whose molecular weight was smaller than 50 kDa. Using the one-
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step purification procedure, approximately 30 pg of the FLAG-ER was purified from 500

mL of Sf21 cells.

In order to obtain the homogeneous FLAG-ER, the baculovirus (ALBV 1) was re-

isolated by repeating the plaque assay, but the contaminant bands could not be

eliminated. There have been reports suggesting that hER can be posttanslationally

phosphorylated in Sf9 and MCF-7 cells (29,30). It is possible that one of the

contaminating bands was the phosphorylated form of ER. Also, the extraneous bands

may be the broken-down forms of FLAG-ER, if the protein had become unstable during

the purification process.

FLAG-LBD was also purified by the one-step procedure. The 33 kDa protein was

approximately 70% homogeneous with one contaminant protein roughly 67 kDa in size

(Figure 8). A 1 L Sf21 culture yielded 30-45 pg of the FLAG-LBD.

Protein expression time course

The time course protein expression was conducted in order to optimize the protein

expression procedure. The Western blot analysis using anti-LBD antibody indicated that

the highest FLAG-ER expression was 54-hour post-infection (Figure 9A). The protein

expression level had dropped off by 62-hour, the infection time designated in the original

protocol.

The expression level of FLAG-LBD peaked at 60-hour post-infection and

decreased afterwards (Figure 9B). This coincided with the original protocol, which

specified between 60 and 66 hour infection at 270 C. For the subsequent protein
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expression attempts, the infection times were adjusted according to the findings from this

experiment.

Competitive binding of FLAG-LBD to estradiol and drugs

The ability of the FLAG-LBD to bind to estradiol, the natural ligand of the ER,

was examined. The amount of radiolabeled estradiol bound to FLAG-LBD as a function

of unlabeled estradiol concentration yielded a sigmoidal curve indicating that the FLAG-

LBD is functional in binding its natural ligand (Figure 10 A). The recombinant protein

displayed the inflection point of approximately 10 nM, which was comparable to the

inflection point reported in the previous study (5).

Upon confirming that the recombinant protein actively bound the ligand, its

ability to bind to different drugs was examined. The FLAG-LBD showed binding to both

Heptene and Hexene (Figure 1GB and 1 OC), although the binding was not as strong as

that of estradiol. The plot of radiolabeled estradiol amount in relation to the drug

concentration showed a sigmoidal curve for both drugs, but the curve was shifted to the

right (inflection point = 34.1 nM) compared to the curve for estradiol indicating that the

binding of the drugs was weaker than that of estradiol. The relative binding affinity

(RBA) of Hexene to estradiol was approximately 39. The RBA of Heptene could not be

easily compared, because different batches of purified protein and different lots of

tritiated estradiol were used for the two assays. However, similar assays done using calf

uterus whole cell extract containing estrogen receptor proteins showed similar RBAs for

the two compounds (Croy and Essigmann, unpublished data).
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The assay using AM showed no association between the FLAG-LBD and the

compound (Figure 1 OB). This was expected, since the compound lacks the hormone

moiety, which would interact with the ligand binding domain.

Competitive binding of FLAG-ER to estradiol and drugs

The competitive binding of FLAG-ER to estradiol and the drugs showed very

similar results to those of FLAG-LBD. The amount of radiolabeled estradiol bound to

the protein showed a sigmoidal curve, indicating that the protein actively bound the

ligand (Figure 11 A). Similarly, in the reaction where Hexene was competing against the

labeled estradiol for binding to the protein showed binding, although the affinity was not

as high as that of estradiol (Figure 1 IB). As it was for FLAG-LBD, the reaction with

AM showed no competition (Figure 11 B).

Gel shift mobility assay

A gel mobility shift assay (GMSA) was performed to assess the ability of the

FLAG-LBD to interact with DNA modified with different drugs. In the presence of

FLAG-LBD and drug-damaged DNA, the protein-DNA complexes via drug were formed

and band shifts were observed (Figure 12 lanes 3, 4, 5, 8 and 9). The lanes with DNA

alone or unmodified DNA with the protein, however, did not show the slow-moving band

(Figure 12 lanes 1, 2, 6 and 7). In both ClD and C2D complexes, duplexes modified with

Heptene had stronger affinity towards FLAG-LBD than did those modified with PI

(Figure 12 lanes 3 and 4, 8 and 9). Also, a much stronger association between the protein
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and the DNA was observed when there were multiple drug adducts on the DNA,

compared to the mono-adducted DNA (Figure 12 lanes 4 and 5).

This assay confirmed that the recombinant protein was functional in binding not

only free drugs, but also in forming complexes with DNA modified by the drugs.

Protein-drug-DNA association mechanism

This experiment was performed in order to investigate the kinetics of the protein-

drug-DNA formation. As shown in Figure 13, two different paths of association are

available when the radiolabeled drug ([14C]Hexene) is added to a reaction containing

DNA (pGEM) and the protein (FLAG-LBD)-the drug may react with the DNA first (B)

or it may bind to the protein first (D). The formation of the protein-drug-DNA complex

(C) from B has been demonstrated with GMSA, but it has not been shown if the same

complex can be formed from D.

In this reaction, the proteins were removed from the reaction mixture by

phenol/chloroform extraction and the remaining DNA was resolved on an agarose gel and

was visualized with UV. The phosphorimager analysis of the same gel showed the

radiolabeled drugs adducted to the DNA.

The UV visualization of the plasmids reacted with the drug in the presence of

different amounts of FLAG-LBD showed similar intensity bands (Figure 14A).

However, the phosphorimager analysis of the same gel showed a decrease in the I4C

signals as the amount of the protein added to the reactions increased. This indicates that

as the protein concentration in the reaction increases, the association between the protein

and the drug probably occurs more frequently than that between the drug and the DNA.
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This path does not completely take over, shown by the existence of the bands in the

phosphorimage up to the point where the ratio between the protein and the drug adducts

was 9:1 (Figure 14B lanes 2 to 5). However, when the ratio of the protein to the drug

adduct was approximately 1.5:1 (using the estimation of 6 drug adducts per pGEM

plasmid (Croy and Essigmann, unpublished data)), a significant amount the drug reacted

with the plasmid (Figure 14B, lane 2). The faint bands above the main bands in lanes 1

and 2 of both the UV visualization and the phosphorimage were probably the nicked form

of the plasmid, formed by the reaction with the drug.
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Chapter IV. Discussion

This study describes the expression and the purification of the human estrogen

receptor (hER) and the ligand binding domain of the hER using the baculovirus

expression system. In order to investigate the mechanism and the optimization of the

estrogen receptor-selective genotoxins, the production of a large quantity of pure proteins

was required. The use of the baculovirus system allowed the expression of the

recombinant proteins in insect cells, thereby eliminating the need to work with the cell

extracts prepared from animal organs containing estrogen receptors.

The plasmid constructs containing hER cDNA in baculovirus expression vectors,

the recombinant viruses derived from the constructs and the proteins expressed by the

viruses are listed in Table 1. It was demonstrated that a one-step purification yielded

proteins competent to bind the natural ligand, estradiol, as well as drugs containing

estradiol moiety. 30 to 45p.g of FLAG-LBD was purified from 1 L of Sf21 cells and

approximately 30pg of FLAG-ER was purified from 500mL of Sf21 cells.

Purity of the Proteins

Much of the purity and the yield of the recombinant proteins seemed to depend on

the status of the Sf21 cell culture at the time of infections. The same amount of cells at

the same point in their growth curves infected with the same ALBV2 virus yielded

different amount and purity of FLAG-LBD protein. Therefore, it was crucial that the

Sf21 cells were healthy -- growing rapidly and have normal morphology -- at the time of

the infection and that the cell culture was replaced with cells from the frozen stock at a
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regular interval. It has been suggested that high passage number of cells decreased virus

production (18).

A few observations were made regarding the purification of the FLAG-ER and

FLAG-LBD. FLAG-ER co-eluted with two contaminating bands similar to FLAG-ER

in size. If one of the bands was the phosphorylated form of the protein, the treatment

with phosphotases would collapse that band, increasing the purity of the protein. On the

other hand, if the contaminating bands were broken-down form of the protein because the

protein was not stable enough during the purification, it has been speculated that eluting

the protein in the presence of a trace amount of estradiol may enhance the stability. This,

however, would not be an ideal method of the protein purification for the purpose of this

study, since the examining the interaction between the protein and the drugs is an

essential aspect of the study. The protein purified with estradiol, and therefore is bound

to the ligand, is less likely to interact with the drugs, given the protein's higher affinity

towards estradiol than that towards the drugs being studied. Because of the possibility

that an incompetent recombinant virus was the cause of the impure protein, co-

transfection of pAL5 and isolation of new virus are being repeated.

FLAG-LBD also co-eluted with a protein 66kDa in size. The Western blot

analysis of the cell extract just prior to the purification showed no corresponding signal at

66kDa, indicating that the contaminating band does not contain a portion recognized by

anti-ER antibodies and is not related to ER protein. It is possible that the protein is a

cellular protein that contains amino acid sequence recognizable by anti-FLAG affinity

resin.
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Baculovirus expressing ER

The failure to produce baculovirus that expressed untagged ER may be due to the

plasmid DNA from which the virus was derived. The fact that the co-transfection

supernatant gave many clear plaques and yet all four plaques isolated failed to express the

correct protein suggests that the plasmid clone selected for the co-transfection was the

source of error. It is possible that the selected clone contained a mutation, which was not

detected by the restriction enzyme analysis following the miniprep of the clones, caused

the expression of a different protein or no expression at all. The possibility of ER being

toxic or unstable to be expressed in the cells were excluded, since there have been a

number of purification of ER via baculovirus system reported in the literature (29,31).

Activity of the recombinant proteins

Some observations about the activity and the overall quality of the purified

recombinant proteins could be made from the binding curves of the proteins. First, the

binding curves for the FLAG-ER and FLAG-LBD with estradiol (Figures 1OA and 11 A)

both show sigmoidal curves, indicating that both proteins bind to their natural ligand.

However, there was approximately 4-fold difference in the maximum amount of the

tritiated estradiol bound to FLAG-ER and to FLAG-LBD, although the same number of

receptors, calculated from the protein concentrations, was used for both sets. This

suggests that the purification of FLAG-LBD was more successful than that of FLAG-ER

and that the amount of the active FLAG-ER in the final purification product was less than

previously thought. It is likely that most of the protein of the major band in Figure 8 was

contamination or inactive FLAG-ER. Therefore, it will be beneficial to attempt the
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purification of FLAG-ER by remaking the recombinant baculovirus, starting from co-

transfection. Further characterization with the more pure FLAG-ER would be very

informative.

Secondly, although the purity of the two proteins differed greatly, the quality of

the active proteins seems to be very similar. The two binding curves for estradiol in

Figure 1 OA and 11 A, when scaled to account for differing y-value range, overlap almost

completely (Figure 15A). Despite the differences in the absolute binding amount of

estradiol, the two proteins' bindings towards the ligand at different ligand concentration

were similar. The curves overlapped almost completely and they have almost the same

inflection point at ~1OnM (FLAG-ER: 11.7nM, FLAG-LBD: 10.9nM), indicating that the

amount of unlabeled estradiol need to occupy half the active proteins is very similar. The

same phenomenon was found in the binding curves against Hexene. Despite the

differences in the absolute CPM values -- in other words, the amount of the labeled

estradiol bound to the proteins -- the curves, once again, almost overlapped (Figure 15B)

and they showed similar inflection points at -45nM (FLAG-ER: 41.2nM, FLAG-LBD:

34. lnM). These findings suggest that although one purification process was more

successful than the other was, both preparations contained active proteins and that the

two proteins display same binding affinity toward the ligands.

Lastly, the percent activity of the FLAG-LBD purified was calculated using the

scintillation counts of the tritiated estradiol when the protein was reacted with the labeled

estradiol only. The calculation was carried out using the obtained CPM value, the protein

and the labeled estradiol amounts and taking into account the specific activity of the

labeled estradiol (72Ci/mmol) and the counting efficiency of the scintillation counter
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(-40%). It was estimated that approximately 89% of the proteins added to the reaction

were bound to estradiol, therefore presumed active. However, the accuracy of this

estimation was limited to the accuracy of the protein concentration concluded from the

gel quantification as well as the purity and the activity of the tritiated estradiol.

Formation of the protein-drug-DNA complex

It had been demonstrated with the gel mobility shift assay discussed earlier

chapter that when drug-damaged DNA is present, FLAG-LBD binds to the complex via

the drug. However for an in vivo application, DNA and the estrogen receptor protein are

already present in the cell and the drug is added. This experiment was performed to

simulate the situation in the cell by adding the drug into a reaction where the DNA and

the protein are already present. As mentioned in the Results chapter of this report, the

drug seems to associate with the protein more often, especially when more protein is

added to the reaction. It was not possible to deduce from this experiment whether the

protein-drug complex can still bind to DNA, since all three states-B, C, and E in Figure

13-- would appear the same on the phosphorimager analysis. Thus, major bands in the

phosophorimage can be either the results of B, E or the combination of the two. In either

scenario, it indicates that the three-component complex can be formed if the ratio of the

protein to the drug adducts is approximately 1.5:1.

Conclusion and Significance of Results

This study explored the one-step purification of recombinant proteins, FLAG-ER

and FLAG-LBD. The proteins were purified to 70% homogeneity (in the case of FLAG-
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LBD) and in large quantities. The proteins displayed binding to estradiol and to the free

drugs containing an estradiol moiety and showed high activity. The FLAG-LBD protein

also bound to drugs adducted to DNA, demonstrating that the protein-drug-DNA

complex, whose formation is vital to the efficacy of estrogen receptor selective

genotoxins, can be assembled. Also, it was shown that such complexes still form when

the drugs are free to bind either the DNA or the protein first.

The production of the purified ER proteins also provides material for many other

aspects of the studies pertaining to the estrogen receptor selective genotoxins. For

example, purified proteins are a vital component of the repair assay being developed in

the lab, which investigates the efficiency of the repair mechanisms towards DNA treated

with the tumor selective drugs in the presence of the estrogen receptor.

Future directions

The results of this studies gave rise to many questions that should be further

investigated. First, as mentioned earlier in this section, re-production of FLAG-ER virus

in order to obtain proteins of higher purity and activity is necessary. Although according

to the scheme of tumor-selective genotoxins, the region of the protein in direct contact

with the drug and the DNA is the ligand binding domain and the formation of the protein-

drug-DNA complex is demonstrated using the FLAG-LBD, the validity of the system

cannot be assumed. The full-length estrogen receptor is approximately twice the size of

the ligand binding domain purified during this study and the added bulk of the protein

may have a slightly different interaction with the other components. Also, the DNA

binding domain, the region missing from the ligand binding domain, may affect the
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interactions differently. Therefore, it is essential that the full-length protein of good

quality is obtained and further characterized.

Also, the kinetics of the protein-drug-DNA complex association should be studied

more in depth. The formation of the complex is vital to the efficacy of the estrogen

receptor selective genotoxins and it is important to understand the nature of the

components. To follow up on the initial findings presented in this work, experiments

elucidating the association kinetics of the three-component complex when the protein is

already bound to the drug needs to be performed. Such information will be essential for

the optimization of the drug dosing.

Another study that would give valuable insights into the molecular mechanism of

the drugs is mutational studies of the protein. Different mutant forms of the estrogen

receptor protein can be made and used to investigate the interaction between the protein

and the drug. In order to achieve this, the residues of the proteins, which are suspected to

be important in binding the ligands should be mutated by site-directed mutagenesis.

Altering these residues could affect the protein's binding affinity towards the natural

ligand and examining the mutations' effects on the drug-binding capability will improve

our understanding of the interaction between the protein and the drugs on the molecular

level.

There have been a number of studies with mutant estrogen receptor reported in

the literature (30,32,33). Of these, two mutant proteins seem to be promising candidates.

Glu353Gln mutant showed a 9-fold decrease in binding affinity towards estradiol (33)

and His524Ala mutant displayed a 12-fold decrease in biding affinity towards the ligand

(32). They were two of the three amino acids identified as residues important in binding
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estradiol according to crystallography studies (12,13). Both form hydrogen bonds to the

hormone, holding it diagonally across the cavity of the protein.

The construction of the plasmid DNA containing the mutated hER gene followed

by the expression and the purification of the mutant proteins in the baculovirus

expression system will provide these proteins to be used in the investigation.
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REPAIR ENZYME

NON-CANCEROUS TUMOR CANCER
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AND RENDERED NON-TOXIC TOXIC TO CELL

Figure 1. Design of programmable anti-cancer drugs

This is the underlying scheme of the design of the tumor-specific drug. The box inset shows the

basic design of the drug which consists of two domains. The "warhead" domain reacts with the DNA,
forming an adduct. The protein recognition domain is derived from the ligand of the protein
abundant in the cancer cells. In a cancer cell, the lesion formed by the drug would also bind the

tumor specific protein, blocking the damaged site from the DNA repair enzymes. This complex

would be highly toxic to the cell. However, in a normal cell where such protein is not expressed,
the drug adduct would be readily repaired, showing no toxicity.
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Figure 2. Chemical structures of estradiol and the drugs used in this study
All drugs are composed of the DNA binding domain, a nitrogen mustard, and the
protein recognition domain. The protein binding domain is either an estradiol or
otherhormone- like moiety. A. Estradiol, the natural ligand of the estrogen receptor
protein. B. PI-C6NC2, the protein recognition domain is a phenylindole. C.
E2-C6NC2, same as B except the phenylindole is replaced with estradiol. D.
E2-Heptene, the alkene derivative of the 7-carbon linker. E. E2-Hexene, the alkene
derivative of C. * indicates the position of the 1 4C label in [I 4C]Hexene. F. Amine
mustard (AM), the control compound lacking the protein recognition domain and the
carbon linker leading up to the amine.
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Figure 3. Crystal structure of hER-LBD and the ligand binding pocket
A. The ribbon representation of the ligand binding domain of the estrogen receptor. The
structure shown is a homodimer of the protein containing 2 molecules of estradiol The
ligand is represented as red space-fill model. The structure is rendered in Rasmol from the
crystallography data published by the Sigler group (12). B. The ligand binding pocket of
the hER. The interactions between estradiol and the residues of the protein are illustrated.
The D-ring hydroxyl group of estradiol forms a hydrogen bond with His524. The phenyl
hydroxyl group forms hydrogen bonds with Arg394 via a water molecule and directly with
Glu353 of the protein. The figure was borrowed from Tanenbaum, et al. (12).
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Model of (E2-C 6NC2)- Modified IDNA:hER LBD

lkr

Figure 4. Model of E2-C6NC2-modified DNA bound to hER-LBD
The structure of the DNA modified by the drug, E2-C6NC2, was docked into the
binding pocket of the hER-LBD. The structure of the protein used was solved by the
Sigler group (12). The model was obtained by performing a energy-minimization
in water using molecular modeling program, Insightil. The protein backbone is
rendered as ribbon, the drug molecule is shown as a ball-and-stick figure and the
DNA helix is represented as sticks.
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Bsu361-linearized BacPAK6 DNA

* * *

Transfer Vector

* Flanking sequence

pp Polyhedrin promoter

ORF 1629

Foreign Gene

XK Homologous recombination

* Bsu361 restriction site

Figure 5. AcMNPV genome and co-transfection scheme
The gene of interest is inserted into the baculovirus transfer vector (pBacPAK8/9,
pSK277/278) containing the intact ORF 629 gene, polyhedrin promoter and the
flanking sequences. The plasmid is co-transfected with Bsu361-digested AcMNPV
viral DNA (BacPAK6, Clontech). Homologous recombination following the co-
transfection into Sf21 cells restores the ORFI 629 and inserts the polyhedrin promoter
and the foreign gene, producing a viable virus. The genes of interest for this study
were hER and the ligand binding domain of hER. Figure was adopted from
Merrington, et al. (18).
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Figure 6. Cloning scheme of ER and LBD in baculovirus expression vectors

A PCR reaction with primers ALO1 (6) and ALO2(@) gave the full-length estrogen receptor (ER) gene (1.8 kb).

The fragment was ligated into the baculovirus expression vectors pBacPAK9 and pSK278 to give pAL3 and pAL,

respectively. pAL3 was the construct for the un-tagged ER and pAL5 was the construct for FLAG-ER. Similarly,

PCR reaction with ALO3(@) and ALO2 gave the ligand binding domain (LBD) fragment (0.94 kb) containing the

start codon (ATG). The fragment in pBacPAK9 yielded pAL4 which was the construct for the un-tagged LBD.

The LBD fragment (0.94 kb) produced by the PCR reaction with ALO4( @) and ALO2 was inserted into pSK278 to
give pAL6, the construct for FLAG-LBD.
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Figure 7. Western blot analysis of the recombinant proteins
A. The whole cell extract of one of the clones (clone #2) expressing FLAG-ER was resolved
on a SDS-PAGE gel. It was blotted against the anti-ER antibody raised against the DNA
binding domain (lane 1) and against the anti-FLAG antibody (lane 2). The lines indicate the
position of the molecular marker standards and the arrow indicates the 67 kDa FLAG-ER.
B. The whole cell extracts of the cells expressing LBD (lanes 1 and 3) and FLAG-LBD (lanes 2,
4 and 5) were separated on a SDS-PAGE gel side by side. They were blotted against the anti-ER
antibody raised against the ligand binding domain (lanes I and 2) and against the hinge
region (lanes3 and 4). FLAG-LBD whole cell extract was also blotted against the anti-FLAG
antibody (lane 5). The lines indicate the positions of the molecular weight standards.

55

B.



FLAG-ER

1

ci)

2
0)
L?
C)

FLAG-LBD MW kDa

3 4
0) cM

CO)
6 S

-munw

UU

97.4

66

46

30

Figure 8. Purified FLAG-ER and FLAG-LBD

The purified proteins were evaluated by SDS-PAGE analysis. The protein bands were

visualized by Coomassie staining. Lanes 1 and 2 were FLAG-ER and lanes 3 and 4 were

FLAG-LBD. The numbers above the panel were the amount of the desired proteins in

each lane, estimated by comparing to BSA solutions of known concentrations. The

numbers on the right show the molecular weight marker sizes. The arrows on the left

indicate the positions of the proteins, where the upper arrow points to FLAG-ER and

the lower to FLAG-LBD.
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Figure 9. Time course expression of the recombinant proteins
The Western blots of the FLAG-ER (Panel A) and the FLAG-LBD (Panel B) are shown above.
The numbers above the panels indicate the infection time in hours. The cells harvested
at the designated time post-infection were made into whole cell extracts and the extracts
were resolved on SDS-PAGE gels. They were blotted against the anti-ER (raised against LBD)
antibody. The lines represent the position of the molecular weight standards and the arrows
denote the FLAG-ER and FLAG-LBD proteins.
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Figure 10. FLAG-LBD competition assays
The binding of different ligands to the FLAG-LBD is shown. The amount of radiolabeled
estradiol bound to the protein was plotted as a function of unlabeled ligand
concentration. The competing ligand was unlabeled estradiol (A), Hexene (B, closed
circle), AM (B, closed triangle) or Heptene (C).
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Figure 11
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Figure 11. FLAG-ER competition assays
The binding of different ligands to the FLAG-ER is shown. The amount of radiolabeled
estradiol bound to the protein was plotted as a function of unlabeled ligand
concentration. The competing ligand was unlabeled estradiol (A), Hexene (B, closed
circle), or AM (B, closed triangle).
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Figure 12. Gel shift mobility assay
The association of the protein and the DNA duplex via estrogen receptor selective
drugs was demonstrated. The DNA duplex with radiolabeled Cl oligo (Cl D) was
used for lanes 1 through 5 and DNA duplex with radiolabeled C2 oligo (C2D) was
used for lanes 6 through 9. Lanes 1 and 6 were negative controls containing only
DNA duplexes whereas lanes 2 and 7 were controls with DNA duplex and FLAG-LBD
protein. Phenylindole (PI) was added to the reactions in lanes 3 and 8. For
Heptene (Hep), + indicates Heptene monoadduct on the DNA (lane 5) and ++
represents multiple adducts of Heptene formed on DNA duplex es (lanes 4 and 9). The
arrow denotes the shifted bands representing the DNA-drug-protein complexes.
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Figure 13. Possible association kinetics of the protein-drug-DNA complex
The possible pathways of interactions among FLAG-LBD, ["C]Hexene and pGEM
are shown. It is shown that the protein binds to the drug when the drug is already
bound to the plasmid (B to C), but it is not known if the drug is capable of binding
the plasmid after it has associated with the protein (D to E). Also, it is not known
if the drug associates with the protein or the DNA preferentially.
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FLAG-LBD

A.
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B.

Figure 14. Association kinetics of the protein-drug-DNA complex
The association reaction carried out with different amount of FLAG-LBD protein was
resolved on a 0.8% agarose gel. The plasmid DNA is visualized with UV light (A) and
the [14C]Hexene adducted to the DNA was visualized by phosphorimager analysis (B).
The amount of protein in each lane was 0, 0.15, 0.3, 0.45 and 0.6 pg, which was 0,
1.5, 3, 4.5, 6 fold of the number of the drug adducts estimated to be in each reaction.
The phosphorimager screen was exposed for 36 hours.
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Figure 15
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Figure 15
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Figure 15. Comparison of FLAG-ER and FLAG-LBD's ligand binding capacity
A. Figure 1 OA and Figure 11 A are overlapped on a double y-axis graph to show the
resemblance of the two curves indicating the ability to bind estradiol. The left
y-axis is FLAG-ER and the right y-axis is FLAG-LBD. Although the span of the

[3H]Estradiol CPM values are different, the shape and the inflection points
are almost identical (Inflection point of FLAG-ER: 11.7 nM and of FLAG-LBD: 10.9 nM).
B. Overlap of Figure 1 OB and Figure 11 B. As in panel A, these curves compare the
two proteins' binding capacity for Hexene (Inflection point of FLAG-ER: 41.2 nM and
of FLAG-LBD: 34.1 nM)
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TABLES



Protein

Name Size (kDa)

FLAG-ER

FLAG-LBD

ER

LBD

67

33

67

33

Baculovirus

ALBV1

ALBV2

ALBV3

ALBV4

Name Size (kb)

pAL5

pAL6

pAL3

pAL4

7.3

6.5

7.3

6.5

Table 1. Plasmid and baculovirus used for protein expression

The names and the sizes of the plasmids from which the baculoviruses were
derived are listed. Also the names and the sizes of the proteins expressed by
the baculoviruses are listed.
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