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Abstract

This thesis explores the use of ensemble, free energy models in the study and de-
sign of molecular, biochemical systems. We use physics based computational models
to analyze the molecular basis of binding affinity in the context of protein-protein
and protein-ligand binding as well as reaction rate enhancement in enzyme catalysis.
First, we evaluate the solvent screened energetics of immunoglobulin G (IgG):Fcy
receptor binding using molecular mechanics, Poisson-Boltzmann surface area (MM-
PBSA) models. We assess the role IgG1 linked glycans play in binding to human
FeyR-III and computationally evaluate experimentally designed Fe mutations that
recover binding affinity in the absence of glycosylation. Using the insight gained
from this study, we developed novel murine IgG variants with engineered FcY re-
ceptor binding patterns via the computational design and experimental validation
of Fc mutations that are predicted to knock out binding to FcyR-IV. Our design
and analysis highlight the importance of solvent screened electrostatic interactions
and electrostatic complementarity in protein-protein binding. Second, we develop
novel, ensemble methods to measure configurational free energy and entropy changes
in protein-ligand binding and use it to predict the relative binding affinity of a series
of previously designed HIV-1 protease inhibitors. We find that using configurational
free energies to evaluate inhibitor efficacy significantly improves relative ranking of in-
hibitors over traditional, single-point energy metrics, but that only a relatively small
number of low energy configurations are necessary to capture the ensemble effect.
Finally, we present a joint study of the redesign and dynamic analysis of ketol-acid
isomeroreductase (KARI). We first develop and apply a novel, end-point method
to rationally design enzyme variants that reduce the free energy of activation, and
present the computational and experimental analysis of a series of designed KARI
mutants. Our analysis reveals that this transition-state theory based approach is
effective at reducing the enthalpy of activation, but also increases entropic activation
penalties that ultimately overpower the enthalpic gains. A dynamic analysis of these



KARI variants is also presented, in which the transition path ensemble is explored

using transition path sampling. We find that this ensemble approach is better able

to predict relative enzyme activities and suggests a conserved, dynamic mechanism

for catalysis. The results and analysis presented herein demonstrate novel, computa-

tional approaches to account for ensemble effects in the study and design of effective

biomolecules.
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Chapter 1

General Introduction and

Motivation

Over the past 50 years, the fields of computational chemistry and structural biology

have seen enormous growth in both the development of analytical in silico tools as

well as the amount of structural data available. Since the first crystal structure of

myglobin was solved in 1958 [1], more than 70,000 protein structures have been found

and deposited in the Protein Data Bank [2]. Additionally, the proliferation of fast,

inexpensive computers has driven the rapid development in computational methods

to analyze these biological data. Decades of work by many computational scientists

has resulted in the development of accurate force fields to measure the atomic scale

interactions of proteins in a given conformation as well as a host of algorithms to

explore the dynamics of these and other biological structures [3, 4, 5, 6, 7, 8]. Re-

cent applications of these computational tools have shown a demonstrated ability

to predict structural and energetic properties of proteins and their relevant ligands

[9, 10, 11]. It is well known, however, that a single, static conformation of any biolog-

ically relevant chemical species and the sum of all its inter-atomic interactions fails

to accurately represent all the physical parameters that define that chemical species

[12, 13]. Crystallographic models primarily reveal ensemble averaged structures of

macromolecules, and while they provide a great deal of insight into the structure

of the complex interaction network in biochemical systems, they are not the whole

16



story. They represent a single point on the potential energy landscape or a single

point in phase space when assigned momenta, with limited information about the

relative thermal fluctuations of any given atom (B-factors). Experimental measure-

ments of binding affinity, stability, or reaction rates correspond to average properties

of the system and include contributions from the average enthalpy as well as entropic

effects. As such, accurate absolute or relative prediction of these properties often re-

quires not just accurate force fields, but effective sampling of configurational and/or

momentum space such that converged, thermodynamic or kinetic averages can be

obtained. Furthermore, this sampling must be done in accordance with the underly-

ing Boltzmann distribution that governs the equilibrium probability of observing any

given point in phase space. Common sampling methods include molecular dynamics

as well as Monte Carlo based search routines. When modeling complex biological

systems, however, it is not always possible to exhaustively explore phase space due

to computational constraints and the sheer number of degrees of freedom present.

As such, approximations are often made such that only selected degrees of freedom

are treated in an ensemble versus static manner; however, appropriate partitioning

is non-trivial. Successful use of approximate models requires careful assessment of

all those physical effects important to the system under study. Failure to account

for these effects often yields poor agreement between model and experiment, while

accounting for far more than is necessary can result in computational intractability.

In the case of protein-protein docking, there are often a huge number of rele-

vant degrees of freedom in both the bound and unbound states, including side chain

motions, backbone motions, and solvent degrees of freedom. Current approaches to

modeling bound complexes are often iterative and hierarchical, in which different de-

grees of freedom are considered at different times during the docking process [14].

Full, explicit solvent molecular dynamics methods can be used to assess binding, but

when the goal is to compare multiple variants or binding modes, such approaches

come with a large computational cost. Simulations must be run for long enough to

sample all relevant, high probability portions of phase space. Rather than treating

all solvent molecules explicitly, a common approximation is to use continuum sol-

17



vent methods such as Poisson-Boltzmann Surface Area (PBSA) [15] or Generalized

Born Surface Area (GBSA) [16] models, which account for solvent degrees of freedom

through an implicit, mean field approach and are thus much faster to evaluate. For a

given protein conformation, they allow for the rapid computation of the solvent free

energy. When combined with a conformational sampling scheme, this method allows

much faster exploration of protein configurational space. However, the utility of such

continuum models is still an open question. In some systems, they compare very well

to explicit solvent models and are highly predictive [17, 18, 19], but in others they

fail to capture important solvent properties without system-specific parametrization

[20, 21], limiting their broad application.

In the case of ligand-protein binding, there are similar issues of scale, with large

numbers of ligand and protein degrees of freedom contributing to the thermodynamics

of binding. Continuum solvent approximations are used, often with an additional

simplification, the rigid binding approximation. This assumes that the bound complex

is well defined by a single, predominant configuration, and that both the ligand and

receptor adopt identical conformations in the unbound state. Using this to compare

many chemically related ligands and predict relative activity, one implicitly assumes

negligible differences in entropies of binding between different ligands. Some models

correct for this by assuming a constant entropic penalty proportional to the number

of ligand rotatable bonds [22, 231, but studies have shown that this can often be

inaccurate [24, 25]. Such rigid binding models are commonplace in high throughput

virtual screens, and useful when one is interested in simply discriminating binders

from nonbinders [26]. When absolute or relative affinity measurements are required,

however, these approximations are inappropriate, and can result in poor correlation

with experiment [27]. As such, developing accurate, efficient ways of computing

ensemble free energies remains an active field of study.

In a similar vein, when modeling enzymatic reactions, one is often interested in

evaluating the free energy difference between the transition-state and reactant-state

ensembles, as this difference is hypothesized to be proportional to the phenomeno-

logical rate of reaction [28]. It is difficult, however, to map out the conformational
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ensemble of the transition-state without information about the specific reaction mech-

anism. Additionally, accurate modeling of bond breaking and bond forming reactions

requires a quantum mechanical treatment, which is very computationally expensive.

As such, it is common to assume a specific reaction coordinate and find transition

state(s) along that path [29]. In reality, however, for enzymatic systems, there are

a multitude of paths with different transition states, and single coordinate or single

transition state models can miss important regions of phase space, leading to poor

assessment of the activation free energy [30, 31]. Recent sampling algorithms such

as the string and nudged elastic band methods [32, 33] have attempted to improve

sampling rare events and their associated transition states by trying to find mini-

mum free energy paths, but these methods often require either a smooth potential

energy surface or a good initial guess of the path and do not actually yield dynamic

trajectories. A recently developed transition path sampling algorithm [34] allows for

unbiased sampling of reactive paths without a priori knowledge of the reaction mech-

anism, and can generate appropriately weighted ensembles of transitions that carry

systems across reaction barriers. Its utility has been validated on very small systems

but has only seen limited application to enzymes.

In this thesis, we test the validity many of these approximations via the applica-

tion and development of physics-based, free energy, ensemble models to biochemical

systems, with specific focus on the application of such models in the context of ligand

and protein design. One of the long-term goals in the application of computational

chemistry and biology has been the de novo design of small molecules and proteins

for medicinal or scientific purposes. Experimental methods to design effective small

molecule or protein therapeutics rely on expensive, large-scale screens to explore the

vast chemical or sequence space; initial chemical screens in modern pharmaceutical

operations commonly explore chemical libraries on the order of 106 compounds [35].

As such, computational design and virtual screening methods are often employed to

offset experimental cost and improve the odds of finding successful candidates [26].

Overall, this thesis examines the use of ensemble, free energy models in the evaluation

and design of specificity in protein-protein interactions, high-affinity small molecule
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inhibitors, and active enzyme catalysts. We explore the role of solvent mediated

electrostatic interactions through continuum electrostatics, configurational entropy

and free energies in ligand binding via ensemble enumeration techniques, as well as

activation free energies and protein dynamics in enzyme catalysis through transition

state theory and transition path sampling.

In Chapter 2 we examine the physical driving forces behind protein-protein affin-

ity in the antibody-receptor, IgG:Fcy system through the application of mean-field,

continuum electrostatic models. The motivation for this work was the discovery of

an aglycocylated, human IgG antibody that successfully bound to and activated the

Fey-III receptor. It is known that removal of the glycan attached to the Fe region of

the hIgG molecule normally results in reduced affinity or loss of binding to all Fcy

receptors [36, 37, 38, 39, 40, 41, 42]. However, through the rational redesign of the

three residue glycosylation tag, mutants were found that recovered binding. Previous

computational studies had indicated the importance of electrostatic interactions in

protein association [43], specificity [44], and binding [45, 19], with the interplay be-

tween desolvation penalties and coulombic interactions being notably important [461.

We explore the ability of an MM-PBSA, implicit solvent model, combined with a

hierarchical configurational search scheme, to capture these interactions and develop

homology models of the wild-type and aglycocylated, mutant structures. These mod-

els are used to examine the role played by the glycan as well as the mutants upon

binding to the Fcy receptor. We find that much of the observed binding pattern

can be explained by changes in the solvent mediated electrostatic interactions that

improve electrostatic complementarity at the binding interface. Building on this dis-

covery, in Chapter 2 we also present the negative design of mouse IgG antibodies

to knock out binding to the Fc-y-IV receptor to identify IgG mutants with limited

immune response. We sought to test the use of electrostatic complementarity as a

design paradigm and present the design of a series of mutations that are predicted to

disrupt binding by reducing complementarity. Overall, we find that coulombic and

solvent mediated electrostatic interactions are critical in protein binding and that

electrostatic optimization is effective as a protein design strategy. High electrostatic
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complementarity is predictive of improved binding affinity, and low electrostatic com-

plementarity is predictive of reduced binding affinity and activation.

In Chapter 3 we incorporate an additional level of complexity into our ensemble

models and examine the effect of configurational entropy and free energy in the com-

putational evaluation of a series of small-molecule, HIV-1 protease inhibitors. This

work was motivated by a previous computational study that designed and evaluated

the binding affinity of the same inhibitor series without accounting for configura-

tional entropy effects [47]. Comparison with experiment showed poor correlation

between this approximate screening method, and we sought to assess the differences

and sources of the configurational entropy change for ligand degrees of freedom upon

binding. Previous studies of the thermodynamics of ligand binding have suggested

that the ensemble nature of ligand-receptor interactions play a key role in both their

absolute and relative binding affinities [24, 25]. It is well known that ligands can

adopt multiple conformations in their respective binding pockets [48] and lose a great

deal of configurational freedom (e.g., translational, rotational, internal) upon binding

[49, 50]. Similarly, proteins can undergo comparable losses in conformational freedom

upon binding as active site residues free in the unbound state become constrained

when interacting with the ligand in the bound state [51]. We explored the role

of ligand conformational entropy using a novel, end-point approach that effectively

enumerates the conformational space of the ligand in the bound and unbound states.

This work employs a hierarchical energy evaluation scheme and also accounts for en-

semble solvent effects via a PBSA continuum model. Free energies, enthalpies, and

entropies of binding are explicitly computed by applying the exact Boltzmann weight

to each conformation and taking the appropriate average over configurational space.

We find that inclusion of ensemble effects results in relative binding free energies that

correlate strongly with experiment and that the free energies are well defined by a

small portion of the configurational space in both the bound and unbound states.

Furthermore, we identify major sources of configurational entropy loss and explore

the effect of entropic coupling between different ligand degrees of freedom upon bind-

ing via a novel, information theory based approach. As a whole, this work outlines
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a generalized framework through which the role of ensemble binding effects due to

both ligand and receptor can be explored.

In Chapter 4 we revisit ensemble based protein design and explore the utility

of this design paradigm in the context of enzyme redesign. In so doing, we assess

the efficacy of transition-state theory as a protein design framework and explore the

dynamics of an enzyme catalyzed reaction using transition path ensembles. The goal

of this work was to redesign and improve the specific activity of the enzyme ketol-acid

reductoisomerase (KARI) by stabilizing the transition state of the isomerization/alkyl

migration reaction that it catalyzes. There have been a number of recent successful

studies presenting both the redesign and de novo design of enzymes [52, 53, 54, 55, 56]

using design schemes based on classical transition-state theory. The fundamental

hypothesis is that given a model of the transition state and reactant (i.e., ground)

state one can improve activity by energetically stabilizing the relative free energy

difference between the two states. We sought to test this design principle using

static models of the transition and ground state in conjunction with an end-point,

protein design scheme based on the work presented in Chapter 2 and Lippow et al.

[19]. We computationally explore possible mutations that decrease the free energy

difference between transition and reactant state models, select, and characterize a

panel of mutants predicted to improve activity. Experimental measurements of the

temperature dependence of the rate of reaction indicate that our designs appear

successful at reducing the enthalpy of activation relative to wild type, but unfavorably

affect the entropy of activation and counteract the enthalpic improvement. In order

to fully capture the effect these mutants have on catalysis, we analyze the rates and

dynamics of these mutants using transition path sampling and explore the ensemble of

reactive trajectories that connect reactants to products. This ensemble based method

yields relative rates that are in qualitative agreement with experiment and reveals a

unique reaction mechanism for both wild type and mutant variants based on the

vibrational activation of the breaking bond. Overall, this work presents a critical

analysis of the utility of both single structure transition state based design as well as

transition path ensembles in deciphering enzymatic, reaction mechanism.
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Collectively, this work examines the use of ensemble, free energy models in the

study and design of proteins and small-molecule therapeutics. We present novel,

predictive, ensemble methods that are used to address both basic science and engi-

neering questions in ligand and protein binding as well as enzyme catalysis. We assess

the effect of solvent mediated interactions in protein-protein binding and their ap-

plication in antibody design, the import of configurational entropy in ligand binding,

the efficacy of transition-state theory in enzyme design, and the role of dynamics in

enzymatic reactions. These studies demonstrate the utility of computational analysis

in the design and study of biophysical macromolecular systems, and as methods im-

prove, we believe that computational methods become increasingly important in the

design of effective protein and small molecule therapeutics.
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Chapter 2

Computational Analysis and

Rational Design of IgG:Fc

Receptor Binding 1,2

Abstract

In this study we examine the the binding interaction of two immunoglobin G (IgG):Fcy

receptor complexes, human IgG1 :FcRIIA and mouse IgG 2 a:FcyRIV, using molecular

mechanics, Poisson-Boltzmann surface area (MM-PBSA) models to assess the role

solvent screened electrostatics play in binding. In the human IgG:FcyRIIA system,
we present the experimental, rational design of the FEc (fragment crystallizable) region

to remove the conserved, N-linked glycan at residue 297 while retaining affinity to Fcg

receptors. Our results indicate that removal of the N297 glycan reduces or knocks out

binding to almost all Fcy receptors, but that the two mutations, S298G and T299A,
can recover binding to FcyRIV. Using homology models of the wild type (WT) as

well as aglycosylated, S298G/T299A mutant, we explore the role these mutations

and the glycan play in modulating binding affinity. We find that the Fc glycan has

limited, direct engagement with the receptor, but can modulate affinity via indirect

'All experimental work presented in this chapter was performed by collaborators in the laborato-
ries of K. D. Wittrup at the Massachusetts Institute of Technology and J. V. Ravetch at Rockefeller
University. Specifically, S. Sazinsky and R. G. Ott performed the original experimental hIgG, mutant
screen and subsequent validation, and T. Chen constructed and performed affinity measurements on
the designed mIgG2a mutants.

2Portions of this chapter have been published as: Sazinsky S. L., Ott R. G., Silver N. W., Tidor B.,
Wittrup K. D., and Ravetch J. V. Aglycosylated immunoglobulin G, variants productively engage
activating Fc receptors. Proc. Nati. Acad. Sci. U.S.A. 105:20167-20172 (2008).
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electrostatic shielding of the essential D265/K117 salt bridge. We also find that the
S298G/T299A mutant is able to rescue binding in part through a favorable reduction
in desolvation penalties paid upon binding and improvement of electrostatic comple-
mentarity at the contact surface. In the mouse IgG2a:FcyRIV system, we further
explore the electrostatic complementarity of both binding partners via the compu-
tational, negative design of the Fc region to knock out binding to and activation of
Fc-yRIV without seriously affecting stability. We find that 5 of the 6 mutants that
were designed and experimentally characterized successfully abrogate binding rela-
tive to WT. Analysis of the predicted decrease in affinity reveals that by increasing
the positive charge at specific locations along the binding interface, either by remov-
ing negative charge or adding positive charge, one can further reduce electrostatic
complementarity and knock out binding.
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2.1 Introduction

The binding of immunoglobin G (IgG) to Fe gamma receptors (FcyR) is a criti-

cal step in the activation and regulation of immune response. IgG molecules, once

bound to their target epitope, are recognized by a host of FcYRs through specific

interactions with the conserved, Fe (fragment crystallizable) region of the antibody.

Sequence and structural variability in this region determines the relative binding

affinity of antibodies to each of the three human FcyR (hFcyR) subtypes (FcyRI,

FcyRII, and Fc}RIII), and ultimately, cell-mediated effector function [57, 58]. In

both humans and mice, it is known that antibodies with high affinity to FcyRI and

FcyRIII (and FcyRIV in mice) activate signaling pathways and result in cell-mediated

or complement-dependent cytotoxicity. By contrast, those that interact with FecRII

engender an inhibitory response, which prevents activation [59, 60, 57]. Much of the

effort to develop effective antibody therapeutics has focused on selective induction

of these responses by modulating the binding interaction between the Fc region and

FcyRs through Fe mutagenesis [36, 61] and glycoengineering [62, 63]. In the case of

anticancer therapeutics, optimizing for FcyRI/III affinity has been shown to improve

cytotoxicity toward targeted cancer cells [64]. Similarly, therapeutic antibodies in-

volved in treatment of autoimmune disorders such as rheumatoid arthritis, psoriasis,

and transplant rejection have focused on inhibiting immune response via modula-

tion of FcyRII activation [65] or minimizing FcyR activation all together [66]. For

example, in the case of immunosuppresive therapies that target CD3 and modulate

T-cell activity, antigen binding alone dictates efficacy, and target activation is both

unnecessary and unwanted [67, 68]. Identification of specific Fe residues important

to Fc-yR specificity and affinity is critical to the development of effective, tunable

antibody therapeutics.

Critical to FcyR activation is the glycosylation of the CH2 domain of the Fc

region via an N-linked glycosylation of asparagine 297 (N297). Antibody-receptor

affinities are highly sensitive to the specific glycoform attached at N297, and removal

of this glycan through point mutations at position 297 [36, 37], enzymatic Fe deg-
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lycosylation [38], or expression in prokaryotes [39, 40] results in reduced affinity to

all FeyRs and abrogation of binding for low affinity IgG/Fc-yR complexes [41, 42].

From a therapeutic antibody production perspective, this glycan dependency makes

controlled production of antibodies both expensive and difficult, as production strains

are limited to mammalian cell lines, which often generate heterogeneous antibodies

with a wide variety of glycoforms, making purification difficult [41].

In this study we explore the binding interactions of two IgG:FcYR complexes,

human IgGi/Fc7RIIA131" and mouse IgG 2,/FcyRIV through a combination of ex-

perimental and computational, structure based design. In the case of the former, we

present an experimental site directed mutagenesis study of the Fc region that identi-

fied mutations (S298G/T299A) capable of productively engaging FcyRs in absence of

glycosylation in vitro. We computationally examine the effect that these mutations

and the glycan have on the binding interaction using structural, homology models,

and evaluate their respective, energetic contributions to affinity using a molecular me-

chanics, Poisson-Boltzmann surface area (MM-PBSA) model. Our homology models

are constructed using the efficient, dead-end-elimination (DEE) [69, 70, 71, 72] and

A* algorithms [73, 74] to find low energy binding conformations, the individual inter-

actions of which are evaluated using an MM-PBSA based component analysis. Our

models of the Fc:FcyR bound complexes suggest that electrostatic interactions play

an essential role in determining relative binding affinity. We find that the N-linked

glycan present in the hFc has limited interaction with hFcyRIIA and plays an indirect

role in determining binding affinity. Component analysis of the bound Fc/Fc}RIIA

complex suggests that the two oligosaccharides have limited electrostatic as well as

van der Waals (VDW) contact with FcyRIIA and are primarily interacting with their

respective Fc chains. However, they shield an important intermolecular salt bridge

between D265 (Fc) and K117 (FcyR) that is predicted to become stronger in the

absence of the large glycan. Our models also predict that the S298G/T299A hFc

mutations augment FcyRIIA binding by reducing the desolvation penalty paid by

these residues upon binding, which improves the electrostatic complementarity at the

protein-protein interaction surface.
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In the case of mouse IgG:FcyR, we present the computational, negative design of

the mouse Fc region to find specific, affinity tuning mutations that abrogate bind-

ing to FcyRs without affecting stability. Using similar methodology to that used in

the development of the human IgG:Fc7R homology model, we leverage the DEE/A*

search scheme to explore all possible, single residue interface mutations to selectively

disrupt binding. By selecting mutants that disrupt the binding interaction without

affecting folding stability, we find a number of single mutations that are predicted to

knock out binding. We report here on the design of these mutants as well as their

experimental validation. In addition, we use an interaction free energy component

analysis to provide energetic hypotheses for the mechanism of inhibition for each.

Interestingly, we observe the opposite complementarity principle, specifically, by mu-

tating away specific interactions and reducing electrostatic complementarity, one can

disrupt binding without affecting stability. In our negative design of the mFc domain,

we see that packing the binding interface with positively charged residues successfully

abrogates Fc:FcyRIV binding. Taken together, we find that by rationally designing

mutations in the Fe region to make the binding interface more or less complimentary

in electrostatics, one can both positively and negatively modulate the binding free

energy. Furthermore, we find that this MM-PBSA model combined with a DEE/A*

configurational search strategy is predictive of relative, in vitro protein-protein bind-

ing affinity.

28



2.2 Methods

2.2.1 Computational Design of h~gG 1 :FcyRIIA and

mIgG2a:FcyR1IV Homology Models

The starting point for both human and murine homology models was the crystal

structure of the extracellular portion of the human FcyRIIIB receptor bound to the

Fc region of the human IgG1 (PDB ID 1E4K) [75]. Hydrogen atoms were placed

using the CHARMM computer program [3, 76], CHARMM27 force field [77], and

HBUILD module [78]. The side chains of H116(C) and H131(C) on the receptor were

flipped by 1800 around X2 and treated in their neutral, c-protonated form. In the FEc

fragment, all histidine side chains were neutral and protonated as indicated, to maxi-

mize hydrogen bonding potential: 268(A)-6, 268(B)-c, 285(A)-6, 285(B)-6, 310(A)-6,

310(B)-c, 429(A)-a, 429(B)-6, 433(A)-6, 433(B)-6, 435(A)-6, and 435(B)-6. Homology

models of the human FcyRIIA as well as murine FcyRIV complexes were constructed

on the FcyRIIIB backbone as follows: all non-alanine, non-glycine residues further

than 5 A from an interface residue were replaced by alanine; both glycosylated and

aglycosylated forms of the structure were prepared; and in the glycosylated structure,

a sliding, restrained harmonic minimization was performed on the side chain of the

N-glycosylated N297(B). Note that the non-interfacial alanine mutations were per-

formed to allow an unbiased placement of the new sequence. Partial atomic charges

for the N-glycosylated N297(C) residues were derived by fitting to the electrostatic

potential using the restrained fitting methods of Bayly et al. [79] for each monosac-

charide. The charges associated with hydrogens missing in the polysaccharide were

added to their parent atoms to ensure charge conservation.

To generate either the Fc-yRIIAR13
1 or FcRIV receptor structure, all FcyRIIIB

interfacial residues were mutated to their associated, structural counterparts using

the dead-end elimination and A* protocol described by Lippow et al. [19]. Sim-

ilarly, mutant hFc or mFc was generated using DEE/A* in the presence of their

respective binding partners. For each mutant sequence, the global minimum energy
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conformation, as well as a collection of progressively higher energy conformations, was

identified in the context of discrete rotameric conformational freedom of all placed

side chains, except for the glycosylated form of N297. All of the Fc mutants exam-

ined were generated in the presence of the receptor during this conformational search.

Note that one interfacial residue in the linker region of the FcyR structure (E86 in

the Fe7 RIIA sequence) was left as a glycine, as all glutamate rotamers searched had

a van der Waals clash with the receptor backbone. In the unbound Fc-yRIIA crystal

structure [80], the two domains of the receptor separate slightly to accommodate this

larger residue. The lowest energy structures of each sequence found via the DEE/A*

aided search of configurational space were re-evaluated using a molecular mechanics,

Poisson-Boltzmann Surface Area (MM-PBSA) based model, as described in Section

2.2.3.

2.2.2 Rational Design Protocol of mIgG 2a:FcyRIV Mutants

To identify Fc mutations that inhibit the binding and subsequent activation of murine

FcyRIV, we performed a computational, enumerative, single mutant screen of all

residues within 5 A on both Fc chains (A/B). All possible amino acids except for pro-

line, including all three possible protonation states of histidine (6,C, and the positively

charged tautomer), were evaluated as possible mutations at each position, yielding a

total of 456 possible single mutants. Due to the asymmetric contact of FcyR with

the FEc chains, 16 of the 24 total positions examined were on the B chain. Similar to

the protocol used in creating both homology models, possible Fc variants were eval-

uated using a DEE/A* methodology to explore sequence and conformational space

of each mutation. Minimum energy conformations of each variant were also ranked

using the same MM-PBSA model. Each single mutant was evaluated based on its

contribution to the binding interaction with FcyRIV as well as its contribution to

the stability of the folded Fe region. In order to knock out binding, the mutant list

was screened for those mutations that incurred large binding penalties relative to

WT (i.e. AAGbid ;> 1 kcal/mol) while minimizing unfavorable folding interactions

(i.e. AAGfld < 0 kcal/mol). Additionally, mutants were chosen in order to max-
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imize possible cooperative effects by selecting for multiple different mechanisms of

inhibition.

2.2.3 MM-PBSA Electrostatic Model

All solvent-screened electrostatic interactions, desolvation penalties, as well as the

residual electrostatic potential upon binding for these structural models were com-

puted by solving the linearized Poisson-Boltzmann equation as described by Lee and

Tidor [81] using a locally modified version of the finite difference solver, DELPHI

[82, 83, 84, 85], with PARSE radii and charges [86]. A dielectric of 4 was used for

all internal, receptor, ligand, and explicit water regions, while a dielectric constant

of 80 was used for all implicit solvent regions. A salt concentration of 0.145 M was

used along with a Stern layer of 2.0 A and a 1.4-A probe to determine the dielectric

boundary. When solving for the potential, an average value was obtained using the

potential collected from ten translations of a 129 x 129 x 129 cubic grid. The grid

error associated with this average was on the order of 0.01 kcal/mol, which is much

smaller than the interaction and desolvation energies reported here. To obtain more

accurate potentials, a focusing procedure was used: initial calculations used a 23% fill

with Debye-H"ukel boundary conditions followed by higher resolution calculations us-

ing a 92% fill. Component interactions or desolvation penalties were computed based

on the work of Hendsch and Tidor [87]. We make use of the linearity of the model

and the superposition principle to decompose the potential and free energy into com-

ponents for each charged side chain and backbone chemical group. For these specific

interactions, the focusing procedure included an additional 184% fill centered on the

specific component being examined.

The free energy of desolvation of hydrophobic residues was modeled using a linear

expression (Eq. 2.1) proportional to the solvent accessible surface area (SASA).

AGhdrophobic = * SASA + (2.1)

A proportionality constant, a, of 5 cal/mol/A was used [86]. Given that all en-
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ergies were computed relative to wild-type, the constant term, /, always canceled

and was ignored. All van der Waals and covalent energies were computed using the

CHARMM27 force field with no nonbond cutoffs.
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2.3 Results and Discussion

2.3.1 Experimental Screen for Aglycosylated Fc Variants that

Bind Fcy Receptors

The importance of glycosylation for IgG 1/FcyRIIA binding was assessed by experi-

mentally constructing saturation mutagenesis libraries at positions 296 through 300 in

the CH2 domain of hIgG1 and screening via a yeast cell surface display system [88, 89].

hIgG1 variants were displayed on yeast cell surfaces and their binding to fluorophore-

labeled tetramers of Fc-yRIIA using fluorescence-activated cell sorting (FACS). After

three rounds of FACS screening, three variants were identified that lacked the canon-

ical, Asn-X-Ser/Thr, N-linked glycosylation motif: S298G/T299A, S298G/T299G,

and T299A. Affinity measurements of each single/double mutant show that either

S298G or T299A alone is able to engage and modestly improve binding to FeyRIIA,

but that in combination they greatly improve affinity (Fig. 2-1a). Interestingly, this

double mutant is unable to rescue binding in a N297A/D/Q/S mutant background.

Affinity measurements (assessed by measuring the Kd of the bound complex) of WT,

and mutants N297Q and S298G/T299A show differential binding to different FcyRs

(Fig. 2-1b). The single mutant experiences a 10 fold drop in affinity to the Ria

variant relative to WT and abrogated binding to all other measured receptors. The

aglycosylated double mutant also sees a 10 fold drop in affinity to Ria, but is able

to bind to the RII receptor variants with near WT affinities. Specifically, the double

mutant experiences a 3- and 2-fold improvment in affinity relative to WT when bind-

ing with RIIA131R and RIIB, respectively, and a small drop in affinity with RIIA131H

(80% of WT affinity).

2.3.2 Models of Human IgG1/Fc7RIIA131R Interaction

To explore the structural basis for FcyR binding of aglycosylated Fe domain variants,

we constructed homology models of Fc:FcyRIIA complexes based on the previously

solved structures of the IgG1 Fe, the FcyRIIA structure [80], and the Fc:FcyRIII
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1200-

(a)

Affinity: KD (x10-6 M)

Variant Ria RIIA131H RIIA131R RilB RIIIA176F RIllA176v Clq

wt 0.04 5.5 5.0 9.8 13 4.6 0.3

N297Q 0.4 n.b. n.b. n.b. n.b. n.b. n.b.

S298G/ 0.3 7.0 1.7 5.7 n.b. n.b. n.b.
T299A

(b)

Figure 2-1: Experimental hIgG 1 :Fc'yR Binding Affinity Measurements (a)

Binding of hIgGI FEc variants to fluorophore-labeled FcyRIIA tetramers, measured

by median fluorescence intensity (MFI) of the labled receptor during FACS. Intensities

shown here are the average of two trails. (b) Dissociation constant (Kd) measurements

of aglycosylated Fc mutant:FeyR/complement component C1q complexes. n.b., no

binding detected.
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complex [75] (Fig. 4). Four features emerge from this modeling. First, in the model of

the WT interaction, there is only limited interaction between the two N-linked glycans

and FcyRIIA (Fig. 2-2). The asymmetric nature of the IgG1 Fc:FcyRIIA interaction

predicts that the glycan attached to the B chain of the Fc dimer may interact with

residues K117, T119, F121, S126, and F129 of the receptor, whereas the glycan

attached to the A chain does not make contact with FcyRIIA. These glycan-FcYR

contacts provide negligible screened electrostatic intermolecular interactions in our

calculations, compared to the much larger intramolecular ones between glycan and Fc,

roughly -1.3 kcal/mol, with a dominant contribution from N297/glycan(B)-D265(B).

Analysis of van der Waals interactions yields similar results. Both oligosaccharides

are predicted to make favorable interactions worth approximately 6 kcal/mol with

Fc-yRIIA, the majority of which is due to the B chain glycan, while the intramolecular

glycan/Fc-fragment interactions are worth over 40 kcal/mol. These data suggest that

both oligosaccharides are primarily interacting with their respective Fc chains and

make limited contact with the Fcy receptor.

The second, emergent feature of this model is the importance of N297 to the

Fc:FcyRIJA interaction. Aglycosylated N297 has the potential to make hydrogen

bond interactions across the interface with S126 of the receptor (Fig. 2-3). These

interactions may be mediated by a bridging water molecule that can be observed

nearby in an unbound Fc-yRIIA crystal structure [80]. Replacement of N297 with

glutamine or alanine disrupts this interaction (and fails to make similar, stabilizing

ones) and is consistent with the observed absence of binding for such mutants (see

Fig. 2-la). Interestingly, replacement with aspartic acid may be able to make a

similar interaction; however, the greater desolvation penalty of the charged side chain

upon FcyR binding likely results in the reduced binding of this variant.

The third feature that results from our Fc/FcyR model is the favorable, indi-

rect effect the loss of the glycan has on the electrostatic binding interactions in the

S298G/T299A double mutant. Both our glycosylated WT and aglycosylated mutant

models predict an intermolecular salt bridge between D265 on the B chain of the Fe

dimer and K117 on the FcyR. In the WT structure, this interaction is shielded from
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Figure 2-2: Structure of the WT Fc fragment bound to the constructed
Fc--y-RIIA13 1R homology model. The portion of Fc-y-RIIA (chain C) highlighted
as purple sticks shows those side chains within 5 A of the two glycans.

Figure 2-3: Structure of intermolecular aglycosylated N297(B) interactions
Shown here are possible rotameric states of N287(B) interacting with possible ro-

tameric states of T119(C) and S126(C) in the aglycosylated, S298G/T299A model.
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solvent by the oligosaccharide chain. In the aglycosylated S298G/T299A mutant, this

salt bridge is exposed to the solvent (Fig. 2-4), which nearly halves the screened elec-

trostatic interaction energy compared to WT (-5 kcal/mol versus ~10 kcal/mol).

However, this effect is more than compensated in the S298G/T299A mutant by a

reduction in the desolvation penalty [81], a measure of the loss of electrostatic inter-

actions with solvent upon binding, paid by both salt bridge partners. Specifically, the

desolvation penalty of the mutant drops by about 7 kcal/mol, including 5 kcal/mol

from D265 and nearly 2 kcal/mol from K117. Therefore, the net effect of this deshield-

ing provides stabilization worth about 2 kcal/mol. This effect is illustrated (Figs. 2-5a

and 2-5b) by a reduction in the residual electrostatic potential present on D265(B)

in the mutant compared to the WT, where the residual potential is defined as the

desolvation potential of the IgG Fc region plus the interaction potential due to the

Fc}R.

Finally, our model predicts that the net increase in affinity of the aglycosylated

S298G/T299A mutant to Fcy-RIIA131R relative to WT is electrostatic in nature and

due to both the favorable deshielding of the D265/K177 salt bridge (vide supra)

and the favorable change in relative desolvation of residue 298 upon mutation from

serine to glycine, which contributes approximately 2 kcal/mol to the stability of the

mutant complex. Figs. 2-5a and 2-5b illustrate this change via a decrease in the

residual electrostatic potential present on residue 298 in the mutant compared to

WT. Here, a decrease in the residual potential indicates an increase in the electrostatic

complementarity of the binding partners, as the serine at position 298 was not making

strong electrostatic interactions with the receptor but paid a desolvation penalty upon

binding. Note that while T299A is also a polar to non-polar mutation, the threonine

side chain is highly solvent exposed in the WT complex, and pays effectively no

desolvation penalty upon binding. In total, the predictions made by this homology

model highlight the importance of electrostatic interactions in Fc/FcyR binding and

provide a hypothetical mechanism for the stability of the aglycosylated Fc:FcyR

complex, resulting from hydrogen bonding and electrostatic interactions altered in

the aglycosylated mutant.
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Figure 2-4: Structure of the WT K117(C)-D265(B) salt bridge. Both inter-
acting partners are enclosed within the binding cavity partially covered by the glycan
(shown in transparent grey). The S298G/T299A mutant lacks the glycan, exposing
the the K117(C)-D265(B) interaction to solvent.

2.3.3 Computational Design of Mouse IgG2a/Fc-yRIV Knock-

out Mutations

Of the 456 mutants in our exhaustive virtual screen, six were selected based on their

predicted ability to reduce binding affinity without affecting stability. All six mutants

can be organized into two categories: those mutations that affect binding via removal

of favorable electrostatic contacts (D265A and E2681/A) and those that affect binding

via introduction of unfavorable electrostatic contacts (L234K, S267R, and D233R)

(Fig. 2-6a). In almost all cases the mutations are predicted to operate by increasing

the total positive charge at the interface near regions of large positive interaction

potential (i.e. the potential felt on the Fc surface due to charges on Fc-yRIV), either

by removing negative charge and/or by adding positive charge (Fig. 2-6b). This

addition or subtraction has an unfavorable effect on the free energy of binding, but

has either a neutral or favorable effect on the free energy of folding for the complex

(Table 2.1). The first group of mutations, D265A and E2681/A, are all predicted to

lose approximately 1 kcal/mol of binding free energy relative to WT with negligible
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(a) (b)

Figure 2-5: Mutant and WT Residual Potentials (a) Residual potential after
binding mapped onto the interaction face of the B chain of the Fc fragment in the
WT structure. White regions indicate areas of ideal complementarity between the
Fe fragment and Fcy-RIIal3 lR, while deep red or blue regions indicate areas of poor
complementarity because of ligand desolvation costs uncompensated by interactions
made upon binding. Red corresponds to negative residual potential potentials and
blue to positive residual potentials. The coloring scale, identical in both panels,
covers the range of +20/-20 kT/e. (b) Residual potential after binding mapped onto
the interaction face of the B chain of the FEc fragment in the S298G/T299A mutant
structure.
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or slightly favorable effects on folding stability. In the case of D265A, the bulk of this

affinity change can be traced to the loss of favorable electrostatic interactions of the

B chain residue, D265(B), with its salt bridge partner on FcyRIV, K117(C), as well

as neighboring R152(C). Nearly 10 kcal/mol of interaction free energy is lost, with a

concomitant, favorable 9 kcal/mol reduction in the desolvation penalties paid by both

partners upon binding, a net loss of 1 kcal/mol. The E2681 mutation is also predicted

to lose affinity from the removal of a favorable intermolecular salt bridge, in this case

between E268(B) and K128(C), which results in an unfavorable 2 kcal/mol decrease in

interaction energy and favorable 1.4 kcal/mol reduction in desolvation penalty, a net

loss of 0.6 kcal/mol. Finally, in the case of E268A, which also disrupts the E268(B)-

K128(C) salt bridge, the computed affinity decrease stems primarily from a loss of van

der Waals contact between the two residues. In contrast to E2861, the electrostatic

change is predicted to stabilize binding by nearly 1 kcal/mol due to the increased

solvent exposure of K128(C) in the bound complex. This reduction of the desolvation

penalties paid by residues 268(B) and 128(C) more than compensates for the loss in

interaction energy, resulting in a net favorable affect on the free energy of binding.

This component analysis suggests that success of these designed knockout mutations

hinges on their ability to disrupt specific, hot-spot interactions with positively charged

residues on the receptor interface by removing negatively charged salt-bridge partners,

which in all mutants aside from E268A also reduces electrostatic complementarity.

Examining the desolvation and interaction potentials projected onto the Fc binding

surface of WT, D265A, and E2681, we can visualize this reduction in complementarity

through the loss of negative potential that the Fc face presents to the FeyR (Fig. 2-

7). It is interesting to note that even in WT, both of these salt-bridge interactions

(D265(B):K117(C) and E268(B):K128(C)) have a net unfavorable affect on binding

due to the relative difference of their desolvation costs and electrostatic interaction

gains. Both salt bridges pay more in desolvation penalties than they get back in

interaction energy by +2.6 kcal/mol and +1.7 kcal/mol, respectively, consistent with

the hypothesis that salt bridges are more important for engineering specificity [90].

The variants found here further penalize the interactions by removing one of the
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(a) (b)

Figure 2-6: mIgG2a/FcyRIV homology model. (a) WT mouse IgG 2a/FeyRIV
binding interface. The Fc B chain is shown as a white surface with mutation sites
highlighted in blue sticks, and FcyRIV is shown in transparent purple ribbons with
positively charged interface residues shown in purple sticks. (b) The interaction po-
tential of Fc-yRIV projected on the Fc binding surface. Red corresponds to negative
interaction potentials and blue to positive interaction potentials. The coloring scale
covers the range of -20/+20 kT/e.

charge pair partners, which zeros the favorable interaction energy and leaves only

unfavorable desolvation penalties.

The second group of mutations, L234K, S267R, and D233R are predicted to lose

roughly 5, 1.4, and 1 kcal/mol of binding free energy, respectively, with favorable rela-

tive folding stabilities compared to WT. Our model predicts that each mutant reduces

binding affinity by introducing repulsive electrostatic interactions with the receptor

and/or increasing desolvation penalties upon binding. L234K incurs a 4 kcal/mol

penalty relative to WT via unfavorable interactions with R116(C) and K117(C) (-2

kcal/mol) as well as unfavorable increases in the desolvation penalty paid by itself

and residue K117(C) (~2 kcal/mol). Similarly, while the net affinity change is not

as drastic (due to van der Waals gains), S267R pays large electrostatic penalties due

to repulsive interactions with K128(C) (1.2 kcal/mol) and increased desolvation of

both itself and neighboring Fe residue D269(B) (approx. 2.6 and 0.8 kcal/mol, re-

spectively). Finally, in the case of D233R the loss of binding affinity is predicted to

41



Total Elec vdW Geo SASA
Bind 1.3 0.8 0.4 0.0 0.1

D265A Fold 0.0 -1.0 2.9 -2.1 0.2
Bind 1.1 0.7 0.4 0.0 0.0

E268I Fold -0.8 -0.6 -0.3 0.2 -0.1
Bind 1.2 -0.9 1.8 0.0 0.3
Fold -0.1 0.1 0.4 -0.7 0.1
Bind 5.0 4.6 0.5 0.0 -0.1

L234K Fold -2.0 1.4 -2.4 -0.5 -0.5
Bind 1.4 4.3 -2.6 0.0 -0.3

S267R Fold -3.3 -0.4 -2.8 0.3 -0.4
Bind 1.0 1.2 -0.2 0.0 0.0

D233R Fold -5.4 -0.8 -3.4 -0.8 -0.4

Table 2.1: Computed Folding and Binding Energies of mIgG2a Fc mutants
to FcyRIV Relative to Wild Type. Elec values are solvent screened electrostatic
energies, vdW values are pairwise van der Waal energies, Geo values are covalent
strain energies, and SASA values are solvent accessible surface area energies. All
values are reported in kcal/mol relative to wild type.

result primarily from long range, action-at-a-distance, electrostatic repulsion with

R116(C) and K117(C) (2 kcal/mol). Interestingly, this position faces away from the

receptor and is charged in the WT structure; as such, it desolvation changes are neg-

ligible. Thus, in contrast to the charged to neutral mutations (D265A, E2681/A), we

find that these mutations modulate affinity primarily by adding positive charge at

the interface. The effect on complimentarity, however, is similar. We see this effect

illustrated for the L323K and S267R mutants in Fig. 2-8. Positive potentials appear

in the desolvation projection at each mutation site, indicating that the Fc face pays

larger desolvation penalties upon binding and presents a positive potential to the

FcyR where positive charges already exists.

These six mutants were experimentally characterized by measuring their affinity

to mouse FcyRIV via yeast cell surface display [91] and FACS. Figure 2-9 shows the

measured knock-down in affinity relative to WT. We see that five of the six mutations

successfully reduce binding affinity by 10 fold to FcyRIV, all except E2681. This

suggests that negative modulation of electrostatic complementarity at the binding
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(a)

(c)

(e)

Figure 2-7: mIgG 2a/FcyRIV D265A and E2681 Mutant and WT Desolvation
and Interaction Potentials. (a) WT desolvation and (b) interaction potentials pro-

jected onto the Fc binding interface. The coloring scale, identical in all panels, covers

the range of -20/+20 kT/e. (c) D265A desolvation and (d) interaction potentials (e)

E2681 desolvation and (f) interaction potentials.
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(c) (d)

(e) (f)

Figure 2-8: mIgG 2 /FeyRIV L234K and S267R Mutant and WT Desolvation
and Interaction Potentials. (a) WT desolvation and (b) interaction potentials pro-

jected onto the FEc binding interface. The coloring scale, identical in all panels, covers

the range of -20/+20 kT/e. (c) L234K desolvation and (d) interaction potentials (e)

S267R desolvation and (f) interaction potentials.
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Figure 2-9: Experimental Mutant mIgG 2a:FeyRIV Binding Affinities. Rela-
tive binding affinity of mlgG 2a Fe variants to fluorophore-labeled mFcyRIV, measured
by median fluorescence intensity (MFI), relative to WT.

surface is an effective means of disrupting IgG:FcyR binding. We note that similar,

positively charged mutations (G236R and L328R) were found by Lazar et al. [92]

to inhibit binding to FcyRs. In our homology model, these residues are also at the

surface, and neighbor K117 of FcyR. It is likely that these mutants also operate

by increasing the desolvation penalty of the Fe region and/or introduce unfavorable

positive-positive charge interactions.
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2.4 Conclusion

In this study we have examined the binding of the Fe domain of IgG variants to

both human FcyRIIA as well as mouse Fc}RIV. In total, our results suggest that

this ensemble, MM-PBSA implicit solvent model accounts for the important, solvent

mediated effects essential to protein-protein binding. Additionally, they indicate that

such models can be used both as an exploratory tool to probe the specific interactions

important to binding as well as a predictive tool for design. In our examination of

the human IgG:FcyRIIA complex, we presented structural models of the binding

interaction for WT and rationally designed Fc mutants. Using energetic component

analysis tools, we also examined the electrostatic contributions to binding from the

N-linked glycan and aglycosylated S298G/T299A mutant. Our analysis suggests that

the glycan is not directly involved in the Fc:FcyR interaction, as it makes limited

VDW contact and has negligible solvent screened electrostatic interaction with the

receptor. We do find, however, that it can indirectly affect binding by modulating

the strength of charge-pair interactions inside the binding cleft. Energetic analysis

of aglycosylated mutant suggests that the D265(B)-K117(C) salt bridge is in fact

strengthened in the absence of the glycan due to a favorable decrease in the desolvation

penalty paid by both residues upon binding. We also observe that the S298G/T299A

mutation is able to rescue binding to FcyRIIA (relative to aglycosylated WT) due,

in part, to the reduced desolvation penalty paid by residue 298 relative to WT.

Both this as well as the desolvation change associated with glycan removal result

in improved electrostatic complementarity at the binding site. We note that this

strategy of optimizing for complementarity has also been used in the design of HIV-1

cell entry inhibitors [93], and observed in the analysis of lead progression of effective

neuraminidase [94]. Our results indicate that this design principle is not limited to

ligand design, and that it should be possible to use this approach to develop highly

complimentary, tight-binding protein-protein complexes like those observed in nature

[81].

In the case of the mouse Fc:FcyRIV complex, we have presented the successful,
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computational design of Fc domain mutants that disrupt binding. We find that bind-

ing can be knocked out by increasing the net positive charge present at the binding

interface. The mutations explored in this study are predicted to disrupt binding either

by removing negatively charged residues at salt bridge sites (D265A, E2681/A) or by

adding positively charged residues near regions where the FcyR already presented a

large, positive potential (L234K, S268R., D233R). In the former case, loss of favorable

interactions between charge pairs relative to favorable changes in desolvation results

in loss of binding affinity. In the latter case, increases in desolvation penalties as

well as electrostatic repulsion between positively charged residues across the interface

reduce the free energy of binding. We find that for all knockout mutations that are

predicted to affect binding via electrostatic changes (all but E268A), there is reduced

electrostatic complementarity between binding partners relative to WT. In total, our

analysis suggest that the binding affinity of the FEc region to Fcy receptors is tunable

based on the electrostatic complementarity of the binding interface.
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Chapter 3

Efficient Computation of Small

Molecule Configurational Binding

Entropy and Free Energy Changes

by Ensemble Enumeration 1

3.1 Abstract

Here we present a novel, end-point method using the dead-end-elimination and A*

algorithms to efficiently and accurately calculate the free energy, enthalpy, and con-

figurational entropy of binding for ligand-receptor systems. We apply it to a series of

human immunodeficiency virus (HIV-1) protease inhibitors to examine the effect en-

semble re-ranking has on correlation with experiment as well as estimate the absolute

and relative configurational entropy losses upon binding for structurally related in-

hibitors. Our results suggest that most thermodynamic parameters can be estimated

using only a small fraction of the full configurational space, and we see significant

improvement in correlation with experiment when using an ensemble versus static ap-

proach to ligand ranking. We also find that using approximate metrics based on the

single conformation enthalpy differences between the global minimum energy config-

uration in the bound as well as unbound states also correlates well with experiment.

Using a novel, additive entropy expansion based on conditional mutual information,

'All experimental affinity measurements presented in this chapter were performed by H. Cao,
and the synthesis of all inhibitors was performed by A. Ali and K. K. Reddy, collaborators from the

University of Massachusetts Medical School.
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we also analyze the source of configurational entropy loss upon binding in terms of
both uncoupled per degree of freedom losses as well as changes in coupling between
inhibitor degrees of freedom. We estimate entropic free energy losses of approximately
+24 kcal/mol, 12 kcal/mol of which stems from loss of translational and rotational en-
tropy. Coupling effects contribute only a small fraction to the overall entropy change
(1-2 kcal/mol), but suggest differences in how inhibitor dihedral angles couple to
each other in the bound versus unbound states. The importance of accounting for
flexibility in drug optimization and design is also discussed.
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3.2 Introduction

One of the goals of rational drug design is to understand the thermodynamics of small-

molecule-receptor binding in order to design effective, high-affinity therapeutics. Lead

compound development is expensive and requires a great deal of experimental effort

to explore the large combinatorial space of chemical functionality. To expedite the

process, computational methods are often used to optimize the search and examine

the binding thermodynamics of lead compounds. It is difficult, however, to compute

accurately both the enthalpy (AHind) and entropy changes (ASind) upon binding

and to rank compounds based on a true free energy of binding (AG = AH - TAS).

Most approaches based on physical force-fields include enthalpic binding contributions

and perhaps solvent entropy contributions, but both are estimated from a single con-

formation. The neglect of configurational entropy changes for binding partners is

a significant omission in common applications. Nonetheless, such calculations are

valuable as they can provide a more accurate and detailed breakdown of the ther-

modynamic changes. Experimental methods such as isothermal titration calorimetry

(ITC) [95] can only report on ensemble averaged binding enthalpies and entropies,

and they cannot determine the source of the change (e.g. ligand, receptor, or solvent).

Computational approaches, in principle, account for the contributions to the free

energy of binding from ligand, receptor, and solvent degrees of freedom. Standard

molecular mechanical treatments of ligand binding separate the enthalpic changes

into separate terms for internal, van der Waals, coulombic, and solvation interactions

[3, 5]. Similarly, binding entropies are often decomposed into conformational entropy

terms for the ligand, receptor, and solvent, but compared to the enthalpic terms, are

much more time consuming to calculate. To accurately compute an ensemble free

energy or entropy change upon binding, one must fully explore and integrate over the

conformational space of the solvent, the ligand, its receptor, and the complex [96],

which is a formidable task even for small systems. Given this difficulty, the config-

urational entropy change is often assumed to be the same for different ligands in a

series or is approximated with an empirical term that assumes a constant change in
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entropy per frozen rotatable bond [22]. However, these approaches have been criti-

cized recently as they lack significant experimental evidence and theoretical support.

Chang et al. calculated the change in configurational entropy of the clinically ap-

proved inhibitor amprenavir binding to HIV-1 protease (as -TAS) and found it to

oppose binding by - 25 kcal/mol, which differs significantly from empirical estimates

[49]. It is still unknown, however, whether the configurational binding entropy change

is similar for different, related protease inhibitors.

Modern computational methods that are used to compute free energies of binding

and their component enthalpies and entropies generally fall into one of two categories,

perturbation and end-point methods. The former includes free energy perturbation

(FEP) [97, 98] and thermodynamic integration (TI) [99, 100, 101], which often rely

on molecular dynamics (MD) or Monte Carlo (MC) simulations to perturb a system

from one state to another (e.g. wild type to mutant, one ligand to another, unbound

to bound). The total free energy change can then be computed as a function of the

perturbation coordinate. While widely used, these methods are often very slow to

converge, as there are significant challenges [102]. End-point methods determine free

energy changes by calculating absolute free energies of the final and initial states of the

system and taking the difference [96]. These absolute free energies can also be found

via MD or MC simulations and have been successfully used to study ligand binding

in a variety of molecular systems [103, 104]. Recent, alternative formulations make

use of the single or predominant state approximation, in which a single or multiple

low-energy structures are identified, and the local configurational space about each

initial structure is sampled [105, 24]. Implicit in these methods is the assumption that

high-energy conformations contribute negligibly to the ensemble entropy and enthalpy

averages, and that the potential energy surface is well described using a single or set of

local minima. Further approximations are often made to analytically integrate over

local minima using the harmonic or quasiharmonic approximation [103, 106, 107].

The former assumes the potential energy surface about the initial structure can be

modeled using a multidimensional harmonic potential, while the later also assumes

that conformational fluctuations are governed by a multivariate Gaussian probability
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distribution. While these methods are efficient, they are not guaranteed to search all

of phase space and often predict the free energy change to be more favorable than it

actually is [108].

This study seeks to evaluate a number of these assumptions using an ensemble,

configurational free energy of binding to accurately rank computationally designed

human immunodeficiency virus (HIV-1) protease inhibitors. Previous studies of the

examined inhibitors have shown that using a single, low-energy configuration to eval-

uate each inhibitor can successfully predict binding geometries, but often fails to

correctly rank inhibitors with binding free energies within 2-3 kcal/mol of each other

[47]. We sought to improve upon this static, predominantly enthalpic treatment by

accounting for ensemble effects both in the bound and the unbound state. To this end,

we developed a novel, deterministic, end-point method for computing the free energy

of binding of ligand-receptor complexes that uniformly searches conformational space

and explicitly accounts for both enthalpic and configurational entropic effects. This

approach fundamentally differs from the aforementioned methods in that it does not

sample from a Boltzmann distribution of configurations to collect an average, but

instead uses uniform, rotameric enumeration [109] of ligand torsional degrees of free-

dom to map out and explicitly integrate over the potential energy landscape. While

normally an intractable problem, searching through this high-dimensional space is en-

abled through the use of the dead-end elimination (DEE) [69, 70, 71, 72] and the A*

branch-and-bound algorithms [73, 74]. DEE is used to prune high-energy rotamers,

which excludes low probability configurations from the search space, while A* is used

to rapidly enumerate the accessible configurational states of the structure. Both of

these algorithms are global optimizers, and when used in conjunction are guaranteed

to both find the global minimum energy configuration (GMEC) and eliminate all

those configurations with energies greater than a user supplied energy cutoff above

the GME. Using this method, we were able to generate an energy-ranked, gapless list

of low-energy ligand configurations in a computationally tractable amount of time,

and evaluate the bound and unbound state partition functions to compute the free

energy, enthalpy, and configurational entropy of binding in the context of a rigid
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receptor.

The configurational entropy changes of all the protease inhibitors explored in this

study were further analyzed using a novel, additive entropy expansion. By decompos-

ing the entropy into a series of marginal entropy and mutual information (coupling)

terms, we were able to extract the entropic contribution of each degree of freedom as

well as the contributions from entropic coupling between pairs, triplets, and higher-

order combinations. Similar entropy expansions have been described in the literature

to examine the configurational entropies of liquids [110, 1111, spin frustrated systems

[112], as well as biological systems [113, 114]. However, given the aforementioned

difficulty associated with effectively sampling the potential energy landscape of com-

plex biological systems, previous applications to such systems have been limited to

approximating the full entropy of the system. These methods assume that only a

low-order subset of the entropy terms contribute significantly, as they are unable to

accurately evaluate the remaining high-dimensional terms. Additionally, while these

estimation attempts have been reasonably successful at describing the larger distri-

bution, the individual terms are often difficult to physically interpret as they contain

overlapping entropic contributions that are successively added and removed as the

level of approximation improves [113]. The expansion used in this study is similar to

that presented by Killian et al. and Matsuda [112], as it is based on the generalized

Kirkwood superposition approximation [113, 115, 116], which approximates a high-

order probability distribution using a series of successively lower-order distributions.

It differs, however, in that each entropy term in the expansion is conditioned on the

remaining degrees of freedom of the system, which aids in the physical interpretation

of these terms by separating their contributions into non-overlapping pieces. Each

term describes either the conditional marginal entropy of each degree of freedom or

the conditional mutual information (coupling) between sets of degrees of freedom.

By appropriately conditioning each term, these conditional couplings are measures

of the coupling between degrees of freedom that are not mediated by another de-

gree of freedom of the system, which avoids the layered, compensating additions and

subtractions of the same physical effect present in other methods.
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Applying this novel, conditional mutual information expansion (CMIE) and DEE/

A* enumeration method on a series of protease inhibitors, we have been able to inter-

pret configurational variation both within a given ensemble as well as between equi-

librium ensembles in terms of specific thermodynamic changes. We can accurately

evaluate the contribution of each marginal and coupling term to the full entropy as

well as provide some insight into how physical coupling of degrees of freedom affects

configurational entropy of binding. Our results analyze the efficacy of our approach

by exploring thermodynamic convergence, comparisons with experimental measure-

ments of binding affinity, and the role configurational entropy plays in binding. We

find that our computed free energies correlate strongly with experiment, and that

most thermodynamic averages are well defined by only a small portion of configura-

tional space. Compared to previous computational studies of the inhibitors examined

here [47], the enhanced sampling methods employed in this study provide better sin-

gle conformation in the bound and unbound states as well as average enthalpy and

entropy estimates that correlate with experimental free energy measurements. We

also observe that each inhibitor loses a significant amount of configurational entropy

upon binding, and that relative to each other, the entropic losses are significant (1-3

kcal/mol). Our entropy expansions show that the majority of both the absolute and

relative entropic losses can be traced to changes in marginal, conditional entropy, and

that changes in entropic coupling play a more subtle role in the thermodynamics of

inhibitor binding.
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3.3 Methods

3.3.1 Binding Theory

The theoretical framework for binding thermodynamics has been presented in recent

literature [96, 50]; here we summarize the relevant portions to place our work in

context. The standard free energy of binding for a ligand (L) and receptor (R) in

solution can be evaluated using the standard chemical potential for each species:

AGO ,bind ::- [AO 1LR - PO 1L - Y~OlR (3.1)
sG a solL sol, sol, R'

The standard chemical potential for a dilute solution of ligand is defined as [117]

1( 1 QN,LN +- P 0VL.
/tsol,L = -RTI VNL C QN ) (3.2)

Here, VN,L is the volume of the system containing N solvent molecules and one ligand

molecule. C0 is the standard state concentration, assumed to be 1 M, which is equiva-

lent to 1000 NA m-3, where NA is Avogadro's constant. QN,L and QN are the partition

functions for systems containing N solvent molecules and one ligand molecule, and

only N solvent molecules, respectively. The last term, PVL, corresponds to the work

associated with moving the ligand from the gas phase to a solvated state at constant

pressure, where VL is the volume of a single ligand and P is the standard state pres-

sure. This last term will be very small except at very high pressure, and in the present

analysis it is assumed that binding occurs at 1 atm where this pressure-volume term

will be negligible. The ratio of partition functions is expanded as follows,

Ms+ML

- Z p'/2mi + U(qS, qL)

QN,L S SG

QNL MS (3.3)

-N p /2m j+ U (qS)
h3MLUL e )dpsdqs
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where # = ', o-L is the symmetry number of the ligand, qS/L and PS/L refer to

the set of all position and momentum degrees of freedom of the solvent and ligand,

respectively, and Ms and ML define the total number of solvent and ligand atoms,

respectively. U is the internal energy, T is the absolute temperature, h is Planck's

constant, and kB is Boltzmann's constant. This expression can be simplified by

analytically integrating over the momentum portion of phase space (from -oo to

+oo) for each atom i of both the solvent and ligand (ps, PL) and cancelling the

resulting expressions for the solvent momentum.

ML3 -e-U(qs,qL~d 9
QN,L M (2mikBT ) 2if C )U(ssqL (3.4)
QN h 2  oL e-U(qs)

Further simplification is possible by defining a potential of mean force W(qL) to make

use of an implicit solvent treatment and avoid explicit integration over solvent degrees

of freedom. This is done by defining the interaction potential between the ligand and

the solvent for a fixed configuration of the system and averaging the Boltzmann factor

of this potential over all solvent degrees of freedom.

Uint(qs, qL) = U(qs, qL) - U(qL) - U(qs) (3.5)

W(qL) -kBTn ' ) (3.6)

o-L e -OU(qS )dqs

Substituting Eq. 3.6 into Eq. 3.4 yields a reduced expression in which the position

of the ligand no longer depends upon the exact configuration of the solvent,

22

QNL=m (7mik ) B C-OU(qL)+WqL) dL(37

The integral over the position of the ligand (qL can also be simplified by defining

an internal reference frame that does not depend on absolute external coordinates

(i.e., translational and rotational coordinates) of the ligand. This coordinate frame is
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defined using a set of three bonded atoms in the ligand to specify the 6 external degrees

of freedom and a set of 3N -6 bond length (rL), bond angle (OL), and torsional angle

(#L) (BAT) coordinates to recursively specify the position of each subsequent atom

relative to the position of the first three atoms. This coordinate change allows the

integral over ligand configurational space to be separated into external and internal

pieces, where the potential of the solvated ligand (U(qL)) is now independent of the

external degrees of freedom. Analytically integrating over these external degrees of

freedom of the ligand yields a constant factor of 87r 2 VN,L [96]. The remaining integral

over internal degrees of freedom can be computed numerically, and doing so in a BAT

coordinate system often results in improved accuracy, as BAT sampling corresponds

to natural motions of the molecule and a smoother exploration of the potential energy

surface compared to a Cartesian coordinate system [118]. After simplification, the

resulting expression for Psol,L is,

-kBT InB 87r2 L 27rmikBT ) (3.8)
psol,L ="r ~H n4 L2 ZL -0

ZL jLedOU(rL)+W(rL)JdqL (3-9)

where ZL is a configurational integral over the solvated ligand, internal degrees of

freedom and JL = r sin OL is the Jacobian weight for sampling in a BAT space
L

[119, 120]. Note that limits of integration for rL are defined by the volume of the

system (VN,L) which is ultimately normalized by the standard state concentration

of the ligand in solution. Limits of integration for OL are defined from 0 to 7, and

limits for #L are defined from 0 to 2 r. In this study only torsional degrees of freedom

of the ligand were explored. Bond lengths and bond angles were held fixed at their

equilibrium values, as it has been suggested that these degrees of freedom experience

only small changes in configurational freedom upon binding and contribute negligibly

to the free energy change [49]. Receptor degrees of freedom were held fixed due

to issues of computational tractability and the large number of receptor degrees of

freedom.
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The derivations for the standard chemical potential of the receptor and complex

are similar and will not be repeated here. It should be noted, however, that in the

complex the six external degrees of freedom of the bound ligand become internal

degrees of freedom of the complex, and integration over these new internal degrees of

freedom is limited to only those conformations in which the ligand is actually bound

and contained entirely within the receptor's active site cavity. Combining Eq. 3.1

with Eq. 3.8 for the ligand, receptor, and complex, the following expression for the

standard free energy change is obtained

AG'0 in -kB C' 9LOR ZLR
LRZRsolbid =kBTn(8 2 ULR ZL ZN (3.10)

Note that this expression is only dependent upon the configurational degrees of free-

dom of the complex, unbound receptor, and unbound ligand; all factors resulting from

integration over the momentum portion of phase space exactly cancel when taking

the difference between the bound and unbound states.

Once the partition functions in the bound and unbound states have been found,

the enthalpy change (excluding negligible pressure-volume terms) can be found by

calculating the appropriate averages over solute configurational space

A Hslb d (U(qR, qL)+ W(q, qL))qR,,L (U(qR)+W(qR)) , (U(qL) +W(qL)) q,

(3.11)

where ()qR/L defines the configurational ensemble average over ligand and receptor

degrees of freedom, respectively. The configurational entropy change upon binding

can be found through the canonical equation [12]

S = kB In Z + kBT lnZ)
OT
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which results in the follow expression

1
ASeOlbsild = (AHsol,bind -- AGso )-

/W(qR, 9L/) W(9R) /W(qL) (3.13)

\ OT LT OT 'qL/

The final three terms that appear in the above expression for the entropy change

result from the introduction of a potential of mean force (Eq. 3.6) to implicitly deal

with solvent degrees of freedom. This formulation partitions the entropy change into

additive solute and conditional solvent components in a mathematically and thermo-

dynamically rigorous fashion [50, 121]. The first two terms in Eq. 3.13 correspond

to the configurational entropy change of the solute, while the remaining terms cor-

respond to the change in solvent entropy conditioned on the configurational state of

the solute, averaged over all solute configurational degrees of freedom.

A0  Asolute (L) AS solute IAs'~lu"qlq, -I As soute (qI L
ASsol,bind config LR config qS IqLqR) - config SR - config S L)

(3.14)

In the present study, all reported free energy differences include enthalpic and entropic

contributions from both solute and solvent degrees of freedom.

3.3.2 Conditional Mutual Information Expansion

The configurational entropy of each ligand was decomposed into individual, per de-

gree of freedom entropy and higher-order coupling terms using a conditional mutual

information expansion (CMIE). Similar to the mutual information expansion pre-

sented by Matsuda [112] and Killian [113], this expansion divides the full entropy

into a sum of sequentially higher-order mutual information terms. However, rather

than partition the total entropy into a set of overlapping entropic contributions that

are added and subtracted with successive terms, we partition the space into a set

of mutually exclusive terms, each of which captures the entropy content of either a

single degree of freedom or the coupling between a group of degrees of freedom. This

is done by adding up the mutual information of all possible combinations of degrees
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of freedom, given that the distributions of the remaining variables are known. This

can be expressed as

N N

S(xi, x 2 , ... , XN) 3I(xi~{Xi}c) cI(xj;xj{x2 ,x 3 }c) +

i=1 i,j=1
i<j

N

N3 I(Xi;Xj;XkijXiXiXkjc) + + (3.15)

i,j,k=1
i<j<k

where N is the total number of degrees of freedom of the system, {X}C is the comple-

ment of {x}, and I({x}I{x}c) is the mutual information of a set of variables {x} condi-

tioned on the complementary set {X}C or simply conditional entropy when |{x}|= 1.

This decomposition follows from the set measure-theoretic definition of multivariate

mutual information [122, 123], where each conditional information term corresponds

to a non-overlapping subset of an information diagram.

As an example, consider a system with three degrees of freedom {x, y, z}. The

CMIE for this system is

S(x, y, z) =I(xjy, z) + I(yIx, z) + I(zlx, y)+

I(x; ylz) + I(x; zly) + I(y; zlX)+ (3.16)

I(x; y; z),

where the first three terms are of first order, the second three terms are of second

order, and the last term is of third order. As illustrated in Fig. 3-1, the first-order

terms define the conditional entropy due solely to each individual degree of freedom;

this corresponds to the average entropy due to in a degree of freedom, given that

the remaining degrees of freedom are known. That is, first-order measures define the

entropy due to each degree of freedom that is not mediated by any other degrees of

freedom through coupling. Similarly, the second-order terms define the conditional

mutual information between each pair of degrees of freedom, which correspond to
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measures of the coupling present between pairs of variables that is not mediated by

higher-order coupling. The third-order term defines the higher-order coupling present

among all variables. It is important to note that while this expansion partitions the

entropy into non-overlapping pieces, only first- and second-order terms are guaran-

teed to be positive [121]. As such, higher order mutual information terms can either

increase or decrease the total entropy of the system. Additionally, as with any en-

tropy expansion, all of these terms are fundamentally dependent upon the choice

of the reference frame and thus represent a potentially non-unique but still useful

interpretation [96, 50].

z

Figure 3-1: Three body conditional mutual information expansion. The
entropy of a three body system with degrees of freedom x, y, and z corresponds to the

union of all three circles. This total entropy is broken up according to Eq. 3.16 into

marginal entropies (blue, green, and red areas), pairwise coupling entropies (purple,
orange, and brown areas), and a single three body or third order entropy (yellow

area).
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3.3.3 Ensemble Enumeration and Partition Function Deter-

mination

The bound and unbound state configurational integrals of five HIV-1 protease in-

hibitors (Fig. 3-2) were evaluated via a three-step, rotamer based, enumerative con-

figurational search. All internal torsions as well as external (i.e., orientational relative

to the receptor) degrees of freedom were rotamerized using uniform step sizes to ex-

haustively explore configurational space at different levels of discretization. All exam-

ined ligands were comprised of a common chemical scaffold with potentially variable

functional groups at five positions (R1-R5). The first step of the search involved gen-

erating separate discretized libraries of scaffold positions and orientations as well as

rotamer libraries of all possible functional group configurations relative to the scaffold.

The second step employed the guaranteed DEE/A* search algorithms to explore all

possible combinations of the rotamer libraries found in the first step and generate an

energy-ordered list of all possible low-energy configurations using a pairwise additive

energy function (termed low-resolution). The third phase of the calculation used a

tiered energy function strategy to re-evaluate the energies of the collected low-energy

configurations using a high-resolution energy function and numerically integrate over

the explored configurational space.

The ensemble of low-energy scaffold conformations was generated using an enu-

merative MC search. The goal of this step was not to collect a Boltzmann ensemble

via sampling, as is traditionally done using MC, but to mine for an ensemble of low-

energy scaffold configurations whose relative probabilities will be explicitly computed

after exploring the remaining configurational space. For all simulations the move set

included all torsional rotations, excluding methyl and amide bond rotations, as well

as overall translations and rotations in the bound state. The upper bounds on step

sizes for overall translations and rotations were set to 0.5 A and 300, and individual

torsional moves were capped at 15' and 1800 in the bound and unbound state, re-

spectively, with an equal weight applied to all moves. Ten, independent simulations

of 50,000 steps each were performed for each ligand in both the bound and unbound
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Figure 3-2: Selected HIV-1 protease inhibitor structures. These five inhibitors
were originally designed by Altman et al. [47] to test the substrate envelope hy-
pothesis. They are derived from the Darunavir/Amprenavir scaffold and all exhibit
nanomolar binding affinity.

states, and the external and scaffold degrees of freedom of all collected configurations

were snapped to a uniform rotamer grid with a resolution of 0.1 A and 10' (20') for

the bound (unbound) state. All search parameters and grid resolutions were selected

to maximize spatial coverage over the course of a simulation, while ensuring that the

rate of configurational exploration approached zero with a computationally feasible

number of scaffolds. Simulations were performed using the CHARMM computer pro-

gram [3, 76] with the CHARMm22 force field [124] and a distance-dependent dielectric

constant of 4. The functional group rotamer libraries were generated by brute force

enumeration of torsional space.
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All possible rotamer combinations from the constructed libraries were energet-

ically evaluated to map out ligand configurational space using an in-house imple-

mentation of the DEE and A* algorithms [47]. Given a set of uniformly sampled,

complete scaffold and functional group rotamer libraries, these algorithms are guar-

anteed to find the GMEC as well as all other near-optimal structures up to a user

supplied energy cutoff. Using the list of collected energies produced by this guaran-

teed search, Boltzmann factors (e--M) were calculated for each configuration i and

used to compute a low-resolution estimate of the configurational integral (Eq. 3.9)

by numerical quadrature. For these high throughput energy evaluations, a pair-wise

decomposable energy function was used that included all pairwise van der Waals and

Coulombic, intra- and intermolecular interactions, computed with the CHARMm22

parameter set [124]. The energy cutoff used in this low-resolution estimate was always

< 10 kcal/mol, as this provided enough coverage of the potential energy landscape

to guarantee partition function convergence (vide infra).

The final step of the search included the energetic re-evaluation of the collected

ensemble using a higher resolution energy function to account for solvation effects

and to obtain a more accurate measure of the free energy change upon binding. The

improved energy function included all pairwise van der Waals interactions, contin-

uum electrostatic solvation energies collected from a converged linearized Poisson-

Boltzmann calculation found using the DelPhi computer program [84, 125], as well as

solvent accessible surface area energies to model the hydrophobic effect [86]. Solva-

tion energies were calculated using an internal dielectric of 4 and a solvent dielectric

of 80. A grid resolution of 129 x 129 x 129 with focusing boundary conditions [85]

was used, along with a Stern layer of 2.0 A and an ionic strength of 0.145 M.

The high-resolution (HRes) configurational integral was computed using a boot-

strapping method that breaks up ligand low-energy configurational space into two

regions: one described in terms of explicit configurational states evaluated using the

HRes energy function, and the other in terms of distributions of HRes energy levels
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(EHR) inferred from the low resolution (LRes) energy level (ELR) distribution:

ZHR j J (qL EHRL)dq + g(EHR)C EHRdEHR (3-17)

Here, g(EHR) is the degeneracy of the HRes energy levels, and A and B define com-

plementary regions of configurational space that together cover the entire space. Note

that this approximation of the HRes energy space was made for computational ef-

ficiency, as it is currently computationally intractable to explicitly re-evaluate all of

the millions of configurations collected from the LRes DEE/A* search. The first term

of Eq. 3.17 corresponds to the HRes partition function defined by some fraction of

the total number of low-energy configuration, and it is calculated by explicitly re-

evaluating the energies of the top 50,000 configurations and integrating over these

states. The second term estimates the contributions made by the remaining, higher-

energy members of the full ensemble to the HRes partition function and can be viewed

as a correction to the first term. It was computed by finding an approximate distribu-

tion of HRes energy levels as a function of the known LRes energy level distribution to

estimate g(EHR), using a probabilistic formalism similar to those hierarchical evalua-

tion methods used in molecular design [126]. The LRes energy space (minus the top

50,0000 structures) was divided into 0.1 kcal/mol bins, and a randomly selected set

of 1000 configurations were re-evaluated in each bin. Each 1000-configuration sam-

ple was used to approximate the distribution of HRes energy levels observed in each

LRes bin i. The resulting set of conditional high-resolution energy level probability

distributions, P(EHRIELR)i, were empirically fit to either single or double skewed

Gaussian distributions to determine the approximate shape of the distribution. Each

was then weighted by the number density of configurations in that particular bin

p(ELR)i, which yielded the HRes energy level degeneracy in each bin, g(EHR)i-

g(EHR)i = p(ELR)iP(EHR|ELR)i (3.18)

The total contribution of all bins to the high-resolution partition function was then

calculated by integrating over the HRes energy levels in each bin via numerical quadra-
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ture and then summing over each LRes bin

ZHR J LJ (qL) eEHR(qL)dqL + p(ELR)iP (EHRIELR)i >_EHRdEHR- (3-19)

3.3.4 Structure Preparation

The receptor structure used in this study was a darunavir bound x-ray crystal struc-

ture obtained from the Protein Data Bank (PDB) [127] (Accession code 1T3R) [128],

prepared using methods and structural modifications from Altman et al. [47]. Par-

tial atomic charges for each inhibitor were determined by fitting to the electrostatic

potential of an optimized ground state structure using the restrained fitting methods

of Bayly et al. [79]. Geometry optimizations as well as electrostatic potential cal-

culations were performed with the GAUSSIAN03 computer program [129] using the

Restricted Hartree-Fock method with the 3-21G and 6-31G* basis sets, respectively.
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3.4 Results and Discussion

3.4.1 Rotamer Grid Resolution and Thermodynamic Con-

vergence

Conformational space of all inhibitor degrees of freedom was explored at multiple

resolutions. Ultimately, the grid resolution used to compute all thermodynamic pa-

rameters was selected based on the rate of exploration of scaffold degrees of freedom

and the numerical convergence observed in the computed free energy. As the con-

figurational search was performed in multiple steps, we examined the convergence of

each step separately. In step one the external and internal scaffold degrees of freedom

were explored via an enumerative MC simulation in which collected configurations

were snapped onto a uniform rotamer grid of user defined resolution. The coverage

of low-energy space was measured at multiple grid resolutions to find the highest res-

olution grid possible while maximizing coverage (Fig. 3-3). Simulation convergence

was quantified via the number of unique, grid-snapped configurations found at each

MC step, as this growth rate should approach zero as the simulation length increases

and more configurational space is explored. A 0.1 A/10' grid was used in the bound

state and a 200 grid in the unbound, as the final growth rates at these resolutions

were converged to within 0.03 unique configurations per step (3% of the maximum

growth rate) for all bound/unbound inhibitors. Increasing the grid resolution to 50

and 100 increased the number of unique configurations found per step, which required

collection of a computationally intractable number of scaffold positions in order to

ensure the configurational space was adequately sampled (i.e., a growth rate of ap-

proximately zero). Note that in all the computed inhibitor ensembles, the unbound

state required a coarser grid in order to obtain a comparable rate of convergence using

a similar number of overall configurations. This indicates that there is a more densely

populated low energy scaffold space in the unbound compared to the bound state.

Without the receptor present to constrain the torsional motions of the inhibitor, the

scaffold is able to adopt a much wider variety of conformations without paying large
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energetic penalties. It is important to note, however, that while the unbound state

has a more densely populated low energy space compared to the bound state, the

structural differences between individual unbound conformations are also smaller,

and capturing these features requires less resolution.

A Rate of KB-98 Bound State Scaffold Exploration B Rate of KB-98 Unbound State Scaffold Exploration

--- 0.1A/1* Grid -0.A/54 Grid
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Figure 3-3: KB-98 enumerative Monte Carlo scaffold grid resolution con-
vergence. (A,B) The unique scaffold/external configuration growth rates measured
as a function of grid resolution and Monte Carlo simulation length in the bound and
unbound states. (C,D) Final unique configuration growth rates for bound and un-
bound state. The dotted line indicates the 0.03 configurations per step acceptance
cutoff used.

In the second configurational search step the remaining functional group degrees

of freedom were enumerated using a user specified specified rotamer step size, yielding

a low-resolution measure of free energy. Convergence of this absolute free energy was

measured using the derivative of the free energy as a function of the grid resolution

and offset calculations (Fig 3-4). Using maximum possible sampling resolutions of
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150 in the bound state and 30' in the unbound state, we observe free energy changes

of ~ 0.2 kcal/(mol-degree) and ~ 0.015 kcal/(mol.degree), respectively. Offset

calculations at these resolutions also yield small errors of less than ±1 kcal/mol.

Both of these measures of free energy error suggest that accurate measures of the

free energy of binding can be found with moderate functional group grid resolutions.

These data also imply that the unbound state has a more degenerate, low-energy

configurational space than the bound state with wider, less rugged potential energy

wells, i.e. vast regions of unbound configurational space are well described by coarser

sampling with limited grid error.

3.4.2 Ensemble Size and Thermodynamic Convergence

The Boltzmann distributions computed for each inhibitor ensemble was truncated at

a range of energy cutoffs to explore the effect of collected ensemble size on free energy

convergence. These cutoffs define the ensemble of all configurations with energies

within a particular energy range above global minimum energy (Fig. 3-5). Our re-

sults suggest that only a very small portion of configurational space is necessary to

achieve a very high level of convergence for the free energy. The top 1 kcal/mol of

the ensemble brings the computed free energy within 2% (~1.5 kcal/mol) of the con-

verged free energy in the bound state and within 5% (~2.5 kcal/mol) in the unbound

state. At the highest degree of rotamerization, this corresponds to less than 200 and

700 configurations in the bound and unbound states, respectively. This behaviour

was observed in all configurational ensembles, and all thermodynamic averages were

well converged to within less than 1 kcal/mol when the full set of configurations was

included. This rapid convergence suggests that the most relevant portions of configu-

rational space are low-energy wells and that the average thermodynamic properties of

these systems are well described by low-energy configurational ensembles, supportive

of the predominant state hypothesis.

One should note, however, that given a fixed ensemble size, not all averages reach

the same level of convergence. We observe that ensemble enthalpies and entropies

show slower rates of convergence compared to free energies. Using a 150 grid in the
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Figure 3-4: KB-98 functional group grid resolution convergence. (A,B) Low-

resolution free energy convergence of KB-98 in the bound and unbound state as a

function of the rotamer step size used when searching the functional group degrees

of freedom. Error bars indicate the standard deviation computed from the two offset

calculations performed at each grid resolution. All calculations use a starting ge-

ometry collected from the lowest energy configuration found during the bound state

scaffold search. The offset calculations begin from this configuration with each degree

of freedom offset by half the step size so as to escape from the initial, low energy well.

(C,D) Final rate of free energy change for each examined inhibitor in the bound and

unbound state.

bound state and a 600 grid in the unbound state, the ensemble free energies exhib-

ited an average final rate of convergence of 0.001 and 0.1 kcal/mol per kcal/mol of

the ensemble, respectively. By comparison, both the enthalpy and entropy averages

showed average final rates of 0.02/0.2 and 0.02/0.3 (bound/unbound). These data

suggest that larger fractions of configurational space are required to accurately gauge

enthalpic or entropic contributions to binding compared to the full free energy and

that the sampling error associated with these contributions partially cancels when

computing the free energy. In particular, accurate estimation of entropic changes
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requires elaboration of low density regions of the distribution, which becomes in-

creasingly difficult to explore as the degeneracy of configurational space increases. In

all cases, a significantly smaller portion of the less degenerate bound state space was

required to obtain comparable levels of convergence compared to the unbound state.

3.4.3 Experimental versus Calculated Inhibitor Affinities

One of the primary motivations in this study was the lack of strong correlation be-

tween the originally computed design energies for these inhibitors and experiment

(Fig. 3-6A). We sought to improve upon our original relative affinity prediction

and examine which methodological enhancements brought about the most significant

correlative improvement of calculated affinity with experiment. Examining the r 2

correlation coefficients for calculated vs. experimental affinity, the old static enthalpy

metric shows almost no correlation (0.05). Note that the single conformations used

to evaluate binding in this study were found using a coarser rotamer library, a con-

strained scaffold set, and the rigid binding approximation. Using our more exhaustive

search method, we first examined the effect of searching both the bound and unbound

states in tandem for low energy structures with a higher resolution rotamer set (Fig.

3-6B). By selecting the lowest energy structure in both the bound and unbound en-

sembles, we computed a static enthalpy of binding that shows marked correlation

with experiment (r 2 a 0.7) and significant reduction in the variance weighted sum of

squared error (x 2 ~ 47 vs. 230). While the relative affinity ordering is still not correct,

we have effectively separated the cluster of drugs that were previously all predicted to

bind with the same affinity. This large improvement in correlation likely stems from

two factors: searching conformational space more finely and appropriately accounting

for the significant conformational change that each inhibitor undergoes upon bind-

ing with independent bound and unbound state searches. Heavy atom, least squares

alignments of the best unbound to bound conformations show root mean square devi-

ations of greater than 3.4 A for each of the five inhibitors. Additionally, when bound

inside the protease, each inhibitor takes on an extended shape to fit within the active

site, and when unbound, each inhibitor undergoes a structural collapse in order to
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maximize solvation as well as intramolecular interactions. We find that the solvent

accessible surface area of the best inhibitor configurations decreases on average by

80 ± 20A 2 upon binding.

We next examined the correlative effect of ensemble averaging by computing the

average enthalpy change upon binding for each of the five inhibitors (Fig. 3-6C).

This further improves correlation with experiment, yielding an r 2 value of 0.85, an

additional two-fold reduction in X2 error, and the correct relative ranking of each

inhibitor. Incorporating the ensemble average into the calculation of the enthalpy

change has a significant effect on both the bound and unbound state and drags the

average enthalpy up by 2.3 ± 0.2 kcal/mol and 2.8 ± 0.7 kcal/mol in the bound and

unbound state, respectively. Examining the net difference, we find that KB-98 and

AD-86 experience the largest change relative to their static enthalpy evaluation (~1

kcal/mol). This is due to the fact that for these two inhibitors, the average unbound

state enthalpy is pushed up by 1 kcal/mol more than in the bound state, which

suggests that the unbound low-energy state space of these two compounds is more

densely populated compared to the remaining inhibitors. These changes result in

residual improvement for all points except AD-93, with KB-98, KB-92, and AD-94

showing the largest improvement.

We also examined the correlative effect of ensemble averaging by correcting the

new static enthalpy estimates with our computed entropy penalties (Fig. 3-6D). In-

terestingly, this also introduces a clear separation between the high affinity inhibitors

(KB-98 and AD-93) and the less effective ones (AD-94, KB-92, and AD-86), and

significantly improves correlation with experiment, giving a correlation coefficient of

0.84. Comparing this correlation with that of the new static enthalpy change, the

observed improvement is primarily the result of bringing KB-98 and AD-94 closer to

the best fit line. KB-98 shifts because its computed entropic free energy loss is much

smaller relative to the other computed entropic penalties, while AD-94 shifts because

is experiences the largest entropic free energy loss. Note that attempts to similarly

correct the new static enthalpy with a constant, entropic penalty per rotatable bond

fail to significantly improve correlation. We explored possible constant corrections up
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to 2 kca/mol/bond, and the most effective (0.5 kcal/mol/bond) only yielded an r2

value of 0.74.

The final effect we explored was accounting for both the configurational entropy

change of the ligand (ASind) as well as the the average enthalpy change (AHbind) upon

binding, which together correspond to the full configurational free energy of binding,

AGbind (Fig. 3-6E). Surprisingly, while separately including either ensemble measure

significantly improves correlation, together there is only a slight improvement over

previously examined metrics (r 2 ~ 0.87). Each ensemble measure captures similar

information such that together they have only a small, coupled effect. In total, our

results show that finding a better estimate of the global minimum energy conformation

(GMEC) in both the bound and unbound states can substantially improve relative

inhibitor rankings, but that further improvement necessitates an ensemble treatment.

We find that including information about the shape of the minimum energy potential

well and surrounding wells, in addition to its relative position, is required to resolve

more subtle differences between inhibitors.

A similar quantitative picture emerges when examining the calculated enthalpy-

entropy breakdown of these inhibitors (Table 3.1). All of the inhibitors are computed

to be enthalpically driven binders, as AH is favorable and nearly twice the size of

the unfavorable, configurational entropy loss. Given this large relative difference and

the functional form of the Boltzmann distribution, the importance of the GMEC

in ranking can be rationalized, as this distribution is strongly biased towards and

peaked about low energy configurations. It is interesting to note that the entropy

changes (-TAS) are quite large (+22-26 kcal/mol) relative to AG, and they are very

similar to previous estimates of the configurational entropy loss of chemically similar

HIV-1 protease inhibitors using different methodology [49]. In contrast to cheaper,

empirical measures of configurational entropy loss, these entropies show only marginal

correlation with the number of rotatable bonds explored (r 2 ~ 0.5). In particular, the

entropy losses of AD-94 and AD-86 deviate significantly from the trend exhibited by

KB-98, AD-93, and KB-92, which show a consistent loss of -1 kcal/mol per rotatable

bond. Both KB-92 and AD-94 have 15 rotatable bonds, yet AD-94 loses nearly 1.5
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kcal/mol more in entropic free energy upon binding. Structurally, these two inhibitors

are also very similar, and differ only in the identity and flexibility of their R2 and

R3 functional groups. In AD-94, R2 is more flexible than R3, while the reverse is

true for KB-92. In the case of AD-86, we find that it loses nearly 2 kcal/mol less

entropic free energy than would be expected assuming a constant entropy penalty. It

is more flexible than KB-92 at the RI and R2 positions and AD-94 at the R1 and

R3 positions, yet it loses much less entropy than expected given its flexibility. These

deviations highlight the fact that both the number of rotatable bonds as well as their

location influence configurational entropy losses.

Table 3.1: Calculated thermodynamic changes upon binding for the five tested HIV-1
protease inhibitors. All values reported in units of kcal/mol.

KB-98 AD-93 KB-92 AD-94 AD-86
AG -24.3 -26.0 -19.8 -19.5 -20.1
AH -46.9 -49.7 -44.5 -45.6 -45.1

-TAS 22.6 23.7 24.8 26.1 24.96
Num. Rot. Bonds 13 14 15 15 17

3.4.4 Analysis of Marginal Configurational Entropy Changes

In order to understand the subtle entropic differences between these inhibitors and

discern the major contributions to the absolute entropy loss, we decomposed inhibitor

entropy changes using a conditional mutual information expansion. This decompo-

sition separates out the entropy change into additive components that quantify the

marginal conditional entropy losses and all higher order changes in coupling entropy.

We find that the majority (95%) of the total entropy change can be traced back

to the first-order conditional entropy terms, with the remaining entropy difference

bound up in coupling entropy. These first-order terms are measures of the average

change in configurational entropy present in each degree of freedom, given fixed con-

formations for the rest of the inhibitor torsions, i.e. they measure the per degree of

freedom change in entropy independent of any coupling. As can be see in Fig. 3-7,
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all inhibitors experience large losses in external entropy (-12.3 kcal/mol), as binding

to the receptor creates a highly constrained environment, severely limiting inhibitor

rotation and translation. For comparison, assuming a standard state concentration

of 1 M, which corresponds to a volume of 1660 A3 per molecule, and a free rotational

volume of 87r2 , the unbound state has an external, standard state entropic free energy

(-TS') of approximately -7 kcal/mol, with -4.4 kcal/mol stemming from translational

entropy and -2.6 kcal/mol stemming from rotational entropy.2 This estimate of the

external entropy loss compares very well with a variety of alternative formulations.

In particular, Chang et. al estimate an external entropy loss of 12.3 kcal/mol for a

chemically very similar inhibitor, Amprenavir, binding to HIV-1 protease using the

second generation mining minima algorithm, and a loss of 11.6 kcal/mol using the

quasiharmonic approximation [49]. Using molecular dynamics in conjunction with

the quasiharmonic approximation as well as Schlitter's entropy formula, Carlsson

and Aqvist estimate the combined translational/rotational entropy loss of benzene

binding to fixed T4-Lysozyme to be ~11 kcal/mol [132].

The remaining internal, inhibitor degrees of freedom exhibit net losses of 9-10

kcal/mol, with a coupling independent, average loss of 0.7 ± 0.3 kcal/(mol-rot. bond)

of configurational entropy. This average loss is in agreement with previously reported

values of 0.4 to 0.9 kcal/mol/bond, which were estimated from the experimentally

measured thermodynamics of fusion of small hydrocarbons [133]. Page et. al report

losses of 1-1.4 kcal/kcal/mol/bond, which were estimated from the entropy loss mea-

sured upon hydrocarbon cyclization [134]. Note that the former estimate is derived

from the entropy loss as a molecule is captured inside a crystal lattice, while the

latter is a measure of the entropic cost of completely freezing out a degree of freedom

into a constrained ring structure. The slight difference between our estimate and

that of Page et. al likely stems from the fact that individual torsional angles are not

2Note that while this implies that the bound state entropy of external ligand degrees of freedom,

which are now internal to the complex, is negative, it comprises only a fraction of the total entropy,

which need not be positive. Additionally, these numbers do not account for the entropic contribution

of the momentum portion of phase space, which exactly cancels when taking the difference upon

binding (see Eq. 3.10).
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completely frozen upon binding. As we can see from examining the marginal prob-

ability distributions of individual degrees of freedom, many torsional angles retain

a considerable amount of conformational freedom upon binding (Fig. 3-8). Further

exploration of these distributions shows unique differences in how each distribution

changes upon binding. We observe two major trends among all the inhibitors, which

we will illustrate using KB-98 as an example. First, moving down either column in

Fig. 3-8, we see the distributions becoming increasingly spread out, indicating that

as one moves farther away from the scaffold of the molecule, each degree of freedom

is increasingly more mobile. Small-angle rotations about scaffold torsions (degrees of

freedom one and two) swing large lever arms, which results in large displacements.

Comparatively, rotations around terminal dihedral angles (e.g., degree of freedom

five) swing small lever arms, and as a result tolerate much larger changes. Second,

loss of configurational freedom upon binding for these inhibitors is due both to the

disappearance of populated wells and to well contraction. Comparing the unbound-

and bound-state distributions for degrees of freedom one, two, and four, we observe a

collapse from a multimodal distribution to a unimodal one. Additionally, making the

same comparison for degrees of freedom one, three, and four, we see the correspond-

ing wells contract from a width of 800, 120', and 900 in the unbound state to 10',

600 , and 600 in the bound. The marginal distribution changes for scaffold torsions

are particularly stark, as one sees unimodal collapse and contraction upon binding

for almost all of these core degrees of freedom across all the examined inhibitors. The

window of occupied configurational states for these motions is always less than 200 in

the bound state, which implies that accurate sampling of these highly constrained de-

grees of freedom requires very small step sizes. Comparatively, the most free motions

correspond to hydroxyl rotations, as they have the shortest associated lever arm. All

such groups exhibit broad, nearly uniform distributions in the unbound state, which

become more peaked (widths of ~ 180') and centered around an ideal hydrogen bond

position upon binding.

Examining these marginal distributions for the variable functional groups R1, R2,

and R3 across all of the studied inhibitors and their marginal entropy losses, we noted
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a spatial dependence of the marginal entropy loss, with differential losses per degree

of freedom depending on where the structural group docks within the active site.

Table 3.2 shows the averages entropy loss upon binding per degree of freedom for the

external, scaffold, and functional groups. Averaging over all five inhibitors, we find

that for this scaffold the R3 group, which binds in the P2' pocket, experiences the

largest entropic loss per degree of freedom (1.2 ± 0.5 kcal/mol/bond). By comparison,

the R1, R2, and R4 groups, which sit in the P2, P1', and P1 pockets, lose 0.6, 0.8,

and 0.7 kcal/mol/bond), respectively. This suggests that rigid functional groups are

preferred at this site as they experience the greatest loss in entropy upon binding.

Interestingly, when examining the experimentally measured affinities of the larger

MIT-2 inhibitor library, we see a similar trend where the binding free energy becomes

more unfavorable as the functional groups become more flexible [47].

Table 3.2: Entropy loss per rotatable bond. All values reported in units of kcal/mol.

-TAS
External 2.05 ± 0.03
Scaffold 0.65 ± 0.05

Ri 0.6 ± 0.1
R2 0.8 ± 0.3
R3 1.2 ± 0.5
R4 0.7 ± 0.1
R5 0.49 ± 0.06

Avg. Internal 0.7 ± 0.3

3.4.5 Analysis of Configurational Coupling Entropy Changes

The remaining contributions to the configurational entropy loss are bound up in

higher-order coupling terms. Individually, these terms are often much smaller than

the first-order losses, but their net effect is significant, accounting for the loss of 1-

2 kcal/mol of entropy as well as being informative of gross intramolecular coupling

trends. Examining the relative error in the entropic free energy as a function of cou-

pling order, we see that the source of this coupling entropy differs between the bound
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and unbound states (Fig. 3-9A-E). In the bound state, we see that the largest source

of coupling appears in second-order terms (as the error drops precipitously upon the

addition of second order coupling terms), but that the higher-order effects only be-

come negligible after the addition of ninth or tenth order terms when the cumulative

error reaches 0. In the unbound state, we again see that the largest source of coupling

arises from second order terms, but note that higher-order effects become negligible

by the addition of fourth or fifth order terms. The size of the relative drop in the error

between the bound and unbound states upon addition of second order terms suggests

that there is more second order coupling in the unbound versus bound state, which

translates to a loss of entropic free energy upon binding. The relative importance of

higher order coupling terms in the bound state suggests that there is more significant

higher-order coupling in the bound versus unbound state, which translates to a net

gain in entropic free energy upon binding. Averaging over all inhibitors, we find that

the net change in entropic free energy upon binding is unfavorable for all coupling

interactions involving five or less degrees of freedom (-TAS +1 kcal/mol) and gen-

erally favorable for all higher order coupling interactions (-TAS ~ -0.3 kcal/mol)

(Fig. 3-9F). This suggests that upon binding, the receptor restricts not only the inde-

pendent motions of individual, inhibitor rotatable bonds, but many of the pairwise,

three-, four-, and five-body coupling interactions present in the unbound state as well.

This also intimates that in the bound state, higher-order coupling between inhibitor

torsional degrees of freedom arise as inhibitors adopt specific conformations to adapt

to the constrained, receptor binding site.

We examined the large number of individual coupling interactions in both the

bound and unbound ensembles and found that the majority of specific coupling terms

each contribute less than 0.05 kcal/mol, and that the largest individual coupling terms

never contribute more than -0.3 kcal/mol. Consistent with our analysis of the gross

changes in coupling, we see that most of the large magnitude couplings terms appear

in the unbound state and stem from second order coupling between scaffold degrees of

freedom. In particular, we observe strong coupling between adjacent scaffold torsions

or between torsions one bond apart. Interestingly, these unique pairs of torsions can
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modulate the van der Waals packing of the functional groups with each other, and

Fig. 3-10A shows the two-dimensional probability distribution for two such coupled

torsions in KB-98. We see that these two dihedral angles can manipulate the position

of R3 relative to the rest of the inhibitor, and cooperatively interact to maximize

intramolecular van der Waal interactions between the R3 ring and either the scaffold

backbone or the R4 phenyl ring (Fig. 3-10C moving from left to right, top to bottom).

These data suggest that unbound state coupling arises as a result of cooperative

motions that maximize intramolecular hydrophobic and ring stacking interactions.

Note, however, that none of these couplings individually contribute more than 0.15

kcal/mol to the overall entropy change. By comparison, we observe far fewer, large

coupling terms in the bound state, and the most significant (-0.3 kcal/mol) arise

between the two dihedral angles surrounding the amide moiety in the Rb functional

group. These two torsions are coupled as it appears they can modulate the position

of the distal, R1 hydroxyl group, which forms a hydrogen bond with the sidechain

of D29 (KB-98/AD-93) or the backbone carbonyl of G48 (AD-94/KB-92). As in the

unbound case, these two torsions compensate for each other, although here they affect

intermolecular interactions with the receptor. The higher order, bound state coupling

terms that we see are predicted to couple external degrees of freedom to core, scaffold

torsions, but individually rarely contribute more than 0.1 kcal/mol.
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Figure 3-5: Configurational free energy

of the free energy, enthalpy, and entropy of

E Unbound State KB-98 G Convergence

F Unbound State KB-98 H Convergence

-26

'_27-

u. -29
0 2 2 3 4 5 6 7 8 9 t0

G Unbound State KB-98 -TS Convergence
-16
-t8
-20
-22
-24-

-26
0 1 2 3 4 5 6 7 8 9 10

Energy Above CME (kcal/mo8

H Unbound State Rate of Convergence

. G H $-TS

0.4

02.0 -. a .. .il
KB98 AD93 KB92 AD94 AD86

convergence. (A-C) The convergence

KB-98 in the bound state, using a 100

scaffold and 15' functional group grid, as a function of ensemble size, measured in kcal

above the global minimum energy. The red portion of curve shows the contribution to

the average from the top 50,000 configurations (computed by explicit re-evaluation),
and the blue portion shows the contribution from the remaining millions of configu-

rations (computed via high resolution energy level inference). (D) The final rate of

convergence of each thermodynamic parameter for each inhibitor in the bound state

measured as a function of change in ensemble cutoff (kcal/mol per kcal/mol of the

ensemble). (E-H) Measures of convergence for the unbound state using a 20' scaffold

and 60' functional group grid.
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Figure 3-6: Correlation between Calculated and Experimental Binding

Affinity. Effect of approximation on the correlation of the calculated inhibitor affini-

ties with the experimental binding free energies. All experimental measurements

come from Altman et al. [47], which were collected using an enzymatic inhibition as-

say [130, 131]. (A) Correlation between previously calculated static enthalpy metric

(single conformation energy assuming rigid binding) and experiment. (B) Correla-

tion between updated, static enthalpy metric (single conformation energy difference

between bound and unbound states) and experiment. (C) Correlation between en-

semble enthalpy and experiment. (D) Correlation between updated static enthalpy

with ensemble entropy change and experiment. (E) Correlation between ensemble

free energy change and experiment.
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Figure 3-7: First order conditional entropy losses. The reported entropy loss

for each group is defined as the sum of the first-order conditional entropy losses for
each degree of freedom contained within the structure group. The scaffold contains
5 torsions, R1 contains up to 5 (KB-98/AD-93 - 3, AD-94/KB-92 - 4, AD-86 - 5),
R2 contains up to 2 (KB-98/KB-92 - 1, AD-93/AD-94/AD-86 - 2), R3 contains up

to 2 (KB-98/AD-93/AD-94 - 1, KB-92/AD-86 - 2), and both R4 and R5 contain 1

torsional degree of freedom.
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Figure 3-8: Selected marginal distributions of KB-98 (A) Marginal distributions

for selected torsional degrees of freedom in the bound and unbound states of KB-98.

(B) Structure of KB-98 marked with degrees of freedom 1-5.
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change in entropic free energy as a function of term order.
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Figure 3-10: KB-98 Unbound State Coupling. (A) Pairwise probability distri-

bution of two coupled scaffold dihedral angles in the unbound ensemble of KB-98.

The inset rectangle and arrows highlight the sequence of configurations shown in part

C. (B) Unbound KB-98 labeled with dihedrals 1 and 2. Arrows show direction of

rotation moving from left to right (dihedral 1) and top to bottom (dihedral 1). (C)

Sequence of most probable unbound configurations where dihedrals 1 and 2 have the

values indicated by the inset rectangle in part A. Moving from right to left corre-

sponds to clockwise rotation of dihedral 2 with a dihedral 1 fixed, and moving from

top to bottom corresponds to counter-clockwise rotation of dihedral 1 with dihedral

2 fixed. Configurations are colored based upon their relative probabilities, with red

indicating high probability, and the yellow arrows indicate the normal vector of the

aromatic rings present in functional groups R3 and R4.

85



3.5 Conclusion

We have presented here a novel method to enumerate and study changes in the po-

tential energy landscape of inhibitors upon binding. Using this enumerative, rotamer

based approach, we obtain converged binding free energies, enthalpies, and entropies

for flexible HIV protease inhibitors that accurately rank inhibitor affinities relative

to one another. We find that using a fine grain configurational search to find just

the global minimum energy conformation in the bound and unbound states to rank

inhibitors correlates well with experiment, but that ensemble effects are critical for

more accurate resolution of affinity differences. Breaking the free energy change apart,

we observe that average enthalpies and entropies of binding are highly sensitive to

the shapes of the global minimum energy well and surrounding wells, but that the

sampling errors associated with these sensitivities partially cancel when computing

the free energy. Additionally, we find that the predominant state assumption is valid

for these high affinity inhibitors in both the bound and unbound states. The majority

of configurational space contributes only marginally to the ensemble free energy, and

converged free energy, enthalpy, and entropy values are obtained when truncating

the configurational integral to include only those configurations within 10 kcal/mol

of the GMEC. Compared to the free energy, however, computing accurate entropy

and enthalpy changes requires larger low-energy ensembles that account for lower

probability regions of phase space.

Analysis of the low-energy thermodynamic ensembles collected in this study re-

veals both how the shape of this landscape changes upon binding and how these

differences translate into changes in the thermodynamic properties of the system. By

decomposing the entropy change using an additive, conditional mutual information

expansion, we see that the large computed differences in configurational entropy upon

binding originate primarily from losses in external and uncoupled internal entropy,

with average losses consistent well with previously reported experimental and com-

putational estimates. From a potential energy landscape perspective, these changes

arise from both well contraction and well disappearance. Changes in coupling entropy
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play a more subtle, less pronounced role, and while their net effect is significant and

critical to the rank ordering of inhibitor affinity, the entropy present in individual cou-

pled motions is small. We find that most significant coupling interactions are of low

(second or third) order, and most often appear between neighboring dihedral angles

that can cooperatively modulate intermolecular or intramolecular interactions in the

bound and unbound state, respectively. Examining the change in coupling between

the bound and unbound state, we observe a net loss of low-order coupling interac-

tions present in the unbound state between core degrees of freedom, and a net gain of

high-order coupling interactions that appear only in the bound state. It is interesting

to note that this entropy decomposition could be used to inform the optimization of

future inhibitors, as it provides a way to estimate the spacial dependence of entropy

loss for a given scaffold and determine the ideal position to include either flexible or

rigid chemical groups.

Overall, these results suggest that inhibitor flexibility plays an important role in

binding, but that the thermodynamic properties of these high affinity inhibitors are

fundamentally determined by a small fraction of the full configurational ensemble.

Low-energy configurations dominate the ensemble averages and coupling between in-

hibitor degrees of freedom has only a small effect. It is interesting to note that all of

these results and conclusions arise without approximating the geometry of the poten-

tial energy landscape or inordinate sampling times. Our method is structured around

the use the DEE/A* algorithm, which sorts configurations by their internal energies

and explicitly computes their contribution to the Boltzmann distribution. As a result,

the free energy is computed from the bottom up without having to approximate or

account explicitly for landscape and well geometry. This ensures that the enthalpic

and entropic contributions of all spatially distinct, low energy minima are included

according to their level of import, and constructs a convergent, minimal configura-

tional ensemble. By comparison, perturbative methods (FEP, TI) are very slow to

converge, and alternative end-point approaches focus on computing free energies on

a well-by-well basis using Boltzmann sampling to explore configurational space and

map out low energy wells. The often used harmonic and quasiharimonic approxina-
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tions assume the shape of potential energy well(s) can be accurately modeled as a

collection of harmonic oscillators, which provides an analytical expression for the free

energy contribution of each well. The former is the basis for normal mode analysis,

which has been widely used to estimate entropy changes in biological systems [135],

and the latter is used in the mining minima approach to similar effect [24]. The

strong agreement found between ours and more approximate methods speaks to the

accuracy of the predominant state and harmonic assumptions made for this system,

but this may not be true for all systems.

Finally, it is also interesting to note that all the inhibitors examined in this study

were originally developed to test the substrate envelope hypothesis and were designed

to bind inside the substrate envelope. Four of these inhibitors (KB-98, AD-93, AD-94,

and AD-86) were experimentally shown to exhibit relatively flat binding profiles to a

variety of HIV protease mutants [47]. Considering just the top 50,000 configurations

in each ensemble, we find that the vast majority of configurations in each of the re-

spective ensembles also fit inside the substrate envelope, suggesting that the envelope

hypothesis may be applicable in a more dynamic context. For an inhibitor to be in-

sensitive to mutations in its target, the low energy ensemble of ligand configurations

must fit inside the substrate envelope or substrate envelope ensemble.

The methods outlined here offer a flexible framework in which to study ensem-

ble binding effects, and while the current study only explored ligand configurational

freedom, receptor flexibility can easily be incorporated into this rotamer, DEE/A*

based search scheme, given enough computational power. Nonetheless, there are clear

limitations to the study presented here, which only considers flexibility in the ligand,

binding to a rigid receptor. Proteins have significant numbers of degrees of freedom

with local and global motions that will be affected, perhaps differentially, by ligand

binding. Moreover, if ligand degrees of freedom couple effectively with receptor ones,

then the ligand configurational entropy losses computed here will be overestimates.
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Chapter 4

Mechanistic Analysis and Rational

Design of Enzyme Catalysis in

Ketoacid Reductoisomerase 1

Abstract

We present here a combined study of the rational redesign and dynamic analysis of

wild type and mutant variants of ketol-acid isomeroreductase (KARI). We develop an

end-point, enzyme design protocol based on transition state theory (TST) to select

for mutants that reduce the free energy of activation, and apply it to the redesign

of KARL. Our results suggest that the TST based approach used here is effective

at reducing the enthalpy of activation, but that in this naturally optimized system,
this reduction is paired with a concomitant increase in the entropic free energy of

activation. We further explore the wild type and designed mutants using transition

path sampling (TPS) to estimate rate constants and study the reaction pathway.

Analysis using this dynamic, ensemble method yields relative rates in qualitative

agreement with experiment and indicates that TPS derived rates can discriminate

between active and inactive enzyme variants. We also find that the isomerization

reaction occurs via a vibrational, resonant energy transfer mechanism whereby the

breaking bond is vibrationally pumped by its local environment before being pushed

over the reaction barrier. This mechanism is observed in both wild type and mutant

enzymes, which differ in the likelihood of reaching this activated state. These results

highlight the role of dynamics in enzyme function and redesign.

'All experimental work presented in this chapter was performed by collaborators K. J. Gibson

and M. P. McCluskey at the DuPont Central Research and Development Experimental Station.
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4.1 Introduction

Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) is a critical enzyme in the biosyn-

thesis of the essential branched chain amino acids. Present in plants, bacteria,

and some fungi, it catalyzes two chemical transformations, an isomerization and

NADPH reduction reaction, along the pathway converting pyruvate into either valine

or isoleucine [136]. In its most active form, it is known to bind two cofactors, one

molecule of NADPH as well as two divalent magnesium ions [1371 along with one of

two related substrates, acetolactate (AL; (2S)-2-hydroxy-2-methyl-3-ketobutanoate)

or acetohydroxybutyrate (AHB; (2S)-2-hydroxy-2-methyl-3-ketopentanoate). The

binding of these cofactors is ordered and required for both isomerization and re-

duction reactions [138, 139, 140]. In the initial isomerization reaction, KARI cat-

alyzes the intramolecular, alkyl transfer of either a methyl (AL) or ethyl group

(AHB) as well as the interconversion of ketone and alcohol moeities, producing

either 3-hydroxy-3-methyl-2-ketobutanoate (HMKB) or (3R)-3-hydroxy-3-methyl-2-

ketopentanoate (HMKP) (Fig. 4-1). It is thought that this reaction is the rate

limiting step for overall turnover [139]. The isomerization intermediate is not re-

leased and subsequently undergoes an NADPH dependent reduction, yielding the

diols dihydroxyisovalerate (DHIV; (2R)-2,3-dihydroxy-3-methylbutanoate) or dihy-

droxymethylvalerate (DHMV; (2R,3R)-2,3-dihydroxy-3-methylpentanoate) [141]. In-

terestingly, KARI is known to also bind and reduce a number of 2-ketoacids without

prior isomerization [142]. Recent crystal structures of multiple KARI variants reveal

a wide variety of structural isomorphisms including dimeric (spinach) and icosameric

forms (Pseudomonas aeruginosa) with highly conserved, both in sequence and struc-

ture, charged active sites [143, 144, 145, 146, 147]. Multiple studies have validated

the necessity of these charged active site residues, with many active site mutations

showing reduced substrate binding and/or loss of activity [142]. Even for wild type

(WT) enzymes, however, the turnover rate is quite slow (1 s-1), and given its essential

role in plant growth, it is an attractive target for enzyme redesign.

Recent experimental and computational studies have proposed similar reaction
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Figure 4-1: KARI Substrates Shown above are the methyl substituted reactant

(acetolactate), the product of the isomerization reaction, HMKB), and the product
of the reduction reaction (DHIV).

mechanisms for KARI [148, 149]. They suggest that during the initial isomerization

reaction, a hydroxyl or active site residue abstracts a proton from the substrate,

while the C5 alkyl group migrates from the C 4 to the C7 carbon. Both parts of this

process are thought to be facilitated by the bound magnesium ions, which polarize the

reactant 04 alcohol and 07 ketone dipoles, respectively. It has also been suggested

that the transition state for this reaction is further stabilized via coupling to a proton

transfer reaction between the substrate and an active site glutamate proton donor,

E496 [148]. Similarly, for the reduction reaction it is thought that the magnesium ions

polarize the 04 ketone dipole, increasing the partial positive charge on the C4 carbon,

and electrostatically facilitate hydride transfer. These descriptions of the reaction

mechanism, however, are couched in the language of transition state theory (TST)

[150, 151], which assumes the rate of a reaction is proportional to the free energy

difference between the ground and transition state (i.e., the free energy of activation).

As such, they are limited to describing how the transition state is stabilized relative

to the ground state and unable to provide a kinetic mechanism for how the reaction

is initiated or climbs the reaction barrier.

A number of recent studies have been successful at (re)designing enzymes to ei-

ther improve or develop novel activity using transition state theory in conjunction

with computational methods to explore reaction pathways. Marti et al. used a com-

bined quantum mechanics/molecular mechanics (QM/MM) approach along with free

energy perturbation (FEP) and umbrella sampling to explore transition states for
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the catalytic antibody 1F7 and side reaction of isochorismate pyruvate lyase, both

of which catalyze the conversion of chorismate into prephenate. By optimizing inter-

actions between the enzyme and observed transition states, they found or predicted

mutations that lowered the activation free energy and improved activity [52, 53].

Similarly, transition state stabilization methods have been used in the de novo design

of enzymes that catalyze novel reactions [54, 55, 56] as well as improve upon those

initial designs [152, 153]. It has not yet been explored, however, whether the observed

improvements in activity are due to enthalpic or entropic effects.

The goal of this study is two-fold: assess the efficacy of transition state based

design in the re-design of spinach KARI as well as elucidate the mechanism of the

catalyzed isomerization reaction for both WT and designed mutants. Both aims

were accomplished using a combined approach using end-point TST as well as dy-

namic, transition path sampling (TPS) methods to assess transition state structure

and reactive pathway dynamics. We developed structural models of both reactant

and transition state species and computationally optimized for improved enzyme ac-

tivity by evaluating the relative free energy differences between the transition and

ground states for all possible single mutants within 10 A of the active site. A panel

of six mutant candidates was selected based upon predicted ability to reduce the free

energy of activation relative to WT, and subsequently evaluated both experimentally

as well as computationally using TPS to assess mutation effect in a dynamic context.

We analyzed mutant activity from both TST- and TPS-based approaches and find

that our designed mutants were effective at reducing activation enthalpies, but also

incur entropic activation penalties that overpower the enthalpic gains. Re-evaluating

mutant activities using TPS to compute rates and ensembles of reactive trajectories,

we found that this dynamic, ensemble method was able to resolve the relative activity

differences reported by experiment and suggests that these mutants are less active

because the probability of fluctuating across the barrier is much lower compared to

WT. We also find that the most active KARI variants are unique in that they not only

facilitate reactive fluctuations, but they also increase the likelihood of non-reactive

fluctuations that carry the system up but not across the reactive barrier. Finally, we
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find that the isomerization reaction of both WT and mutant enzymes is consistent

with a "pump-and-push" mechanism. Energy is pumped into the breaking bond via

vibrational, resonant energy transfer and this activated bond is pushed by a con-

served active site residue toward product state. We note that this is the first study

to explicitly use TPS in the calculation of enzyme rates across a panel of enzymes

with varying activities.
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4.2 Methods

4.2.1 Computational Design Strategy

Possible activity-improving mutations were designed to minimize the activation free

energy barrier of the enzyme catalyzed, isomerization reaction relative to WT. Using

a transition state theory based approach, we assumed that the forward reaction rate

(kcat) will be related to the free energy barrier of the rate limiting step of the reaction

(AGtrls) according to the Eyring equation [150, 151]

(kBT -_ (4G1
kcat =e BT , (4.1

where T, kB, T, and h are the transmission coefficient, Boltzmann constant, absolute

temperature, and Planck constant, respectively. In our approach, we define AGI

as the free energy of the folded, bound transition state (TS) relative to that of the

folded, bound reactant state (RS). Note that in this study, we are primarily interested

in relative improvement of mutant (Mut) activity to WT activity L via reduction of

the relative free energy of activation AAG'1 S, which translates to a favorable relative

free energy difference of activation, assuming a negligible effect on the transmission

coefficient upon mutation (Eq. 4.2)

k"ut /Mut \ zlG,

cat =- kBT (4.2)
cat

We calculated this relative free energy of activation using a two-state approach,

in which the binding and folding free energy of the ground state, reactant structure

as well as the binding and folding free energy of the transition state structure were

calculated separately, for each possible mutant relative to WT. The free energy for a

mutant or WT structure is defined as follows:

AGfold+bind Gfolded- o G d. (4.3)Gcomplex _Greceptor - xigand(43
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The relative free energy difference of mutant to WT is thus

AAGfold+bind _ (Gfolded - Gfolded kM - (Gtunfldedp Gunfolded
Mutco wTcompex Mutreceptor WTreceptor (4'

where here, the unbound ligand free energy has cancelled. The difference between

this expression for the TS and RS yields the relative free energy of activation of the

mutant relative to WT

AAAG1rutwT - AAG Tod+bind - AAGfoRd+bind. (4.5)

4.2.2 Structure Preparation

The crystal structure used in this study was a transition state analogue (N-hydroxy-

N-isopropyloxamic acid) bound structure of the spinach KARI variant, obtained from

the Protein Data Bank (PDB) [127] (accession code 1YVE) [143]. The structure was

prepared with procedures outlined by Lippow et al. [19] using CHARMM [3, 76] with

the CHARMM27 force field [77]. In all designs and simulations, only the chain A

monomer was used to improve computational efficiency. All histidines were neutral

and protonated as indicated to maximize hydrogen bonding potential: 103(A)-6,

215(A)-6, 226(A)-6, 232(A)-6, 280(A)-e, 328(A)-E, 484(A)-6, 506(A)-c, and 564(A)-c.

Non-active site crystalographic waters were removed if they failed to make at least

three hydrogen bonds with the protein (using a maximum heavy atom hydrogen bond

distance of 3.33 A). A total of 61 water molecules remained (resids 72, 75, 87, 93,

106, 109, 179, 194, 379, 405, 429, 440, 474, 481, 838-841, 852, 862, 878, 883, 887, 894,

895, 941-949, 965. 967-969. 975. 998. 999, 1023-1025, 1032, 1072, 1089, 1093-1095,

1097, 1105, 1108, 1206, 1250, 1252, 1253, 1257, 1304, 1305, 1779).

4.2.3 Enzyme Redesign

Relative enzyme activity calculations were performed using a combined quantum

mechanics/molecular mechanics (QM/MM) configurational search strategy. Config-

urational space of reactant and transition state ligands and active site residues were
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initially explored using ab initio quantum theory. The remaining enzyme degrees

of freedom were explored using a rotameric, molecular mechanics based approach.

The initial QM search incorporated the ligand, magnesium centers, five magnesium

coordinating water molecules, as well as the side chains of three surrounding active

site residues, E319, D315, and E496 that are involved in ligand and magnesium co-

ordination. In this model the E496 residue was protonated as previous studies had

indicated its importance in reducing the computed activation energy barrier [148].

QM calculations were done in vacuo using the GAUSSIAN03 computer program

[129] at the rhf/3-21g* level of theory. The reactant structure was found via ground

state energy minimization (keyword OPT), and a transition state was found using a

first-order saddle point search method (keyword QST3). This TS was validated by

following the vibrational eigenmode corresponding to the single negative eigenvalue

to ensure it connected the isomerization reactants and products. Once optimized and

validated, each QM-derived structure was incorporated into the larger MM model of

the enzyme and docked into the active site via aligning to the carbon backbone of

the bound transition state analogue from the original crystal structure. This aligned

structure underwent ten rounds of sliding, constrained minimization to properly fit

the active site backbone to the QM optimized residues. All substrate, magnesium,

and coordinating aspartate/glutamate oxygen atoms were held fixed during this min-

imization. The remaining active site residues were harmonically constrained using

a force constant of 50 kcal/mol/A. The sliding minimization procedure consisted

of 100 steps of steepest descent minimization followed by 100 steps of adopted ba-

sis Newton-Raphson minimization, where the harmonic constraints were reset after

each round of minimization. Partial atomic charges were fit to each QM atom using

restrained electrostatic potential fitting methods of Bayly et al. [79].

The evaluation of each possible mutant was performed using a hierarchical, design

strategy similar to the dead-end elimination and A* based approach of Lippow et al.

[19]. Binding and folding energies for all possible single mutants within 10 A of the

bound ligand were computed in conjunction with a guaranteed, rotameric search of

side chain degrees of freedom in both the bound complex and unfolded states. For
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each single mutant examined, all side chains within 5 A of the mutant residue were

allowed to relax and included in the rotameric, conformational search. In this initial

screen a pairwise decomposable energy function was used, accounting for changes in

the pairwise coulombic, van der Waals, and geometric strain energies upon binding

and folding. Top hits from each design were re-evaluated using a Poisson-Boltzmann

Surface Area (PBSA) implicit solvent model, and the best, individual, minimum

energy structures were compared to their homologous mutations in the transition

state or reactant state design. Potential mutations were selected based upon their

predicted relative ability to stabilize the transition state relative to the reactant state

without significantly destabilizing the folded reactant state species. Note that in this

design scheme protein and substrate configurational entropy changes upon activation

are assumed to be constant across all mutants.

4.2.4 Transition Path Sampling

In order to assess sources of error in our original design, we determined the important,

dynamic factors that influence enzyme activity and recomputed reaction rates using

transition path sampling (TPS) [154, 155, 156, 34, 157, 158, 159, 160]. This method

was used to collect unbiased ensembles of dynamic, reactive transitions from the

reactant bound equilibrium state to the product bound equilibrium state as well

as compute rates for the forward reaction. The collected transitions were sampled

according to their underlying probability distribution, and were not dependent upon

any assumed reaction coordinate. The basic theoretical foundations of TPS as it is

used for ensemble generation and rate calculations are reviewed below, but for more

detailed presentations we direct the reader to descriptions by P. G. Bolhuis and C.

Dellago [155, 156, 34].

Ensemble Generation

In the TPS framework, path ensembles connecting the reactant basin to alternate

regions of phase space are sampled using a Monte Carlo algorithm that samples
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chains of points in phase space (i.e., paths) according to their relative probabilities.

Assuming deterministic dynamics, any path, x(t), is simply a sequence of points in

phase space

X(t) {Xo, X1, X2, ..., Xt}, (4.6)

and is uniquely determined by its starting point, yo. As such, the probability of any

path in phase space, p[X(t)], is equal to the probability of its initial point in phase

space p(Xo). For paths starting in an equilibrium basin, A, this initial probability is

simply the equilibrium likelihood of Xo

P(Xo) = ,)/kB (4.7)

where E(Xo) is the initial, total energy of the system, kB is Boltzmann's constant,

T is the absolute temperature, and ZA is the partition function for the equilibrium

basin, A.

Collecting an ensemble of paths that connects two regions, A and B, amounts

to sampling the distribution pAB[X(t)] = hA(xo)p(xo)hB(xt), where hA and hB are

Heaviside step functions of phase space that equal 1 when the system occupies A and

B, respectively. Given an initial trajectory of length T that connects these regions,

TPS provides a simple algorithm for the efficient sampling of this distribution. New

trajectories are generated from an initial path through either shifting or shooting

moves [155]. In the former, the path is shifted in time by moving backward or

forward F time steps whilst keeping the length of the path constant. In the latter

move, an isoenergetic velocity perturbation (6) is applied to all atomic coordinates at

some time point, X,, such that 0 < n < r, along the trajectory. This is done for each

atom by drawing a new velocity vector from a Maxwell-Boltzmann distribution at

the desired temperature, adding it to the current velocity, and scaling the sum such

that the kinetic energy is unchanged. From this perturbed point, a new path of the

same length is generated by projecting forward T - n and backward n steps in time.

The probability of this new, shifted or shot trajectory, X'(t), is then compared to the
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probability of the starting trajectory and accepted with the probability

Paccept - M (1. -hA(x'o)p(x'o)hB(xt)P(X(t), F, n, )(4.8)
hA (xo)p(xo)hB(xt)Px W(t), F, n, -6)J

where P(X(t), F, n, 3) is the probability of attempting the shooting or shifting move,

with parameters, F, n, and 3, from path X(t) and P(X'(t), F, n, -6) is the probability

of attempting the reverse shooting or shifting move, with parameters F, n, and -3,

from path X'(t). As long as the probability of selecting F for forward and backward

shifting moves is identical, and the probability of selecting n and 6 is identical to that

of n and -3 for shifting moves, detailed balance is maintained and paths are accepted

according to their true relative probabilities [34].

Rate Calculations

We first consider a simple two-state system, A and B, with forward and reverse rate

constants, kf and kr

A B, (4.9)
kr

where A denotes a reactant bound enzyme complex and B denotes a product bound

enzyme complex. Assuming a single dynamical bottleneck between A and B, the

phenomenological forward reaction rate (kf) for this two state system is related to

the microscopic time correlation function, C(t) [161, 1621

O(t) -hA ()() hR (Xt)~ kfe /frxn, (4.10)
(hA (Xo))

where hA and hB are Heaviside step functions of phase space that equal 1 when the

system occupies the equilibrium basins of A and B, respectively, and Xo/t denote the

system's initial location in phase space or at some time, t, later. Note that O(t) is

simply the derivative of the probability that the system ends in the product basin,

B, some time, t, after starting in the reactant basin, A. For times, t, greater than the

molecular transit time of the reaction (tmoi), but much shorter than the time scale

of the exponential approach of the system to equilibrium (tm = (kf + kr)-1), the

99



exponential term in equation 4.10 will be approximately 1. Thus, we are left with a

time correlation function that should grow linearly on time scales tmol < t << t,,,

with a slope equal to the forward rate constant.

In principle, for a given t, this correlation function can be computed by a win-

dowing technique similar to umbrella sampling [163]. Using an order parameter, A,

that uniquely distinguishes the regions of phase space that correspond to basin A and

basin B, one can divide phase space into a series of overlapping windows defined by

overlapping ranges of A that connect basin A to basin B. Using the transition path

sampling method described above with a fixed path length of t, one can collect ensem-

bles of transitions that start in basin A and end within each one of these A-windows.

From these ensembles, one can compute the normalized probability of observing any

value of A within each window. To obtain a full, normalized probability distribution

of A, p(A, t), one can scale neighboring windows relative to a single window. C(t) can

be calculated by integrating p(A, t) along A over the portion of this distribution that

corresponds to basin B

fB p(A, t)dAC(t) - f(,. (4.11)
f_ 0p(A, t)dA.

This processes must then be repeated to accurately compute the derivative, O(t), and

ensure that C(t) is growing linearly in time. Given the computational requirements

for even a single C(t) calculation, however, it is more efficient to further decompose

eq. 4.10 into a time dependent piece, i(t), and time independent piece, P,

. _ ( hA (Xo) hB (Xt)) (hA (Xo) hB (Xr))(
(hA (Xo) hB (X,)) (hA (XO))

where r is some time long enough such that 0(t) has reached a plateau. Note that P

is simply C(t), evaluated when t = r. As such, it is the probability that the system is

in the product state at time T and can be found using the aforementioned windowing

technique to compute p(A, T). i'(t) is the probability of being in the product basin

at time t, given that the system started in the reactant basin, normalized by the

probability of being in the product basin at time T, and its derivative is effectively
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the T-normalized rate of crossing the reactant barrier. This ratio can be found for all

times t' < t from a single transition path simulation, by ensuring that the trajectory

ensemble includes those trajectories that visit the product basin at some point within

t. Note that if they are required to end in the product basin at t, the trajectory

ensemble collected by transition path sampling will ignore trajectories that make it to

the product basin by t' but leave before t, yielding incorrect estimates of (hB (t' < t)).

To accomplish this, we introduce the path functional HB (X,), which equals unity if

the trajectory visits the product basin at some point along the trajectory X, and is

zero otherwise. Inserting this into Equation 4.12 yields

(KhA (XO) hB (Xt) HB (X,) (hA (Xo) hB (XT)) (N
(hA (Xo) hB (x,) HB (Xr)) (hA (XO))

which can be computed much more efficiently because L(t) can be calculated using a

single TPS simulation.

Simulation Methods

All simulations were performed using the TPS module as implemented in CHARMM36

[164] compiled with SQUANTUM. Additional AM1 parameters for magnesium were

added based on those used by J. J. P. Stewart [165]. Energies were evaluated using a

combined QM/MM approach in which the active site was treated with semi-empirical

quantum mechanics (AM1), and the remainder of the protein was treated with molec-

ular mechanics (CHARMM27 force field). The QM treated active site included the

substrate, acetolactate, both magnesium centers, five magnesium coordinating active

site water molecules, side chains of E319, D315, and E496, and the nicotinamide

group of NADPH. The QM/MM boundary atoms were treated using the General-

ized Hybrid Orbital method [166] and included the Ca atoms of residues 319, 315,

and 496, as well as the C5' atom of the ribose ring in NADPH that contains the

nicotinamide moiety. Here, as in previous computational studies, the substrate was

deprotonated and the coordinating E496 was protonated [148]. All dynamics were
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run using a leapfrog integrator with a time step of 1 fs at 300 K.

In this study, the distance of the breaking C4 -C 5 bond (rc 4 -c) minus that of

the forming C 7 -C5 bond (rc 7 c5 ) was used as an order parameter (A) to distinguish

reactants from products of the isomerization reaction. The reactant and product

basins were defined as A=[-2.0 , -0.15] and [0.15 , 2.0], respectively, with units of A.
The initial path used to seed the TPS simulation was found by computing a potential

of mean force (PMF) along the order parameter A using umbrella sampling and the

weighted histogram analysis method (WHAM) [167]. This provided an estimate of

the location of the transition region along A, from which multiple configurations were

collected. For each collected snapshot, the system was seeded with random momenta

drawn from a Boltzmann distribution at 300 K, and projected forward and backward

in time until the system fell into one of the two basins of attraction (reactants or

products). This was repeated until a trajectory was found that connected the reactant

basin to the product basin. The umbrella sampling was performed in CHARMM using

the RXNCOR module with umbrellas 0.05 A in width and harmonic constraints of

200 kcal/mol/A 2

In the calculation of b(t) and P, a path length (T) of 101 fs was used, as this was

found to be longer than the molecular transit time of the reaction and long enough to

capture the linear growth of KhB) as a function of time (vide infra). Path ensembles

for i(t) were collected in two stages. The initial path was equilibrated by running

200, 1000-step simulations with different initial random seeds, and the final path from

each simulation was then used as the seed path for another 200, 1000-step, production

simulations. b(t) was computed by averaging over all of the independently collected

paths ensembles, fitting the linear regime to a first-order polynomial and extracting

the slope. Shifting and shooting moves were attempted with equal probability, the

maximum shift length was 50 fs, and all time points were possible shooting locations.

For the calculation of P, the order parameter was partitioned into a large number

of windows in order to accurately compute the relative probabilities of traversing

order-parameter space. Given the high energetic barrier found from a potential of

mean force (PMF) calculation along A, very narrow windows were used to ensure
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accurate sampling within each window. As the system surmounted the barrier (A <

0.05 A), we employed windows 0.02 A in length with an overlap of 0.01 A. For all

A-windows beyond 0.05 A, we used windows 0.1 A in length with an overlap of 0.05

A. Note that if windows along the uphill climb are too large, the relative probability

difference between ending near the proximal edge of the window versus ending near the

distal edge will be too great and poor relative probabilities will result. Ultimately, p(A)

was found by binning the probability of ending at each value of the order parameter

within each A-window and scaling the nth window by the ratio of the probability of

the overlapping region in window n-I to that of window n. In this way, we were able to

normalize the probability distribution of A relative to the first window, and compute

P using Equation 4.11. For each of these windows, shifting and shooting moves were

attempted with equal probability, the maximum shift length was 5 fs, and only the

final 10 fs were possible shooting positions to ensure non-zero move acceptance ratios.

Finally, as in the calculation of v (t), multiple independent simulations were run for

each window. For each, 40-80 differentially seeded simulations were equilibrated for

1000 steps, followed by a 1000-step production run. Note that simulations were run

in batches of 20, and the total number of per window simulations performed was

dictated by the convergence of P for each enzyme variant (vide infra).

The same set of parameters described above were used for the generation of path

ensembles and the calculation of rates for WT KARI as well as the four single mutants

examined in this study: L323N, E488M, S276G, and E319D.
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4.3 Results and Discussion

4.3.1 Reactant and Transition State Models

Our computational models of the KARI ground and transition states show subtle

differences in how the bound substrate interacts with the active site and indicate

a concerted isomerization and proton transfer mechanism. They also highlight the

importance of the bound magnesium ions, as well as residues E496 and E315 in

stabilizing the transition state. Examining the geometry of the substrate, we note

significant differences between the reactant and transition states (Fig. 4-2). In the

reactant state, we find that the C7 carbon atom exhibits a trigonal planar geometry,

consistent with its expected sp2 hybridization, the C4 carbon atom exhibits a tetra-

hedral geometry, consistent with its expected sp3 hybridization, and the C5 methyl

group is bound to C4. In the transition state, however, both C4 and C7 exhibit trig-

onal planar geometries, and the C5 methyl group sits equidistant (1.9 A) from both

carbon atoms. Additionally, the C7 -07 bond expands from 1.2 to 1.3 A and the

C4 04 bond shrinks from 1.4 to 1.3 A as they interconvert between an alcohol and a

ketone. We also observe differences in the relative coordination distances between the

magnesium ions and their respective ligands, as well as between the substrate and the

active site. In the ground state structure, we find that both of the magnesium ions

are hexacoordinated by the substrate, five water molecules, and active site residues

D315, E319, and E496. On average the coordination distance for these ligands is

2.2 A for both metal ions. The substrate is held in the active site via electrostatic

interactions with both of these magnesium ions, as well as through a hydrogen bond

with the protonated sidechain of E496, which has a coordination distance of 2.0 A.
By comparison, in the transition state, coordination to the magnesium I ion by the

substrate is disrupted by the transfer of a proton to D315, and the remaining ligands

bind more tightly to their respective metal centers with average coordination lengths

of 2.0 A for both metal ions (Fig. 4-2c). Similarly, the substrate-E496 distance also

shrinks by 0.2 A, indicative of a stronger interaction. Taken together, these relative

differences are suggestive of a highly concerted methyl transfer, ketone/alcohol iso-

104



merization, and ligand to enzyme proton transfer process. They also suggest that the

magnesium ions, E496, and D315 play an integral role in stabilizing this concerted

transition state. As the system undergoes both methyl and proton transfer reactions,

the magnesium ions polarize and bind more tightly to the substrate and active site

residues, D315 accepts the substrate proton, and the protonated E496 residue stabi-

lizes the build up of negative charge on 07, which in our models decreases from -0.36e

to -0.50e. We note that much of this picture is consistent with previous studies of the

isomerization reaction mechanism [148, 137, 1491. These investigations posit similar

roles for the magnesium ions as well as E496, and also suggest an active site residue

as a possible proton sink.

4.3.2 Computational Enzyme Designs

Using our WT reactant and transition state models, we exhaustively explored all

possible single mutants at all possible positions within 10 A of the active site. In our

initial single mutant search, we found three mutations (E488M, S276G, and L323N)

that were predicted to reduce the activation energy of the isomerization reaction.

Each is predicted to improve AGI relative to WT primarily by disrupting the fold-

ing stability of the reactant state more than that of the transition state (Table 4.1).

Interestingly, the E488M and S276G mutants are one layer removed from the active

site (Fig. 4-2d) but are still predicted to reduce the activation energy by differentially

interacting with active site residues. Specifically, E488M is predicted to significantly

improve the local van der Waals packing in the TS relative to the RS, at the cost

of losing hydrogen bonds with neighboring residues H484 and T306 as well as fa-

vorable long-range electrostatic interactions with K252 and both magnesium ions.

These losses are mitigated in the TS relative to the RS, with the net effect being a

destabilized mutant ground state with a favorable, relative TS-RS free energy dif-

ference. By contrast, the S276G mutant experiences comparable losses to local van

der Waals packing in both TS and RS, but favorable relative electrostatic differences

due to relative changes in the folding desolvation penalties paid by residues G276,

K252, and E488. As with E488M, the net effect is a favorable relative free energy of
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(a) (b)

(c) (d)

Figure 4-2: Reactant and Transition State Design Models (a) Buried active
site of the spinach KARI monomer in the complexed reactant state (b) Ground-state,
active site model bound to acetolactate, magnesium ions, and NADPH. (c) Transition
state, active site model bound to acetolactate, magnesium ions, and NADPH. (d)
Ground state structure of KARI active site with neighboring residues predicted to
improve relative activity. Mutant positions are shown here in green, neighboring
residues that mediate second shell mutation effects are shown in tan, and active site
residues are shown in blue.
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activation via selective, ground state destabilization. Finally, L323N is an active site

mutant in contact with the substrate and catalytic residues E319, E496, and D315.

It is predicted to improve the the TS-RS gap primarily through differential van der

Waals packing of the mutant side chain with residue E496, which directly interacts

with the TS and RS.

In order to reduce the electrostatic and van der Waals folding penalties observed

for these single mutants, secondary mutations were also explored to stabilize the RS.

To this end, the double mutants T306M/E488A, S276G/L479M, and E488M/T306G

were selected and assayed for potential improvements to activity (Table 4.1). Similar

to the E488M single mutant, the T306M/E488M and T306G/E488A double mutants

retained their relative improvement of the local van der Waals packing in both TS and

RS. More importantly, however, they significantly reduced the destabilizing, electro-

static penalties paid by the single mutant alone (from approximately 8 to 2 kcal/mol).

This was accomplished by also removing one of WT E488's hydrogen bonding part-

ners, T306, which reduced folding desolvation penalties. Interestingly, these double

mutants also improved local electrostatic packing such that the neighboring active

site residues (K252, D315, E311, E319, and E492) made more favorable interactions

compared to the single mutant case. Similar to the initial designs, however, the fa-

vorable predicted effect on catalysis stemmed from selective destabilization of the

ground state. Finally, the S276G/L479M mutant was predicted to maintain the fa-

vorable relative electrostatic stabilization of the S276G mutation, and reduced the 3

kcal/mol van der Waals penalty by introducing a fold stabilizing, but catalytically

neutral mutation (L479M). Ultimately, it was predicted to stabilize the TS more than

it destabilized the RS.

These six mutants were synthesized and assayed experimentally by measuring

both their specific activity as well as the activation energy of the overall reaction

using acetolactate as the substrate. We find that the mutants designed using this

single structure, end-point method show varying activities between 33 and 66% of

WT (Table 4.2), inconsistent with our predictions. Using the Eyring equation (4.1)

to further decompose these activities into component enthalpies and entropies of ac-
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Total Elec vdW Geo SASA
AAGTS 1.56 7.71 -9.6 3.02 0.43

E488M AAGRS 2.75 8.53 -8.32 2.11 0.43
AAGt -1.19 -0.82 -1.28 0.91 0.0
AAGTS 0.29 -3.72 3.09 0.68 0.23

S276G AAGRS 1.60 -2.5 3.16 0.69 0.24
AAGt -1.31 -1.22 -0.07 -0.01 -0.01
AAGTS -2.36 1.7 -3.56 -0.66 0.16

L323N AAGRS 5.92 -2.82 7.78 0.58 0.38
AAGt -8.28 4.52 -11.34 -1.24 -0.22
AAGTS 1.06 1.03 -1.32 1.31 0.04

T306M/ E488A AAGRS 2.39 3.37 -3.15 2.14 0.03
AAGI -1.33 -2.34 1.83 -0.83 0.01
AAGTS 1.75 0.74 -1.6 2.43 0.18

T306G/ E488M AAGRS 2.41 1.98 -2.55 2.81 0.17
AAGt -0.66 -1.24 0.95 -0.38 0.01
AAGTS -0.73 -2.88 0.42 1.53 0.18

S276G/ L479M AAGRS 0.58 -1.59 0.43 1.54 0.58
AAGt -1.31 -1.29 -0.01 -0.01 -0.01

Table 4.1: Computed folding
KARI mutants. Elec values
are pairwise van der Waals

and binding energies in transition and reactant states for
are solvent screened electrostatic energies, vdW values
energies, Geo values are covalent strain energies, and

SASA values are solvent accessible surface area energies. All values are reported in
kcal/mol relative to wild type.
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tivation, however, we observe that while the free energy of activation was higher

than WT, most of these mutants actually reduced the enthalpy of activation by 0.5-2

kcal/mol. The net reduction in activity was the result of compensatory increases

in the entropy of activation by 1-3 kcal/mol. Thus, our end-point design based on

selective destabilization of the ground state was successful in improving the relative,

TS/RS minimum energy configurations. However, this destabilization, whether me-

diated through van der Waals or electrostatic interactions, unfavorably disrupted the

configurational distributions in one or both states and increased the entropic barrier

to activation.

Rel. Activity AGf AHt -TASt
WT 1 0 0 0

E488M 0.66 0.75 -2.3 3.0
S276G 0.33 1.0 -1.5 2.5
L323N 0.60 n.m. n.m. n.m.

T306M/E488A 0.52 0.39 -0.81 1.2
T306G/E488M 0.52 0.95 -0.51 1.5
S276G/L479M 0.65 0.49 0.17 0.32

Table 4.2: Specific activities and activation parameters for the combined isomerization
and reduction reactions. All activities are shown as a fraction of WT activity, and

activation free energies are shown in kcal/mol, relative to WT fit values. n.m., not

measured.

4.3.3 Transition Path Sampling Calculated Rates

Given the success of our end-point design method at reducing the enthalpy of ac-

tivation, but inability to account for entropic effects, we re-evaluated a subset of

our mutants using transition path sampling, an ensemble method that captures the

dynamics of the reaction, to both improve our predictive capacity and elucidate the

source of the reduced activity. Using TPS, ensembles of reactive trajectories were col-

lected and used to compute reaction rates for the isomerization reaction (Table 4.3).

We found that TPS derived rates correctly showed reduced activity of the mutants

relative to WT, and they were appropriately clustered compared to experientially
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measured rates of the complete reaction. The WT enzyme is computed to be the

most active variant, and E319D, a known inactivating mutation [149], was computed

to be 6 orders of magnitude less active than WT. The remaining mutants all fell in

between E319D and WT with E488M and L323N predicted to be more active than

S276G, which matched the experimental results, although with the order of E488M

and L323N switched. The improved predictive power of this method indicates that

TPS effectively captures the ensemble effects ignored in our original evaluation and

can correctly discern active from inactive enzymes (WT vs. E319D), as well as active

from partially active (WT vs. L323N/E488M/S276G). Interestingly, we find that the

absolute rates computed with this method are many orders of magnitude smaller than

those measured by experiment, but consistent with the literature overestimates of the

barrier height as found using transition state theory with similar force fields [148].

Rel. Exp. Rate Rel. Cale. Rate Exp. Rate Cale. Rate

WT 1.0 1.0 ± 0.2 1.34 2.9 ± 0.4 x 10-12

E488M 0.66 2.2 t 0.5 x10- 2  0.89 6.5 ± 0.1 x10 14

L323N 0.60 4 ± 2 x10-2 0.54t 1.2 ± 0.6 x10-13

S276G 0.33 1.1 ± 0.7 x 10- 2  0.45 3.1 + 0.2 x 10-14
E319D 0.0 1.2 ± 0.2 x 10- 6  O 3.6 ± 0.5 x 10-18

Table 4.3: Experimental and Calculated Rates for KARI Variants. All absolute values

have units of s- 1, and calculated errors correspond to one standard error of the mean.

tCollected in a separate series where WT activity was measured to be 0.9. tThis
value is drawn from Dumas et al., and was shown to be an inactivating mutant in the

presence of magnesium [149]

The high degree of correlation with experiment observed in this study suggests

that the TPS framework can be accurately applied to large scale enzymatic systems

and used to resolve the relative activities of single enzyme mutant libraries. While

previous studies have used TPS to examine reaction dynamics [160, 158, 159], to

our knowledge, this is the first time TPS has been used to compute enzyme activi-

ties. Additionally, given the significant improvement in predictive power, it suggests

that TPS can effectively capture the ensemble effects ignored in our original, static

evaluation and discern small differences in relative activity.
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4.3.4 Convergence of Transition Path Sampling Calculated

Rates

To assess the convergence of the TPS computed rates, we examined the convergence

of b(t) as well as P as a function of the number of samples included in the ensemble

average. For (t) we observed rapid convergence with small fluctuations in the nor-

malized frequency factor after averaging over 2 x 105 trajectories for all five of the

KARI variants explored (Fig. 4-3). In all cases the mean of b(t) converged to within

3% of its final value within 1 x 105 trajectories. We observed much slower conver-

gence for P (Fig. 4-4), as it depends upon the convergence of each A window, and P

converged to within 15% of its final value only within the last 5,000 samples collected.

We note here that the value of P was many orders of magnitude smaller than that of

the frequency factor, b(t), consistent with previous TPS studies [168, 169].

4.3.5 Comparison of i(t) and P for Wild Type and Mutant

Enzyme Variants

Comparing the converged values of b(t) and P for WT and mutant variants, we find

that the primary difference between calculated rates originates from P rather than

b(t). Examining (t) as a function of time (Fig. 4-5a), we see that for all variants,

it starts and remains at zero for some time (approximately 12 fs), which corresponds

to the minimum time necessary for the system to cross from the reactant to product

basin. It then rises rapidly and plateaus after some molecular transit time (tmo ~ 60

fs), validating our use of 101 fs as a path length (T) long enough to capture reactive

transitions. Additionally, we find that the average time spent in the transition region,

i.e. after the system has left the reactant basin (A < -0.15 A) but before it has

entered the product basin (A > 0.15 A), is approximately 28 fs for both WT and

mutants. This value is consistent with the transient times found for other enzyme

catalyzed reactions examined by TPS, but it falls on the shorter end of the spectrum.

It is slower than the 10 fs observed for the hydride transfer reaction catalyzed by

lactase dehydrogenase [157, 158], consistent with the fact that a more massive methyl
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group is being transferred in this case, but notably faster than the 100 fs and 130 fs

observed for the phosphorolysis catalyzed by human purine nucleoside phosphorylase

[159] and Claisen rearrangement catalyzed by chorismate mutase [160], respectively.

Thus, we see that there are negligible differences in both the transient time of the

reaction as well as i(t) between enzyme variants, which implies that, on average, the

rate at which each system enters the product basin along reactive trajectories is not

significantly affected by these mutations.

By comparison there are large differences in the probability of reaching the product

basin in time T given that each system starts in the reactant basin. In Figure 4-5b,

we see that the WT system has a higher probability of making it across the reaction

barrier and into the product state compared to the mutants. The same transition is

slightly less likely for E488M and significantly less likely for the remaining mutants.

Perhaps most interestingly, however, we also observe that the WT system (the most

active variant considered) is more likely to reach almost every value of the order

parameter outside of the high probability region of reactant basin (A > -0.7 A)

compared to the less active mutants. These data show that WT is more active

than mutant variants because the probability of reaching the product basin from the

reactant basin in time T is higher. Put another way, they suggest that reactive points

in phase space (i.e., those coupled configuration/momentum states that reach the

product basin in time T) are more probable in highly active enzymes compared to

less active or inactive variants. Furthermore, these data indicate that fluctuations

that carry the system close to the product basin but not across the barrier are also

stabilized in active enzymes - the most active enzymes are those that can facilitate

fluctuations both toward as well as across the reactive barrier.

4.3.6 Reactive Trajectory Ensembles

To determine the dynamic, structural factors that led to the observed differences in

P, we sought to answer the question of why some trajectories made it farther along

the order parameter coordinate and crossed the barrier while others failed in the same

amount of time. To this end we examined ensembles of WT and mutant trajectories

114



Frequency Factor

A

V

0.005-

0 50 100 150
time (fs)

(a)
p(X)

-WT

-L323N
- E488M
- S276G

-10 -E319D

-15

-20

c -25-

-30-

-35

-40
-1.5 -1 -0.5 0 0.5 1 1.5

X (A)

(b)

Figure 4-5: Enzyme i'(t) and P components (a) i(t) as a function of time for
WT and mutant enzymes. A normalization time (T) of 101fs was used to compute
i(t) and P. (b) The probability of transitioning from the reactant basin to values of
the order parameter, A, that separate reactants from products for WT and mutant

enzymes.

115



that connected the reactant basin to successive points along the order parameter

coordinate in identical amounts of time (101 fs). Comparing the value of the order

parameter (A) and its velocity for trajectories that fluctuated out of the reactant basin

but did not cross the reaction barrier, we observed three distinct dynamic stages (Fig.

4-6). First, as the system fluctuated out of the reactant basin, it quickly accelerated

along the order-parameter coordinate. Second, within approximately 20 fs of leaving

the initial basin, the velocity peaked and began to slow as the system climbed the

barrier. Finally, the velocity eventually reached zero by the end of the trajectory.

Comparatively, those trajectories that made it across the barrier underwent similar

initial dynamics, but differed in the final stage in that they retained enough forward

momentum along the order parameter coordinate after approaching the top of the

barrier to coast across before rapidly descending into the product basin.

We find that the rapid acceleration and subsequent deceleration of the order pa-

rameter corresponded directly to the dynamics of one of its components, the C4 C5

bond distance that ultimately breaks during the isomerization reaction (Fig. 4-7).

The initial acceleration of the order parameter toward the product basin corresponded

to this bond shrinking, and returning to equilibrium from a compressed state. As it

stretched past equilibrium ((rc 4 -C) = 1.54 A), the bond restoring force grew, caus-

ing the bond and the order parameter to decelerate and their respective velocities to

eventually peak. In cases where the system fell short of the barrier, this restoring

force was strong enough to prevent the bond from breaking and halt further bond

extension. This resulted in an order parameter velocity of approximately 0 by the end

of the trajectory. By comparison, in cases where trajectories did cross the barrier, the

restoring force was not strong enough to prevent bond breaking and simply slowed

the reaction by mediating the conversion of kinetic into potential energy. The net

result was a decreased, but positive velocity, and a slow crossing of the barrier region.

4.3.7 C 4 -C 5 Bond Breaking Dynamics

Examining the dynamics of the C4 C5 bond vibration in reactive and non-reactive

trajectories, we find that the C4 C5 bond appears to have undergone vibrational
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Figure 4-6: Order parameter probability distributions for WT trajectory
ensembles. (a) Probability distributions of the order parameter for trajectories that
ended at A = -0.8, -0.6, -0.3, 0, 0.4, and 0.9 A. The dashed line shows the mean value
as a function of time. (b) Corresponding probability distributions of the velocity of
the order parameter. Note that for ensembles that crossed the transition barrier (A
= [-0.15 , 0.151 A), trajectories were aligned such that they cross the A = 0 A point
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resonant energy transfer immediately preceding departure from the reaction basin.

In each of multiple, sequential fluctuations up the barrier, the bond vibrated with

successively larger amplitude and velocity (Fig. 4-7). Additionally, comparing tra-

jectories that progressed farther along the order-parameter coordinate (e.g., A = -0.6

vs. A = 0), these vibrations became increasingly energetic before the bond eventually

broke upon crossing the barrier. Individual trajectories in each of these ensembles

resembled a classical, forced, undamped, harmonic oscillator undergoing resonance

with a neighboring vibration. To quantify this relationship, we fit individual time

traces of the C4 C5 bond to the model

x(t) = cos(wt + to) + Acos(wot + to) + Bsin(wot + to) + xo, (4.14)
m(wo -w2)

which is the general solution to the canonical, periodic forced harmonic oscillator

equation [170]
d 2 = -mw2x + Focos(wt). (4.15)
dt2  _W

We note here that Fa (amplitude of the external force), wo, W (natural and forcing

frequencies, respectively), A, B (intial condition constants of integration), t o, and xo

(time phase and distance offset factors), were all free to vary in the fit.

This model fits well to the data, with an average r 2 value greater than 0.85 for each

ensemble examined, suggesting that fluctuations toward the product basin were con-

sistent with being driven by resonant energy transfer into the C4 -C5 bond from some

neighboring vibration. Additionally, we found that as sequential trajectory ensembles

carried the system closer to the product basin, the degree of resonance increased. The

difference between the forcing and natural frequency shrunk as the forcing frequency

approached the natural frequency from above, a redshift of approximately 5 THz, and

the amplitude of the mass normalized, external force increased by nearly an order of

magnitude from 0.5 to 3.5 x 10-3 A/fs-3 (Fig. 4-8). The vibrational frequencies of

the C4 C5 bond dynamics at equilibrium had strong contributions at approximately

32 and 37 THz (Fig. 4-9a), consistent with the frequencies predicted by our simula-

tions for trajectories that only move very short distances along the order-parameter
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Figure 4-9: Equilibrium WT C4-C 5 bond vibrations. (a) C4-C 5 bond vibration
frequencies found via a Fourier transform of 50 ps of equilibrium C4 -C 5 dynamics.
From left to right, resolved peaks are centered at 18, 23, 27, 32, 37, and 41-44 THz.
(b) Trace of the C4 -C 5 bond distance oscillating while displaying a beating pattern
over a period of 1 ps.

coordinate (A = -0.8 A). We also found that this bond exhibited transient beating

patterns at equilibrium (Fig. 4-9b), suggesting similar resonant oscillations to those

observed in reactive trajectories, albeit with much smaller amplitude vibrations. The

transient nature of the beating pattern observed at equilibrium and the frequency

shift seen in reactive trajectories indicates that this is a dynamic phenomenon. As

such, it is likely dependent on other degrees of freedom that create an environment

conducive to resonant energy flow.

Similar results were obtained for all mutants examined in this study. Each showed

C4 -C 5 bond dynamics that appear in resonance with an external force as the system
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Figure 4-10: Average natural and forcing frequencies of mutant trajectory

traces fit to a forced harmonic oscillator model. Each trace was fit to all time

points up to 20 fs after the final bond compression to avoid fitting a classical model

to a non-classical bond breaking event. Error bars correspond to one standard error.

moved farther along the order-parameter coordinate (Fig. 4-10), as well as similar,

equilibrium C 4-C 5 bond frequencies and dynamics (data not shown). We note, how-

ever, that for the mutants examined in this study, the fitted natural frequencies were

far less stable, and shifted toward the blue to meet the redshifting forcing frequency

for intermediate, non-reactive trajectories, indicating that in mutant enzyme simu-

lations there were dynamic shifts in the vibrational frequencies of both the breaking

bond as well as the external force.

In exploring additional geometric coordinates that influence the C 4 -C5 bond dur-

ing the reaction, we found that conserved, active-site residue E319 effectively pushed

the C5 methyl group out of the reactant well and directed it toward its position in
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the product. As the system traversed the reaction coordinate and the C4 -C5 bond

became vibrationally activated, the distance between C5 and one of the carboxylate

oxygens of the E319 side chain shrunk before reaching a minimum when the C 4 -C5

bond was maximally extended during its penultimate oscillation (Fig. 4-11A). At this

point, there was a van der Waals clash between the two atoms and the C5 methyl

group ricocheted off of the side chain. Examining the ensemble averages of the C5 -

OE319 distance for transitions in the WT and mutants systems, the average minimum

distance is approximately 2.7 A, and a large, unfavorable VDW interaction appeared

at this minimum value for all but the E319D mutation (Fig. 4-11b,c). Notably, the

E319D mutation removed the E319 wall and replaced it with a smaller, aspartate

side chain that had little interaction with substrate. The C5-OE319 distance never

dropped below 4 A, and relative to other mutants there was very little van der Waals

interaction (2 kcal/mol, compared to 20 kcal/mol in WT) between the two groups.

Thus, we propose that the dynamics of the KARI isomerization reaction are dom-

inated by a two-stage, "pump-and-push" mechanism in both WT and mutant vari-

ants (Fig. 4-12). Energy is pumped into the C 4 -C5 bond via resonant energy transfer

from an externally modulated, driving vibration. This yields an excited C 4-C 5 bond

that becomes bumped by the E319 active-site side chain residue, pushing the sub-

strate toward the product configuration. If enough energy has been driven into the

C4 -C 5 bond and the C5 - 0 E319 collision is sufficiently forceful, the bond stretches

and eventually breaks as the system crosses the reaction barrier. Given this con-

served mechanism, KARI enzyme activity is proportional to the probability that this

mechanism occurs (P); thus, the calculated differences in activity are reflective of

the differences in this probability. In particular, it implies that mutant enzymes are

less able to redshift the external forcing frequency and/or push the activated C 4-C 5

bond. In the case of mutant E319D, we hypothesize that its inactivity arises because

it cannot effectively push the activated bond in the right direction, as the E319D

mutation removes the side chain wall present in WT.
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Figure 4-11: Average traces of the substrate C5/E319 interaction for WT
and mutant variants. (a) Average traces of the order parameter, A, for WT and
mutants. (b) Average traces of the C5-OE319 distance. (c) Average traces of the
van der Waals interaction energy between the substrate and the side chain of residue
E319. All trajectories make the successful transition from the reactant to product
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Figure 4-12: Snapshots along a single, WT reactive trajectory. In each snap-
shot the bound substrate, acetolactate (AL), both magnesium ions, and coordinating
residues E496, E319, and S518 are shown. Moving from left to right, top to bottom,
while the system sat in the reactant basin (A < -0.15 A), the C4 -C 5 bond distance
underwent large-scale vibrations between 1.4 and 1.7 A. Additionally, the C5 -E319
distance compressed from 3.7 to 2.7 A (t=100 fs), as the C5 methyl group swung into
and collided with the carboxyl group of E319. The methyl group then rebounded, un-
derwent one more vibration (t=100-140 fs), and proceeded across the barrier (t=150
fs) into the product basin.
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4.4 Conclusions

We have presented an analysis of transition-state theory based enzyme design as

well as a comprehensive study of reaction mechanism of WT and rationally designed

mutant KARI variants. Using a TST based framework, we first developed an end-

point method to minimize the free energy of activation by focusing on enthalpic

contributions and single ground-state and transition-state energetics. Our models

highlighted the importance of both the magnesium ions as well as the surrounding

active-site residues E496 and D315 in stabilizing the observed transition state. We

designed six KARI mutants predicted to reduce the activation energy relative to WT

via ground-state destabilization and experimentally validated them with measure-

ments of specific activities and component activation free energies. We find that

enthalpic reaction barriers can be reduced by selective destabilization of the ground

state, but that increases to entropic barriers often overwhelm these benefits. In four

of the six mutants explored in this study, we found that this method was successful at

reducing the enthalpic component of the activation free energy by 0.5-2.0 kcal/mol,

but did not account for entropic effects, which ultimately increase the free energy

barrier by 1-3 kcal/mol. Thus, this method is able to select for active mutants but

has difficulty finding those with better activities than WT. These designs were then

re-evaluated using transition path sampling to asses the importance of ensemble ef-

fects on activity prediction, and the relative activities derived using TPS were found

to be in agreement with experiment. The success of the TPS methodology over our

initial transition state-theory approach implies that effective catalyst design requires

an ensemble treatment of the enzymatic process. Optimizing for reduced activation

free energies via minimizing energy differences between single transition and ground

states is effective for finding active mutants, but can have the unintended consequence

of increasing entropic barriers. For such high dimensional systems, there are likely

many different transition states connecting reactants to products [171, 30], and trying

to reduce the energetic cost to reach a single one may increase the barrier to reach

the rest, increasing the entropic cost of the reaction. A dynamic, ensemble modeling
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approach, which does not assume a particular reaction coordinate and/or transition

state, is able to account for multiple transition states as well as the various ways the

system can reach them. We suspect that for enzymes that have not been optimized

by evolution, substantial gains can be made in reducing the enthalpy of activation by

improving relative transition-state interactions. There is likely, however, and upper

bound on the efficacy of this approach [152], and additional improvement necessitates

treatment of dynamic and ensemble effects.

Analysis of the components that make up the kinetic rate constant as found by

TPS, b(t) and P, reveals that for all KARI variants explored in this study, the actual

time required for the system to cross the reaction barrier once it has left the reactant

basin is only 28 fs. We note here the difference between the transient time observed for

the KARI catalyzed isomerization and the measured ensemble turnover rate of 1 s-1.

The disparity found here is similar to that for other enzyme catalyzed reactions, and

suggests that there are likely additional, slower protein motions involved in enzyme

turnover that act on significantly different time scales from those observed in this

study. Our component analysis also leads us to conclude that the real difference

between WT and less active mutants lies in P, the probability of being in reactive

regions of phase space in the reactant basin (i.e., points that connect to the product

basin within T). Furthermore, the most active variants not only stabilize reactive

points and thus reactive trajectories in phase space more than variants that are less

active; they also stabilize points that result in non-reactive fluctuations toward the

product basin more so than their less active variants. Thus, we find that highly

active enzymes facilitate fast fluctuations out of the reactant toward the product basin

independent of whether they cross the reaction barrier. Taken together, these findings

suggest a novel enzyme redesign strategy based on selective stabilization of reactive

points in phase space. Increasing the relative probability of coupled configuration

and momentum states should increase P and the overall rate of reaction.

Finally, by analyzing trajectory ensembles that carry substrate bound enzymes

close to and into the product basin in both WT and mutant systems, we propose that

the KARI isomerization reaction proceeds by a pump-and-push mechanism involving
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the vibrational activation of the breaking C4 C5 bond. In all fluctuations toward the

product basin, we observed C4 C5 bond vibrations increasing in amplitude over time,

the time traces of which fit well to a classical, forced, undamped, harmonic oscillator

undergoing resonance. As trajectories approached the barrier, the amplitudes of these

vibrations increased, along with the degree of resonance between the bond vibration

and the external, oscillating force. For trajectories that crossed the barrier, the forcing

frequency had red-shifted by 5 THz from its initial, equilibrium value of 37 THz and

overlapped with the natural frequency of the C4 C5 bond (32 THz). The system

did not fluctuate toward the product basin, however, until it was pushed by the

carboxylate group of the active site E319 side chain, which acted as a van der Waals

bumper. The C5 methyl group caromed off the E319 side chain before crossing the

reaction barrier. Thus, we propose that the reaction occurs via resonant, vibrational

pumping by an externally modulated force and a choreographed push from the E319

side chain. It is interesting to note that the effect of the driving vibration observed

here is similar to those proposed for other enzyme catalyzed reactions involving both

phosphorolysis [159] as well as hydride transfer [158, 172]. In these cases vibrations

facilitate the reaction by destabilizing the reactant via dynamic short-lived correlated

compression of the substrate, which pushes the system across, or enhances tunneling

through the reaction barrier. We observe similar reactant destabilization, via rapid

energy flow into a single bond vibration and a dynamic kick from the active site.

In closing, we note that many of our findings point to a unified, dynamic picture of

enzyme catalysis, in which enzymes couple motions on many different time scales to

accelerate reactions [173, 174, 172, 175]. Enzymes explore phase space through both

slow, large-scale conformational changes as well as fast, local fluctuations, and both

contribute to the reaction rate. In the case of KARI, we measured a slow, ensemble

turnover rate and rapid reaction dynamics. The bond-breaking, bond-forming process

occurs on the order of tens of femtoseconds, and it is nearly instantaneous compared

to either the initial, slow search through phase space for reactive points that result

in barrier crossing or the time necessary for product release.
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Chapter 5

General Conclusions

This work has explored the use of ensemble, free energy models in the study and design

of protein and small molecule therapeutics. We employed a combination of rigorous,

physical theory as well as experiment to develop and test accurate computational

models in the areas of protein engineering as well as ligand and enzyme design.

In Chapter 2, we validated the use of implicit solvent electrostatic models in the

study and design of antibody-antibody signaling receptors. We found that these

efficient, ensemble models are able to capture many of the physically important sol-

vent effects without explicit sampling of solvent degrees of freedom, and can be used

to understand the thermodynamics of IgG antibodies binding to Fcy receptors. In

particular, these models provide physical explanations for the observed binding affin-

ity in aglycosylated, mutant IgG antibodies. We found that the glycan contributes

negligibly to direct Fc-Fc-yR interactions, indicating that it has more of an indirect

effect on binding, perhaps through stabilization of the folded, unbound immunoglobin

[176]. We also found that the affinity recovering mutations act primarily by increasing

the electrostatic complementarity of the binding interface. They reduce desolvation

penalties paid upon binding by polar, IgG residues that are not directly interact-

ing with polar, FcyR residue partners. These finding highlight the importance of

solvent-protein interactions and how they mediate the binding and activation of im-

mune signalling receptors. They also suggest a protein design paradigm based on

electrostatic tuning of protein binding interfaces; one that we successfully used in the
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negative design of a related, mouse IgG:FcyR system. By adding positive charge at

the IgG surface (via addition of lysine or arginine, or removal of aspartate or glu-

tamate), we were able to reduce the electrostatic complementarity at the binding

interface, and knock out binding to Fcy-RIV.

We extended the use of continuum solvent models in Chapter 3, where we ex-

plored the role of configurational freedom in the thermodynamics of ligand-protein

binding. We developed a powerful, DEE/A* based design framework to enumerate

configurational ensembles and efficiently compute ligand free energies, entropies, and

enthalpies of binding. This method was applied to a series of previously designed

HIV-1 protease inhibitors, and we found that inclusion of ensemble, configurational

effects significantly improves correlation between computed and experimentally mea-

sured binding affinities. Interestingly, however, the number of important configura-

tions that define the bound and unbound configurational ensembles is quite small

given the number of degrees of freedom present in these ligands. Additionally, using

the lowest energy configurations in the bound and unbound state to approximate the

free energy of binding correlates quite well with experiment. These findings indicate

that while the rigid binding approximation is not always accurate, the predominant

state(s) hypothesis is likely valid, and the configurational, entropic losses experienced

by related ligands are indeed similar. As such, it seems that low energy regions of

configurational space dominate the landscape in both the bound and unbound states,

and that finding those regions should be paramount for any accurate virtual screening

method. Nonetheless, this ensemble methodology is highly accurate and is a valuable

lead optimization tool. We hope to see this method applied to a wider variety of com-

pounds to test its applicability in different ligand-receptor systems. Additionally, as

computational power increases, we hope to see this design and the CMIE method-

ology expanded to incorporate receptor degrees of freedom into the calculation in

order to explore the relative changes in receptor configurational entropy as well as

the relative coupling between ligand and receptor degrees of freedom upon binding.

This framework for exploring entropic effects offers a unique way to identify the role

of specific degrees of freedom in mediating the thermodynamics of binding as well as
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how receptors respond to changes in inhibitor flexibility. We are particularly excited

to see it applied to the study of adaptive inhibitors (i.e., those ligands that bind to

a broad range of related targets and are effective against drug resistant targets), as

recent work highlights the importance of inhibitor flexibility as a mode of adaptation

[177, 178, 179].

Finally, in Chapter 4, we combined the lessons learned in previous chapters and

assessed the predominant, transition state approximation as it applies to enzyme re-

design using MM-PBSA as well as quantum mechanical models. We developed an

end-point approach designed to optimize the relative difference in the free energy

of the transition versus reactant state, and applied it to the redesign of ketol-acid

reductoisomerase. We found that this design approach is successful at reducing the

activation enthalpy, but also results in unfavorable increases in the activation entropy.

This indicated that configurational activation entropy differences between similar en-

zymes cannot be assumed to be negligible. We re-explored our panel of mutants in

an ensemble context using transition path sampling to map out ensembles of reactive

paths, and found that accounting for the multitude of ways the system can cross the

barrier results in much more accurate rate predictions. Furthermore, this dynamic

method of computing rates revealed that both WT and mutant enzymes have similar

reaction mechanisms involving the external, vibrational activation of the breaking

bond followed by a dynamic push by an active site residue over the barrier. We also

observed the interesting trend that active enzymes not only stabilize reactive trajec-

tories more so than less active variants, but also stabilize non-reactive fluctuations

toward the products. These findings highlight the importance of dynamic fluctuations

in enzyme catalysis and suggest that future enzyme design methods must take a more

complete view of the catalytic process and consider transition state stabilization as

well as the effect of mutations on enzyme dynamics when ranking and evaluating po-

tential designs. In particular, we hope to see future design efforts focus on stabilizing

not just reactive configurations, but momentum states as well (i.e., points in phase

space).

Overall, in this work we presented a critical examination of the utility and ap-
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plication of ensemble models in three major areas of computational biochemical en-

gineering: protein-protein binding via antibody design, protein-ligand binding via

inhibitor design, and enzyme catalysis via enzyme design. We find that by taking

a principled, physics based approach to modeling, we are able to develop significant

insight into the inner workings of many biological systems. Furthermore, models

developed in this way can be used to intelligently inform experimental design and de-

velop medicinal proteins and small molecules. Collectively, the work presented here

highlights the importance of using rigorous statistical mechanical approaches in com-

putational screening and design, even in the absence of perfect force fields. By virtue

of the size of these biochemical systems and limits on current computing power, none

of the force fields used here are accurate at all length scales. Molecular mechanical

and semi-empirical treatments are only approximate, and more expensive, ab initio

quantum methods will yield more accurate potentials. However, the success observed

here suggest that one can compensate for imperfect energy functions by exploring

enough of phase space to effectively average out local inaccuracies. Thus, by incorpo-

rating more accurate statistical mechanical theory into future computational models

(in addition to more accurate force fields), and using experimental work to help guide

their application, the field of computational biophysics will undoubtedly speed the

scientific exploration of biology and development of high impact therapeutics.
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Appendix A

Efficient calculation of molecular

configurational entropies using an

information theoretic

approximation 1

Abstract

Accurate computation of free energy changes upon molecular binding remains a chal-

lenging problem, and changes in configurational entropy are especially difficult due

both to the potentially large numbers of local minima, anharmonicity, and high-order

coupling among degrees of freedom. Here we propose a new method to compute

molecular entropies based on the maximum information spanning tree (MIST) ap-

proximation that we have previously developed. Estimates of high-order couplings

using only low-order terms provide excellent convergence properties, and the theory

is also guaranteed to bound the entropy. The theory is presented together with ap-

plications to the calculation of the entropies of a variety of small molecules and the

binding entropy change for a series of HIV protease inhibitors. The MIST framework

developed here is demonstrated to compare favorably with results computed using the

related mutual information expansion (MIE) approach, and an analysis of similarities

between the methods is presented.

'This work was done in collaboration with Bracken M. King and Bruce Tidor and has been

submitted for publication.
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A.1 Introduction

A fundamental goal of computational chemistry is the calculation of changes in ther-

modynamic properties for physical processes, such as chemical potential, enthalpy,

and entropy changes. Accurate calculation of such properties can enable computa-

tional design and screening at a scale infeasible experimentally, and provides tools for

detailed computational analysis of molecules and processes of interest. Design work

often focuses on evaluating single configurations in the bound and unbound state,

frequently representing the global minimum energy conformation, for instance; how-

ever, after filtering out infeasible candidates, additional effort may be warranted to

investigate configurational ensemble properties, with significant corrections resulting

from entropic or enthalpic sources possible [24, 113, 106]. This work, as well as recent

experimental studies using NMR, has so far highlighted the importance of config-

urational solute entropy in a variety of systems [24, 180]. As such, improving the

accuracy and speed of molecular ensemble based calculations, particularly in larger

systems, is an area of active research.

One class of approaches for computing configurational averages centers around

the use of sampling based simulations, such as molecular dynamics (MD) and Monte

Carlo. Such methods may be particularly well suited for larger systems, including

proteins, where explicit enumeration and characterization of all relevant minima is

infeasible [113]. One of the better known methods in this field is the quasiharmonic

approximation, which approximates the system as a multidimensional Gaussian us-

ing the covariance matrix computed across aligned simulation frames [106]. While

successful in many cases, the quasiharmonic approximation has been shown to signif-

icantly overestimate entropies in systems containing multiple unconnected minima,

which are poorly modeled by a single Gaussian [108, 181]. Recent phrasings have

instead focused on more directly estimating probability densities over the configu-

rational space of a molecule using the frames from MD simulations [182, 113]. As

system size grows, however, direct estimation of the density over all molecular de-

grees of freedom (DOF) becomes infeasible, due to exponential scaling of the sampling
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requirements with respect to the effective dimensionality of the system [183].

While estimates of the probability distribution over all DOF of reasonably-sized

molecules generally cannot reach convergence given current sampling capabilities, the

distributions over each individual DOF, or the joint distribution for groups of small

numbers of DOF at a time may converge with the sample sizes accessible from MD

simulations [184]. Because of this, recent directions have focused on taking advan-

tage of the entropies computed over these subsets (also called marginal entropies).

In general, the motivation for such methods is to combine these well-converged low-

order marginal entropies of pairs or triplets of DOF in a molecule to provide an

approximation of the ensemble properties of the full molecular system; rather than

estimating higher-order contributions directly, they are approximated from low-order

terms or neglected through assumptions of the theory. Essentially, these methods ef-

fect a trade-off by introducing errors due to theoretical approximations, yet recouping

enhanced convergence by avoiding direct estimation of the high-order terms. A net

benefit results if the approximation errors introduced are smaller than the estimation

(convergence) errors avoided.

One such method is the mutual information expansion (MIE) approximation, re-

cently developed by Gilson and co-workers, which enables approximation of configu-

rational entropies as a function of lower-dimensional marginal entropies [113]. This

method expresses the configurational entropy of a system as a series of couplings

between all possible subsets of degrees of freedom, placed in order from lowest to

highest order. To provide a low-order approximation, and typical for an expansion,

MIE assumes the higher-order terms expressed in its expansion can be neglected

and truncates all couplings including a large number of DOF (generally omitting all

sets of 4 or more DOF). The MIE framework has proved accurate in the analysis of

a variety of small-molecule systems [113], and it has been combined with nearest-

neighbor methods to improve convergence [185]. It has also been used in the analysis

of side-chain configurational entropies to identify residue-residue coupling in allosteric

protein systems [186].

In parallel work developed in the context of gene expression and cell signaling
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data, we have generated a similar framework, maximum information spanning trees

(MIST), that provides an upper bound to Shannon's information entropy as a func-

tion of lower-order marginal entropy terms [187]. For multiple synthetic and biological

data sets, we found that, in addition to acting as a bound, the MIST approximations

generated useful estimates of the joint entropy. Due to the mathematical relation-

ships between information theory and statistical mechanics, application of MIST to

the calculation of molecular entropies proved feasible with relatively little adaptation.

While similar in spirit to MIE, MIST represents a distinct framework for approximat-

ing high-dimensional entropies by combining associated low-order marginal entropies.

In particular, whereas MIE explicitly includes all couplings of a particular order in the

approximation (e.g., accounting for the couplings between all pairs of DOF), MIST

chooses a subset of the same couplings to include so as to maintain a guaranteed

lower bound on the entropic contribution to the free energy. In effect, MIST can be

thought to infer a model of relevant couplings between molecular degrees of freedom

and only include these couplings in the approximation.

Here we examine the behavior of MIST when used to calculate molecular con-

figurational entropies from MD simulation data and also in the context of idealized

rotameric systems. The behaviour of MIST is compared directly to MIE in both of

the scenarios for a number of systems, and explanations for the differences between

the two methods are explored.

A.2 Theory

In this section, we review the Maximum Information Spanning Tree (MIST) approx-

imation in the context of configurational entropies. Further details of MIST have

been published previously in the context of analyzing mRNA expression data for can-

cer classification [187]. In addition, we highlight the theoretical differences between

MIST and MIE. In both cases, the goal is to generate an approximation to the con-

fiugrational entropy of a molecule by combining marginal entropy terms calculated

over subsets of the degrees of freedom. In so doing, one seeks to introduce a small
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approximation error, in favor of faster convergence relative to calculations over all

degrees of freedom.

The information theoretic phrasing of the calculation of configurational entropies

has been well described previously [113]. The key step of the phrasing comes from

representing the partial molar configurational entropy, S', of a molecule as

-TS = -RT In + RT p(r) In p(r dr, (A.1)
Co

where R is the gas constant, T is the absolute temperature, CO is the standard state

concentration, and p is the probability density function (PDF) over the configurational

degrees of freedom, r. For the purposes of this report, r is represented in a bond-

angle-torsion (BAT) coordinate system, as opposed to Cartesian coordinates. BAT

coordinates tend to be less coupled than Cartesian coordinates for molecular systems

and are thus well suited for low-order approximations [188]. The first term on the

RHS represents the entropic contribution of the six rigid translational and rotational

degrees of freedom and is found via analytical integration, assuming no external field.

When negated, the second term can be recognized as the continuous Gibbs entropy

[189], which is also identical to RT times the continuous information entropy, S, as

described by Shannon [190], providing the equation

87r 2

-TS= -RT In - RTS, (A.2)
Co

S = p(r) In p(r)dr. (A.3)

This relationship allows techniques developed in the context of information theory

to be used for the calculation of configurational entropies. Also note that here we

generally report the configurational entropy contribution to the free energy or free

energy change (-TS' or -TAS), which we refer to as the entropic free energy

(change).

The MIST framework provides an upper bound to the information entropy using

marginal entropies of arbitrarily low order. The approximation arises from an exact
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re-expression of the entropy as a series of conditional entropies, or alternatively, as a

series of mutual information terms,

n n

Sn (r) = Si (rjri,...,j_1) = [Si (ri) - I (ri; r1 ,. ..,i-1)], (A.4)

I(x; y) p(x, y) In p(xy)dxdy, (A.5)
p(x)p(y)dxY A5

where Ii (ri; r1 . i1) is the mutual information (MI) between DOF ri and all DOF

that have already been included in the sum. Throughout this section, subscripts on S

or I are included to indicate the order of the term (i.e., the number of dimensions in

the PDF needed to compute the term). Notably, while these MI terms are functions

of probability distributions of dimension i, they are still pairwise mutual information

terms between the single variable ri and the set of variables represented by ri,...,i1,

in contrast to the multi-information terms employed in the MIE expansion. As a

result, these high-dimensional terms maintain key properties of mutual information,

including non-negativity [121]. The MI phrasing can be thought of as adding in

the entropy of each DOF one at a time (Si terms in A.4), then removing a term

corresponding to the coupling between that DOF and all previously considered DOF

(I, terms).

The MIST approximation consists of limiting the number of DOF included in

these information terms. For example, for the first-order approximation, all coupling

is ignored, and the I term is completely omitted from the formulation. By the non-

negativity of MI [121], the first-order approximation is thus an upper bound to the

exact entropy

Sn (r) Z [S1 (ri) - I, (ri; r1 ,...,i_1)] < Si (ri) = S s 1 (r), (A.6)
i=1 i=1

where the superscript MIST indicates the MIST approximation of order i.

For the second-order approximation, when each DOF is added, its coupling with a

single previously chosen DOF is accounted for, as opposed to considering the coupling
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with all previously included terms

n

S. (r) 5 SIST2 (r) = [Si (ri) - I2 (ri; rj)] ;j E {1,. .. , i - 1}. (A.7)

Comparing A.4 to A.7, one can see that the I 2 (ri; rj) replaces Ii (ri; r 1 ,...,i_1) in the

summation. This replacement provides the upper-bounding behavior of MIST 2 due

to the fact that I(ri; rj) < I(r ; rj, rk), for all vectors ri, rj, and rk [1211. Additional

discussion and demonstration of this relationship can be found in the supplementary

information.

To generate approximations of arbitrarily high order k, we include an increasing

number of DOF in the mutual information term,

n

S, (r) SuIIsrk (r) = [S1 (ri) - Ik, (ri; rj)]

k' = min{i, k};j 1,. i - 1); (A.8)

rjI =k' - 1

where r, is a vector of length k' - 1 representing any subset of DOF E (ri, ... ,I

As with A.7, the bounding properties of the approximation are guaranteed by the fact

that including additional DOF in the MI terms can not decrease the information.

The ordering of terms to consider in the summation over i, and the terms included

in the MI terms, j, in A.7 and A.8 may impact the resulting approximation. Because

any choice of ordering and information terms will still result in an upper bound

to the true entropy, the choices that minimize this expression will provide the best

approximation. For small systems, exhaustive enumeration of ordering of indices and

information terms may be feasible, but for larger systems, an optimization method is

called for. Here, we have chosen to employ a greedy selection scheme that maximizes
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the information term selected in each step of the summation,

Sn (r) < SAlIST2 (r) -3[S1 (re) ma 1 2 (r2; rj)1 (A. 9)

Sn (r) < S'IISTk (r) = S1 (ri) -- ma I, (ri; rj;

k' = mini, k}; (A.10)

Irj| =k' -1.

Thus, a third-order approximation is constructed by stepping through each de-

gree of freedom in sequence and adding the Si (ri) one-dimensional entropy for that

degree of freedom to and subtracting one pairwise third-order mutual information

term 13 (ri; rj) from the accumulated sum. The term subtracted is the one that gives

the largest mutual information between the current DOF ri and a pair of previously

considered DOF rj; for the first DOF considered there is no mutual information term,

for the second degree of freedom the mutual information term is just the second-order

mutual information between the second and first DOF I2 (r 2 ; ri), and for the third

degree of freedom there is no choice in the pairwise third-order mutual information

term as there is only one possibility. Higher-order approximations are constructed in

the same manner, but the bulk of the pairwise mutual information terms are order k

for a k-th order approximation, with lower-order mutual information terms used for

the first k - 1 DOF considered.

In the context of approximations to thermodynamic ensemble properties, MIST

bears a strong resemblance to the Bethe free energy (also known as the Bethe ap-

proximation) [191]. In fact, the second-order MIST approximation is equivalent to

the Bethe approximation, and the full MIST framework may thus be thought of as a

high-order generalization of the Bethe free energy. While a full comparison of MIST

and the Bethe approximation is outside the scope of the current work, a number of

modifications and applications of the Bethe approximation have been explored that

may be extensible to MIST [192, 193].

In contrast to MIST, MIE [113] expands the entropy as a series of increasingly
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higher-order information terms, as previously formulated by Matsuda [112]:

Sn (r) = , S(i) -1 M(,r ; rj) + M3 (ri; rj; rk) -... ,(A. 11)
i=1 i=1 j-i+1 i=1 j=i+l k=j+1

where M is the multi-information, defined as

n

Mn (r1; ... ;rn)= E(--1)+1 Sk Gri ,...,ik), (A. 12)
k=1 i1<...<ik

and the second summation runs over all possible combinations of k DOF from the

full set of {ri, ... , r,}. Note that for n = 1, the multi-information is equivalent to

entropy, and for n = 2, it is equivalent to the mutual information defined in A.5. MIE

generates a kth-order approximation to the full entropy by truncating all terms of order

larger than k in A.11. The approximation will converge to the true entropy when no

relationships directly involving more than k DOF exist in the system. Notably, MIE

does not carry any bounding guarantees, but it does not require the optimization

utilized in MIST.

Despite relying on different expansions, MIST and MIE share many similarities.

The first-order approximation is identical in both cases (summing all first-order en-

tropies). For the second-order approximation, MIE adds in all first-order entropies

and subtracts off all possible pairwise mutual information terms,

n n n

SnMIE2 (rJ,(,i 2 (,ri; rj) (A. 13)
i=1 i=1 j=i+l

In contrast, MIST adds in all first-order entropies, and then subtracts off n - 1 of

the information terms (where n is the number of DOF in the system), as is seen in

A.9. These terms are chosen to account for as much information as possible, while

still guaranteeing an upper bound. The second-order approximations highlight the

theoretical differences between MIST and MIE. Whereas MIE removes all pairwise

couplings, effectively assuming that that all couplings are independent of each other,

MIST removes a subset of couplings, effectively assuming a network of higher-order
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dependencies in which each DOF is primarily coupled to the system through a single

dominant interaction. In particular, MIST can provide a good approximation if the

majority of the degrees of freedom in the system are directly coupled only to a small

number of other DOE. Such a system can be well covered by the n - 1 terms included

in MIST. The maximization procedure leading to the tightest upper bound effectively

selects these direct couplings when sufficient data exist to accurately estimate their

relative magnitudes.

In contrast, MIE may not provide a good approximation in such a system due

to indirect couplings that are likely to exist between DOF, and must be removed by

higher-order terms. These indirect couplings arise when the configuration of a DOF is

coupled to a second DOF only through its interactions with a third intermediate DOE.

In such a case, all three DOF will exhibit pairwise coupling with each other, as well

as a strong third-order coupling. In MIE, these high-order couplings may be missed,

whereas in MIST, one of the pairwise terms may be omitted, providing the possibility

for a good approximation of highly coupled triplets of DOF, even when using a second-

order approximation. Alternatively, in systems containing a larger number of direct

pairwise interactions and relatively few higher-order couplings, MIST may provide

a poor approximation relative to MIE. Given these differences in representation, we

have performed a series of computational experiments to evaluate the performance of

MIST and MIE in a variety of molecular systems, which have helped to reveal how

coupled coordinates contribute to configurational entropy.

A.3 Methods

A.3.1 Molecular dynamics simulations of small molecules

All molecular dynamics simulations were run using the program CHARMM [76, 3]

with the CHARMm22 all-atom parameter set [194, 195]. Partial atomic charges were

fit using the RESP procedure [79, 196] and the program GAUSSIAN 03 [129], with the

6-31G* basis set [196]. All simulations were run at a temperature of 1000 K using a
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distance-dependent dielectric of 4r with a 1-fs time step, Langevin dynamics, and the

leapfrog integrator. A 1-ns equilibration was performed prior to a 50-ns production

run from which frames were extracted at a frequency of 1 frame per 10 fs, yielding 5

million frames per simulation.

For each molecule, an internal coordinate representation was chosen in the BAT

framework. The internal coordinate representation consisted of the selection of three

seed atoms, as well as a single bond, angle, and torsion term for each subsequent

atom so as to use improper dihedrals whenever possible, and to place heavy atoms

prior to hydrogens. Improper torsions were selected to produce an effect similar to

the phase angle approach used by Abagyan and co-workers and Gilson and co-workers

[197, 113]. Only bond, angle, and torsion terms between chemically bonded atoms

were allowed as coordinates. Other than these restrictions, the specific coordinates

were chosen arbitrarily. The values of each bond, angle, and torsion were extracted

from the simulations and binned. Marginal PDFs of all single, pairs of, and triplets of

coordinates were computed using the frequencies from the simulation. These PDFs

were then used to compute the first-, second-, and third-order entropies and infor-

mation terms. All first- and second-order terms were computed using 120 bins per

dimension, and all third-order terms were computed using 60 bins per dimension. In

both cases, the ranges of the bins were defined by the minimum and maximum value

observed in the simulation. For MIE, third-order information terms containing any

bond or angle DOF were set to zero, as was done previously to improve convergence

[113]. For MIST, all third-order terms were included, as doing so did not dramatically

impact numerical stability. All calculations included a Jacobian term of J7 by sin0.

where bi and 0, are the bond length and bond angle used to place atom i, and the

product runs over all DOF included in the marginal term.

A.3.2 Mining minima implementation

In order to enable comparison to the Mining Minima (M2) method using our specific

parameters and energy function, we implemented a version of the method within
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CHARMM consistent with the original method as described [24, 118]. Briefly, a list

of candidate minima was first identified by combinatorially combining all observed

minima in each torsional degree of freedom from the MD simulations. Each minimum

was then further minimized in CHARMM and duplicates were omitted. For each

remaining minimum the Hessian was computed in Cartesian coordinates in CHARMM

and converted to the same BAT coordinate system used for analysis with MIST. The

energy of each minimum was also extracted. The BAT Hessians were diagonalized,

and the product of the eigenvalues computed, with a correction applied to include

no more than 3 standard deviations or 60' in any dimension along each eigenvector.

Modes with force constants less than 10 kcal/mol were also integrated numerically to

check for anharmonicities. For the current work, no modes were found to differ from

the harmonic approximation by more than 1 kcal/mol, so the integrated results were

not used in the final calculation. Finally, the ensemble average energy was computed

and subtracted from the potential to yield the entropic contribution to the free energy,

-TS.

A.3.3 Discrete rotameric treatment of HIV protease inhibitors

Discrete rotameric systems representing four candidate HIV protease inhibitors, either

unbound or in the binding pocket of a rigid HIV-1 protease were generated. Each

system consists of the 5 x 10' lowest-energy rotameric configurations, accounting for

> 99% of the contributions to the free energy at 300 K in all cases. For the current

work, these 5 x 104 configurations were treated as the only accessible states of the

system, enabling exact calculation of all ensemble properties.

The low-energy configurations were determined via a two-step, grid based, enu-

merative configurational search. All ligands are comprised of a common chemical

scaffold with potentially variable functional groups at 5 possible positions (see A-5).

We first collected an ensemble of low-energy scaffold conformations using an enumer-

ative Monte Carlo (MC) search. Ten independent simulations of 5 x 104 steps were

performed for each ligand in both the bound and unbound states, and the external and

scaffold degrees of freedom of all collected configurations were idealized to a uniform
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grid with a resolution of 0.1 A and 100 or 20' (bound or unbound state, respectively).

All simulations were performed using CHARMM [76] with the CHARMm22 force

field [124] and a distance-dependent dielectric constant of 4r. The result of the first

step was a set of energetically accessible rotameric scaffold configurations.

The second step exhaustively searched the configurational space of the remaining

functional group degrees of freedom for each collected scaffold using a combination

of the dead-end elimination (DEE) [69, 198, 199] and A* algorithms [74] as described

previously [47]. For high throughput energy evaluations, a pairwise decomposable

energy function was used that included all pairwise van der Waals and Coulombic,

intra- and inter-molecular interactions, computed with the CHARMm22 force field

and a distance-dependent dielectric. Uniformly sampled rotamer libraries for each

functional group with resolutions of 15' or 600 for the bound or unbound states,

respectively, were used. The 5 x 104 lowest-energy configurations across all scaffolds

were enumerated and their energies computed.

These lowest-energy configurations from each ensemble were re-evaluated using

a higher resolution energy function to account for solvation effects and to obtain

a more accurate estimate of the energy. The enhanced energy function included

all pairwise van der Waals interactions, continuum electrostatic solvation energies

collected from a converged linearized Poisson-Boltzmann calculation using the Delphi

computer program [200, 125], and solvent accessible surface area energies to model the

hydrophobic effect [86]. Solvation energies were calculated using an internal dielectric

of 4 and a solvent dielectric of 80. A grid resolution of 129 x 129 x 129 with focusing

boundry conditions [85] was used, along with a Stern layer of 2.0 A and an ionic

strength of 0.145 M.

Given the energies of all configurations in the idealized rotameric systems, en-

tropies of arbitrary order were computed analytically by integrating through the

Boltzmann distribution determined from the 5 x 104 molecular configurations in-

cluded in the ensemble. To evaluate the convergence properties of the metrics in the

context of the discrete rotameric systems, we randomly drew from the 5 x 104 struc-

tures representing each system with replacement according to the Boltzmann weighted
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distribution. The resulting samples were then used to estimate the single, pair, and

triplet PDFs as for the MD systems. Because the exact marginal entropies are an-

alytically computable, convergence for these systems was examined with respect to

the same approximation computed using the analytically-determined marginal terms.

No symmetry adjustments were applied for the discrete systems.

A.4 Results

A.4.1 Molecular dynamics simulations of small molecules

To investigate the behavior of the MIST framework in the context of configurational

entropies, we first examined a set of small molecules including hydrogen peroxide,

methanol, 1,2-dichloroethane, and linear alkanes ranging in size from butane to oc-

tane. Configurational entropies for all of these systems have been previously com-

puted using MIE and were shown to agree well with M2 calculations [113]. As was

done in those studies, we collected 5 x 106 frames from a 50-ns molecular dynamics

trajectory for each molecule and computed the single, pair, and triplet entropies of all

BAT degrees of freedom as described in Methods. We then combined these marginal

entropies according to the MIST (A.8) or MIE (A.11) framework, using approxima-

tion orders of one, two, or three. The resulting values for the entropic contribution

to the free energies, -TS' (computed using A.2), are shown in A-1, where they are

compared to the gold standard estimation from the M2 method.

As seen in the previous studies using MIE (red bars), the second-order approxi-

mation (MIE 2 ) shows good agreement with M2 (dashed line) for all molecules, partic-

ularly the smaller systems. MIE 3 generally shows similar agreement with M2 for the

small molecules and worse agreement (> 10 kcal/mol in some cases) for the alkanes,

while MIE1 shows worse agreement in all cases. The MIST approximations (blue

bars) show somewhat different behavior than MIE. As inherent in the theory, the

first-order MIST and MIE approximations are identical. MIST 2 , shows somewhat

larger deviations from M2 for the smallest molecules compared to MIE 2 but provides
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Figure A-1: MIST and MIE results for small alkanes: Hydrogen peroxide,
methanol, 1,2-dichloroethane and five linear alkanes ranging in size from butane to
octane were simulated using MD, and the resulting 5 x 106 frames were used to
estimate the marginal entropies. These entropies were then combined according to
MIST (blue bars) or MIE (red bars) to generate the first-, second-, or third-order
approximation to the configurational entropy of each molecule. Results are compared

to calculations using the Mining Minima method (dashed black line).
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better agreement for 1,2-dichloroethane and the linear alkanes. Also, whereas MIE 3

generally shows worse agreement with M2 than MIE 2, MIST 3 improves upon MIST 2

for many systems, showing deviations from M2 less than 1.0 kcal/mol for all systems

other than heptane and octane, where the deviations are 1.6 and 2.4 kcal/mol, re-

spectively. While MIST 3 is guaranteed to yield at least as accurate a result as MIST 2

when both are fully converged, here we see that behavior in the context of finite

sample sizes.

A.4.2 Convergence for small molecules

In addition to looking at the MIE and MIST values computed using the full 50-

ns simulation, we also examined the behavior of the approximations when using only

frames corresponding to shorter simulation times, obtained by truncating the existing

simulations. Because each approximation order is converging to a different value and

the fully converged values are not known, we track the approach to the value computed

with the full 50 ns. The results are shown in A-2 and A.1. For all systems, MIST 2

(solid blue lines) exhibits faster convergence than MIE (red lines). While the third-

order approximations (dashed lines) converge more slowly than the corresponding

second-order ones (solid lines), MIST 3 demonstrates comparable convergence to MIE 2

for hydrogen peroxide, methanol, and 1,2-dichloroethane and faster convergence for

the alkanes.

Previous work showed that MIE 3 was poorly converged for many of the alkanes,

particularly the larger ones, as is observed here [113]. Over the last 10 ns of the hex-

ane, heptane, and octane simulations, the MIE 3 estimate changes by 1.0-3.5 kcal/mol.

Notably, the third-order MIE approximation already omits a number of terms to im-

prove numerical stability (all three-way information terms containing a bond or an

angle are set to zero). In contrast, the third-order MIST implementation shown here

includes all of these terms, and still demonstrates significantly faster convergence.

Though we have not explored higher-order MIST approximations for these systems,

the good convergence of MIST 3 suggests that fourth- or fifth-order approximations

may be feasible.
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Figure A-2: Convergence of MIST and MIE for small molecules: MD simu-
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molecule T (K) MIST 1 =MIEi MIST 2  MIST 3  MIE 2  MIE 3

HOOH 300 -0.00 -0.00 -0.01 -0.00 -0.00
HOOH 500 -0.00 -0.00 -0.01 -0.00 -0.00
HOOH 1000 -0.00 -0.00 -0.02 -0.01 -0.01

methanol 300 0.00 -0.00 -0.01 -0.01 -0.01
methanol 500 -0.00 -0.00 -0.02 -0.01 -0.01
methanol 1000 0.00 -0.00 -0.03 -0.02 -0.02
diClEth 300 -0.01 -0.01 -0.02 -0.02 -0.03
diClEth 500 -0.01 -0.02 -0.04 -0.04 -0.06
diClEth 1000 -0.00 -0.01 -0.05 -0.05 -0.06
butane 1000 0.00 -0.01 -0.15 -0.21 -0.37
pentane 1000 -0.01 -0.03 -0.20 -0.34 -0.64
hexane 1000 0.00 -0.02 -0.23 -0.48 -1.15
heptane 1000 -0.01 -0.03 -0.29 -0.68 -2.01
octane 1000 0.00 -0.03 -0.34 -0.93 -3.67

Table A.1: Change in estimation of -TS' from 40 ns-50 ns (kcal/mol)

Taken together with the previous section demonstrating

MIST, MIE, and M2, the results show that sampling regimes

of the MIE or MIST approximations give the smallest error.

the agreement between

may exist in which any

To gain a sense of how

the approximations may behave in this regard, we can treat M2 as a comparison point.

Although the M2 result may not be equivalent to the full entropy to which MIE and

MIST would ultimately converge, treating it as a standard can be instructive about

the combined behavior of the methods when weighing accuracy and convergence.

To this end, A-3 shows the absolute error of the approximations as a function of

simulation time when treating M2 as a gold standard.

For hydrogen peroxide regimes exist for which MIST 2 , MIST 3 , or MIE 2 provide

the smallest error. In particular, the rapid convergence of MIST 2 produces the best

agreement with M2 for very short simulation times. With more samples MIE 2 tends to

reach adequate convergence to provide the best estimate until MIST 3 converges to the

point that it provides the closest agreement. For methanol, the faster convergence of

MIST 2 again provides the best agreement for small sample sizes before MIE 2 converges

to give the best agreement. Across 1,2-dichloroethane and the alkanes, MIST provides
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better agreement than MIE 2. Either MIST 2 or MIST 3 provides the best agreement

depending on the number of samples. In particular, MIST 3 seems to provide better

overall agreement with M2 when converged, but the fast convergence of MIST 2 again

creates regimes for which it demonstrates the best agreement. For heptane and octane

(the largest systems examined here), MIST 2 provides the best agreement even after

50 ns, possibly due to MIST 3 having not fully converged.

A.4.3 Source of differences between MIE2 and MIST 2 for

small molecules

To understand the differences in accuracy and convergence between MIE and MIST,

we examined the terms of the expansions that differ between the two approximation

frameworks. In particular, for the second-order approximations, MIST 2 includes a

subset of the mutual information terms considered by MIE 2 , as can be seen by com-

paring A.13 and A.7. As such, these omitted terms are entirely responsible for the

differences between the two approximations. The values of the terms used for both

approximations when applied to butane are shown in A-4.

For each plot, the lower triangle of the matrix shows the pairwise mutual in-

formation between each pair of degrees of freedom, all of which are included in the

calculation of MIE 2. The upper triangle shows the subset of these terms that are used

by MIST 2, chosen to minimize A.7 while maintaining an upper bound on the entropy.

Focusing on panel D, which shows the results using the full 50-ns simulation, one

can see that most of the terms omitted in MIST 2 are relatively low in value, whereas

the high MI terms are included (to satisfy the maximization in A.7). Panels A-C

show the same information computed over the first 4, 10, or 25 ns of the simulation,

respectively. In contrast to the 50-ns results, the shorter simulations show dramatic

differences between MIST 2 and MIE 2 . While roughly the same set of terms is omit-

ted by MIST 2 in these cases as in the 50-ns case (because the largest MI terms come

from the same couplings in the shorter and 50-ns calculations), the omitted terms are

much larger, due to their relatively slow convergence. These plots indicate that slow
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Figure A-4: Convergence of MI matrix for butane: The pairwise mutual infor-
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convergence of MIE 2 relative to MIST 2 is a result of the many terms in the MI ma-

trix that are slowly converging to very small values. In particular, because MI values

tend to be consistently overestimated, the quadratic number of MI terms included in

MIE 2 slow convergence more than the linear number of MI terms included in MIST 2.

Furthermore, the terms that are included by MIST 2 are the larger MI terms which

tend to converge more quickly than small MI terms. For sufficiently short simulations

neglecting these small and slowly converging terms (as done by MIST 2 ) appears to

be better than trying to estimate them (as done by MIE 2 ).

molecule x > 0.05 0.05 > x > 0.01 0.01 > X > 0.00
butane 29.7 30.4 39.9
pentane 28.4 30.1 41.5
hexane 24.4 26.7 49.0
heptane 19.5 26.3 54.2
octane 17.5 23.8 58.7

Table A.2: Percentage of (MIE 2 - MIST 2 ) accounted for by terms of various magni-
tudes

To further examine the source of differences between MIST 2 and MIE 2 , we looked

at how much of the difference between the approximations was accounted for by

terms of various sizes for the linear alkanes. The results of this analysis using the

full 50-ns simulations are shown in A.2. As suggested by A-4, much of the difference

between MIST 2 and MIE 2 comes from the large number of omitted small terms.

For example, for butane 39.9% of the 2.22 kcal/mol difference comes from MI terms

with magnitudes less than 0.01 kcal/mol. Furthermore, the importance of these small

terms grows as the system size increases, accounting for nearly 60% of the disparity for

octane. Taken in conjunction with the slow convergence of these small terms, these

results suggest that, while some real representational differences do exist between

MIE and MIST, much of the difference may in fact be explained by differences in

convergence, even at 50 ns.
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A.4.4 Discretized inhibitor molecules as an analytical test

case

While the good agreement that both MIST and MIE show with the M2 results is an

important validation step in evaluating the overall accuracy of the approximations,

some fundamental differences in the methodology can make the results somewhat dif-

ficult to evaluate. There are two primary issues that can confound the interpretation.

Firstly, M2 calculations and MD simulations represent similar but ultimately different

energy landscapes. Whereas the MD landscape represents the exact energy function,

M2 approximates the landscape by linearizing the system about a set of relevant min-

ima. Although mode-scanning is employed to account for some anharmonicities in

the systems, M2 still operates on an approximation of the energy landscape sampled

during MD. As such, even given infinite samples, and without making any truncation

approximations (i.e., directly generating p(r) for use in A.1), the entropy estimate

would not necessarily converge to the M2 result. Secondly, because application of

MIST and MIE relies upon estimating the low-order marginal entropies from a finite

number of MD frames, it is difficult to separate the error introduced by the approxi-

mation framework from the error introduced by estimating the marginal terms.

To address these issues, we examined MIST and MIE in the context of a series of

discrete rotameric systems in which the energy of all relevant states was calculated

directly. Given this distribution of rotameric states, the full configurational entropy

and all marginal entropies can then be computed exactly. As such, for these sys-

tems we can separately evaluate the approximation errors due to the MIST or MIE

frameworks as well as sampling errors due to estimating the marginal terms; here the

marginal terms are known exactly. These discrete ensembles were originally gener-

ated to analyze a series of candidate HIV-1 protease inhibitors [47], but their primary

importance for the current work is as a test case in which entropies of arbitrary order

can be computed exactly. The chemical structures of the four inhibitors are given in

A-5. Additional details on the generation of these systems is described in Methods.

We employed eight different discrete ensembles, representing bound and unbound
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Figure A-5: Chemical structures of HIV-1 protease inhibitors: The four
molecules shown were previously designed as candidate HIV-1 protease inhibitors
[47]. For the current work, idealized rotameric systems in which the exact ener-
gies of 50,000 rotameric states were generated in both bound and unbound states,
as described in Methods. All torsional degrees of freedom for each inhibitor were
rotamerized, and all other DOF (bonds, angles, impropers) were fixed to idealized
values. In the bound state overall translations and rotations (external DOF) were
also enumerated. Torsions about the bonds labeled in (A) correspond to numbering
used in A-8.
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states of the four inhibitors. All bonds, angles, and non-torsional dihedrals were

idealized and fixed, leaving 13-15 torsional degrees of freedom in each inhibitor. We

also included an additional variable (referred to as external or ext) representing the

six translational and rotational degrees of freedom in the bound cases to model the

position of the inhibitor with respect to the rigid binding pocket. For each system we

computed exactly all entropy terms containing 1, 2, 3, 4, or 5 degrees of freedom by

marginalizing the full Boltzmann distribution of each ensemble, which consisted of the

5 x 104 lowest-energy molecular configurations. We then computed approximations

to the total entropy of each system using either MIST or MIE. As such, we were able

to examine the approximation error associated with both methods when the low-

order terms are known exactly. The results are shown in A-6. For all eight systems

the MIST approximations (blue lines, x's) monotonically approach the full entropy

(dashed black line) as the approximation order increases. All MIST approximations

also provide a lower bound to the entropic free energy (or an upper bound to the

associated Shannon entropy) when the low-order terms are known exactly. Both of

these properties are guaranteed for MIST when the marginal terms are known exactly,

so seeing them hold in our test system is important validation but not surprising.

For all cases the second-order MIST approximation provides an estimate within 1.2

kcal/mol of the full analytic entropic free energy, with particularly good performance

in the bound systems (top row of Figure).

For the four unbound systems (bottom row of A-6), MIE (red lines, o's) shows

similar accuracy to MIST, generating a lower-error estimate once (KB98, panel E),

a worse estimate once (AD93, panel F), and comparable error for two cases (AD94

and KB92, panels G and H). Unlike MIST, MIE is not guaranteed to monotonically

reduce the approximation error as the order increases, and in some cases, such as

unbound KB98 and AD94, the third-order approximation performs worse than the

second-order one. In general, however, for the unbound cases the MIE approximations

converge towards the true entropy as the approximation order is increased, with exact

low-order terms.

In contrast to its performance in the unbound systems, MIE demonstrates erratic

158



behavior in the bound systems. For all four inhibitors and all approximation orders,

MIST results in considerably lower error than the corresponding MIE approximations.

Furthermore, increasing the approximation order does not dramatically improve the

performance of MIE in the bound systems, and actually results in divergent behavior

for orders 1-5 in AD94 (panel C). Notably, the bound systems represent identical

molecules to those in the unbound systems; the only differences lie in the level of

discretization, and the external field imposed by the rigid protein in the bound state.

A.4.5 Convergence properties in discrete systems

Having investigated the error due to the MIST and MIE approximation frameworks in

our analytically exact discrete systems, we next looked to explore the errors associated

with computing the approximations from a finite number of samples. To do this we

performed a series of computational experiments in which we randomly drew with

replacement from the 50,000 structures representing each system according to the

Boltzmann distribution determined by their energies and a temperature of 300 K.

For each system we drew 106 samples, and estimated the PDF over the 50,000 states

using subsets of the full 106. These PDFs were then used to compute the marginal

entropies used in MIST and MIE. For each system this procedure was repeated 50

times to evaluate the distribution of sampling errors for the two methods.

In order to quantify the sampling error separately from the approximation error

(which we examined in the previous subsection), we compared the approach of each

approximation to the value computed when using the exact low-order terms (i.e.,

we examined the convergence of each approximation to its fully converged answer, as

opposed to the true joint entropy). The results for the bound and unbound KB98 sys-

tems are shown in A-7. Results for the other inhibitors were similar and are shown

in Figures S1, S2, and S3. As expected, the lower-order approximations converge

more quickly, as the low-order PDFs require fewer samples to estimate accurately.

For the unbound case (bottom row), both MIE (red) and MIST (blue) exhibit con-

sistent steady convergence for all 50 runs. For the bound case (top row), while MIST

exhibits similar convergence behavior as in the unbound system, MIE shows much
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Figure A-7: Convergence in KB98 rotameric systems: For each of the eight
idealized rotameric systems, we sampled with replacement from the 5 x 104 configu-
rations representing the system, according to the Boltzmann distribution determined
by the relative energies of each configuration. These samples were then used to esti-
mate the marginal entropies of all combinations of 1-4 torsions prior to application of
MIST (blue lines) or MIE (red lines) to compute -TS0 . This procedure was repeated
50 times for each system, and the deviation of each run from the exact result to the
same order approximation are shown (pale lines), as well as the mean and standard
deviation across the 50 runs (thick lines). Results for bound (top row) and unbound
(bottom row) KB98 are shown here. Results for other molecules were similar and can
be seen in Figures Si, S2, and S3.
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larger variations across the 50 runs. As with the MD analysis, MIST demonstrates

considerably faster convergence than MIE for all approximation orders examined and

all systems.

A.4.6 Source of differences between MIE2 and MIST 2 for dis-

crete systems

We next examined the MI terms accounting for differences between the two approxi-

mation frameworks. As with the analysis of the alkanes, the similarities between the

second-order approximations enable a direct comparison of the MI terms that are in-

cluded by MIE but omitted in MIST. Unlike the alkane studies, however, because the

low-order terms can be determined directly for these discrete cases, the convergence

errors, which played an important role in differences for the alkanes, can be eliminated

in the current analysis. Doing so allows direct examination of the differences for the

two approximation frameworks, independent of errors introduced due to sampling.

The MIs between all pairs of degrees of freedom for bound and unbound 1KB98, as

well as the terms chosen by MIST 2 are shown in A-8.

The results for the unbound case (panel B), for which MIE 2 provides lower error,

are qualitatively similar to those seen for the alkanes. Most of the differences between

MIE 2 and MIST 2 in the unbound inhibitor arise from the omission of a number

of relatively small terms, less than 0.2 kcal/mol each. The larger MI terms are

all included in both approximations. In contrast, the differences between the two

methods for the bound case come from a different source: MIST 2 omits three of the

seven largest MI terms in the bound system, together accounting for nearly 2 kcal/mol

of the 2.91 kcal/mol difference between MIE 2 and MIST 2. In particular, whereas all

six pairwise relationships among the external, #2, #3, and # degrees of freedom show

strong (and nearly equivalent) couplings, MIST 2 only includes three of these terms.

The qualitative differences in the terms accounting for the disparity between

MIST 2 and MIE 2 in bound KB98 compared the unbound KB98 and the alkanes may

be particularly relevant given the relatively poor accuracy of MIE for the bound sys-
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chosen to be included in the second-order MIST approximation to -TS', according

to A.7. All values are reported in kcal/mol. Numbering of DOF corresponds the
labels in Panel A of A-5

tems. The strong couplings between the four degrees of freedom of focus (external, #2,

#3 , and #5), suggest a high-dimensional transition in which all four DOF are tightly

coupled to each other and must change in concert to adopt different energetically rel-

evant states. In particular, the values of the couplings, all of which are near RT In 2,

are consistent with these four degrees of freedom together occupying two dominant

states. Furthermore, the coupling between all subsets of three, and the full set of four

DOF also are near RT In 2, further demonstrating the strong high-dimensional cou-

pling between these four. Due to the structure of the MIE approximation, in which

all low-order couplings are treated as independent from each other, a highly coupled

system may result in errors due to the double-counting of low-order relationships.

In contrast, the MIST approximation, which treats each DOF to be predominantly

coupled to the system through a single low-order coupling, can appropriately describe

such a highly-coupled system with a small number of effective states.
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A.5 Discussion

Here we have examined the behavior of our Maximum Information Spanning Trees

(MIST) approximation framework in the context of computing molecular configura-

tional entropies. Though we originally developed MIST to pursue high-dimensional

information theoretic phrasings in the analysis of experimental biological data, the

generality of the method, coupled with the mathematical relationships between in-

formation theory and statistical mechanics, enabled application to molecular config-

urational entropy with relatively little modification. The adaptation of the method

was largely inspired by the approach taken previously with the Mutual Information

Expansion (MIE) method [113]. We have compared to both MIE and the well estab-

lished Mining Minima (M2) method in the context of MD simulations of a variety of

small molecules. While MIE showed better agreement with M2 for some systems (no-

tably methanol simulated at various temperatures), the MIST approximations tended

to provide improved agreement, particularly for larger systems. Furthermore, for all

but the smallest molecules, both MIST 2 and MIST 3 demonstrated faster convergence

than the MIE approximations. While MIST 3 seemed to provide the best converged

answers across all systems, the fast convergence of MIST 2 resulted in it providing bet-

ter agreement in many sampling regimes, particularly for the larger alkanes. These

results suggest that the MIST approximations are likely to be particularly useful in

larger systems where simulation times may be limiting.

While the agreement with M2 is an important validation for the overall accuracy

of the methods, it does not provide an ideal testing framework, as M2 and the MD

simulations represent different energy landscapes. As such, separate examination of

the errors due to approximation and sampling was not possible. To address this we

also examined MIST and MIE in the context of a series of idealized rotameric systems

for HIV protease inhibitors in which the exact entropies could be computed directly.

In these systems, we observed that while MIE and MIST both showed good behavior

in systems representing unbound molecules, MIE demonstrated poor accuracy in the

more restricted bound systems, even for the fifth-order approximation with exactly
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determined marginal terms. In contrast MIST exhibited small approximation errors

in the bound systems, even for the second-order approximation. Furthermore, when

sampling from the known analytical distribution, the fast convergence of MIST rela-

tive to MIE seen in the MD systems was also observed for these discretized molecular

systems.

In addition to improved convergence, MIST carries useful properties that are not

shared by MIE. For fully converged systems, the approximation error of MIST is

guaranteed to monotonically decrease with increasing approximation order. This

behavior can be easily seen for the discrete systems in A-6, and stands in contrast

to the behavior of MIE in the same systems. In application to novel systems where

the behavior of the approximations is untested, this property means that the highest

approximation order to have reached convergence provides the best estimate of the

full entropy. In the absence of such a guarantee, it is unclear how to select the

appropriate approximation order.

Furthermore, all converged MIST approximations provide a lower bound on the

entropic contribution to the free energy, -TS' (or an upper bound on the Shannon

information entropy, S). The bounding behavior may prove particularly useful in

identifying optimal coordinate representations. In the previous MIE work the choice

of coordinate system has been demonstrated to significantly impact the quality of the

approximation [113]. In particular, removing high-order couplings between coordi-

nates, such as those present in Cartesian coordinates, can dramatically improve the

accuracy of low-order approximations like MIST and MIE. Because MIST applied to

any valid coordinate system will still provide a lower bound on -TS', a variety of

coordinate systems may be tested, and the one that yields the largest converged an-

swer is guaranteed to be the most accurate. While additional work is needed to fully

enable such a method, even brute-force enumeration is likely to improve performance.

The results of MIE and MIST in the context of the discrete systems also highlight

the ability of MIST to provide a good approximation at low orders, even when direct

high-order couplings are known to exist. As has been described previously [113,

112], low-order MIE approximations truncate terms in A.11 representing only direct
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high-order relationships. The poor accuracy of low-order MIE metrics for the bound

idealized systems therefore implies that these systems contain significant high-order

terms. Despite the presence of such complex couplings, MIST still provides a good

approximation in these same systems. For systems such as proteins that are known

to exhibit high-dimensional couplings, the ability to capture high-order relationships

in the context of a low-order approximation may prove crucial.

Since the original development of the MIE framework, additional work has been

done to extend and apply the method. Nearest-neighbor (NN) entropy estimation has

been used to compute the low-order marginal terms utilized by the MIE framework,

resulting in significantly improved convergence [185]. Given that MIST relies upon

the same low-order marginal terms as MIE, it is likely that NN methods would also be

useful in the context of MIST. MIE has also been used to analyze residue side-chain

configurational freedom from protein simulations [1861. These studies were able to

identify biologically relevant couplings between distal residues in allosteric proteins.

Given the relative computational costs of simulating large proteins, and the strong

high-dimensional couplings that surely exist in the context of proteins, application of

MIST in similar studies may be particularly useful. Preliminary results from ongoing

studies have proved promising in the calculation of residue side-chain configurational

entropies in the active site of HIV-1 protease.

A.6 Conclusion

In summary, we have adapted our existing information theoretic-based approximation

framework to enable calculation of configurational entropies from molecular simula-

tion data. Having characterized its behavior in a variety of molecular systems, we

believe MIST can serve as a complement to existing methods, particularly in poorly

sampled regimes. A variety of existing extensions and applications for MIE are also

likely to be useful in the context of MIST, though further exploration is needed. Fi-

nally, in addition to improved convergence, MIST carries monotonicity and bounding

guarantees that may prove valuable for future applications.
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A.7 Supplementary Material

Demonstration that additional terms cannot decrease MI

We aim to demonstrate that additional terms included to the mutual information

cannot decrease its value. That is

(A.14)

We start with the fact that the conditional entropy is less than or equal to the un-

conditioned entropy, and further that additional conditioning terms can only decrease

the entropy further [121]

(A.15)

We next negate both sides of the inequality, and add S(ri) to both sides,

S(ri) - S(riIrj) < S(ri) - S(riIrj, rk). (A.16)

By the definition of mutual information, we can rewrite this expression as

(A.17)

which is the relationship we aimed to develop.
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Figure A-9: Convergence in AD93 rotameric systems: For each of the eight

idealized rotameric systems, we sampled with replacement from the 5 x 10 4 configu-

rations representing the system, according to the Boltzmann distribution determined

by the relative energies of each configuration. These samples were then used to esti-

mate the marginal entropies of all combinations of 1-4 torsions prior to application of

MIST (blue lines) or MIE (red lines) to compute -TS'. This procedure was repeated

50 times for each system, and the deviation of each run from the exact result to the

same order approximation are shown (pale lines), as well as the mean and standard

deviation across the 50 runs (thick lines). Results for bound (top row) and unbound

(bottom row) AD93 are shown here.
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Figure A-10: Convergence in AD94 rotameric systems: For each of the eight
idealized rotameric systems, we sampled with replacement from the 5 x 104 configu-

rations representing the system, according to the Boltzmann distribution determined
by the relative energies of each configuration. These samples were then used to esti-
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50 times for each system, and the deviation of each run from the exact result to the
same order approximation are shown (pale lines), as well as the mean and standard

deviation across the 50 runs (thick lines). Results for bound (top row) and unbound

(bottom row) AD94 are shown here.
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Figure A-11: Convergence in KB92 rotameric systems: For each of the eight
idealized rotameric systems, we sampled with replacement from the 5 x 10 4 configu-

rations representing the system, according to the Boltzmann distribution determined
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same order approximation are shown (pale lines), as well as the mean and standard
deviation across the 50 runs (thick lines). Results for bound (top row) and unbound
(bottom row) KB92 are shown here.
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