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ABSTRACT  

 The THz polaritonics system is an on-chip platform for THz generation, detection, and 
control.  THz-frequency electromagnetic waves are generated directly in a thin slab of lithium 
niobate crystal where they can be amplified and guided.  Time-resolved phase-sensitive imaging 
lets us capture movies of THz waves as they propagate at the light-like speeds.  I developed 
polaritonics methodologies and used the platform to study various microstructures interacting 
with THz waves. 
 I began technique development by deriving a quantitative model explaining THz wave 
propagation in an anisotropic slab waveguide.  From this model, I extracted the frequency-
dependent wave velocity and used this knowledge to design an optical pumping geometry that 
phase-matches and coherently amplifies a selected THz frequency.  This geometry can generate 
high-amplitude THz waves with a tunable center frequency and bandwidth.  Much like the 
generation, the detection was also revamped.  New optical designs, acquisition procedures, and 
hardware let us quantitatively measure THz field strengths.  The image resolution was improved 
from ~50 µm to 1.5 µm, and measurement noise was reduced by 50-fold. 
 Using the improved generation and detection methods, we studied two classes of 
microstructures: laser-machined air gaps and deposited metal antennas.  Air gaps cut into the 
lithium niobate slab effectively reflect, waveguide, and scatter THz waves.  We fabricated 
structures that demonstrate wave phenomena such as diffraction and interference and captured 
movies of THz waves interacting with these structures.  The movies can be useful tools in 
lectures on electromagnetism because they beautifully illustrate the fundamental effects and bring 
cutting-edge research into the classroom.  In addition to air structures, we studied metal antennas, 
which are interesting because of their ability to enhance optical fields and localize 
electromagnetic waves well below the diffraction limit.  The polaritonics platform enabled 
incisive study of fundamental antenna behavior and scaling because we could map the antenna’s 
near-field with λ/100 spatial resolution and we could quantify large THz electric field amplitudes 
and enhancements in a deeply sub-wavelength gap between antennas.  Antenna field 
enhancement is already facilitating nonlinear THz research, and the polaritonics platform will 
enable improved study of photonic systems such as metamaterials and photonic crystals.  
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Chapter I 
Introduction to  

THz Spectroscopy and Polaritonics 
 

 Terahertz (THz) radiation is the part of the electromagnetic spectrum that lies between 
the infrared and microwave, and it is typically associated with frequencies between 0.1 – 10 THz  
(wavelength: 30 – 3000 μm, energy: 3 – 300 cm-1 = 0.4 – 40 meV).  THz radiation is an important 
tool in basic science because it can be used to interrogate many THz-frequency phenomena 
including molecular rotations in a gas, vibrations in a molecular crystal (like sugar), and 
electronic transitions in nanostructures such as quantum wells or quantum dots.  It also can be 
used to probe a variety of more exotic condensed phase phenomena including Cooper pairs, 
polarons, and magnons.  In addition, THz has practical applications as it is at the frontier in high-
speed electronics and optical communications, and may prove useful as a replacement for x-ray 
scanners in airports. 
 Because THz frequencies lie above what is easily accessible with electronics and below 
what is easily accessible with tunable lasers, THz technology is less advanced than technology in 
other regions of the electromagnetic spectrum.  In the late 1980s, Auston and coworkers 
developed two ultrafast methods to generate and detect THz radiation: photoconductive switches 
and optical rectification.  In a photoconductive switch, free carriers (electrons and holes) excited 
by an ultrafast optical pulse are accelerated by a DC electric field, and the accelerated charges 
emit THz radiation [Auston 1984].  In optical rectification, an ultrafast optical pulse is sent into a 
nonlinear crystal and a difference-frequency process generates THz [Auston 1988].  These two 
ultrafast methods spurred rapid development in THz research and technology.  Today, THz 
spectrometers are available commercially and there are multiple international research 
conferences attended by hundreds of groups.  Modern THz research includes such topics as THz 
waveguide spectroscopy [Laman 2008], tomography [Abraham 2011], and nonlinear 
spectroscopy [Hebling 2010]. 
 In spite of all these advances, THz methods still lag behind their microwave and optical 
analogs.  The generation of broadband THz pulses still requires ultrafast lasers, and the 
generation of intense THz radiation requires an expensive amplified ultrafast laser system and 
significant technical expertise.  Although this is starting to change, detection usually requires the 
time-consuming process of scanning a delay stage to record the full THz field temporal profile, 
and Fourier transforming to retrieve the spectral information.  In addition to the challenges of 
generation and detection, control and guidance of THz radiation are more difficult than in other 
spectral regions.  Free-space THz radiation can be guided by optics (flat and curved mirrors, 
lenses, etc.) much like visible light, but the THz is much harder to work with because of its longer 
wavelength.  Electromagnetic beams are described by the Gaussian beam formalism [Saleh 
2007].  In this formalism, the most important parameter is the ratio of the beam diameter d to the 
wavelength λ.  For visible beams, a “well-collimated” beam is typically at least 1 mm in diameter, 
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so d/λ ~ 2000.  For a THz beam (λ = 300 μm at 1 THz) to have this same ratio, the beam diameter 
must be 60 cm, which is impractical for tabletop experiments.  As a result it is very difficult both 
to send THz beams long distances and to focus them tightly.  As an alternative to optics and free-
space beams, one might try to control and guide THz waves using metal wires, resistors, 
capacitors, etc. as is done for electronics, but this is also is challenging.  Most electrical 
components cannot respond at THz frequencies and high damping in metals severely limits many 
applications. 
 To address some of these issues, the Nelson group introduced the “polaritonics” platform, 
in which the THz wave is confined within a dielectric material for the entire experiment [Feurer 
2007].  This avoids the damping that plagues metallic components and circumvents the problem 
of beam divergence by waveguiding the THz.  The dielectrics of choice have been the 
ferroelectric crystals lithium niobate (LiNbO3, often abbreviated LN) and lithium tantalate 
(LiTaO3, or LT) whose high indices of refraction at THz frequencies, 5.11 and 6.15 respectively, 
make strong waveguiding possible.  Performing optical experiments “on chip” in this way enables 
compact experimental design, requires only small amounts of sample material, and facilitates the 
interfacing between optical components and electronics.  Typical on-chip experiments also 
present challenges, because it is usually difficult to couple light onto the chip and couple it back 
out for detection.  The polaritonics platform avoids these problems by directly generating, 
amplifying, and detecting the THz wave on chip.  This diverse set of capabilities is made possible 
by the unique optical properties of LiNbO3 and LiTaO3.  These crystals are transparent at both 
optical and THz frequencies, and they have large nonlinear optical coefficients which make 
interconversion between optical and THz frequencies possible.  In addition both crystals have 
strong electro-optic responses, which means that the THz wave changes the crystal’s index of 
refraction.  This change can then be detected by an optical probe pulse. 
 

 

Figure 1.1 | Phonon character of THz waves.  (a) The atomic motions for the relevant 
phonon mode in lithium niobate.  (b) Dispersion curves for a phonon polariton wave in 
LiNbO3 (purple).  Dashed red lines are the dispersion curves for light at frequencies well 

above the phonon resonance (slope  = nc / ) and well below the phonon resonance 

(slope  = 0/ nc ).  Dashed blue is the phonon dispersion curve (slope ~ 0). 
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 The Nelson group first became interested in polaritonics through its study of phonon-
polaritons waves, which are mixtures of vibrational waves (phonons) and electromagnetic waves 
(polaritons).  In LiNbO3 and LiTaO3, all THz frequency waves have some at least some phonon 
character and some electromagnetic character.  In LiNbO3, the relevant phonon resonance is at 
7.6 THz; the atomic motions associated with this mode are shown in Fig. 1.1(a).  This resonance 
is the ferroelectric “soft mode” and is largely responsible for the strong nonlinear response of this 
material [Brennan 1997].  It is this strong nonlinear response that enables efficient THz 
generation and detection and makes LiNbO3 such a good substrate for the polaritonics platform.  
The dispersion curve of bulk LiNbO3 is shown in Fig. 1.1(b) [Feurer 2007].  In all the 
measurements in my thesis, we are concerned with the lower polariton branch, the purple curve 
below 7.6 THz.  At low frequencies, it lies along the dashed red line, which shows the behavior of 
light in the absence of a phonon resonance.  At higher frequencies, it lies along the dashed blue 
line, which shows the behavior of the phonon mode if it did not cross the light line.  In this thesis, 
all experiments are concerned with frequencies below 2.5 THz where the behavior is very light-
like.  Even at these frequencies, however, much of the energy of the phonon-polariton wave is 
stored in the ionic displacement. 
 

 

Figure 1.2 | The experimental pumping geometry. A THz wave is generated by an 
ultrafast optical pump pulse and guided down the LiNbO3 slab until its evanescent field 
interacts with a sample deposited on the surface (a gold antenna is shown here as an 
example).  Alternatively, the wave could interact with a structure machined into the 
crystal slab, or a sample deposited in a hole machined into the slab. 

 
 The phonon character of the propagating wave underlies the microscopic mechanism for 
THz generation.  When an intense, ultrafast optical pump pulse enters the LiNbO3 crystal, it 
drives a THz response via the nonlinear process of impulsive stimulated Raman scattering (ISRS) 
[Dougherty 1992].  We use this to generate THz directly in the polaritonics chip.  The 
experimental geometry for the polaritonics platform is illustrated in Fig. 1.2.  The pump pulse 
passes through a LiNbO3 slab, a 30 – 50 μm thick, free-standing single crystal that is thin enough 
to act as a waveguide for THz radiation.  The generated THz wave propagates orthogonal to the 
pump pulse, and it is guided down the slab where it can interact with a machined air-gap, metallic 
microstructure, or sample deposited on the surface (see Fig. 1.2).  During my thesis work, I 
improved understanding of THz behavior on-chip and introduced and improved many on-chip 
techniques.  This included an improved understanding of how waves propagate in the crystal slab 
[Yang 2010], tunable THz generation and THz amplification [Lin 2009], improved THz imaging 
and detection [Wu 2009, Werley 2010, Werley 2011], diffractive and waveguiding elements in 
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the slab [Werley AJP 2012], and deposition of metallic components on the slab surface with large 
field enhancements and sub-wavelength localization [Werley OE 2012].  The following 
paragraphs offer brief summaries of each project. 
 To understand how a THz wave evolves after it is generated, I developed a simple 
analytical theory for wave propagation in an anisotropic slab waveguide and found that it fully 
matched experimentally measured dispersion curves [Yang 2010] (see chapter 2).  Figure 1.3 
shows the dispersion curves (data underneath, theory plotted on top) when the optic axis of the 
waveguide is rotated 20° relative to the THz propagation direction.  The excellent agreement at 
this and all other angles demonstrates that the theory fully explains waveguiding in the 
anisotropic slab and enables an intuitive understanding of the behavior.  In bulk anisotropic 
material, waves are divided into two normal modes, ordinary waves and extraordinary waves.  In 
an isotropic waveguide there are also two uncoupled eigenmodes, the transverse electric (TE) and 
transverse magnetic (TM) modes.  In the anisotropic waveguide, however, all the modes couple 
together and the new eigenmodes of the system are neither purely TE nor TM and also not purely 
ordinary or extraordinary. The coupling affects the mode profiles, dispersion curves, and effective 
refractive indices in a fundamental and significant way, which can all be predicted by the theory. 
  

 

Figure 1.3 | Anisotropic waveguide modes.  Analytical theory  (overlaid, dashed green 
lines are TM-like modes and dotted blued lines are TE-like modes) is in excellent 
agreement with experimentally measured dispersion curves (yellow continuous lines) in 
the anisotropic LiNbO3 slab. In this case the optic axis of the crystal is rotated 20° away 
from the THz propagation direction.  This theory gives us full knowledge of the group 
and phase velocities of the THz waves.  

 
 One of the outputs from the theory of waveguiding is the frequency-dependent phase 
velocity of the THz waves.  The phase velocity in the waveguide has a very strong frequency 
dependence, transitioning from the speed of light, c, at low frequencies to c/nLN at high 
frequencies, with nLN the index of refraction in bulk lithium niobate.  Because of this large 
variation in phase velocities, it is possible to velocity match, and thus coherently amplify, a single 
THz frequency using an optical pulse whose intensity front has been tilted by a diffraction grating 
[Lin 2009] (see section 4A).  Generating pulses with high spectral brightness in this way enables 
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strong and selective pumping of a single THz resonance without exciting neighboring modes.  By 
tuning the tilt angle, it is possible to tune the frequency of the generated THz wave (see Fig. 1.4). 
 

 

Figure 1.4 | Tunable narrowband generation.  (a) The electric field time traces of a 
broadband (dashed black) and various narrowband THz pulses made in the LiNbO3 
waveguide with a tilted optical intensity front. (b) The corresponding spectra, spanning 
about a decade in frequency. 

 

 

Figure 1.5 | THz wave imaging setups.  The experimental setups used to image THz 
waves. (a) Phase contrast imaging. The diffracted light is phase-shifted by 90º relative to 
the 0th order beam by a phase mask in the Fourier plane, leading to interference and thus 
phase-to-amplitude conversion in the image plane. The resolution is 1.5 μm, ~λ/100 for 
the THz frequencies we typically use, about 50x better than the previous imaging design. 
(b) Polarization gating imaging, a technique complementary to phase contrast, uses 
changes in the polarization state of the probe beam to detect the THz wave, which 
enables balanced detection. The resolution is somewhat coarser (~5 μm), but the signal-
to-noise ratio is improved by more that 10x relative to the previous method. 
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 Another major thrust in my thesis was to improve detection of THz waves in the LiNbO3 
slab [Wu 2009, Werley 2010, Werley 2011] (see sections 4C & D).  A key capability of the 
polaritonics chip is the ability to measure the full E-field profile of the THz wave at each point in 
time as the wave propagates.  This information can be played back as a video showing 
interactions between the wave and structures in or on the chip, providing exceptional insight into 
the behavior of photonic components.  This is possible because LiNbO3 is an electro-optic crystal, 
so the THz field E(x,y) induces a change in the index of refraction Δn(x,y), which shifts the phase 
Δφ(x,y) of the expanded optical probe beam used to detect the THz wave: E(x,y) → Δn(x,y) → 
Δφ(x,y).  We then use a phase sensitive imaging technique to record the induced shift, and step 
the time delay between pump and probe pulses to build up the full evolution of the wave.  I 
developed two complementary, phase sensitive imaging methods: phase contrast imaging and 
polarization gating imaging.  Overall, the resolution was improved from ~25 μm to 1.5 μm, better 
than λ/100 resolution for many of the frequencies we use, and the signal-to-noise ratio was 
increased by more than 10-fold, which greatly expands the set of phenomena that can be 
observed.  Figure 1.5 shows the two experimental setups. 
 The next stage in my thesis was to add components to the chip, and use the generation 
and detection techniques already developed to study them.  Using laser machining, I was able to 
cut holes and other features in the LiNbO3 slab.  Because LiNbO3 has a very high index of 
refraction for THz radiation (n = 5.1), the air gaps strongly scatter the THz.  Launching a 
multicycle wave using the tilted optical pulse and imaging the wave as it interacts with the 
structures yields a very complete picture of both wave and photonic element.  These videos are 
excellent illustrations of the principles of electromagnetism, and as such we realized that many of 
the results had significant educational value.  Direct visualizations of propagating electromagnetic 
waves are more modern versions of classic water wave demonstrations, and these short videos 
can easily be shown in a lecture.  I demonstrated a number of classic experimental geometries 
including two-slit interference, diffraction off a grating, focusing of a wave, and waveguiding in a 
dielectric slab [Werley AJP 2012] (see chapter 5).  Figure 1.6 shows a frame from such a movie 
showing 5-slit diffraction.  In addition to their educational value, some of the elements could be 
useful in future devices or on-chip experiments.   
 The final major thrust of my thesis work was to deposit metallic microstructures onto the 
surface of the LiNbO3 slab [Werley EO 2012] (see chapter 6).  I focused on pairs of half-wave 
antennas aligned end-to-end and separated by a small gap [see Fig. 1.7(a)].  Antennas for optical 
and infrared frequencies have received attention recently because of their ability to provide very 
large field enhancements in regions much smaller than a diffraction-limited spot.  Our antenna 
work had three purposes: to develop a component that can interconvert between propagating 
electromagnetic waves and subwavelength electrical signals, to harness the antenna’s field 
enhancement to generate very high amplitude electric fields for future nonlinear THz 
experiments, and to improve fundamental understanding of antenna behavior and gain intuition 
that can be applied at any frequency range.   
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Figure 1.6 | THz wave diffracting through 5 slits.  An experimental image of a THz 
wave soon after interacting with 5 slits. The transmitted wave (right) and reflected wave 
(left) display diffraction and interference. The light gray regions are air gaps machined 
into the crystal slab. This is an example of a photonic element that can be made through 
laser machining; other elements include mirrors, waveguides, and gratings. 
 

 

 

Figure 1.7 | THz fields in an antenna.  (a) A diagram of the antenna geometry and how 
the fields localize at the gaps and antenna ends. (b) An experimental picture of a 
rightward propagating, resonant THz wave interacting with an antenna pair. The antenna 
response is 90° out of phase with the driving field. (c) A magnified view of (b) showing 
field enhancement in the antenna gap. 

 
 Our ability to quantitatively record the THz E-field with sub-cycle temporal and λ/100 
spatial resolution enables particularly incisive study of antenna behavior, allowing us to refine the 
current understanding.  We non-invasively mapped the E-field in the antenna’s near-field [see 
Fig. 1.7(b) & (c)] and directly measured field enhancements (up to 40-fold). In addition, we 
determined the spectral response across more than a decade in bandwidth spanning from DC 
across multiple resonances, and observed distinct behavior in the near- and far-field.  By 
modeling the antenna as a simple, damped harmonic oscillator we explained the full spectral 

400 μm

(c)(b)+

-

+

-
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response.  Finally, we measured the field enhancement and resonant frequency as a function of 
gap size and antenna length and developed intuitive models to predict the trends.  These insights 
are applicable at all frequency ranges and will aid the design of antennas for various applications 
including single-molecule fluorescence, surface enhanced Raman spectroscopy, near-field 
scanning optical microscopy, photonic devices, and nonlinear THz spectroscopy. 
 We are currently using the polaritonics toolkit to study a new set of complex and 
interesting structures and elements. We have recently begun work on photonic crystals fabricated 
by cutting holes into the slab, and plan to demonstrate components such as waveguides, filters, 
and splitters. We have also started depositing metamaterial structures, such as split ring 
resonators, onto the slab surface. Initial calculations indicate that it will be possible to 
demonstrate many interesting effects including negative index behavior and cloaking. We expect 
that our capabilities will yield deep insight into photonic crystals and metamaterials, much as they 
did with the antennas.  After developing a complete understanding of these structures, we plan to 
pursue active structures that can control the THz waves using electrical biases (e.g. with 
graphene) or optical pulses (e.g. semiconductors or superconductors). Finally, the spectral 
intensity in the antenna gap, which determines how strongly a resonance can be driven, is among 
the largest ever demonstrated at THz frequencies because of the high peak field strengths and 
multiple cycles covering a relatively narrow frequency range. We are launching a study which 
will use these enhanced fields to drive nonlinear THz responses.  The driven nonlinear responses 
of various degrees of freedom (vibrational, rotational, and electronic) can be probed with THz, 
infrared, visible, or even x-ray light in order to build a complete picture of energy and coherence 
flow within these systems. 
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Chapter II 
Dielectric slab waveguides 

 
A.  ISOTROPIC SLAB WAVEGUIDES 

 A dielectric slab waveguide, also commonly called a planar dielectric waveguide, is a 
slab of dielectric material that extends infinitely in two dimensions.  The slab, also called the 
core, has a higher dielectric constant than the surrounding material, also called the cladding.  
Electromagnetic waves can be bound inside the slab, so they never escape.  These bound 
eigenmodes propagate along one direction parallel to the slab surface, extend infinitely in the 
second direction parallel to the surface, and have a transverse profile along the direction 
orthogonal to the surface that does not evolve as the wave propagates.  Because of the boundary 
conditions at the dielectric interface, bound modes are allowed only at quantized energy levels.  
That is, for a specific frequency, only a discrete set of wavelengths are allowed.  These allowed 
modes are called the waveguide modes, and the derivation for determining the allowed 
wavelengths and the transverse profile follows.  In this thesis, we will primarily be concerned 
with waveguides made from lithium niobate which guide THz-frequency waves. 
 

1.  Waveguide mode derivation 

 The derivation below will treat the simple situation of a symmetric, dielectric slab 
waveguide with both the slab (the core) and the surrounding material (the cladding) isotropic.  
This derivation procedure can be easily generalized to more complex situations where the 
geometry is not symmetric [Burnes 1974], some materials are anisotropic [Yang 2010; Marcuse 
1978; Marcuse 1979; Burnes 1974], or the index of refraction is negative [Wu 2003; Shadrivov 
2003] .  The derivation here employs a significantly different strategy than in many books [e.g. 
Cronin 1995; Saleh 2007], and both ways of thinking can be valuable for intuition.   
 The slab is assumed to extend infinitely along x and z, both core and cladding have no 
magnetic response, and all three materials are isotropic.  See Fig 2.1 for the geometry.  Note that 
the index of refraction in the cladding has a lower value (nl) than the high index in the core (nh).  
The wave is assumed to propagate along the x-direction.  Finally, to simplify the analysis we 
assume that the waves are harmonic in space and along the propagation direction: 

)](exp[)(),,,( txiyEtzyxE  


, where xk  is the propagation constant. 
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Figure 2.1 | The geometry for a symmetric dielectric slab waveguide.  The surfaces of 
the slab are perpendicular to y, and the slab extends infinitely along x and z.  The slab 
itself, called the core, has a higher index, nh, than the lower index, nl, of the surroundings, 
also called the cladding.  For this analysis, we will assume that both core and cladding 
have no magnetic response.  The slab is 2  thick. 

 

 The first step in the derivation is to determine the characteristics of waves in bulk 
material, i.e. the dispersion curves (the relationships between wave vector and frequency) and 
polarizations, in both core and cladding.  Linear combinations of these bulk waves, constrained 
by system symmetry, are used to build the waveguide modes and lay out the general functional 
form of the solutions.  The boundary conditions at the waveguide surface generate a 
homogeneous system of equations which can be used to solve for the coefficients in the linear 
combination.  The system of equations can be recast in matrix notation, and a solution exists 
when the determinant of the matrix is zero.  This occurs only for certain pairs of frequency and 
propagation constant, and these allowed solutions correspond to the waveguide dispersion curve 

 To simplify notation we define some variables.  The propagation constant, xk  was 

defined above, and the wave vector component orthogonal to the slab surface is defined both 

outside the crystal, out
yki  , and inside the crystal, in

yk .    is defined as imaginary 

because bound modes will have evanescent, decaying fields in the cladding.  Because we 

assumed that the field extends infinitely along the z direction, 0zk .  The bulk dispersion 

curves are given by the relationship 22 / vkk 


, with ω the frequency, v the velocity, and k


the wave vector.  This relationship can be easily recognized as the standard relationship between 
wavelength and frequency: 

22222222222 ///// cnvkkkkkkkkfv zyxzyx  


           (2.1) 

The dispersion curves result from combining Maxwell’s equations to get the wave equation and 
solving [see i.e. Marcuse 1979].  There are two relevant bulk dispersion curves, one for the 
cladding and one for the core.  They are: 

Cladding:  22
0

22222 / ll nkcn                                         (2.2a) 

Ordinary:  22
0

22222 / hh nkcn               (2.2b) 

y

x

z

εl

μ0

l−l

μ0μ0

εlεh
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where c is the speed of light and 0k  is the wave vector in free space.  These relations are used to 

eliminate α and κ from the equations which follow so everything is expressed in terms of β and ω. 
 For a specific pair of β and ω, there are four possible plane waves in each region, two 

signs for yk  and two polarizations.  Because the materials are isotropic, we can choose any pair 

of orthogonal polarizations, so for convenience we choose the first polarization component to be 
ẑ , along the z-axis.  The second polarization component must be orthogonal to the z-axis and the 
wave vector.  In the low-index cladding we have:  
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and similarly for the high index core we have: 



















































0

1

0

1

ˆ

ˆ

0
22







 hh

h

nkzk

zk
h 




.                       (2.3b) 

 Now that we have the polarizations and dispersion curves of the bulk plane waves, we 
can write the most general form for the waveguide solutions: 

  cladding, y : ]exp[]exp[]exp[ˆ]exp[ˆ)( 4231 ylAylAyzAyzAyE   


 

     core: ]exp[]exp[]exp[ˆ]exp[ˆ)( 4231 yihByihByizByizByE   


            (2.4) 

  cladding, y :   ]exp[]exp[]exp[ˆ]exp[ˆ)( 4231 ylCylCyzCyzCyE   


 

where Ai, Bi, and Ci are scalar constants and the +/- superscripts correspond to the sign of α or κ. 
This general solution can be immediately simplified.  For bound solutions, we require that the 
electric field decays to zero as y , so the terms in the cladding that are exponentially 

growing can be discarded.  We now apply the symmetry condition that there is a reflection plane 
down the center of the sample, which eliminates half of the constants.  In this situation, the 
solution must be made of symmetric and antisymmetric modes.  Absorbing some constant factors 
into the coefficients and making use of Euler’s formula, we have: 
 
Symmetric: 
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cladding, y : )](exp[)(
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Antisymmetric: 
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 Note that for the symmetric case reflection across the symmetry plane, which lies in the 
center of the slab, should not change the sign of a vector pointing along x or z, but should change 
the sign of a vector pointing along y.  This condition is met in the symmetric mode solutions, and 
the opposite is met for the antisymmetric solutions.  Applying the symmetry conditions eliminates 
half the unknowns, so now we need only apply boundary conditions at one interface to solve for 
the unknown coefficients.  The boundary condition is that the tangential E and H-fields must be 
continuous across the boundary [Born 1999].  Because all the calculations thus far have been 
performed using the electric field, we use Faraday’s law to recast the boundary conditions in 
terms of electric field.  Faraday’s law is:  

E
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HiBi
dt
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                                  (2.6) 

Remembering that our functional form is )](exp[)(),,,( txiyEtzyxE  


, some derivatives 

simplify to ,0/  z  ,/ ix   and it  / .  The boundary conditions all in terms of E-

field are: 
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All the above boundary conditions should be evaluated at the interface ( y ), and they must be 

solved independently for the symmetric and antisymmetric modes.  The four expressions above 
yield a set of homogeneous equations which can be recast in matrix notation.   
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Antisymmetric: 
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                         (2.8b) 

Because of our choice of polarizations, these equations are uncoupled for both the symmetric and 
antisymmetric cases.  The modes associated with A1 and B1 have pure z-polarization and are the 
transverse electric or TE modes, which means that the electric field (along z) is perpendicular to 
the propagation direction (along x).  The modes associated with A2 and B2 are the transverse 
magnetic or TM modes, whose magnetic field is perpendicular to the propagation direction. 
 As is true for any homogeneous system of equations, there is a solution when the 
determinant is zero.  Because these break up into 2x2 matrices, the determinants can be easily 
calculated analytically.  They yield a set of transcendental equations whose solutions are the 
waveguide dispersion curves: 

Symmetric, TE: )tan( 


      (2.9a) 

Antisymmetric, TE: )cot( 



     (2.9b) 
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Antisymmetric, TM: )tan(
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 Finally, for the allowed solutions which fall on the dispersion curve, we can write the 
field profiles using Eq. 2.8 to solve for Ai and Bi.  We get: 
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TE, symmetric: 














yy

yy

yy

EzyE

)](exp[)cos(

)cos(

)](exp[)cos(

ˆ)( 0





           (2.10a) 

TE, antisymmetric: 
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TM, antisymmetric: 
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2.  Numerical solutions 

 Finally, to get all the solutions we must find the wave vectors, which means solving the 
transcendental equations (Eq. 2.9).  The bulk dispersion curves (Eq. 2.2) can be used remove all 
dependence on α.  Defining two new unitless variables to facilitate numerical solution, we get: 
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with  /)(,/,/,/ 2222222 bnnAbnAbcA lhh   . 
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It is important to remember that tangent and cotangent are periodic, so there are many solutions.  
Now we take advantage of the trig identities )cot()2/tan(    and 

)tan()tan(  m  with m an integer.  This conveniently lets us compress the four equations 

into two: 
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mb
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        (2.12a) 
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           (2.12b) 

with m a non-negative integer.  For the TE case, the m even are the symmetric solutions and m 
odd are the antisymmetric solutions, while the opposite holds for the TM case.  Each m 
corresponds to a different waveguide mode, and for TE modes m corresponds to the number of 
nodes.  Note that the lowest mode (m = 0) exists for all frequencies, but the higher modes have 
cutoff frequencies which depend on the slab thickness and indices.  See [Saleh 2007] for details. 
The transcendental equations (2.12a and b) can be solved numerically, for instance by bisection.  
To easily find the numerical solutions, good guesses for the upper and lower bounds must be 
made.  These can be accurately chosen by understanding the structure of the solutions for the 
right hand side (RHS) and left hand side (LHS) of Eq. 2.12a and b.  Figure 2.2 below shows the 
structure of these functions for the TE case. 
 

 

Figure 2.2 | Trancendental equation plots.  The curves for TE modes in a high-index 
waveguide in air (nh = 5.1, nl = 1, μm 15 ).  The solid and dashed blue lines are the 

RHS plots for symmetric and antisymmetric modes, respectively.  The orange and red 
lines are the LHS plots for f = 1.5 and 8.5 THz.  At 1.5 THz, there are two allowed modes 
(the RHS and LHS are equal when the plots cross), while there are 9 allowed modes at 
8.5 THz. 
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The solution for the first mode will always lie between 0 and π/2, the second (if it is allowed) 
between π/2 and π, and so on.  The final allowed mode has an upper bound where the LHS of Eq. 

2.12 is equal to zero, or 22
max lh nnAb  . 

 Figure 2.3 shows the dispersions curves, or the allowed values for the wave vectors, for 
the first three TE (solid) and TM (dashed) modes.  The cutoff frequencies below which the 
second and third mode do not exist are clearly visible.  α extends all the way to zero, indicating 
that the evanescent field extends to infinity at the cutoff frequency for each mode.  κ has clear 
cutoff wave vectors corresponding to integer numbers of half-periods within the slab.  The 
propagation constant β is bounded by the dispersion curves for the bulk materials.  At low 
frequencies the waves behave primarily like a wave in bulk cladding material, and at high 
frequencies, the waves behave primarily like a wave in bulk core material. 
 

 

Figure 2.3 | Example dispersion curves for the first three TE and TM modes.  This 
example is for a high-index waveguide in air designed for THz frequencies.  The slab is 
30 μm thick, nh = 5.1, and nl = 1. The first frame shows f vs. α, the second f vs. κ, and the 
third f vs. β.  The lowest mode is in orange, the second mode is in light blue, and the third 
mode is in purple.  TM modes are shown as dashed lines and TE modes are shown as 
solid lines.  In the third frame, the black and gray line show the bulk dispersion curve for 
the core and cladding respectively. 
 

 Another valuable quantity which builds intuition for wave behavior is the effective index.  
The effective phase index, the ratio between the speed of light and the phase velocity and defined 

as  /ph cn  , can be used to determine the velocity at which the phase fronts propagate in the 

waveguide.  The group index, the ratio between the speed of light and the group velocity and 

defined as 



d

d
cn gr , can be used to determine the velocity at which wave packets move in the 

waveguide.  These two values are plotted in Fig. 2.4.  The phase index transitions from the 
cladding index to the core index, while the group index greatly overshoots the bulk value, leading 
to very slowly propagating wavepackets, before it asymptotes to the core group index at high 
frequencies. 
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Figure 2.4 | Phase and group index for the first three TE and TM modes.  This 
example is for a high-index waveguide in air designed for THz frequencies.  The slab is 
30 μm thick, nh = 5.1, and nl = 1. The first frame shows nph vs. f while the second shows 
ngr vs. f.  The lowest mode is in orange, the second mode is in light blue, and the third 
mode is in purple.  TM modes are shown as dashed lines and TE modes are shown as 
solid lines.  The black and gray lines show the bulk index of the core and cladding 
respectively. 

 

 With the dispersion curves in hand, it is now possible to plot some example field profiles 
using Eq. 2.10a-d.  Figure 2.5 shows TE (solid) and TM (dashed) field profiles for the first three 
modes at different frequencies.  The boundary conditions at the interface (Eq. 2.7) say that Ez 
must be continuous and its first derivative must be continuous, leading to smooth solutions with 
profiles identical to the quantum mechanical problem of a particle in a box with finite potential 
wall height.  The boundary conditions for the TM modes are more complicated (Eq. 2.7), 
resulting in more complicated field profiles.  There are two polarization components.  Ex must be 
continuous at the boundary, although its derivative need not be, and neither Ey nor its derivative 
need be continuous.  For both solutions, there are exponentially decaying evanescent waves in the 
cladding and sinusoidal solutions in the core.  For each mode and both TE and TM waves, the 
decay length of the evanescent field is longer near the cutoff frequency so that more energy is in 
the cladding.  The decay length becomes shorter as the frequency increases so that at high 
frequencies most energy is in the core.  For a given frequency, the evanescent decay length is 
always longer for TM waves.  Finally, we can predict the number of nodes by the mode number, 
m.  For Ey and Ez the number of nodes is equal to m, while for Ex, the number of nodes is m + 1. 
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Figure 2.5 | Example E-field profiles for different modes and frequencies.  This 
example is for a high-index waveguide in air designed for THz frequencies.  The slab is 
30 μm thick, nh = 5.1, and nl = 1.  The solid, red line is for TE modes where the field is z-
polarized.  Dashed blue and dashed green correspond to the x and y-polarized 
components of the TM wave.  The top three frames are for the third mode, the middle 
three for the second mode, and the bottom three for the lowest mode.  The left three 
frames are at 0.5 THz, the middle three at 1.5 THz, and the right three at 2.5 THz.  The 
three frames to the upper left have no fields shown because the higher modes cannot 
propagate cannot propagate at frequencies below their cutoff. 
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B.  ANISOTROPIC SLAB WAVEGUIDE, EXPERIMENT & THEORY 

Content from: C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley. “Experimental and 
theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a 
subwavelength, anisotropic slab waveguide,” Opt. Express 18, 26351-26354 (2010). 

 

1. Abstract 

 Femtosecond optical pulses were used to generate THz-frequency phonon polariton 
waves in a 50 micrometer lithium niobate slab, which acts as a subwavelength, anisotropic planar 
waveguide. The spatial and temporal electric field profiles of the THz waves were recorded for 
different propagation directions using a polarization gating imaging system, and experimental 
dispersion curves were determined via a two-dimensional Fourier transform. Dispersion relations 
for an anisotropic slab waveguide were derived via analytical analysis and found to be in 
excellent agreement with all observed experimental modes. From the dispersion relations, we 
analyze the propagation-direction-dependent behavior, effective refractive index values, and 
generation efficiencies for THz-frequency modes in the subwavelength, anisotropic slab 
waveguide. 

 

2. Introduction 

 Terahertz-frequency phonon polariton generation, control and detection have received 
extensive attention in recent years due to their outstanding capabilities in terahertz (THz) 
spectroscopy, imaging and advanced signal processing [Lee 2009, Koehl 1999, Stoyanov 2002, 
Feurer 2003, Feurer 2007]. Phonon polariton waves result from the coupling of lattice vibrational 
waves and electromagnetic waves, and can be generated in ferroelectric crystals such as LiNbO3 
(LN) via impulsive stimulated Raman scattering (ISRS) using femtosecond optical pulses 
[Dougherty 1992,Yan 1985]. The electromagnetic component of the phonon polariton wave can 
be coupled into free space and is a source for intense THz pulses [Auston 1988, Lee 2000, 
Hebling 2004, Yeh 2007, Lin 2009]. THz waves generated in the sample do not propagate 
collinearly with the pump beam due to the large index-mismatch between optical and THz 
frequencies. Instead they generate a Cherenkov radiation pattern and propagate primarily in the 
lateral direction [Auston 1984, Wahlstrand 2003]. This lateral propagation facilitates coherent 
control of the THz wave, which can easily be made to interact with subsequent optical pulses, 
other THz waves, or patterned structures all in the same small crystal of LN. As a result, a LN 
slab can serve as a platform for THz processing because generation, propagation, detection, and 
control can be fully integrated in one sample [Feurer 2007, Stoyanov 2003]. Furthermore, when 
the sample thickness becomes comparable to or less than the THz wavelength, the strong 
evanescent field of the THz wave can interact with material deposited on the crystal surface. This 
opens the door for spectroscopic analysis and interfacing of the LN slab with other optical or 
photoelectric devices. 
 Because the THz wave propagates almost perpendicular to the optical pump beam, it is 
possible to obtain time-resolved images of the electric field in the LN slab. As the THz wave 
propagates through the crystal, its electric field changes the refractive index through the electro-
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optic effect. The time-delayed probe pulses, which can be expanded to illuminate the whole 
crystal, experience a spatially dependent phase shift proportional to the refractive index change. 
Four methods have been introduced to convert this phase pattern to an amplitude image: Talbot 
imaging [Koehl 1999], Sagnac interferometry [Peier 2008, Werley 2010], polarization gating 
[Peier 2008], and phase contrast imaging [Wu 2009]. In a recent comparison [Werley 2010], an 
improved geometry for polarization gating was found to offer the best sensitivity and most 
reliable field quantification, while phase contrast imaging was best in situations requiring high 
spatial resolution. In this paper, we used the polarization gating system similar to that shown in 
[Werley 2010] to record a sequence of images. The full spatio-temporal evolution was extracted 
from the image sequence and double Fourier transformed to obtain the wave vector vs. frequency 
dispersion curves [e.g. Wu 2009].  The data collection and analysis were performed as a function 
of wave propagation direction to study the complex mode structure present in an anisotropic slab 
waveguide, which was found to be in excellent agreement with theory. From the dispersion 
relations we extract the mode and propagation-angle dependent effective refractive index (ERI) 
and discuss pumping efficiencies for THz phonon-polariton waves in a LN waveguide. 
 
3.  Experimental 

 The experiments were performed with a Ti:sapphire regenerative amplifier whose pulse 
duration was 120 fs, central wavelength was 800 nm, and repetition rate was 1 KHz. The laser 
pulses were divided into a pump beam (370 μJ per pulse) and probe beam (35 μJ per pulse). The 
vertically polarized pump beam was routed through a mechanical delay stage and then focused to 
a line on the sample by a 200 mm focal length cylindrical lens. The probe was frequency-doubled 
to 400 nm in a BBO crystal and expanded to be larger than the sample. Figure 2.6(a) shows a 
sketch of the experimental setup and the coordinate system. A quarter-wave plate (QW1) and a 
retroreflective mirror were used in a 4-f system. The mirror and lenses imaged the sample 
precisely back onto itself without magnification or inversion. The axis of QW1, which was the 
same as the first Glan-Taylor polarizer (GTP1), was at +45° so it exchanged the ordinary and the 
extraordinary polarization components of the probe. In this way the spatially varying phase shift 
between the vertical and horizontal polarization components accumulated from the probe’s first 
pass through the sample was compensated after the second pass. The phase shift after the first 
pass resulted from the intrinsic birefringence of the LN slab, and self-compensation was 
necessary to correct for spatial inhomogeneities in the phase shift due to thickness variation, 
strain, or other imperfections in the slab. The phase shift electro-optically induced by the THz 
wave, however, was not compensated because the THz wave was launched only after the probe 
pulse had passed through the sample the first time. The THz-induced phase information was 
converted to amplitude information prior to detection with the camera by QW2 (oriented 
vertically) and GTP2 (oriented at -45°).  In this geometry a positive (negative) field results in a 
positive (negative) amplitude change [Werley 2010]. 
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Figure 2.6 | The experimental geometry.   (a) Overview diagram of the experimental 
setup. GTP1 and GTP2 are Glan-Taylor prisms, whose polarizations are at +45o and -45o 
to z-axis respectively. BS: 400 nm beam splitter; CL: cylindrical lens; DM: dichroic 
mirror; RM: retroreflective mirror. QW1 and QW2 are zero order 400 nm quarter-wave 
plates with optic axes at +45o and parallel to z-axis respectively. The 800 nm pump (red) 
and 400 nm probe (blue) are nearly collinear when they arrive at the sample, a 50 μm 
thick LiNbO3 slab. (b) The pump geometry and coordinate system. The 800 nm pump 
beam (red) propagates through the crystal, orthogonal to the crystal surface, while the 
THz (green) is guided down the slab. (c) The cylindrical lens can be rotated by θ relative 
to the z-axis (the c crystallographic axis of the LN sample) in order to launch the THz 
wave in a 90°-θ direction. 

 

 The pump geometry is shown in Fig. 2.6(b). Red lines represent the 800 nm pump beam 
and green the broadband THz waves generated when the pump is focused into the 50 μm thick 
LiNbO3 crystal slab. Because the center wavelength of the THz phonon polariton wave is about 
100 μm, the slab acts as a sub-wavelength waveguide. As Fig. 2.6(c) shows, the THz wave 
propagation direction was changed by rotating the cylindrical lens. Because of the strong 
anisotropy of LN at THz frequencies (ne ~ 5.1, no ~ 6.5 [Feurer 2007]), the nature and behavior of 
the waveguide modes change drastically as the propagation direction rotates relative to the optic 
axis.  
 
4. Results 

 By changing the delay between the pump and probe pulses, a series of images can be 
obtained. The image sequence can be compiled to form a movie showing THz propagation 
[Koehl 1999, Stoyanov 2002, Feurer 2003, Feurer 2007, Wu 2009, Werley 2010]. Frames from 
such a movie (video 9 in [Werley 2012]) are shown in Fig. 2.7.  The optical pump pulse used to 
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launch the THz wave is focused to a line, so the generated THz wave is uniform along that line 
(the vertical dimension in Fig. 2.7). Figure 2.7(a) shows the moment of generation, when the 
pump is still in the crystal. Shortly later [Fig. 2.7(b)], two equal-amplitude, counter-propagating 
waves are observed.  As they propagate further, the waveguide modes begin to separate, and 
frequencies within each waveguide mode also separate.  The first three waveguide modes are 
clearly visible in Fig. 2.7(c) & (d).  In (d), the chirp of the lowest waveguide mode (which has 
propagated farthest from the generation region) is clearly visible.  Figure 2.7(e) shows the waves 
after they have reflected off the crystal edges, and (f) shows the standing wave generated by the 
counter-propagating waves as they cross and interfere. 
 

 

Figure 2.7 | Images of a broadband, guided THz wave. Panels (a)-(f) are frames from 
video 9 in [Werley 2012] depicting broadband THz waves propagating in an 
unstructured, 50 µm thick LiNbO3 crystal. Counter-propagating waves are launched by a 
cylindrically focused “line” of pump pulse light in (a). The first three waveguide modes 
are clearly visible in (c) and (d). After frame (d) the wave reflects off the crystal edges so 
the waves are propagating toward one another in (e), and they have begun to overlap and 
interfere in (f). 

 
Videos of the propagating THz waves, like the one represented by the time-incremented 

sequence of images in Fig. 2.7, can be used to determine the waveguide dispersion curve.  To do 
this, we first calculate a space-time plot showing wave propagation.  Looking at the images in 
Fig. 2.7, it is clear that the signal is uniform along the vertical dimension.  Averaging over this 
direction collapses each 2D matrix of values (the image) into a 1D vector. The 1D vectors for all 
time delays are placed in rows of the space-time matrix, one above the other in time order.  The 
result, shown in Fig. 2.8(a), depicts the full temporal and spatial evolution of the wave. In Fig. 
2.8(a) we can clearly see all the effects mentioned in the discussion of Fig. 2.7: dispersion, 
reflection, and different waveguide modes.  A 2-dimensional Fourier transformation of Fig. 2.8(a) 
yields the THz dispersion curves [Fig. 2.8(b)]. Along the vertical axis, time is transformed to 
frequency, and along the horizontal axis, space is transformed to the wave vector, kx, which is 
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often called the waveguide propagation constant, β. In Fig. 2.8, θ = 0, so the crystal’s c-axis is 
parallel to the 800 nm pump polarization.  In this geometry, which has been most used in 
previous work [Koehl 1999, Stoyanov 2002, Feurer 2003, Feurer 2007, Stoyanov 2003, Peier 
2008, Wu 2009, Werley 2010], only z-polarized THz is generated, and true transverse electric 
(TE) modes are launched in the slab. Overlaid on the experimental data are the dispersion curves 
for air (white line), bulk LN (magenta line), and the calculated TE mode dispersion curves (see e. 
g. [Saleh 2007]) up to a frequency of 2 THz for an isotropic slab waveguide with n = ne (dotted 
blue lines). The curves show four TE waveguide modes, which propagate at different group 
velocities, dkdvg / , and phase velocities, kvp / . Cutoff frequencies can be seen for the all 

but the first mode as expected. Although the isotropic waveguide analysis is predictive in this 
simple geometry, a more complete analysis is required when θ ≠ 0, as will be shown below. 

 

 

Figure 2.8 | 2-dimensional THz wave plots. (a) Space-time plot of a propagating THz 
wave. We can see waveguide dispersion (the frequencies separate as time progresses), 
reflection from the crystal edge, and the first two waveguide modes (the second mode has 
a higher frequency and a steeper slope because of its lower group velocity) in this picture. 
The horizontal axis is the x-axis of the coordinate system in Fig. 2.6 and the vertical axis 
is the delay time between the probe and pump. (b) Dispersion curves of the THz wave in 
the LN slab waveguide computed by 2D Fourier transformation of (a). The horizontal 
axis is the wave vector, kx (also called the propagation constant, β), and the vertical axis 
is frequency of THz wave in the sample. Theoretical dispersion curves in air (white), bulk 
LN (magenta), and a 50 μm slab waveguide (dotted blue) are overlaid on the 
experimental data where the first three modes are visible. 

 

 In an anisotropic waveguide, constraints relating to propagation in bulk anisotropic 
material and constraints relating to propagation in a waveguide both come into play. In bulk 
anisotropic material waves are divided into two normal modes, ordinary waves and extraordinary 
waves, which propagate through the material at different velocities [Born 1999]. In an isotropic 
waveguide there are also two uncoupled eigenmodes, the transverse electric (TE) and transverse 
magnetic (TM) modes, which propagate through the waveguide at different velocities [Saleh 
1991]. When θ = 0 or 90°, these modes map directly onto one another. For θ = 0° the TE mode is 
an extraordinary wave and the TM mode is an ordinary wave while for θ = 90° the opposite 
pairing holds. When θ ≠ 0, however, the high-symmetry configuration is broken and all the 
modes couple together. The new eigenmodes of the system are neither purely TE nor TM and 
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also not purely ordinary or extraordinary. The coupling effects the mode profiles, dispersion 
curves, and effective refractive indices in a fundamental and significant way, as will be 
demonstrated experimentally (presented immediately below) and theoretically (the full analysis 
can be found in Sec. 2.B.5 below) in the remainder of this paper. 
 With the experimental system mentioned above, we measured the dispersion curves for 
different propagation directions by rotating the cylindrical lens and CCD camera together, which 
kept the THz wavefront aligned vertically in the images. In this manner the THz wave 
propagation direction was varied from 0 to 90 degrees relative to the c-axis as shown in Fig. 
2.6(c). The polarization of the 800 nm pump light was not rotated and thus was parallel to the c-
axis in all measurements. Because of the strong r33 electro-optic coefficient in LN, this ensured 
efficient pumping of THz waves with a large component polarized along the optic axis [Auston 
1988, Barker 1967, Stoyanov 2004]. Using the same data collection and analysis procedure as 
was used to generate Fig. 2.8(b), the dispersion curves were measured for different angles θ, 
some examples of which are shown in Fig. 2.9. Overlaid on the experimental data are the 
theoretical solutions for a bound mode propagating in an anisotropic, dielectric slab waveguide 
with a thickness of 50 μm, an extraordinary index of 5.11, and an ordinary index of 6.8. The full 
derivation is presented in Sec. 2.B.5. For all modes and all angles, the data agree very well with 
theoretical predictions. 
 In Fig. 2.9(a) where θ = 20°, one set of modes is very TE-like, and one is strongly TM-
like. Because the TE-like modes have their primary polarization component along the c-axis, they 
were pumped much more strongly than the TM-like modes, which were too weak to be observed 
clearly. Blue dotted lines are calculated TE-like modes and green dashed lines are TM-like 
modes. An interesting effect resulting from propagation in the anisotropic waveguide when θ ≠ 0 
or 90° is visible in the region containing the white lines, a magnified view of which is shown in 
the lower right corner.  Although the TM-like modes are not visible, we still see an avoided 
crossing when two modes with the same symmetry (symmetric or antisymmetric) cross.  The 
avoided crossing, visible in experiment and predicted by theory, results from coupling between 
TE- and TM-like modes in the anisotropic waveguide. Here the two lowest symmetric modes, the 
lowest TE-like mode and the second TM-like mode, avoid each other. 
 Figure 2.9(b) shows dispersion curves for the case of θ = 50°. The three TE-like modes 
predominate, although their strength is reduced, and TM modes still cannot be observed. No 
avoided crossings occur between modes of the same symmetry within the bandwidth of the 
experiment. As θ increases, the velocity of the extraordinary wave approaches that of the ordinary 
wave [Marcuse 1979], which means that the slopes of TE-like and TM-like modes tend to be 
more similar at higher frequencies. Figure 2.9(c) shows the results for θ = 70°, where both TM-
like and TE-like modes can be seen clearly. The strength of the TE-like modes continues to 
decrease with increased θ and TM-like modes are finally pumped strongly enough to detect. 
Although some of the modes are weak, the first seven modes can be observed in the experiment, 
and all the dispersion curves agree with theoretical predictions. Continuing the trend, at high 
frequencies the slopes of the TM-like and TE-like modes become even more similar.  Finally, 
Fig. 2.9(d) shows results from for θ = 90°, where only TM modes can be observed.   
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Figure 2.9 | Experimental and theoretical dispersion curves for various propagation 
directions in a 50 µm thick LN slab waveguide. Angles give the optical pump 
cylindrical focus orientation relative to the LN optic axis as shown in Fig. 2.6(c).  Blue 
dotted lines are calculated TE-like mode dispersion curves and green dashed lines are 
TM-like modes. (a) Dispersion curves for θ = 20°. Experimentally we see three TE-like 
modes and no TM-like modes. The white box in the lower right shows a blow-up of the 
region around an avoided crossing between the two lowest symmetrical modes. (b) 
Dispersion curves for θ = 50°. In this case, TE-like modes still predominate and TM-like 
modes are too weak to be observed. (c) Dispersion curves for θ = 70°. We can clearly see 
both the first two TE-like modes and the first two TM-like modes, in addition to hints of 
several others. (d) Dispersion curves for θ = 90°, in which only the TM modes are 
excited. All the experimental data agree well with the calculated curves. 

 

 Using the derivation in Sec. 2.B.5, we can calculate the E-field profile of THz waves as 
shown in Fig. 2.10. Figures 2.10(a) and (b) show field profiles for TE and TM modes respectively 
at θ = 0°. The coordinate system in Fig. 2.10 is the same as in Sec. 3.B.5 (see Fig. 2.14), where 
the axes are defined by the propagation direction of the wave and not by the lab frame as in Fig. 
2.6. Blue, green and red lines represent electric field along x-axis, y-axis and z-axis respectively. 
The electric field along the y-axis, whose polarization is perpendicular to the surface of the slab, 
changes drastically at the slab surface (±25 μm). As mentioned above, pure TE and TM modes 
only exist at 0 and 90 degrees. At any other angle the eigenmodes are superpositions of TE and 
TM modes and contain all three polarization components, as shown in Fig. 2.10(c) and (d) where 
θ = 50°. 
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Figure 2.10 | Electric field profiles.  Electric field profiles for the lowest symmetric and 
antisymmetric modes at 0.5 THz. Ex, Ey and Ez are represented by blue, green and red 
lines respectively. The discontinuities in Ey located at ±25 μm occur because of the slab 
surfaces. (a)-(b) TE and TM profiles when θ is 0°. (c) and (d) The electric field profile 
when θ is 50°. 

 

 One can extract the group and phase effective refractive index (ERI) from dispersion 
curves like those shown in Fig. 2.9. The phase ERI can be retrieved directly from the dispersion 
curve, )2/(/ fckvcn pp  , and the group ERI can be retrieved from the slope of the dispersion 

curve, )2/(/ fkcvcn gg   . Here vp and vg are the phase and group velocities, and the wave 

vector, k, and frequency, f, correspond to the axes in Fig. 2.9. From the derivation in Sec. 2.B.5, 
we can calculate both phase and group ERI for all propagation directions of TE-like and TM-like 
modes in the LN slab waveguide. Based on the agreement between experimental data and 
theoretical predictions shown in Fig. 2.9, Fig. 2.11 gives the theoretically calculated phase and 
group ERI for different angles, modes and frequencies. The ERI values are important for phase-
matching in THz generation and for many nonlinear as well as linear optical processes.  
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Figure 2.11 | The group and phase index of refraction.  (a) The frequency- and mode- 
dependent phase ERI for TE-like (dotted blue) and TM-like (dashed green) modes when 
θ = 0°. (b) The phase ERI when θ = 70°. (c) and (d) are the same as (a) and (b), but for 
the group ERI. 

 
 In Fig. 2.11 dotted blue lines are the calculated ERI for TE-like modes and dashed green 
lines are the ERI for TM-like modes. From Fig. 2.11(a) & (b), we can see that the phase ERI for 
both TE-like and TM-like modes transitions from 1 (the index of air) to the bulk effective index.  
For the TM-like waves the bulk index is always the ordinary index of refraction, no ≈ 6.8, while 
for the TE-like waves the bulk index is that for the extraordinary wave in the anisotropic material, 
and changes from ~5.1 at 0° to ~6.8 at 90°.  At all angles, the low-frequency TM-like modes have 
most of their energy in the evanescent field in the air and have ERI values near unity.  The ERI 
then transitions rapidly to bulk-like values at higher frequencies. Much like the phase ERI, the 
group ERI transitions from 1 to the bulk effective index [see Fig. 2.11 (c) & (d)].  In contrast to 
the phase ERI, however, the group ERI rises well above the bulk values before approaching them 
asymptotically at high frequencies. In contrast to the phase index, where higher modes always 
have lower ERIs, the group ERI is usually higher for higher modes. Another difference is that the 
peak group index changes drastically with θ for both TE-like and TM-like modes, while the peak 
phase ERI for the TM-like modes is just the bulk value and insensitive to angle.  
 A useful way to display the ERI is with an index ellipse, which highlights the angle-
dependant behavior. Figure 2.12 follows the phase ERI for the first three TE-like modes at wave 
vector magnitude β = 50 rad/mm as a function of angle, tracing out the phase ERI ellipse. We 
measured data in the first quadrant, and because of the symmetry these results can also be used 
for 90o to 360o. Values over 70o were not recorded because the TE-like modes were too weak to 
be observed. Fig. 2.12 shows the measured values for the first three TE-like modes as open 
symbols and the calculated values predicted by the derivation in Sec. 2.B.5 as solid lines.  The 
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experimental data can be fit to an ellipse, where the long and short axes are 5.44 and 4.18 for the 
first mode, 3.36 and 2.59 for the second mode and 2.01 and 1.74 for the third mode. The value of 
the long axis represents the ERI for an ordinary wave (the TE mode is purely ordinary at 90°) and 
the short axis represents the ERI for an extraordinary wave (the TE mode is purely extraordinary 
at 0°). 

 

 

Figure 2.12 | The index ellipsoid. Effective refractive index (phase ERI) ellipse for three 
TE modes at a wave vector β = 50 rad/mm in a 50 μm LN slab waveguide. The open 
symbols are experimental data and the solid lines are calculated results. The scale along 
the x-axis is the same as that along y. 

 

 Because the 800 nm light was always polarized along the c-axis, we only pumped 
through the r33 electro-optic coefficient, which generated THz polarized along the optic axis 
[Feurer 2007]. The THz generated by the pump can be represented by a linear combination of 
waveguide modes, and the magnitude of the contribution from a given mode is related to the 
projection of its polarization along the c-axis. Thus, for a given mode and frequency, one can 
make a rough estimate of the relative pumping efficiency )(  by looking at the fraction of the 

mode energy corresponding to a field inside the crystal oriented along the optic axis: 
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Through the integration limits, the expression also takes into account the degree to which the 
mode is localized within the slab, which improves the efficiency since generation only occurs in 
the crystal, or is extended into the (air) cladding where no generation occurs.  
 Figure 2.13 shows η as a function of θ. When θ = 0°, the TE mode is polarized purely 
along the optic axis and is pumped most efficiently. As θ increases, the component of the TE 
wave along the optic axis slowly decreases.  In contrast, the component of the TM wave along the 
optic axis increases, especially after 60°, and at 90°only the TM mode is pumped. At 70°, both 
modes are pumped with similar efficiencies. The qualitative trends in η explain the mode 
amplitudes observed in Fig. 2.9. For θ less than about 60°, TM-like modes are too weak to be 
observed, while for θ more than about 85°, the TE-like modes are not visible. As predicted, both 

  

  

300 

120 

330 

150 

0 

180 

30 

210 

60 

240 

90 270 

TE-0 
TE-1 
TE-2 

0 

2 

4 

6 

2 

4 

6 

p
h

as
e-

ER
I 



 

43 

 

kinds of modes are visible at 70° as shown in Fig. 2.9(c). Using different pump polarizations and 
reflective elements integrated into the waveguides, it will be possible to generate modes not 
observed in this study.  

 

 

Figure 2.13 | Mode pumping efficiency. The fraction of total mode energy 
corresponding to a field inside the crystal polarized along the optic axis, η, which gives a 
rough prediction for pumping efficiency.  The dotted blue line corresponds to the first 
symmetric, TE-like mode at 1 THz and the dashed green dashed line corresponds to the 
first antisymmetric, TM-like mode at the same frequency. As the angle increases, the TE-
like mode becomes weaker while the TM-like mode grows in. 

 

5. Conclusions 

 We have measured the propagation properties of THz waves in a 50 μm LiNbO3 
anisotropic slab waveguide using a self-compensating polarization gating imaging system. This 
system can detect the THz electric fields both temporally and spatially over a wide wavelength 
range. Using the system, we studied the propagation-direction-dependent behavior of waveguide 
modes and determined the dispersion curves and effective refractive index for THz waves. A 
general solution for waveguide modes in a uniaxial slab waveguide was derived and found to 
agree with the experimental data.  
 Dispersion is integral to many processes in THz science and generally in linear and 
nonlinear optics, including broadening of ultrashort pulses, walk-off between pump and probe 
pulses, phase-matching of parametric processes, and generation of optical solitons. Because 
dispersion in a waveguide is determined by both the intrinsic material dispersion and geometric 
dispersion, it is essential to understand waveguiding effects. The results presented here will 
facilitate the design of functional devices with new capabilities in the LiNbO3 platform for 
integrated THz experiments and processing.  

 

6.  Solution to a uniaxial slab waveguide with isotropic cladding  

 Anisotropic slab waveguides were extensively studied in the 1970’s [Wang 1973, Russo 
1973, Burns 1974, Ramaswamy 1974, Nemoto 1977, Marcuse 1978, Marcuse 1979]. In many 
cases, attention was focused on anisotropic films deposited on a substrate that was itself 
anisotropic because mode converters, polarization mode filters, and other devices of that time had 
such a geometry [Burns 1974]. The case in this paper is somewhat simpler because the geometry 
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is symmetric (see Fig. 2.14). An additional simplification is that the anisotropic core (the slab) is 
embedded within an isotropic cladding (air in our experiment). In the derivation of the waveguide 
dispersion curves and mode profiles presented below, we assume the experimentally relevant 
conditions that the crystal is uniaxial (like LiNbO3) and its optic axis is parallel to the slab 
surface. The slab is assumed to extend infinitely along x and z and both core and cladding have no 
magnetic response. The wave is assumed to propagate along the x-direction and extend infinitely 
along the z-direction. In the experiment the cylindrical lens generating the wave was rotated 
instead of the sample, so the derivation here is performed in the coordinate frame of the lens. 
Finally, to simplify the analysis we assume that the waves are harmonic in space and along the 
propagation direction: )](exp[)(),,,( txiyEtzyxE  


, where 

xk  is the propagation constant. 

 

 

Figure 2.14 | The geometry for the waveguide mode derivation.  (a) An anisotropic slab of 
width 2  centered at y = 0 embedded in an isotropic cladding which extends to infinity.  The 

bound wave propagates along x and extends infinitely along z. ε and μ are the permittivity and 
permeability in the different regions. (b) The coordinate system for the derivation is defined 
by the slab surface normal and the propagation direction, which differs from Fig. 2.6 where 
the coordinates are defined in the lab frame. θ is the angle between the z-axis and the optic 
axis of the crystal. 

 
 The derivation presented below will loosely follow the analysis of Marcuse and 
Kaminow [Marcuse 1979] where the more complicated symmetric geometry of an anisotropic 
slab with anisotropic cladding is studied. For the sake of brevity our analysis will skip some 
intermediate steps, many of which can be found in [Marcuse 1979] and are explained more fully 
in the simple case in Sec. 2.A. The first step in the derivation is to determine the characteristics of 
waves in bulk material, i.e. the dispersion curves and polarizations, in both core and cladding. 
Linear combinations of these bulk waves, constrained by system symmetry, are used to build the 
waveguide modes and lay out the general functional form of the solution.  The boundary 
conditions at the waveguide surface generate a homogeneous system of equations which can be 
used to solve for the coefficients in the linear combination. Solutions exist for this system of 
equations, i.e. the determinant of the corresponding matrix is zero, only for certain pairs of 
frequency and propagation constant. These allowed solutions correspond to the waveguide 
dispersion curves. 
 To simplify notation we define several important variables. The propagation constant, 

xk , was defined above, and the wave vector orthogonal to the slab surface is defined both 
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outside the crystal, out
yki  , and for the ordinary and extraordinary waves inside the crystal, 

inin ,, yeyoeo kk . α is defined as imaginary because bound modes will have evanescent, decaying 

fields in the cladding. There are three relevant bulk dispersion curves which define the 
relationships between wave vector, frequency, and index, one for the cladding and one each for 
the ordinary and extraordinary waves in the uniaxial core. They are: 

cladding:  2222
cnk       (2.14a) 

ordinary:  2222   oo nk      (2.14b) 

extraordinary:  
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ee
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where ck /  is the wave vector in free space and 
eoc nnn  and,,  are the cladding index, ordinary 

index in the slab, and extraordinary index in the slab respectively. These relations are used to 
eliminate 

eo   and,, from the equations which follow, so everything is expressed in terms of β 

and k. 
 For a specific pair of β and k, there are four possible plane waves in each region, two 
signs for 

yk  and two polarizations.  In the anisotropic medium, the polarizations correspond to 

the ordinary (later represented by o


) and extraordinary (later represented by e


) waves. In the 
cladding, any pair of orthogonal polarizations can be chosen, so for convenience we choose the 
TE polarization (represented below by v


 for vertical polarization) and the TM polarization 

(represented later by h


for horizontal polarization).  We can write out the most general form of 
the waveguide mode solution as: 

 
cladding: ]exp[]exp[]exp[]exp[)( 4321 yhAyvAyhAyvAyE   


 (2.15a) 

core: ]exp[]exp[]exp[]exp[)( 4321 yioByieByioByieByE oeoe    
 (2.15b) 

cladding,: ]exp[]exp[]exp[]exp[)( 4321 yhCyvCyhCyvCyE   


 (2.15c) 

 
where Ai, Bi, and Ci are scalar constants and the +/- superscripts correspond to the sign of yk . 

 The polarizations in the expression above can be determined from the appropriate vector 
constraints.  In the cladding: 
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where xh  and yh  are the magnitudes of the components of the normalized polarization vector. In 

contrast to the isotropic cladding, where any orthogonal polarizations could be chosen, in the slab 
the polarizations are uniquely determined as the ordinary and extraordinary wave polarizations in 
bulk material. The ordinary wave will be orthogonal to the plane containing the crystal axis and 

the wave vector: cko
  . The extraordinary wave will be located in the plane of k


 and c


. The 

displacement field will be given by )( ckkD


 , and the electric field is given through the 
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constitutive relation: DRRE


)()(
1
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

  where R is the rotation matrix for rotation around the y-

axis.  This yields: 
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where 
zyxzyx eeeooo  and ,,,,,  are the magnitudes of the components of the normalized polarization 

vectors. 
 With the dispersion curves (Eq. 2.14) and polarizations (Eqs. 2.16 & 2.17) of waves in 
the bulk material in hand, we can simplify the expressions in Eq. 2.15 for )(yE


. For bound 

solutions, we require that the electric field decays to zero as y , so the terms in the cladding 

that are exponentially growing can be discarded. We now apply the symmetry condition that there 
is a reflection plane down the center of the sample, which eliminates half of the coefficients. In 
this situation, the solution must be made of symmetric and antisymmetric modes. Absorbing 
some constant factors into the coefficients, we have: 
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Antisymmetric: 
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Applying the symmetry conditions eliminated half the unknowns, so now we need only apply 
boundary conditions at one interface to solve for the coefficients. The boundary condition is that 
the tangential E and H fields must be continuous across the boundary [Born 1999].  Using 
Faraday’s law and the fact that ,0/  z  ,/ ix   and it  /  for our functional form, 

)](exp[)(),,,( txiyEtzyxE  


, we can express all the boundary conditions in terms of the 

electric field components: 
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 The constant coefficients in functional form of the solutions (Eqs. 2.18 & 2.19) must be 
chosen so the above boundary conditions are satisfied at the interface ( y ). They must be 

solved independently for the symmetric and antisymmetric modes. The four expressions above 
yield a set of homogeneous equations which can be recast in matrix notation.   
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            (2.22) 

 The polarizations (Eqs. 2.16 & 2.17) and bulk dispersion curves (Eq. 2.14) can be used to 
remove all dependence on 

eo   and,, , so for a given angle θ, the only variables are β and k. The 

determinant will be zero, i.e. the set of equations has a solution, only for β and k pairs that are on 
the waveguide dispersion curve, and finding all allowed pairs traces out these curves. Using the 
allowed pairs, the bulk dispersion curves, and one additional “normalization condition” such as 

121  BB , all wave vectors and coefficients can be completely determined. The theoretical 

dispersion curves for several angles are plotted along with the experimental data in Fig. 2.9, 
selected electric field profiles are shown in Fig. 2.10, and the effective indices of refraction for 
two angles are shown in Fig. 2.11. 
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Chapter III 
The electro-optic effect in lithium niobate, 

electro-optic detection,  
and ion displacements in lithium niobate 

 

A.  ELECTRO-OPTIC EFFECT IN LITHIUM NIOBATE 

 The electro-optic effect is the mechanism through which a DC or low-frequency field 
changes the optical index of refraction in a crystal.  The applied field deforms the electron cloud 
in the crystal, which modifies its response to optical light.  A treatment can be found in nonlinear 
optics or photonics textbooks such as [Boyd 2008] or [Yariv 2007].  The electro-optic effect is of 
particular interest to us because a THz field is low-frequency relative to the optical probe we use 
to detect THz waves, so the formalism is appropriate.  As a result, the electro-optic effect 
determines the magnitudes of the signals we see, and can be used to quantify THz field 
amplitudes based on the recorded pump-probe signals. 

  
1.  The electro-optic tensor 

 In a crystal, the displacement field is related to the electric field via the dielectric 
permittivity tensor: 

                                    opt0opt ED


                                                              (3.1) 

The subscript “opt” indicates the that these fields are optical fields in our experiments, not to be 
confused with the DC or THz fields discussed later.  Equation 3.1 is one of two constitutive 

relations, the other being ,opt0opt HB


  which along with Maxwell’s relations govern the 

propagation of light in materials.  In lossless materials,   is a real, symmetric matrix, and in the 
appropriate coordinate system, it is diagonal.  For lithium niobate or any uniaxial crystal: 
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with no the ordinary index of refraction and neo the extraordinary index. 
 The effect of an applied field is most conveniently expressed in terms of the 
impermeability tensor, so I will introduce this tensor here.  The impermittivity tensor is found by 
inverting Eq. 3.1: 

.
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
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                                                           (3.3) 
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  is the matrix inverse of   and is real and symmetric for a lossless material.  In the coordinate 

system where the permittivity tensor is diagonal, the impermittivity tensor is simply: 
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 Now that we have the basic structure of the matrices, we consider what happens when a 

field is applied to the crystal.    will be modified, and to lowest order in the applied field (i.e. the 

linear electro-optic effect) it will be: 

.00 


r                                               (3.5) 

Here 0  is the impermittivity tensor in the absence of an applied field.  


 is the THz electric 

field, not to be confused with the optical electric field, Eopt, in Eqs. 3.1 and 3.3.  r is the electro-
optic tensor, a rank three tensor, which can be represented by a 3x3x3 matrix.  This means that 

every element in   can in principle be modified by each polarization of the electric field.  

Written out completely, we have: 

111 121 131 112 122 132 113 123 133

211 221 231 212 222 232 213 223 233

311 321 331 312 322 332 313 323 333
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.              (3.6) 

The third index in rijk corresponds to the direction along which the DC or THz field is applied  
(1 → x, 2 → y, 3 → z), and the first two indices correspond to the elements in the impermittivity 

tensor.  Because   is symmetric, rijk must be symmetric across its first two indices: rijk = rjik.  

Said another way, each of the three matrices in Eq. 3.6 is symmetric, and there are only 6 
potentially independent values in the electro-optic tensor for each 9 elements.  Standard notation 
in the field takes advantage of this symmetry to reassign the first two indices to a single index in a 
fairly arbitrary way.  The mapping is: 

11 1

22 2

33 3

23 32 4

13 31 5

12 21 6

k k

k k

k k

k k k

k k k

k k k

r r

r r

r r

r r r

r r r

r r r






 

 

 

.                                                 (3.7) 

Plugging the reassigned values from Eq. 3.7 into Eq. 3.6, we get: 

zyx

rrr

rrr

rrr

rrr

rrr

rrr

rrr

rrr

rrr





















































334353

432363

536313

324252

422262

526212

314151

412161

516111

 .               (3.8) 

There are potentially 18 independent electro-optic values, and to save space they are always 
written as a 6x3 matrix: 
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 The number of unique and non-zero components in r is determined by the crystal 
symmetry.  In a triclinic crystal, the lowest-symmetry type, all 18 coefficients are non-zero and 
they are all different, but most crystals have higher symmetry and simpler electro-optic tensors.  
See [Yariv 2007] for the nonzero elements in the electro-optic tensor and the relationships 
between these elements for all crystal symmetry groups.  Lithium niobate is a 3m trigonal crystal, 
and its electro-optic tensor is (there is a sign error in [Boyd 2008]): 
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Note that most of the nonzero elements are equal to others.  Using the definition of the 0  (Eq. 

3.4), the expression for   in the presence of an external field (Eq. 3.5 & 3.8), and the electro-

optic tensor for lithium niobate (Eq. 3.10), we get the full impermittivity tensor in LiNbO3 in the 
presence of an applied DC or THz field: 
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 Multiple experiments have measured the values of the electro-optic tensor components 
for LiNbO3, and there is significant spread in the measured values [Wong 2002].  The preparation 
of the crystal can matter, for example whether it is grown from a congruent melt or stoichiometric 
melt and what dopants are present in the crystal.  For THz experiments, we typically use ~5% 
MgO doped stoichiometric melt LiNbO3.  In addition, the frequency of all three light components 
matter [Wong 2002].  In particular, when the applied field is at frequencies below the mechanical 
resonance of the crystal being tested (unclamped measurement), the entire crystal can expand or 
contract via the piezo-electric response, which changes the index.  At frequencies above the 
mechanical resonance (clamped conditions), only the electronic response matters.  THz 
frequencies are well above the mechanical resonance condition, so clamped values should be 
used.  Table 3.1 contains my best choices for the appropriate refractive indices and electro-optic 
coefficients. 
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  400 nm  532 nm  800 nm    cm/kV 

no  2.43  2.325  2.26  r51 25e‐7 

neo  2.32  2.23  2.175  r22  3.4e‐7 

        r13  9e‐7 

        r33  31e‐7 

Table 3.1 | LiNbO3 indices and electro-optic coefficients.  The ordinary and 
extraordinary refractive indices at three optical wavelengths and the electro-optic 
coefficients for visible light [Wong 2002].  The electro-optic tensor values are for 
undoped LiNbO3 at room temperature grown from a stoichiometric melt; values did not 
appear to change upon doping with MgO.  Refractive index values are for an MgO-doped 
crystal. 

 

2.  The optical indicatrix 

 Equation 3.11 gives the full impermittivity tensor, but what is relevant experimentally 
(particularly for THz detection) is the change in the index of refraction.  Propagation in an 
anisotropic medium is often described by the optical indicatrix, also commonly referred to as the 
index ellipsoid or the ellipsoid of wave normals.  The definitive description can be found in [Born 
1999].  It corresponds to a surface of constant energy density, and it is a 3D ellipsoid described 
by: 

   1222 654
2

3
2

2
2

1  xyxzyzzyx                           (3.12) 

When no field is applied and   and   are diagonal, the ellipsoid has its principal axes along x, 

y, and z.  In LiNbO3, the ellipsoid in the absence of an applied field is an oblate spheroid (shaped 
like an M&M candy) because the extraordinary index is smaller than the two ordinary indices.  
When a field is applied, the lengths of the axes change (due to the on-diagonal terms), and the 
principal axes rotate slightly away from the axes of the coordinate system (because of the off-
diagonal terms).  For light propagating through a material along a vector ,v


 one slices the 

indicatrix with a plane perpendicular to v


 passing through the origin.  The intersection between 
the indicatrix and the plane is an ellipse.  The directions of the major and minor axes lie along the 
new primary axes of the crystal, and their magnitudes indicate the impermittivity, which can be 
used to retrieve the refractive indices.  

 

3.  Electro-optic index changes in LiNbO3 

 The electro-optic effect in lithium niobate is discussed in some detail in [Lenzo 1966].  

The indicatrix is found easily by substituting the matrix elements of   (Eq. 3.11) into Eq. 3.12.  

This gives: 
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In all the measurements described in my thesis, the samples are thin slabs of x-cut LiNbO3, 
diagrammed in Fig. 3.1.  In experiments, the optic axis (along z) is typically aligned vertically in 
the lab frame.  The probe beam propagates perpendicular to the slab surface, along x. 
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Figure 3.1 | Crystal orientation in experiments.  In the experiments in this thesis, the 
LiNbO3 slabs are x-cut, and the probe propagates along x, perpendicular to the slab 
surface.  The optic axis is aligned vertically, along z.  In a typical experiment, the THz 
wave propagates along y and is polarized along z. 

 
 Because the optical light propagates along x, we take a plane perpendicular to x passing 
through the origin, and find the intersection between this plane and the ellipsoid in Eq. 3.13.  In 
this geometry, we simply set x = 0 in Eq. 3.13, which yields: 

.1)/1(2)/1( 2
33

2
51

2
1322

2  zrnyzryrrn zeoyzyo                    (3.14) 

This equation describes an ellipse with its major and minor axes rotated slightly away from y and 
z respectively.  The z-component of the THz field shows up only in diagonal terms, so it changes 
the length of the axes but does not rotate the coordinate system.  In contrast, the y-component 
affects both on- and off-diagonal terms, so it changes the axis length and rotates the coordinate 
system. 
 An introductory textbook on calculus which describes the conic sections [Larson 1990] 

shows how to transform an ellipse described by 122  CzByzAy  (axes NOT parallel to the 

coordinate axes) to an ellipse described by 1'' 22  zCyA  (axes parallel to the coordinate axes).  

The system should be rotated by an angle 
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The new coefficients are: 
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To determine θ, A’, and C’, we must calculate A, B, and C.  Using the values from Table 3.1 and 
assuming a 532 nm optical probe and THz field strength of Ey = 20 kV/cm, which is the largest 
peak field strength we have observed for any THz polarization without enhancement from a metal 
microstructure, θ = 0.2°.  This is really too small to be observed experimentally and is within the 
error of the initial alignment of the slab’s axes, so we can approximate the rotation angle to be 
zero.  sin(θ) = 3e-3, so the induced change in impermittivity resulting from the off-diagonal 
component off diagonal 51[ sin( ) cos( ) 2 sin( ) cos( )]yB r E        is much smaller than the on-

diagonal modifications to the index )( 22diagonalon yEr  and can be neglected.  As a result, we 

have: 
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Finally, we use differentiation by parts to get Δn: 
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It seems common in the literature to neglect the negative sign in Eq. 3.18, and in many cases the 
sign of the electro-optic coefficient is not known so the sign is somewhat irrelevant.  I will keep 
the negative sign here for accuracy.  Using Eqs. 3.17 and 3.18 we get the final result for x-cut 
LiNbO3: 
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 It is useful for develop a feeling for the order of magnitude of the effects that this will 
introduce.  As will be discussed more fully in the next section and the next chapter, the signal 
magnitude in our measurements is related to the induced phase shift.  For phase contrast imaging: 
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with ΔφPC the induced phase shift for a particular probe polarization and   the slab thickness.  
For polarization gating imaging with balancing: 
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with ΔφPG the phase shift between vertically and horizontally polarized components of the optical 
light.  If we assume the slab is 50 μm thick, the probe wavelength is 532 nm, and Ey = 0, we get: 
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with Ez the THz field strength in kV/cm.  
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B.  ELECTRO-OPTIC AND OPTICAL KERR EFFECT DETECTION 

 Two mechanisms through which light or an electric field can change a material’s index of 
refraction are the electro-optic effect and the optical Kerr effect (OKE).  The electro-optic effect 
is where an applied electric field changes the index of refraction of a material.  The index change 
is related to the applied field by the electro-optic tensor (see a nonlinear optics text such as [Boyd 
2008] for details).  The optical Kerr effect is where an optical pulse changes the index of 
refraction, but the index change depends on the light intensity, not the field strength.  In both of 
these effects, the anisotropy of the material changes.  Thus to detect the induced change in index, 
it is natural to place the sample (in which the E-field or pump pulse is present) between crossed 
polarizers.  This section explains how to perform this measurement carefully in order to 
quantitatively extract the induced change in index.  This is particularly relevant to our work 
because the E-field of the THz pulse can be the applied field, and using the electro-optic effect is 
important for recording THz time traces and quantifying THz field strengths.  To track the 
polarization state of light through an optical system the Jones matrix or Jones calculus formalism, 
described in the next section, is very convenient.  

  
1.  Jones Matrices 

 A good description of the Jones calculus formalism can be found in [Yariv 2007] and in 
Wikipedia, but I will summarize here and include some extra matrices that are particularly 
relevant to our studies.  In the Jones calculus formalism, the electric field is represented by a 2x1 
complex vector.  The magnitudes of the first and second components describe the amplitude of 
the field polarized horizontally and vertically, respectively.  The phases of the two components 
describe the phases of the electric fields.  In the most general case the Jones vector is: 
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
))(exp(

))(exp(

yy

xx

tkziE

tkziE




v .                                                       (3.23) 

Often the absolute amplitude and phase are not important, so these are factored out (or discarded) 
and the first component is set equal to 1: 
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The intensity that would be detected, for instance by a photodiode, is calculated by multiplying 

the Jones vector by its conjugate transpose 22*
yx

T EEI  vv .  Some common, important 

polarization states (with the amplitude dropped) are summarized in the table below.   
 

Vertical: 







1

0
  Horizontal: 








0

1
 

+45°: 







1

1
  ‐45°: 








1

1
 

Right circular: 







 i

1
  Left circular: 








i

1
 

Table 3.2 | Jones vectors for common polarization states  
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The polarization states are intuitive: vertical polarization has the horizontal polarization set equal 
to zero.  Circularly polarized light has the same amplitude for vertical and horizontal 
polarizations, but there is a 90° phase shift between them.  
 When light propagates through an optic the polarization state is modified, and each optic 
can be described by a 2x2 complex matrix.  Below is a set of matrices for common optics (the 
amplitudes have been dropped). 
 

Vertical 
polarizer 










10

00
vP  

Horizontal 
polarizer 










00

01
hP  

Half wave plate
(HWP) 











10

01
H  

Quarter wave 
plate (QWP) 










i0

01
Q  

Mirror not at 0° 




















 



ii
s

i
p

eAeR

eR
s

p

0

01

0

0
M

Lens, mirror at 
0°, isotropic 

substrate at 0°










10

01
I  

Birefringent slab 
















 



ii

i

ee

e
y

x

0

01

0

0
B  

Isotropic slab 
with induced 
birefringence









 ie0

01
S  

Table 3.3 | Jones matrices for common optics.  In all cases it is assumed that the 
principal axes of the optic are aligned along the x- and y-axes in the lab frame.  For 
instance, this means the fast axis of the QWP, HWP, and birefringent slab are aligned 
vertically or horizontally.  The mirror is in a vertical plane so that the p- and s-
polarizations are along x and y.  For a good mirror A is close to 1 and α is small.  
Typically for the optical pulse or field induced birefringence,  is small. 

 

The last important concept in Jones calculus is what happens when an optic is rotated so its 
principal axes are not along x and y.  In this case we must first rotate the frame to the principal 
axes of the optic, apply the matrix for that optic, and then rotate back to the lab frame: 

)()()(   ORRO                                                         (3.25) 

with 
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





 






cossin

sincos
)(R .                                                      (3.26) 

Below is a table with polarizers and wave plates at 45°, the most common angle other than 0 and 
90°. 
 

Polarizer, +45°  







 11

11
45P  

Polarizer, 
‐45° 











 11

11
45P  

Half wave 
plate, +45°  










01

10
45H  

Quarter 
wave plate, 

+45°













1

1

i

i
45Q  

Table 3.4 | Jones matrices for common, rotated optics.  Here the optics have been 
rotated 45° relative to the lab frame.  As before, the amplitude in front of the matrix has 
been omitted. 
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2.  Electro-optic detection: the ideal case 

 To develop intuition for how detection of induced birefringence works, we will study the 
simplest case.  A representative experimental setup is shown in Fig. 3.2.  Here, a vertically 
polarized optical pump pulse is sent into glass (fused silica).  The vertical index is changed by the 
optical Kerr effect (OKE), while the horizontal index is unmodified.  The phase shift in matrix S 
from table 3.3 is related to the induced change in index Δn by  /2 n  , with  the thickness 

of the glass slab and λ the optical wavelength in free space.  This geometry is commonly used for 
doing a cross-correlation to determine pulse durations.  Because the response of glass results 
purely from deforming electron clouds, it is effectively instantaneous on the 100 fs timescale. 
 

 

Figure 3.2 | Simple optical Kerr effect geometry.  The simplest geometry for detecting 
an induced change in birefringence.  QWP is quarter wave plate. 

 
 After the initial polarizer the polarization state is set to [1; 1], which means the vertical 
and horizontal polarizations have equal amplitudes with no relative phase shift.  When the pump 
is present, a small phase shift is introduced between the two components by the birefringence 
induced in the glass, and an additional π/2 phase shift is introduced by the quarter wave plate 
(QWP).  The final polarizer collapses the polarization onto a -45° linear polarization, and the 
horizontal and vertical polarizations interfere.  Mathematically, this can be expressed with Jones 
calculus by: 

  









 
 1

1
10

iieE04545 vQSPPv .                                     (3.27) 

Note that the matrices are applied from right to left (the rightmost matrix represents the first 
optic).  We can now calculate the intensity detected at the photodiode: 

)sin1(0
*  II T vv .                                               (3.28) 

In general, we calculate the signal in a pump-probe type measurement by calculating 

000 /)(/ IIIII  , as this is typically proportional to the physical quantity we are trying to 

measure (see for example Eq. 3.29).  We measure I0 with the pump blocked, when 0 , and 

we obtain: 

n
I

I





 
2sin

0

,                                           (3.29) 

where the approximately equal sign comes from a Taylor expansion for small phase shifts.  From 
this expression we can quantitatively determine Δn, the physically relevant quantity.  The 
complete relationship between Δn and the THz electric field in LiNbO3 is given by Eq. 3.19.  

  Pol.
+45 o

  Pol.
- 45 o

glass QWP photo-
diode

pump
probe
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Notice that in this experimental geometry, the signal is directly proportional to the phase shift as 
shown in Eq. 3.29.  This is because we added the quarter wave plate, which effectively 
heterodyned the beam. 
 If the QWP were not used, the result would be: 

  









 
 1

1
10

ieE04545 vSPPv ,                                       (3.30) 

where the only difference from above is the i in front of the exponential.  Now the intensity is: 

2/)cos1( 2
00

*   III T vv .                                       (3.31) 

This is effectively a homodyne measurement.  Notice that the intensity is proportional to 2 , so 

any information relating to the sign of the signal has been lost.  In addition, I is very small for 
small phase shifts.  Another problem is that it can be very difficult to quantify   because 

calculating 0/ II  to normalize for I0 involves dividing by zero. The advantage of the homodyne 

measurement is that it is a dark background measurement, which means that it is potentially 
possible to detect very small signals.  Typically, however, the case with the QWP is preferred. 
 An additional advantage of the quarter wave plate comes from balancing, where the 
signal from two photodiodes can be used to suppress noise.  The advantages will be discussed 
more fully and quantified in Sec. 3.C on DAQ card detection, but the principle can be discussed 
here.  If the final polarizer is replaced by a Wollaston prism at 45°, two polarization states will 
come out, one at +45° and the other at -45°.  The -45° case has already been discussed above.  
Running through the same calculation with the +45° case, we get: ))sin(1(0  II , which has a 

sign flip relative to the above.  Balancing is implemented by subtracting the two signals: 





  2

00 I

I

I

I
,                                                     (3.32) 

so the signal is doubled while laser intensity fluctuations, which are the same sign for both 
photodiodes, are subtracted so noise is suppressed. 

 
3.  Correcting for real optics with a polarizer and wave plate 

 Now I introduce an experimental situation which we have encountered where non-ideal 
optics complicate quantitative measurement of  .  As shown in Fig. 3.3, a pair of dichroic 

mirrors is used to combine the pump and probe in the sample and separate them after it.  The 
probe is transmitted through the first and reflected off the second.  In addition, it develops a static 
phase shift from the LiNbO3 sample which is ideally corrected fully by the compensating slab.  In 
reality the compensation is imperfect due to variation in slab thickness.   
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Figure 3.3 | Typical induced birefringence geometry with real optics.  A pair of 
dichroic mirrors is used to combine the pump and probe in the sample, and later to 
separate them.  The first reflects the pump and transmits the probe, while the second does 
the opposite.  In addition, the sample is lithium niobate, which is strongly birefringent.  
This makes it necessary to use a compensating crystal that has been rotated by 90° 
relative to the sample which roughly compensates for the static birefringence in the 
sample crystal. 

 
 The behavior of this system can be modeled again using Jones calculus.  The Jones vector  
just before the final polarizer is 




















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)](exp[
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)90()90(

212121  iiAiAiA0451122 vPMSBMRBQRv . 

(3.33) 
Here, M1 is for transmission through the first dichroic, and M2 is for reflection off the second 
dichroic.  A1 = Ts/Tp for the first dichroic and A2 = Rs/Rp are the relative transmissivity and 
reflectivity for s- and p-polarized light from the two dichroic mirrors.  α1 and α2 are the relative 
phase shifts from the mirrors.  21   is the difference in phase shift introduced by the sample and 

compensating slab, and should be 0 for perfect compensation.    is the THz-induced (via the 

electro-optic effect) phase shift that we want to measure.  Following the same procedure as in the 
section above, the signal at the photodiode is 

)sin(
1

2
2

0

 





A

A

I

I
,                                                (3.34) 

and it is impossible to quantitatively extract  unless both A and  are known very accurately. 

 It is, however, possible to experimentally correct for the non-ideal behavior of the optics.  
Looking at the expression for the Jones vector just before the last polarizer, it can be seen that the 
relative amplitude and phase of vertical and horizontal polarizations are different from the ideal 
case.  The amplitude can be corrected by rotating the first polarizer (around the axis parallel to 
beam propagation) to control the relative amounts of vertical and horizontal light at the outset.  
With proper alignment, after transmission through the first dichroic and reflection off the second 
dichroic, the vertical and horizontal polarizations will have exactly the same amplitude.  This will 
set A = 1.  To control the phase, we tilt the quarter wave plate.  When the wave plate is aligned so 
its surface is perpendicular to the direction of beam propagation, it induces a phase shift of 2/ .  

  Pol.
+45 o

  Pol.
- 45 o

LiNbO3
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diode
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compensating
LiNbO3
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If it is tilted, the path length through the birefringent material is increased and the induced phase 
shift is  2/ , where the sign of ψ depends on whether the fast axis of the wave plate is aligned 

vertically or horizontally.  The tilt can be chosen such that   , returning the polarization state 

to the ideal. 
 An effective procedure to correctly align the polarizer and wave plate is not trivial to 
develop, so I will outline one here. 

1. Set the second polarizer to +45° so it is parallel to the first polarizer (all the light should 
be transmitted).  It is important that this angle is set accurately.  It will be easiest if a 
Wollaston prism is used. 

2. Replace the QWP with a HWP that has its fast (or slow) axis aligned vertically.  Again, 
this alignment should be done carefully, probably by placing the HWP between crossed 
vertical and horizontal polarizers and rotating the HWP until no light passes through the 
second polarizer.  After placing the HWP between the polarizers parallel at +45°, if 
optics are ideal, no light should be transmitted through the second polarizer.  With non-
ideal optics, some light will make it through. 

3. Tilt the HWP back and forth by rotating the post (which has a collar) in the post holder.  
This will scan    through 0, and there should be visible minima (although not yet 

zero) in the transmission through the second polarizer.  As the HWP is being tilted back 
and forth, very slowly rotate the first polarizer until the minimum in transmission is an 
actual null.  When this happens, A = 1 and the first polarizer is set accurately. 

4. Replace the HWP with a QWP that has been accurately aligned to vertical.  Slowly tilt 
the QWP until the two outputs of the Wollaston are balanced.  If the tilt is too great, 
rotate the QWP by 90° (switching the fast and slow axes) and tilt again until balancing is 
achieved. 

After this procedure, both the amplitude and phase should be corrected. 

 
4.  Correcting for real optics in the self-compensating geometry 

 The procedure described in the previous section assumes spatially homogeneous optics, 
meaning that the relative phase shift introduced between the two polarization components after 
passing through the sample and compensating crystal is uniform across the entire beam.  If the 
probe is focused through the sample and compensating crystal, this may easily be true.  For the 
imaging of THz waves, however, an expanded optical beam passes through the sample.  
Experience shows that the thickness and/or birefringence of the LN slab has significant spatial 
variation.  If two orthogonal LN slabs are placed between crossed polarizers, it is impossible to 
fully extinguish the entire beam even if the slabs are tilted and rotated optimally. 
 To correct for the spatial inhomogeneity, as well as non-ideal behavior of other optics, a 
self-compensating geometry is used (See Fig. 3.4).  An expanded probe beam passes through the 
LN sample.  It is imaged onto the retro-reflector, and then imaged back onto the sample, mapping 
the image of the sample exactly back onto itself.  The beam passes through a QWP at 45° 
travelling both to and from the retroreflector, which flips the vertical and horizontal polarizations.  
On the second pass through the sample, the static, spatially dependent phase shift is fully 
corrected, as are any problems introduced by the dichroic mirror. 
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Figure 3.4 | Self-compensating induced birefringence geometry with real optics.  An 
expanded probe beam is initially transmitted through the non-polarizing beam splitter, 
after which it passes through the LN sample.  It is imaged onto the retro-reflector, and 
then imaged back onto the sample, mapping the image of the sample exactly back onto 
itself.  The sample is then imaged onto the camera, reflecting off the NPBS on the way.  
The initial polarization is set to 45°. 

 

 To analyze the polarization behavior carefully, again we use Jones calculus.  Here we 
assume that the non-polarizing beam splitter behaves ideally, since it is specially designed to not 
affect the polarization state.  The Jones vector after the Wollaston is  

  









 
 1

1
10

iieE045454545 vBMPQQMSBQPv .                             (3.35) 

This is identical to the ideal case above, demonstrating that the self-compensating geometry can 
correct for non-ideal optics such as mirrors and dichroics as well as spatially dependent 
inhomogeneity in the sample. 
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C.  ION DISPLACEMENT AMPLITUDES IN LiNbO3 

 As discussed in the introduction (Fig. 1.1), the THz wave in LiNbO3 is a phonon-
polariton wave, so it has both electromagnetic and vibrational components.  In section 3A, I used 
the electro-optic effect to determine the relationship between experimental signals and the 
absolute E-field amplitudes with real units.  Here I derive the ionic displacements (in Angstroms) 
of the associated phonon mode as a function of frequency and E-field amplitude.  As will be 
discussed more fully below, knowing the magnitude of the ionic displacement enables estimates 
of the nonlinear response and approximations of the field strengths required to switch the 
ferroelectric orientation of the crystal.  In the analysis I present, everything is treated classically, 
which will help with intuition and should be fairly accurate for the high THz fields and large 
vibrational amplitudes we hope to achieve.  I will first go through the derivation of a generic, 
damped, driven harmonic oscillator.  I will then explain all the terms (driving force, mass, 
frequency, and damping) in the simple case of an aligned diatomic molecule such as HCl.  
Finally, I will introduce the important phonon mode in LiNbO3 and estimate actual atomic 
displacements in our experiments. 
 

1.  The damped, driven harmonic oscillator 

 Discussions of the damped, driven harmonic oscillator can be found in many textbooks.  
The derivation starts with Newton’s second law: F = ma.  There are three contributions to the 
force term on the left hand side.  The first is the restoring force of the spring itself, kxF restore .  

If this were the only force term, the solution would be simple harmonic motion )sin()( 0ttx   

with the resonant frequency ./0 mk   The second force term is the damping term, 

)./(damp dtdxcF    With both the restoring and damping term, the solution (in the underdamped 

case) is sinusoidal oscillations multiplied by an exponential decay term.  The final force term is 
the driving term.  Collecting all these together, we get the differential equation: 

ma
dt

dx
ckxFFFF  drivedamprestoredrive                             (3.36) 

For convenience when deriving the solutions, the terms are typically rearranged and new 
constants are defined to give: 

.
)(

2 2
002

2

m

tF
x

dt

dx

dt

xd
                                         (3.37) 

Here ω0 is the resonant frequency of the undamped harmonic oscillator as described above, F(t) is 
the externally applied, time-dependent driving force, and γ is the dimensionless damping ratio.  
When γ < 1, the system is underdamped and experiences oscillations.  γ should be significantly 
less than 1 for most molecular and crystalline vibrations, so a delta-function input will cause the 
system to oscillate many times before damping away.  The generalized form of the differential 
equation shown in Eq. 3.37 represents many different systems including torsional systems and 
RLC circuits.  
 There are two damped harmonic oscillator responses that are particularly relevant for 
understanding atomic displacements in a molecule or crystal driven by an electromagnetic wave: 



 

65 

 

the impulse response and the response to a sinusoidal driving force.  The impulse response to a 
unit delta function is a damped exponential: 

   .1sin)exp(
1

1
)( 0

2
0

2
0

tt
m

tg 





                            (3.38) 

The oscillation frequency 2
01 1    is slightly lower than the undamped frequency ω0.  

g(t) can be used as a Green’s function to determine the system response to an arbitrary force F(t) 
(such as a single cycle THz pulse) via a convolution: 





 .)()()()()(  dtgFtgtFtx                                  (3.39) 

Note that the units of g(t) are sec/kg, so that after convolution with the force, we retrieve the 
displacement x(t).  A plot of the impulse response for γ = 0.07 is shown in Fig. 3.5(a). 
 The second particularly important response for a dipole interacting with an 
electromagnetic wave is when the dipole is driven by a sinusoidal force )sin()( 0 tFtF   (e.g. 

when the LiNbO3 is excited by a narrowband THz wave).  The solution can be derived, for 
example, by convolving the driving force with g(t).  It is 

)](sin[)()(   tAtx                                              (3.40a) 
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The amplitude and phase for γ = 0.07 is plotted in Fig. 3.5(b).  There is a DC response at zero-

frequency, and its magnitude is simply .)0( 0
2
0

0
DC k

F

m

F
AA 


  For significantly underdamped 

systems, the maximum response is given by 
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.21 2
0max     Amax and ωmax are plotted as a function of γ in Fig. 3.5(c). 
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Figure 3.5 | Generic damped, driven harmonic oscillator.  (a) The impulse response 
for a damped harmonic oscillator with γ = 0.07.  The mass is set to m = 1 kg and the 
resonant frequency to ω0 = 2π.  (b) The amplitude and phase of the response when a 
damped harmonic oscillator is driven by sinusoidal force at a frequency ω.  Again, γ = 
0.07.  (c) The left axis shows the peak amplitude [maximum of blue curve in (b)] and the 
right axis shows the frequency at which the peak occurs as a function of γ. 
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2.  Ion displacement amplitudes in the simple diatomic HCl 

 Although we are actually interested in atomic displacements in lithium niobate, as an 
example I will first calculate displacements in hydrogen chloride.  This simpler example lets us 
build intuition without dealing with a complicated unit cell and vibrational mode.  We first 
assume that the HCl molecule is isolated in a gas and the dipole moment is aligned parallel to the 
electric field of the incident light wave, as shown in Fig. 3.6(a).  Because HCl is a polar molecule, 
there is a partial positive charge +δ on the hydrogen and a partial negative charge -δ on the 
chlorine.  The field pulls the charges in opposite directions, causing the molecule to vibrate.  We 
assume a sinusoidal driving field of the form )sin()( 0 tEtE   . The force on atoms is simply the 

field multiplied by the charge, )sin()()( 0 tEtEtF   , and for this periodic driving force the 

atomic motion is described by Eq. 3.40.  To calculate the amplitude, the only further modification 

to Eq. 3.40b is that the mass must be replaced by the reduced mass: )./( ClHClH mmmmmeff    

Thus for HCl, we have the maximum amplitude of the atomic displacement given by: 
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The damping ratio γ can be estimated from the collision time.  By setting the relaxation time of 
the impulse response (Eq. 3.38) equal to the collision time τ, we get )/(1~ 0 .  At STP in air, 

the collision time for HCl molecules is τ ~ 0.3 ns and so γ ~ 6e-6.  The values for the other 
constants of H1Cl35 are shown in Fig. 3.6(b), and the frequency-dependent amplitude for a driving 
field of E0 = 100 kV/cm is shown in Fig. 3.6(c), revealing a very sharp resonance with large 
motion when driven resonantly. 
 

 

Figure 3.5 | HCl as a harmonic oscillator.  (a) HCl in a field.  (b) Relevant constants for 
HCl [HCl].  (c) Atomic displacement normalized by the bond length when driven by a 
CW THz field with an amplitude of 100 kV/cm.  Inset is a magnified view of the 
response below the resonance at 86.6 THz. 
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3.  Ion displacements in LiNbO3 

 Now I address the primary purpose of this section, estimating atomic displacements in 
LiNbO3 under excitation with a THz field.  I will only consider displacement along a single 
normal mode (a single optic phonon mode), the soft mode of LiNbO3 [see Fig. 3.6(a)].  The mode 
is called "soft" because its resonant frequency becomes very low as the crystal temperature 
approaches the ferroelectric phase transition temperature.  The soft mode is particularly 
interesting because motions of atoms in the unit cell along the directions of this normal mode are 
in large part responsible for taking LiNbO3 from one ferroelectric orientation to another.  By 
driving the phonon mode to high amplitude with a THz field, it should be possible to switch the 
ferroelectric orientation.  Figure 3.6(b) shows the potential for this mode.  In the ferroelectric 
phase the crystal lies in one of the potential minima, which corresponds to Li and Nb atoms 
shifted up and O atoms shifted down relative to their high-symmetry locations [see Fig. 3.6(a) for 
direction of motion].  [Weis 1985] gives a clear description of the crystal structure and the effects 
of the ferroelectric phase transition.  In the sections below, I will explain how I estimated the 
value of each parameter necessary for calculating atomic displacements.  Some of the estimates 
are fairly coarse, and it should be possible to determine values more accurately.  I hope by 
explaining the overall method and approximations clearly here, it will be fairly straightforward to 
substitute the improved values as they are calculated or found in references I missed. 
 

 

Figure 3.6 | LiNbO3 normal mode and potential.  (a) The soft mode in LiNbO3, 
resonant at 7.4 THz, which is largely responsible for the ferroelectric phase transition.  
(b) The quartic double-well potential of the normal mode as a function of Li ion 
displacement is shown in solid blue.  Displacement amplitudes for O and Nb are 
proportional to the Li atom displacement (see Table 3.5).  The dashed red line is a 
quadratic fit around one minimum, used for modeling small displacements in the 
ferroelectric phase.  
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a.  Determining the normal mode 

 Finding the exact normal mode of lithium niobate associated with the 7.4 THz resonance 
was difficult; I could not find a clear and unambiguous description in the literature.  As an 
approximation, I will follow [Barker 1967], and approximate the normal mode as lying along the 
displacement vectors of LiNbO3 when it goes through the ferroelectric phase transition.  Since the 
7.4 THz resonance is thought to be primarily responsible for driving the transition, this should be 
a passable approximation.  As in [Barker 1967], the motion of the oxygen atoms along x and y is 
unknown, and we assume it to be at 45° relative to the z-axis.   
 

Ion 
r


 
Locationa,b 

(Å) 

a 
Normal mode 

relative amplitudec  

n


 
Normal mode  
unit vectorc 

δ 
partial charged 

(units of e) 

Li1 (0, 0, 3.92) 1 (0, 0, 1) +1 
Li2 (0, 0, 10.86) 1 (0, 0, 1) +1 
Nb1 (0, 0, 0) 0.14 (0, 0, 1) +1.4 
Nb2 (0, 0, 7.20) 0.14 (0, 0, 1) +1.4 
O1 (1.41, 1.10, 6.31) 0.59 (-0.56, -0.43, -0.71) -0.8 
O2 (0.25, -1.77, 6.31) 0.59 (-0.10, 0.70, -0.71) -0.8 
O3 (-1.65, 0.67, 6.31) 0.59 (0.66, -0.27, -0.71) -0.8 
O4 (-1.41, -1.10, 8.09) 0.59 (-0.56, -0.43, -0.71) -0.8 
O5 (-0.25, 1.77, 8.09) 0.59 (-0.10, 0.70, -0.71) -0.8 
O6 (1.65, -0.67, 8.09) 0.59 (0.66, -0.27, -0.71) -0.8 

 a[NRL] 
b[Boysen 1994] 

c[Barker 1967] c[Barker 1967] d[Lines 1970] 

 
Table 3.5 | Atomic locations, normal mode displacement vectors, and partial charges 
in LiNbO3.  Listed here are two Li atoms, 2 Nb atoms, and 6 O atoms.  The octahedron 
of O atoms surrounding the bottom Nb is rotated slightly relative to the one that is shown, 
but this is omitted because it is not needed to calculate normal mode amplitudes.  Data 
are drawn from [NRL], and the original source is [Boysen 1994]. 

 
 

b.  Calculating spring constant and effective mass 

 The spring constant and effective mass can be easily determined once the parabolic 
potential is known.  In this section, I estimate the parabolic potential by Taylor expanding the full 
theoretical curve around the potential minimum in the ferroelectric phase.  The full potential in 
LiNbO3 can be modeled by a quartic function of the form [Romero-Rochin 1999]: 
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with V0 the well depth, Q the displacement along the normal mode, and Qmin the displacement 
corresponding to the well minimum.  When plotting the solid blue curve in Fig. 3.6(b), I used the 
theoretically calculated well depth (V0 = 0.24 eV from [Inbar 1996]) and the experimentally 
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measured displacement of the Li atom from the high-symmetry point (Qmin = 0.456 Å from [Weis 
1985]).  A displacement of Q = 0 corresponds to the Li in the high-symmetry point where it is 
found in the paraelectric phase.   
 I estimate the harmonic potential by Taylor expanding the quartic potential around Qmin. 
The potential is given by 

0
2

2
min

04
VR

Q

V
V                                                (3.43) 

with R ≡ Q – Qmin.  R represents the amplitude of the normal mode, and it is proportional to the 
amplitude of the actual ion displacements (see Table 3.5 for proportionality constants and 
displacement directions).  The harmonic potential in Eq. 3.43 is plotted as the dashed red line in 
Fig. 4.6(b).  It is apparent that the quadratic approximation starts to break down even for modest 
vibrational amplitudes where R/Qmin is relatively small.  There is nonetheless significant insight 
that can be gained because displacements in this anharmonic potential will exceed those in the 
harmonic potential, so the results give the approximate magnitude and serve as a lower bound.  In 
addition, by modeling the mode as a harmonic oscillator, we can use the intuition developed 
previously.  Eq. 3.43 can be used, along with the resonant frequency, to determine constants we 
seek.  The spring constant, retrieved from the derivative of the potential, is 

N/m.148/8 2
min0  QVk   The effective mass is amu. 41/ 2

0  kmeff  

 
c.  Calculating the force 

 The final important parameter to determine atomic displacements is the force generated 
by the applied field.  In HCl the force was simply the field multiplied by the partial charge, but 
the more complex normal mode in LiNbO3 makes life slightly more complicated.  To start, we 
calculate the energy potential from the applied field as a function of normal mode displacement 
U(R).  The force is then given by F = dU/dR.  The potential from the applied field is  

).()( RERU 

                                                  (3.44) 

The dipole moment is determined by the atomic charges, atomic locations, and the normal mode 
amplitude and unit vectors from Table 3.5. 
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Here the sums run over all the atoms in one unit cell: Li1, Nb1, and O1, O2, and O3.  The simple 
potential is just a constant plus a term with a linear dependence on R.  Taking the derivative with 
respect to R to get the force, the constant term vanishes and we get 
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For this mode, the change in dipole lies entirely along z (the optic axis).  Said another way, the 
components along x and y in the vector sum in Eq. 3.46 cancel.  In addition, we are interested in 
an applied field polarized along z, so we can take the z-component of the normal mode vector to 
convert the vectors to scalars: 

eff
i

izii tEnatEtF  )()()( ,                                           (3.47) 



 

71 

 

where I have defined an effective charge in analogy to the simple diatomic case.  Using the values 
from Table 3.5, we get δeff = 2.4e. 
 
d.  THz electromagnetic wave driven responses in LiNbO3 

 

Resonant frequency ω0/2π = 7.4 THz 
Damping ratio γ = 0.043 
Spring constant k = 148 N/m 
Effective mass meff = 41 amu 
Effective charge δeff = 2.4e 
Li+ displacement from 
high symmetry point 

Qmin = 46 pm 

DC amplitude 
constant MV

cmpm
26.0

2
0







eff

eff

m
 

Table 3.6 | Collected normal mode parameters in LiNbO3.  Most parameters were 
calculated in the previous sections.  The damping ration is from [Feurer 2007].  The final 
row facilitates quick calculation of displacement amplitudes when the narrowband THz 
field strength is known (in MV/cm). 

 
 The relevant parameters for calculating vibrational amplitudes in LiNbO3 are compiled in 
Table 3.6.  With these values in hand, we can calculate the impulse response and the response to a 
CW driving field, all with real units.  Following Eq. 3.38, the response to a delta function driving 
E-field is: 
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The normal mode amplitude can be extracted by a convolution: ).()()( tgtEtR    Following 

Eq. 3.40, the amplitude of the response to a sinusoidal driving field is: 
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The results are summarized in Fig. 3.7.  Figure 3.7(a) shows the impulse response, g(t) in 
LiNbO3.  Figure 3.7(b) shows a single-cycle THz driving field with a peak amplitude of 1 MV/cm 
(orange curve, left axis) and the resulting normal mode amplitude R(t) (green curve, right axis), 
which is equal to the Li ion displacement.  For frequencies below about 5 THz, the ionic 
displacement directly follows the input field.  Displacements for Nb and O atoms can be 
determined from Table 3.5.  Finally, Fig. 3.7(c) shows R(ω) for a CW driving field of 1 MV/cm.  
The peak ionic displacement is only about 1/15th of the distance required (46 pm) to switch the 
ferroelectric orientation, indicating that a 15 MV/cm field would be required on resonance to 
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switch the phase.  The reality would be about two times easier because the real quartic potential is 
much softer than the quadratic potential used in this model.  
 

 

Figure 3.7 | Atomic displacements in driven LiNbO3.  (a) The impulse response of the 
soft mode (7.4 THz at room temperature).  (b) The ionic displacement (in green, right 
axis) when the LiNbO3 is driven by a single-cycle THz field (orange, right axis) with a 
peak field strength of 1 MV/cm. (c) The amplitude response for different, CW driving 
frequencies with an amplitude of 1 MV/cm.  As shown in Fig. 3.6(b), the maximum of 
the quartic potential is 46 pm from the minimum.  

 
 Finally, we seek some confirmation that the calculated values in Table 3.6 and the results 
in Fig. 3.7 are reasonable.  One such test is the coercive field.  In a ferroelectric crystal, the 
coercive field amplitude is the external DC field strength necessary to switch the ferroelectric 
orientation.  Using a completely different method than what we use here, it is theoretically 
predicted to be 5.4 MV/cm [Kim 2002].  The final row of Table 3.6 is the constant which 
determines the DC amplitude (see Eq. 3.49a).  Its units are chosen so the displacement in pm can 
be calculated directly when the field amplitude is known in MV/cm.  We estimate the coercive 
field by finding the field necessary to raise the potential energy by V0, the height of the maximum 
in the double well potential [see Fig. 3.6(b)].  In the harmonic approximation this corresponds to 
a displacement of Qmin/2 = 23 pm (see Eq. 3.43), and we find the coercive field strength to be 
~100 MV/cm.  Obviously there is a huge, ~20-fold discrepancy between this and the literature 
value.  In reality, there are many phonons that contribute to the phase transition, so it is expected 
that the calculated value for driving directly over the hump in the double-well potential would be 
an overestimate, but a factor of 20 seems too large.  I would say the results presented in this 
section are called into question and results should be tested against another calculation 
methodology such as a rigorous DFT simulation.  
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Chapter IV 
Developments in polaritonics methodology:  

THz generation, DAQ card detection,  
and THz imaging 

 
PREFACE 

 The polaritonics platform had been under development for more than 7 years when I 
joined the lab, and an array of capabilities had been demonstrated [Feurer 2007].  These included 
THz imaging [Koehl 1999],  programmable control over THz generation [Feurer 2003], and an 
array techniques for THz manipulation implemented by laser machining air structures into the 
host material [Ward 2004; Danielson 2006; Stoyanov 2004; Stoyanov 2002; Weiss 2001].  To 
press forward, however, improved experimental techniques were required for both THz 
generation and THz detection.   
 THz fields generated in the waveguide were relatively weak, and waveguide dispersion 
(see chapter 2) quickly chirped the pulse.  In addition, there were so many generated frequency 
components that it was difficult to follow what was happening in machined structures.  We used 
phasematching and coherent amplification to generate high-amplitude, multicycle waves in the 
polaritonics chip.  Both the center frequency and bandwidth could be tuned experimentally (see 
[Lin 2009] and section 4A below).  The high-amplitude narrowband THz pulses were useful for 
studying machined microstructures (see [Werley AJP 2012] and chapter 5) and resonant metallic 
antennas (see [Werley OE 2012] and chapter 6).  In the future we plan to use these high-
amplitude waves to strongly drive resonances in nonlinear THz studies. 

The THz detection techniques were also limiting.  We developed a method for point-source 
detection that used a data acquisition (DAQ) card instead of a lock-in amplifier.  The DAQ card 
system offered quantitative monitoring of laser noise, simple, quantitative measurement of THz 
field amplitudes, an improved signal-to-noise ratio, and more versatility in terms of rapid 
scanning and differential chopping (see [Werley 2011] and section 4B).  The DAQ card method 
can be implemented in almost any ultrafast experiment.  The THz imaging methodology had even 
more room for improvement.  The technique in use when I joined the lab, Talbot imaging, is an 
out-of-focus technique so the resolution is very poor.  I introduced phase contrast imaging (see 
[Wu 2009, Werley 2010] and sections 4C & 4D), an in-focus technique which improved image 
resolution from ~100 µm to ~1 µm.  This enabled mapping the near-fields around a metal antenna 
with λ/100 image resolution [Werley OE 2012].  In addition to resolution problems, neither pump 
modulation nor balancing was used for noise suppression, so only very large signals could be 
detected.  I reworked the detection electronics (see section 4C) and introduced polarization gating 
imaging (see [Werley 2010] and section 4C & D) to implement balanced detection.  These 
improvements reduced the minimum signal detection threshold by more than a factor of 100.  The 
improved signal-to-noise greatly facilitated all subsequent measurements [Werley AJP 2012, 
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Werley OE 2012].  These improved detection methods will continue to be useful in future 
experiments, where we aim to study photonic crystals and metamaterial structures.  

 
A.  GENERATION OF MULTICYCLE THz PHONON-POLARITON 
WAVES IN A PLANAR WAVEGUIDE BY TILTED OPTICAL PULSE 
FRONTS 
 

Content from: K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle 
THz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. 
Phys. Lett. 95, 103304 (2009). 
 

1.  Abstract 

 We demonstrate generation of frequency-tunable, multicycle THz phonon-polariton 
waves in a LiNbO3 slab waveguide. Because the waveguide modes show considerable phase-
velocity dispersion, we are able to enhance frequency-selected narrowband THz waves by using 
femtosecond optical pulses whose intensity fronts are tilted at angles that meet the appropriate 
noncollinear phase-matching conditions. The pump light is spread across a large area of the 
crystalline waveguide within which coherent THz wave generation occurs, averting material 
damage while yielding peak-to-peak THz field amplitudes in the waveguide of 50 kV/cm. 
 

2.  Introduction 

 A phonon-polariton mode, which results from coupled photon and optic phonon modes, 
can be excited by optical pulses in noncentrosymmetric crystals such as LiNbO3 (LN) through 
impulsive stimulated Raman scattering [Crimmins 2002]. Phonon-polariton waves generated in 
bulk crystals can be coupled into free space and are a good source for intense, THz 
electromagnetic radiation [Hebling 2002; Hoffmann 2007; Yeh 2007]. In LN, the spatial and 
temporal profiles of the THz waveform are determined by those of the optical pump. This makes 
possible waveform synthesis, manipulation, and guidance through the use of spatially and 
temporally shaped optical excitation pulses [Feurer 2003; Ward 2004] and fabricated structures in 
the host crystals [Ward 2004; Danielson 2006; Stoyanov 2004; Stoyanov 2002; Weiss 2001]. 
These capabilities, coupled with real-space imaging of the full THz fields [Koehl 1999; Feurer 
2007; Peier 2008; Wu 2009; Werley 2010], make LN slabs and waveguides promising 
polaritonics platforms for integrated THz photonics, optoelectronics, and spectroscopy [Feurer 
2007]. 
 For many applications in coherent control and generally for studying resonant 
phenomena, it would be useful to generate narrowband, high-amplitude THz waves with a 
tunable center frequency in slab-waveguide structures. Tunable multiple-cycle waves can be 
generated through the use of crossed pump pulses that produce an optical interference pattern in 
the crystal [Ward 2005; Katayama 2008; Stepanov 2004] to select the THz wave vector or 
through the use of multiple optical pulses that are timed to select the THz frequency [Ward 2004]. 
The maximum THz amplitudes that these techniques can achieve, however, are inherently limited 
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by the LN optical damage threshold. Here we take advantage of waveguide dispersion and 
noncollinearly velocity-matched generation by using an optical pump pulse with a tilted intensity 
front, which substantially circumvents this problem. The tilted pulse-front geometry has been 
used to produce high-power THz waves in bulk LN [Hebling 2002], where the tilt is set so that 
the peak intensity of the optical pump moves laterally across crystal at a speed that matches the 
lateral THz phase velocity, thereby continuously intersecting the peak of the THz wave and 
coherently enhancing its amplitude. For frequencies near the transverse optical phonon frequency 
(7.6 THz), material dispersion enables phase-matched generation of multiple-cycle waves 
[Hebling 2004]. Well below the phonon frequency (less then ~4 THz), however, the dispersion 
curve in bulk LN is nearly linear, so a wide range of frequencies is noncollinearly velocity-
matched and broad-band, single-cycle THz pulses are generated. In this letter, we demonstrate 
that the unique dispersion properties of THz waveguide modes in LN can be exploited for facile 
generation of intense, frequency-tunable multiple-cycle THz waves with high spectral brightness 
in the 0.1 – 1.5 THz frequency range. 
 

3.  Experimental, results, and discussion 

 Our sample was a 33-μm thick, x-cut LiNbO3 slab. The polarization of the generated THz 
wave was parallel to the optic axis of LN. Figure 4.1(a) shows the calculated dispersion relation 
for bulk LN (dotted lined), air (dashed line), and the first three transverse electric waveguide 

modes in the slab. Figure 4.1(b) shows the effective index for these modes,  /)(eff cn  , 

with β the propagation constant. Note that effn for the waveguide modes has a much steeper 

frequency dependence than the bulk index. Although we are able to generate THz waves in 
several waveguide modes, for the remainder of this paper we will discuss only the lowest 
waveguide mode because it shows the highest generation and detection efficiencies. 
 

 

Figure 4.1 | Dispersion curves and effective index. (a) Calculated dispersion relations 
for electromagnetic waves in air (dashed line) and for bulk (dotted line) and waveguide 
(solid lines) phonon-polariton modes in LiNbO3.  β is the propagation constant, or wave 
vector. (b) The frequency-dependent effective index corresponding to each dispersion 
curve. 

 
 Because the THz phase velocity varies as a function of frequency, we can manipulate the 
tilt angle of the optical pump’s intensity front, γ, to selectively enhance the amplitude of a desired 
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frequency.  Figure 4.2(a)-(c) shows the sample geometry as viewed from above at three different 
interaction times.  As the tilted pump pulse propagates through the slab, its point of intersection 

with the slab moves laterally at a speed )cot()(int  cv  .  Selective enhancement of a THz 

wave of frequency 0  is achieved through the velocity-matching condition: 

)(/)()( 0eff0THzint  ncvv  ,                                        (4.1) 

which is met when  

 tan)( 0ff en .                                                     (4.2) 

It is not only possible to select the center frequency of the THz wave by setting γ, but also to 
control the bandwidth by specifying the velocity-matching length: the longer the interaction 
length, the smaller the bandwidth as shown in Fig. 4.2(d)-(f). One way to visualize the dispersion 
and phase-matching process is through the mismatch between the THz phase and group 
velocities. Due to the slower group velocity, the THz wave envelope lags behind the single field 
cycle that is being continuously amplified by the optical pump. Although phase cycles grow into 
the trailing edge of the THz pulse as they would in a freely propagating wave, pumping prevents 
them from dying out at the leading edge. This leads to a gradual increase in the number of cycles 
at the selected frequency ω0 and a narrowing of the bandwidth. 
 

 

Figure 4.2 | Phase matching and bandwidth narrowing.  (a) – (c) The intersection of the 
tilted optical pulse with the LN slab, shown from above, at times t0, t1, and t2.  The optical 
pulse travels perpendicular to the crystal surface at the speed of light in air, while the 
intersection of the optical pulse with the crystal (depicted as a filled circle) travels to the 

right at the intersection velocity )cot(int cv  , with γ shown in (b), and c the speed of 

light in vacuum. The generated THz wave propagates in the waveguide and is probed at a 
later time in a spatially separate location as shown in (c). (d) – (f) The wave vector content 
of the THz pulse at times t0, t1, and t2. 
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 To demonstrate the generation and coherent amplification of tunable, narrowband THz 
waves in a LN waveguide, we used optical pulses that were generated from a Ti:sapphire 
regenerative amplifier system with central wavelength of 800 nm, repetition rate of 1 kHz, pulse 
duration of 70 fs, and energy of 600 μJ.  A 2000 lines/mm grating was used to tilt the pulse front, 
and the grating surface was imaged onto the sample by directing the -1 diffraction order through a 
single 10-cm cylindrical lens.  We detected the THz wave at a localized region distinct from the 
generation region, as shown in Fig. 4.2(c). 
 The pulse tilt angle γ at the LN crystal depends on both the angle of incidence onto of the 
grating and the magnification of the imaging system, M [Palfalvi 2008]. We held the angle of 
incidence constant at 46°, yielding for the -1 diffraction order a tilt angle γ1 = 73°, and we varied 
the magnification of the one-lens imaging system by moving the grating and lens while keeping 
the image plane location fixed at the LN crystal.  The resulting tilt angle at the crystal was given 

by the relation   M/tantan 1  .  The interaction length, determined by the pump spot size on 

the grating as well as the magnification, ranged from roughly 2 mm (M = 0.8) to 5 mm (M = 2).  
 For detecting the THz waves, we focused the probe (output of a homebuilt noncollinear 
optical parametric amplifier; 650 nm central wavelength; 50 fs pulse duration) onto the LN 
waveguide with a 10-cm spherical lens for point detection. Following the polarization gating 
setup described by [Peier 2008], crossed polarizers oriented at ±45° relative to the LN optic axis 
were placed in front of and behind the 33 μm LN crystal, whose static birefringence was 
compensated by a second, identical crystal whose optic axis was perpendicular to that of the 
sample. A quarter wave plate was placed immediately before the second polarizer. The THz field 
modulates the optical refractive indices through the electro-optic effect, and the induced phase 
shift between the vertical and horizontal polarization components is given by: 

THz

3
13

3
33

optopt 2
2)(2 E

nrnr
nn oeo

oeo








 

                  (4.3) 

with ℓ the sample thickness, λopt the probe wavelength, no and neo respectively the ordinary and 
extraordinary refractive indices for the probe, and r13 and r33 the appropriate electro-optic 
coefficients. The transmitted probe light after the second polarizer was sent into a PIN silicon 
photodiode. Bandpass filters were placed in front of the photodiode to eliminate scattered pump 
light, the pump beam was chopped at 500 Hz, and the signal was detected using a lock-in 
amplifier. By measuring the transmission as a function of time delay between pump and probe, 
we recorded the time-dependent THz field, E(t). 
 Figure 4.3(a) shows the time-dependent field profiles of multi-cycle THz waves with 
central frequencies of 1.0, 0.6, 0.4, and 0.2 THz and a typical single-cycle THz wave generated in 
a bulk crystal under comparable conditions (dashed black) for comparison.  The corresponding 
Fourier spectra in Fig. 4.3(b) have full-width at half maximum (FWHM) values ranging from 70 
GHz to 120 GHz, much narrower than the single-cycle pulse.  Despite the fact that dispersion is 

less, the percent bandwidth )/( 0FWHM ff tends to be smaller at higher frequencies because the 

velocity-matching length is longer relative to the THz wavelength. 
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Figure 4.3 | The time traces and spectra of selected THz pulses. The measured THz 
waveforms when certain frequencies were selectively enhanced due to appropriate 
velocity-matching. (a) Time domain field profiles. (b) Corresponding Fourier spectra. The 
dashed black curve is a typical single-cycle THz pulse generated in a bulk LN crystal, 
shown for comparison. 

 
 Because phonon-polariton generation through ISRS is a second-order process [Yan 
1985], for a given optical pump pulse energy the generation of THz is most efficient when the 
pump intensity is as high as possible within the limit imposed by the optical damage threshold of 
LN. In order to maximize THz field strengths, we decreased the spot size to below 1 mm in both 
dimensions at the LN waveguide to increase the optical intensity. We tuned to ~600 GHz where 
generation is most efficient, and measured peak-to-peak electric field amplitudes of ~50 kV/cm 
(data not shown). This value is 2-3 times larger than the maximum electric field that can be 
generated in the same LN slab with a non-tilted optical pulse of comparable intensity. Although 
the enhancement in peak field amplitude is somewhat modest, enhancements in spectral intensity 
at the center frequency can exceed 30 fold. 
 The values for THz waveform characteristics such as bandwidth, central wavelength, and 
amplitude presented in this paper do not span the entire range that is possible with this technique, 
particularly if LN slabs of different thicknesses are used. The bandwidth is determined by the 
waveguide dispersion curve, which is itself determined by the waveguide thickness. Thinner 
waveguides have more dispersion, so narrower bandwidths can be achieved with the same 
generation length. Thinner waveguides also have dispersion over a broader frequency range, so 
higher frequencies can be selectively enhanced, and ultimately the intrinsic dispersion of bulk LN 
will dictate the phase-matching conditions [Hebling 2004]. The peak THz amplitude (especially 
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at higher frequencies where damping is strong at room temperature) can be increased 
considerably by reducing the sample temperature [Stepanov 2003]. 
 

4.  Conclusions 

 In summary, we have demonstrated generation of narrowband THz waves in a planar 
waveguide. Due to the dispersion of the waveguide, it is possible to selectively phase-match 
femtosecond pulses with tilted intensity fronts to a desired THz frequency. The frequency can be 
tuned by changing the tilt angle of the pulse front, and the bandwidth can be set by changing the 
phase-matched interaction length. This technique is capable of generating high amplitude 
phonon-polariton waves in the waveguide because coherent amplification of the THz pulse as it 
propagates circumvents the limit imposed by the optical damage threshold.  
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B.  PULSED LASER NOISE ANALYSIS AND PUMP-PROBE SIGNAL 
DETECTION WITH A DAQ CARD 
 
Content from:  C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis 
and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82, 
123108 (2011). 
 

1.  Abstract 

 A photodiode and data acquisition card whose sampling clock is synchronized to the 
repetition rate of a laser are used to measure the energy of each laser pulse. Simple analysis of the 
data yields the noise spectrum from very low frequencies up to half the repetition rate and 
quantifies the pulse energy distribution. When two photodiodes for balanced detection are used in 
combination with an optical modulator, the technique is capable of detecting very weak pump-
probe signals (ΔI/I0 ~ 10-5 at 1 kHz), with a sensitivity that is competitive with a lock-in 
amplifier. Detection with the data acquisition card is versatile and offers many advantages 
including full quantification of noise during each stage of signal processing, arbitrary digital 
filtering in silico after data collection is complete, direct readout of percent signal modulation, 
and easy adaptation for fast scanning of delay between pump and probe. 

 

2.  Introduction 

 Pulsed lasers are ubiquitous in modern laboratories, and they make it possible to study 
ultrafast dynamics through pump-probe techniques. This technique has enabled an important and 
diverse set of experiments including short pulse characterization [Ippen 1975], ultrafast motion of 
non-thermal electrons [Brorson 1987], resolution of terahertz (THz) electric fields [Auston 1988], 
and nuclear motion in proteins during electron transfer [Vos 1993], among many others. The 
pulsed lasers used in these studies experience shot-to-shot and long-term fluctuations in pulse 
energy, which complicates the study of phenomena with small experimental signals. Here we 
present a straightforward method that uses a data acquisition (DAQ) card to record the energy of 
every laser pulse for repetition rates less than ~500 kHz. Because the energy of every pulse is 
recorded, the method is very versatile and enables quantification of laser noise and arbitrary 
digital signal processing to measure weak pump-probe signals. Although DAQ card acquisition 
has been used by multiple labs in pump-probe experiments (e.g. [Ruhman 1988]; [Lim 1993]), we 
could find no paper detailing the implementation. We prefer this method to using a lock-in 
amplifier or boxcar integrator, and hope this demonstration will make it easier for others to adopt 
DAQ cards as a major tool for pump-probe signal acquisition. 
 In pump-probe measurements, the time-dependent response is recorded by stepping the 
delay between pump and probe pulses, and information is encoded as a pump-induced change in 
the probe pulse. The pump affects the real and/or imaginary parts of the sample’s index of 
refraction, which in turn modifies the amplitude, phase, or polarization of the reflected or 
transmitted probe. When the phase or polarization are modified, interferometry or polarization 
sensitive detection is generally used to convert changes in phase or polarization to changes in 
probe intensity, which are sensed by the detector. Consequently, regardless of how the pump 
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influences the sample, the information is ultimately encoded in the energy of the probe pulse that 
reaches one or more detectors. When the pump is modulated, typically with every alternate pulse 
blocked, the probe light intensity I0 reaching a detector with the pump blocked and the intensity I 
with the pump present can be measured and the fractional signal modulation 0/ II  can be 

retrieved by taking the ratio of consecutive probe pulse energies. It is very common that the 
desired signal is directly proportional to 0/ II  [e.g. Valk 2004; Wright 2008; Lessing 1976; 

Goodno 1998], and acquisition with the DAQ card gives rapid and straightforward access to this 
value.  
 

3.  Experimental methods 

 A photodiode detects the laser output, and the photodiode signal (a charge) is converted 
to a time-dependent voltage and amplified by a current preamplifier. The analog voltage output 
from the current preamplifier is digitized and recorded with the DAQ card [see Fig. 4.4(a)]. If the 
DAQ card is set to sample much faster than the repetition rate of the laser, the card behaves like a 
digital oscilloscope and records the time-evolution of the voltage. Figure 4.4(b) shows some 
example traces. In this demonstration, we used a titanium-sapphire laser with a regenerative 
amplifier to generate pulses at 1 kHz with a center wavelength of 800 nm, a pulse energy of 1.5 
mJ, and a pulse duration of 80 fs. The photodiode was a low-noise, large area, unbiased silicon 
photodiode from Hamamatsu (model: S2281). We chose the current preamplifier (Stanford 
Research Systems, model: SR570) because of its low noise performance and filtering capabilities, 
whose use will be described below. The DAQ card, a National Instruments model: PCI-6281, had 
a maximum sampling rate of 625 kHz and an analog input with 18 bit resolution. At this bit 
depth, the discrete step size due to digitization, 76 μV, is very small compared to laser noise (see 
Fig. 4.4(d)) and digitization effects can be ignored. 
 To record the energy of every laser pulse, it was important to measure some parameter 
that was directly proportional to the pulse energy. The peak voltage and integrated voltage of an 
electrical pulse both satisfy this criterion.  We chose to measure peak voltage (which we 
confirmed was linearly proportional to pulse energy through all signal processing steps), as it was 
easier to acquire. The dashed traces in Fig. 4.4(b) show the input to the DAQ card, where a 3 kHz 
lowpass filter was applied by the preamplifier. The photodiode signal was filtered so that the 
voltage evolved on a slower timescale than the maximum sampling rate of the DAQ card, but still 
decayed to zero before the next laser pulse arrived at the photodiode. Alternative analog signal 
processing devices, such as a boxcar integrator or a sample and hold circuit, could be as effective 
as the current preamplifier with proper implementation. We considered these devices but chose 
the current preamplifier because it carefully handles the current signal from the photodiode and 
has excellent noise performance. It is also possible to implement this detection system without 
any of these analog devices. Pulse energy measurement works for a 1 kHz laser if the input 
impedance of the DAQ card is manually set to ~100 kΩ and the DAQ card’s on-board amplifier 
is used prior to signal digitization. Although eliminating these analog devices reduces the expense 
of the system, it loses the versatility of filtering and amplification. These capabilities enable the 
detection of lower probe pulse energies and higher laser repetition rates, so including the current 
preamplifier, boxcar integrator, or other analog device is preferred. 
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Figure 4.4 | Laser noise detection schematic and example.  (a) The experimental setup 
for laser noise detection. The laser pulses are directed into a photodiode (PD) whose 
output is converted from current to voltage, amplified, and filtered to slow down the 
response. The measured voltage output from the current preamplifier is shown by the 
dashed line in (b). The sample clock of the DAQ card is given by an external TTL signal, 
which is synchronized to the laser. The TTL signal (shown as the solid line in (b)) is 
delayed such that the photodiode trace is sampled once at the peak of each pulse, 
effectively measuring the laser pulse energy. (c) The result of sampling 200,000 
consecutive pulses, and the inset shows an expanded view of a short time period. (d) The 
distribution of the measured pulse energies. (e) The amplitude spectrum calculated by 
taking the Fourier transform of (c). 

 

 One feature of the DAQ card is that an external timing signal can be used as the sampling 
clock. In this configuration, whenever the card detects the rising edge of a logic signal, it 
immediately (within 1.6 μs, the delay is given approximately by the inverse of the sampling rate) 
records the voltage at the input of the analog-to-digital (A/D) converter. The TTL logic signal 
used as the sample clock, shown as a solid line in Fig. 4.4(b), was synchronized to the repetition 
rate of the laser. The TTL pulse train was delayed relative to the laser output with a digital delay 
generator (Stanford Research Systems, model: DG535) such that the rising edge of the TTL pulse 
corresponded to the peak voltage of the preamplifier output [see Fig. 4.4(b)]. In this way, the 
phase between the detected pulses and the sampling clock was stable. The peak voltage was 
measured for every pulse, and this voltage was directly proportional to the laser pulse energy. The 
voltage corresponding to 200,000 consecutive laser pulses is shown in Fig. 4.4(c) and a histogram 
of the measured values is shown in Fig. 4.4(d). In this system, laser noise is much greater than 
noise from the electronics (measured as described later), and essentially all the observed 
fluctuations in pulse energy come from the laser itself. In this data set, the laser was optimized for 
stability and displayed RMS fluctuations of only 0.12%. This value, as well as pulse duration and 
pulse energy, is an important indicator of laser performance. 
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 Figure 4.4(e) shows the noise spectrum of the laser calculated by taking the Fourier 
transform of the time trace in Fig. 4.4(c). The noise spectrum is very valuable because it reveals 
the frequencies of strong noise components, which should be avoided when modulating the pump 
for lock-in detection. Many features of the noise spectrum shown here are typical for the three 
Ti:Saph lasers we measured, including a constant background of white noise, the 1/f noise at low 
frequencies [Bak 1987], and the noise at the AC line frequency (60 Hz here) and its harmonics. 
The strong signal at 120 Hz, in particular, results from the rectifying power supply for the diodes 
in the pump laser for the regenerative amplifier. In addition, there were typically some noise 
components, like the peak at ~160 Hz and the cluster around 280 Hz, that were unique to the 
laser, day, or room. 
 To adapt the technique to measure pump-probe signals, a conceptually similar but more 
complicated setup is required [see Fig. 4.5]. We employed standard strategies to achieve optimal 
noise reduction: balanced detection was implemented to suppress laser intensity fluctuations and 
the pump laser was modulated to shift the signal to higher frequencies and avoid 1/f noise. The 
digital delay generator, which was synchronized to the laser, provided the sample clock for the 
DAQ card and the synchronization frequency for the optical chopper. There were two 
photodiodes; one detected the probe before it interacted with the sample and one detected after 
interaction. Each photodiode output was filtered and amplified as described above with a current 
preamplifier, and both preamplifier outputs were recorded with the analog inputs of the DAQ 
card. We chopped the pump beam at 500 Hz, half the laser repetition rate, so that every other 
pump pulse was blocked. Because the digital delay generator set the sample clock, we measured 
the energy of every probe pulse arriving at each photodiode. Data acquisition by the DAQ card 
was triggered by the chopper controller, so that for every acquisition run, all the even numbered 
pulses had the pump present and odd numbered pulses had the pump blocked. 

 

 

Figure 4.5 | Experimental setup for taking pump-probe traces with the DAQ card. 
The pump, which can be variably delayed relative to the probe, is modulated at half the 
laser repetition rate with a chopper, which is synchronized to the laser. A beamsplitter 
(BS) placed before the sample splits off part of the probe beam to implement balanced 
detection. The current outputs of both photodiodes are converted to voltage, filtered, and 
amplified by the current preamplifiers prior to digitization by the DAQ card. The DAQ 
card sampling clock is synched to the laser so that every laser pulse energy is measured at 
each photodiode. The trigger signal from the chopper controller assures that the pump is 
always blocked when the first pulse energy is acquired. 
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 After all pulse energies are recorded, data processing in the computer is easily 
implemented. The signal from each photodiode for a pulse when the pump is present (pulse a) is 
normalized to the subsequent pulse when the pump is blocked (pulse b), correcting for differences 
in the optical paths. The normalized value from the diode after the sample (PD1) is divided by the 
normalized value from the diode preceding the sample (PD2), correcting for temporal fluctuations 
in the laser power. Finally we subtract 1 to retrieve the modulation: 

1
PD2

PD2

PD1

PD1

0




b

a

b

a

I

I
                                                   (4.4) 

It is convenient that the output of this processing is ΔI/I0, the physically relevant quantity in many 
experiments. Different detection schemes, such as balancing with a Wollaston prism or dark 
background detection, require different mathematical processing that can easily be implemented 
in software. 
 The maximum repetition rate laser to which this method can be applied depends on the 
photodiode, current preamplifier, and DAQ card used. For the hardware described above, the rate 
is limited by the DAQ card, which has a single analog-to-digital converter. The limit is set by the 
time it takes to sample analog input 1 followed by analog input 2, ~7 μs in practice. Because 
performance is best when the signal detected by each analog input channel is similar, the voltage 
trace should evolve on a significantly slower timescale than the sampling rate, and we found 20 
kHz to be a practical upper limit. With a biased PIN photodiode, enough probe input power, and a 
simultaneous-sampling DAQ card with a sufficiently high sampling rate, it should be possible to 
push this method up to 500 kHz repetition rate lasers or beyond.  
 

4.  Results and discussion 

a.  Signal processing and noise 

 An advantage of the DAQ card detection system is that the noise can be quantified after 
each noise-suppression technique (i.e. chopping, balancing, and averaging) is implemented. 
Figure 4.6 shows the noise spectrum and histogram of values for different schemes, where each 
value has been normalized to the mean. To generate these plots, 200,000 pulses of 400 nm light 
were collected from a pair of photodiodes as shown in Fig. 4.5, and the values were processed in 
different ways. The number in the upper right of each histogram is the standard deviation of the 
distribution, which gives the RMS noise. The boxed number in the lower right of each spectrum 
is the factor by which the spectral amplitude was multiplied in that subplot. Figure 4.6(a) and 
4.6(b) show the spectrum and histogram for the unprocessed laser output measured at a single 
photodiode. When these data were measured, the laser was much noisier than for the data shown 
in Fig. 4.6, and the distribution of values extends well beyond the bounds on the axes. Figure 
4.6(c)  & (d) show the output when every laser pulse from a single photodiode is divided by the 
subsequent pulse, simulating chopping. The frequency spectrum only extends to 250 Hz because 
pairs of pulses are combined to make a single value. Chopping can be thought of as a high-pass 
filter: it suppresses low-frequency noise but high-frequency noise is only slightly reduced. 
Figures 4.6(e) & (f) show the output if pulse energies are recorded by a pair of photodiodes, and 
one photodiode output is normalized by the other. This greatly suppresses noise at all frequencies, 
as can be easily seen by the much narrower distribution of values and the greater than 10-fold  
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Figure 4.6 | Effects of signal processing on niose. The noise amplitude spectrum and 
histogram of measured values normalized to the mean for 200,000 pulses of 400 nm light 
processed in different ways. The amplitude for each spectrum was multiplied by the 
boxed factor in the lower right of the plot. The RMS fluctuation value in the upper right 
of the histogram plots is the standard deviation of the distribution, which reflects the 
efficacy of each processing step. (a) and (b) are from the raw pulse energies with no 
processing. For (c) and (d), each pulse from one photodiode was divided by the 
subsequent pulse to mimic chopping. In (e) and (f), the outputs from two photodiodes, as 
shown in Fig. 4.5, were divided to mimic balancing. (g) and (h) show the result of 
dividing one photodiode output by the other and then dividing ratios from successive 
time points to mimic chopping and balancing. (i) and (j) have the same processing as in 
(g) and (h), but the entire trace is convolved with a rectangle function 25 values long to 
mimic averaging. 

 
reduction in noise from the unprocessed data. Figures 4.6(g) & (h) show the result of the 
operations in Eq. 4.4, which incorporates balancing and chopping. This displays good overall 
noise suppression and excellent suppression at low frequencies, which is why these noise 
suppression techniques are so widely implemented. It is possible to further reduce the noise by 
digital filtering of the data. Figure 4.6(i) & (j) show the result of the simplest digital filter: 
unweighted averaging. This can be thought of as convolving the pulse time sequence with a 
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rectangular function, which is equivalent to multiplying by a sinc function in the frequency 
domain, as can be clearly seen in Fig. 4.6(i). We chose the number of pulses to average such that 
an integer number of cycles of the largest noise components were averaged over, almost 
completely suppressing those noise components. In other words, we chose the width of the 
convolving rectangular function so that the nodes of the sinc function in the frequency domain 
fell on top of the largest noise components. Here we averaged 25 pulse pairs, with a total 
averaging time of 50 ms or 3 cycles of the line frequency, which suppressed noise at 60 Hz and 
its harmonics. The 5.5-fold noise suppression between Figs. 4.6(h) & (j) is roughly consistent 

with n scaling predicted for averaging. Figure 4.6(j) has an RMS noise of only 4102.1  , which 

highlights the capability to detect weak signals even with short averaging times when using this 
measurement system. 
 Even though the laser noise is significantly reduced by balancing and chopping, laser 
fluctuations are still the dominant noise source. Shot noise resulting from Poisson statistics in the 

probe has a magnitude of N/1  [Yariv 1971], where N is the number of photons in the laser 

pulse. If we use pulse energies at the high end of the linear response regime of our photodiode, 

roughly 0.5 nJ/pulse at 400 nm or ~109 photons/pulse, shot noise is around 5103  for a single 
pulse.  Because the shot noise for each pulse measured is uncorrelated, the noise variances add 
when performing the mathematical operations in Eq. 4.4, leading to a total contribution from shot 

noise of 5106  , which is more than an order of magnitude smaller than fluctuations not fully 
suppressed by balancing and chopping. To quantify the noise arising from the measurement 
electronics, we blocked all light from hitting the photodiodes and used a setting on the current 
preamplifiers that generates a small DC offset current. This current was amplified and detected at 
1 kHz by the DAQ card in the same way as the real data, then processed as if balancing and 
chopping were implemented. With well shielded cabling and good connections between the 

photodiode and the preamplifier, the normalized RMS deviation was 5109  , significantly 
smaller than the laser noise from the balanced and chopped signal. When a very low-noise laser is 
used, such as that shown in Fig. 4.4 where the normalized RMS deviation is only 0.13%, it is 

possible for the balanced and chopped output to have an RMS deviation of 4103~   (data not 
shown), still significantly larger than noise from the electronics or shot noise. Thus the 
performance of the detection electronics is sufficiently good that measurements are limited by 
pointing and shot-to-shot energy fluctuations in the laser. 
 

b.  Comparison with a lock-in amplifier 

 Lock-in amplifiers [Temple 1975] are often used to measure pump-probe signals. Figure 
4.7 shows a direct comparison of terahertz electric field time traces measured using a lock-in 
amplifier and the DAQ card system. In these measurements the terahertz field induced 
birefringence in an electro-optic crystal, changing the polarization of a transmitted optical pulse 
whose orthogonal polarization components were directed to two photodiodes for balanced 
detection [Valdmanis 1983]. For both measurements, we used the 1 kHz TiSaph laser system 
described above and implemented balanced detection and chopping at 500 Hz. For the lock-in, 
balancing was implemented by sending both signals into the instrument, a Stanford Research 
Systems SR810, which subtracted the inputs before performing additional signal processing. In 
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this scheme, careful balancing is required for optimal noise suppression. Slow drift of laser 
pointing unbalances the diodes, which can adversely affect performance. For the DAQ card 
system, the mathematical divisions in Eq. 4.4 make careful balancing unnecessary and 
significantly reduce the sensitivity to drift in the balancing ratio.  
 

 

Figure 4.7 | DAQ vs. lock-in comparison. The time trace of a multi-cycle THz pulse 
with a center-frequency of 250 GHz measured using a lock-in amplifier (top panel) and 
the DAQ card measurement system (bottom panel). The total measurement time was the 
same for both methods. For each method, the trace was measured 25 times. The black is 
the average and the gray is ±σ for each time delay, so that 68% of measurements fall 
within the gray region. The S/N for each method compares the average uncertainty 
(which was roughly independent of time delay) to the peak signal. 

 

 In a lock-in amplifier, typically both the time constant τ and the filter roll-off are 
programmable. The roll-off reflects the number n of sequential RC-type filters the lock-in signal 
passes through (n = 1 for 6 dB/octave, n = 2 for 12 dB/octave, n = 3 for 18 dB/octave, etc.). 
Passing though n filters can be described mathematically as convolving the lock-in signal with an 
exponential function n times, or convolving the signal with the function: 
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with u(t) the Heaviside step function [Oppenheim 1997]. The lock-in output at a time t most 
strongly reflects the peak of this function, which occurred earlier at a time )1(  nt . It takes 

more time constants for the majority of the signal to decay out of the buffer when changing 
conditions (e.g. the time delay in a pump-probe measurement). In our measurement, we chose τ = 
30 ms and a fourth order, 24 dB/octave filter. We waited 8 time constants, 240 ms, so that there 
was a roughly 4% contribution to the signal at each time delay from the previous time step. 250 
pulses were averaged for the DAQ card, which never has parasitic contributions from previous 
time delays. Using these settings, the number of pulses averaged at each delay and the total scan 
time were roughly the same for both methods. The time trace was collected 25 times for each 
method to build up statistics for signal to noise ratio (S/N) comparisons. In Fig. 4.7, the black line 
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shows the average of the traces and the gray area shows one standard deviation (σ) on either side 
of the average for each time delay, giving the spread in the measurements. As can be seen from 
the figure, the traces look very similar and the data have a similar spread. The standard deviation 
was basically independent of time delay for both methods, so the S/N was calculated with the 
maximum signal and the standard deviation averaged over the delay time as: 

   nII //maxS/N 0 . The S/N is about 40% better for the DAQ card here, but in our 

experience the relative performance of the two techniques depends on the nature of the laser 
fluctuations, and overall both methods have similar minimum-signal detection thresholds.  
 

c.  Rapid scanning 

 In spite of the similarity in detection thresholds for long averaging times, the DAQ card 
system has some advantages at short averaging times. Because the lock-in multiplies the input 
voltage by a sine wave and convolves with the expression in Eq. 4.5, it is necessary for the lock-
in time constant to be significantly longer than the modulation period. If this is not the case and 
the expression in Eq. 4.5 evolves significantly during a single modulation period, quantification 
of the signal amplitude will be impaired. This is not the case in the DAQ card system because it 
uses equally weighted, rectangular function averaging. The minimum averaging time is one 
modulation period, or two laser pulses if modulation occurs at half the repetition rate. Another 
disadvantage of the exponential averaging implemented by the lock-in is that when stepping to a 
new time delay in a pump-probe measurement, it is necessary to wait many time constants for the 
signal from the previous time delay to decay away. This is why we had the 8τ waiting time when 
we took the lock-in trace in Fig. 4.7. No waiting is necessary with rectangular function averaging, 
so a time trace can be acquired more quickly with the DAQ card. 
 A capability made possible by the short averaging time required by the DAQ card system 
is rapid scanning. To implement this, we used an ILS150PP delay stage and ESP300 stage 
controller from Newport. The stage was accelerated to a target velocity, at which point the DAQ 
card acquired signal continuously until the desired time delay was reached. Data acquisition was 
then stopped, the stage was quickly returned to the starting position, and the whole process was 
performed repeatedly. Knowing the stage velocity and laser repetition rate, it is straightforward to 
measure femtosecond or picosecond time traces with accurate time dynamics, assuming the signal 
is large enough to measure with minimal averaging. We were able to display 10 ps time scans and 
their corresponding frequency spectra at a refresh rate of ~1 Hz (data not shown). This rapid 
scanning and real-time feedback was very useful for improving optical alignment and optimizing 
pump-probe overlap, pulse compression, and pump pulse spatiotemporal shaping. The delay stage 
and controller we used to implement fast scanning were not chosen with this application in mind, 
and a delay stage with a faster acceleration will enable even shorter acquisition times. 
 

d.  Differential chopping 

 When chopping low repetition rate lasers (i.e. ~10 kHz or below), generally one requires 
that the chopping is implemented such that pump pulses either pass completely through the 
chopper wheel without clipping or are fully blocked. This ensures that the pump intensity profile 
at the sample is never altered. To implement this cleanly, the pump is chopped at an even integer 
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fraction of the repetition rate R (e.g. R/2: one passed, one blocked; R/4: two passed, two blocked; 
R/6; etc.). When two pump lasers are directed into the sample, the coupling between their induced 
effects can be sensitively detected by implementing differential chopping. In this scheme, the 
pumps are chopped at different frequencies, and the signal is detected with a lock-in amplifier at 
the difference frequency. If one requires chopping at even integer fractions, the fastest difference 
frequency that is not degenerate with one of the fundamental modulation frequencies is achieved 
by chopping one pump at R/4, the other at R/6, and detecting at R/12, which extracts only the 
signal resulting from the coupling between the pumps. The noise can be a problem because of the 
low detection frequency, and it takes additional work to extract signals from just one pump or the 
other. Although we have not tested it, we believe that the DAQ card method offers an elegant 
alternative. In the DAQ card scheme, one pump would be chopped at R/2 and the other at R/4. 

Looking at four sequential probe pulses, the state would be  SSSS and,,, , where “+” 

means the pump is present and “−” means the pump is absent. From these four values all the 
relevant information can be extracted. The signal resulting from both pumps, the first pump only, 

the second pump only, and the coupling between the pumps is given by 1/  SS , 

1/  SS , 1/  SS , and     SSSSS / , respectively. In addition, all four 

signals are detected at R/4, a relatively high frequency, leading to effective noise suppression. As 
a result, the DAQ card system offers multiple advantages in a differential chopping scheme. 
 

5.  Conclusions 

 The detection system described here, which consists of a photodiode, a current 
preamplifier, and a data acquisition card clocked by the laser, is a versatile and useful tool for 
pump-probe experiments. When the DAQ sampling rate is driven by its internal clock, the system 
acts like an oscilloscope. When the DAQ card’s sampling clock is a TTL pulse train synchronized 
to the laser repetition rate, the intensity of every pulse is measured. This enables laser noise 
quantification and measurement of the noise spectrum, much like a spectrum analyzer. When the 
DAQ card system is used with pump modulation and balanced detection, it is able to measure 
very small signals in much the same way as a lock-in amplifier. Because the energy of every laser 
pulse is measured, it is possible to perform arbitrary linear or nonlinear filtering on the data to 
further reduce the noise. For example, with a more unstable laser it might be beneficial to set a 
threshold so that abnormally large or small pulses would be discarded and not included when 
calculating average behavior, as has been done previously (e.g. [Ruhman 1988]). A final 
advantage is fast scanning, which facilitates the optimization of optical alignment and real-time 
feedback on the fast dynamics in the system. 
 In addition to these diverse capabilities, data processing in the DAQ system is intuitive. 
Signal and reference are measured both through the sample and avoiding the sample, and 
everything is divided to cancel out temporal fluctuations and path differences. This processing 
scheme, which is implemented in many common instruments, is simple to understand for 
experimenters new to this kind of technique. In addition, the direct output is ΔI/I0, which is useful 
for comparing signal magnitude across different experiments and is often proportional to some 
relevant physical quantity of the system. Combined with the quantification of laser noise, this 
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helps build intuition about the system under study and the experimental apparatus. DAQ cards 
have been and are used for pump-probe measurements by various labs, but they are not as 
ubiquitous as lock-in amplifiers. Because of its conceptual simplicity and general versatility, we 
believe that the DAQ card measurement system merits wider adoption in the pump-probe 
community.  
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C.  A COMPARISON OF PHASE SENSITIVE IMAGING TECHNIQUES 
FOR STUDYING THz WAVES IN STRUCTURED LiNbO3 

 
Content from:  C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, 
“A comparison of phase sensitive imaging techniques for studying THz waves in 
structured LiNbO3,” J. Opt. Soc. Am. B 27 2350-2359 (2010). 
 

1.  Abstract 

 Four phase-sensitive imaging methods (Talbot, phase contrast, Sagnac, and polarization 
gating) used for detecting terahertz-frequency waves in structured lithium niobate slabs are 
compared analytically and experimentally.  It is demonstrated that both phase contrast and a self-
compensating polarization gating geometry can generate in-focus images of the sample and 
quantitatively measure the terahertz electric field.  Of these two methods polarization gating has 
better signal-to-noise ratio and so is preferred for most situations, while phase contrast imaging 
has better spatial resolution and so is preferred for measurements involving fine structures or 
near-field effects. 
 

2.  Introduction 

 Technology relating to terahertz (THz) radiation has historically lagged behind 
technology relating to the other regions of the electromagnetic spectrum, although this has been 
rapidly changing due to an international effort to develop THz methods [Lee 2009].  THz 
techniques employ a very diverse set of tools, and in many cases great care and effort are required 
to use these tools in concert.  It has been suggested that the nonlinear crystal lithium niobate (LN) 
could serve as an integrated platform for THz generation, control, and detection [Feurer 2007].  
THz “on a chip” or “polaritonics” has the potential benefits of being compact, efficient, versatile, 
and simple, and broad set of capabilities has already been demonstrated in LN.  Using 
femtosecond optical pulses, it is possible to generate THz phonon-polariton waves with high field 
strengths and a tunable center frequency and bandwidth [Lin 2009], a single cycle, or an arbitrary 
field profile imprinted through reconfigurable spatial, temporal, or spatiotemporal shaping of the 
optical intensity profile [Feurer 2003].  The generated waves can be focused [Hornung 2007], 
diffracted [Stoyanov APL 2002], waveguided [Stoyanov NM 2002], or filtered [Statz 2007, Peier 
2009] by structures which have been cut into the crystal through laser micromachining [Ward 
2007].  A final advantage of the LN system is that it is possible to follow the spatial and temporal 
evolution of the THz waves by using variably delayed optical probe pulses for time-resolved real-
space imaging [Koehl 1999], which permits determination of the full THz field under a wide 
range of conditions [Feurer 2007, Feurer 2003, Hornung 2007, Stoyanov APL 2002, Stoyanov 
NM 2002, Statz 2007, Peier 2009, Ward 2007, Koehl 1999, Wahlstrand 2003]. 
 LN (with or without THz polariton waves) is transparent to probe light in and near the 
visible spectral region so no information is encoded in the amplitude of the probe.  However, 
because LN is an electro-optic crystal the phase can be modulated through a THz-induced change 

in the index of refraction: ),(),(),( THz zxEzxnzx  .  If a camera, an intensity detector, 
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were placed immediately after the sample the phase pattern would not be visible.  Instead, various 
methods are needed to convert the phase information into amplitude information.  In this paper 
we compare four phase-sensitive imaging techniques which can be used to detect THz waves: 
Talbot imaging, Sagnac interferometry, phase contrast imaging, and polarization gating.  Talbot 
imaging has been used the longest for detecting waves in the LN platform [Koehl 1999].  
Improved techniques were more recently introduced: Sagnac and polarization gating imaging in 
2008 [Peier 2008] and phase contrast imaging in 2009 [Wu 2009]. A comparison of several 
methods has been presented for imaging THz waves in unstructured LN [Peier 2008]. Here we 
show that the need to image THz waves and sample structures with which they are interacting 
introduces new considerations in the comparison among imaging methods.  This has significant 
consequences for assessing the advantages and disadvantages of each.  Here we introduce an 
improved, self-compensating geometry for polarization gating imaging and compare it with the 
other methods for imaging THz in structured samples. 

The experimental setups for the four methods are illustrated in Fig. 4.9(c)-(f).  All of 
these methods use interference to convert phase to amplitude information, but the interference is 
implemented in very different ways.  In Sagnac imaging, interference occurs between two beams 
that have been separated by a beamsplitter.  In polarization gating imaging, the vertically and 
horizontally polarized components of the beam interfere.  In phase contrast and Talbot imaging, 
the light diffracted by the THz wave pattern interferes with the 0th order (undiffracted) beam.  
These methods have different advantages and disadvantages, but all are executed using common-
path optics, which ensures passive relative optical phase stability between the two interfering 
light fields throughout the course of the experiment.  
 The goal for all four methods is to quantitatively extract the two-dimensional spatial 
profile of the THz electric field as the wave undergoes propagation, dispersion, reflection, 
interference, etc. in the host crystal.  The data are compiled in the form of a video clip in which 
each frame shows the THz electric field at a different time after the THz wave has been launched.  
Figure 4.8 shows frames from such a video at a few selected time points.  In this example, which 
is reminiscent of the classic single-slit diffraction experiment, a rightward propagating wave 
interacts with a LN bridge structure.  Air gaps, masked in light grey in Fig. 4.8(a), have been 
carved into a thin LN slab.  Most of the wave is transmitted through the bridge, which is about 
three wavelengths wide.  After the wave emerges from the bridge, it diffracts and evolves into the 
familiar far-field pattern.  As an example of the information that can be extracted from any time 
or position within the movie, Fig. 4.8(f) shows the E-field measured by averaging over the 
vertical dimension within the dashed box in Fig. 4.8(e).  It is clear that if such data sets can be 
recorded accurately, they provide a wealth of qualitative and quantitative insight into THz wave 
behavior in structured and unstructured media. 
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Figure 4.8 | Sequential images of a THz wave diffracting through a slit.  (a)-(e) 
Polarization gating imaging frames from a video clip of a rightward propagating THz 
wave.  The wave consists of two several-cycle wavepackets separated by 27 ps.  Two air-
gaps [light grey in (a)] were generated by removing these regions from the LN slab using 
laser machining.  A thin LN bridge, ~3 wavelengths tall, remains.  The THz wave passes 
through the gap and diffracts as it is emitted.  (f) An E-field trace extracted by averaging 
over the vertical dimension of the dashed box in (e). 

 
 For the data in Fig. 4.8 and the rest of the paper, we will discuss THz waves propagating 
in 53 μm thick LN samples.  For frequencies less than 2 THz (i.e. wavelengths longer than about 

30 m in the crystal) these thin samples are best described as dielectric slab waveguides.  In this 
frequency range, material dispersion and absorption in lithium niobate are small, and we can 
neglect these effects for the millimeter propagation lengths of interest.  Thus the THz field 
evolves as a set of transverse electric (TE) waveguide modes propagating in a dielectric slab of 
constant index n = 5.11 [Feurer 2007].  One advantage to working in the planar waveguiding 
regime is that the thin sample is entirely in the image plane, so structures will be clear and in 
focus if the appropriate imaging method is used.  Another advantage is that the geometrical 
dispersion experienced by the guided THz wave enables high-amplitude, multiple-cycle THz 
wave generation [Lin 2009], which is useful for study of a variety of systems.  A third advantage 
is that the strong evanescent field of the waveguide mode can interact with any material deposited 
on the crystal surface.  These capabilities make it possible to generate, control, and detect the 
THz field and to study samples of interest in the integrated platform of the LN waveguide. 
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3.  Experimental approaches and methods 

 For all the imaging measurements described below, a THz wave was generated through 
impulsive stimulated Raman scattering [Dougherty 1992] by focusing an intense pump pulse (800 
nm, 70 fs, 400 μJ at 1kHz) through an x-cut LN slab using a cylindrical lens. The width of the 
cylindrically focused “line” of pump light was 20 μm.  The pump pulse, which was variably 
delayed relative to the probe pulse and polarized parallel to the crystal’s optic (z) axis, was 
directed at normal incidence through the crystal slab [Fig. 4.9(a)-(b)].  The generated THz wave, 
which was also polarized along the optic axis, traveled in the crystal plane orthogonal to the 
direction of pump propagation [Fig. 4.9(b)]. 
 

 

Figure 4.9 | Experimental setups.  (a) Optical components common to all four imaging 
techniques.  (b) The pumping geometry showing that the THz wave propagates in the 
plane of the LN slab, orthogonal to the generating pump light.  (c)  Talbot imaging  (d) 
Phase contrast imaging  (e) Sagnac imaging; the dashed line follows one edge of the 
beam through the interferometer.  (f)  Polarization gating.  Instead of 400 nm light from 
second harmonic generation in a BBO crystal, the probe was 532 nm light generated from 
a non-collinear optical parametric amplifier (NOPA). 

 
 In all the experiments, we probed at a different wavelength from that of the optical pump 
so a filter could be used to block the pump light.  For the first three techniques the probe was at 
400 nm, the second harmonic of the pump.  Because LN is a nonlinear crystal, some frequency 
doubling of the pump light occurs.  The resulting 400 nm light could not be removed by a spectral 
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filter and was blocked by a spatial filter in the form of a razor blade.  For the polarization gating 
measurement, instead of probing at 400 nm we used the output of a home-built, non-collinear 
optical parametric amplifier (NOPA) tuned to 532 nm.  This allowed us to use a single 
interference filter to remove both the 800 and 400 nm light from the pump.  Regardless of its 
wavelength, the probe beam was spatially filtered and expanded so it was larger than the LN 
crystal [Fig. 4.9(a)], and was made nearly collinear with the pump beam using a dichroic mirror 
immediately before the sample.   
 A Princeton Instruments PIXIS 2048x2048 pixel, 16-bit, thermoelectrically cooled CCD 
camera was used to capture the images.  This minimized electrical noise, so that the dominant 
sources of noise were shot-to-shot laser intensity fluctuations and pointing instability.  As will be 
demonstrated below more rigorously for each imaging method, the THz E-field is proportional to 
the signal modulation: ),(/),(),(),(),( 0THz zxIzxIzxPzxzxE    [Magnification].  Thus 

to determine the THz E-field, it is necessary to measure the probe intensity both in the presence 
(I) and absence (I0) of the THz wave.  Because the laser noise was strongest on slow time scales, 
it was beneficial to measure the signal image S with the THz wave present and a reference image 
R with the THz wave absent as close together in time as possible. The use of a shutter in the 
pump beam, which opened and closed on a 500 ms time scale, was ineffective because of mild 
sample and filter heating and thermal expansion.  The thermal expansion produced a phase shift 
in the probe, and because it was modulated in the same way as the THz generation, it obscured 
the signal. To eliminate slow thermal effects but still maintain a short time between the 
acquisition of the signal and reference images, we placed optical choppers (New Focus model 
3501) in both the pump and probe beams, and chopped both beams at 500 Hz with the chopper 
phases under computer control. The signal and reference images were acquired with the choppers 
in and out of phase, respectively. The phase cycling sequence was repeated as needed for signal 
averaging at a repetition rate of ~1 Hz.  In this scheme the pump always irradiated the sample at 
500 Hz, and since the timescale for steady-state heating or cooling was much slower than 2 ms, 
there were no detectable thermal effects in the signal. Small amounts of non-probe light reaching 
the detector, such as room light or scattered pump light, were accounted for by recording a 
background image B with the probe blocked.  The signal modulation due to the THz field for each 
image was calculated as 1)/()(/ 0  BRBSII , which was then used for quantitative 

determination of  . 

  

a.  Talbot imaging 

 The Talbot effect, in which a periodic phase or amplitude pattern in a beam is reproduced 
again and again as the beam propagates through space, was first reported in 1836 by H. F. Talbot 
[Talbot 1836].  In this classic experiment Talbot observed a ray of sunlight after it had been 
transmitted through a grating provided by Joseph von Fraunhofer.  This self-imaging 
phenomenon has been studied extensively since then [Patorski 1989], and was first applied to 
imaging of THz waves in 1999 [Koehl 1999].  Talbot imaging has been the most commonly used 
technique for THz imaging up to now [Feurer 2003, Hornung 2007, Stoyanov APL 2002, 
Stoyanov NM 2002, Statz 2007] because of the ease of experimental setup.  In this method, the 
camera is moved out of the image plane of the sample [Fig. 4.9(c)] so that spatially varying phase 
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information interferes with the 0th order beam, bringing about phase to amplitude conversion.  As 
has been discussed [11], for a particular displacement y of the camera from the image plane, a 
free-space probe wavelength λ, and n a positive, odd integer, the part of the phase image with a 

wave vector ynkx  2/2  will be completely converted to an amplitude image while all other 

wave vectors will be converted to amplitude information with lower efficiency.  In addition to the 
wave vector-dependent response, which hampers quantitative measurement of the THz electric 
field, moving the camera out of the image plane blurs any fabricated structure in the LN crystal 
and obscures interactions between wave and structure.  These drawbacks, which have been 
carefully analyzed by Peier et al [Peier 2008], have motivated development of in-focus imaging 
methods that enable quantitative field measurement.  It should be noted that Talbot imaging can 
still be useful for some qualitative applications because it is very easy to align and requires no 
specialized optics. 
 
b.  Phase contrast imaging 

 Phase contrast imaging, an important technique for imaging of transparent samples in 
biology, was first introduced by Frits Zernike in the 1930s [Zernike 1942], and a good overview 
of the development of this technique is given in his Nobel speech [Zernike 1955].  The phase 
contrast method was recently applied to the imaging of THz fields [Wu 2009].  As in Talbot 
imaging, phase-to-amplitude conversion occurs by interference between the diffracted light and 
the 0th order beam, but in this case the camera is located in the image plane, so both fabricated 
structures and THz fields are in focus.  In this geometry the sample is imaged onto the camera 
using a two-lens, 4f imaging system [see Fig. 4.9(d)].  In the back focal plane (the Fourier plane) 
of the first lens, the main, undiffracted beam, also called the 0th order beam, is focused to a small 
spot.  In contrast, the high-wave-vector components of the light, the light that diffracted from 
structures in the sample or the THz wave, are spread throughout the plane and are spatially 
separated from the 0th order beam.  A phase plate with a 30 μm square, recessed region is placed 
in this plane such that only the 0th order beam passes through this recessed square, which 
introduces a π/2 phase shift between the 0th order beam and the diffracted light.  When these two 
fields are recombined in the image plane (the back focal plane of the second lens) they interfere, 
bringing about phase to amplitude conversion.  Using the small phase shift approximation, the 
measured intensity can be shown to be )],(21)[,(),( 0 zxzxIzxI   [Goodman 2005].  Thus 

the signal modulation for phase contrast imaging is: 
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and the phase can be quantitatively extracted. 
 
c.  Sagnac interferometer imaging 

 The Sagnac interferometer was first developed by Georges Sagnac in 1913 to detect the 
relative motion of ether [Sagnac 1913].  The Sagnac geometry has been used extensively since 
then to detect various ultrafast phenomena (i.e. [Gabriel 1991]).  In addition to point source 
detection, it has been used for imaging by scanning of the detection point.  This has been used to 
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study, for instance, propagating surface acoustic waves [Tachizake 2006].  Use of a Sagnac 
interferometer for imaging of THz waves was first demonstrated in 2008 [Peier 2008].  In this 
method the light is divided by a beam splitter, and one beam travels clockwise and the other 
counterclockwise around a ring [Fig. 4.9(e)].  Every time a beam reflects off a mirror, it is 
inverted through the vertical plane.  For the beams to overlap properly after they are coupled out 
of the interferometer there must be an odd number of mirrors in the ring [see the dashed line 
along beam edge in Fig. 4.9(e)].  This ensures that the image of any structure in the crystal will be 
oriented the same way.  The sample is placed so that the counterclockwise traveling wave passes 
through the sample before the pump pulse while the clockwise propagating wave passes through 
the sample after the pump pulse.  The lenses after the Sagnac ring image the sample and the THz 
waves onto the camera for the clockwise ring.  For the counterclockwise arm, the distance from 
the sample to the first lens is much longer, so this shows up as a blurred image on the camera.  
The E-field at the camera is: 

  ),,(),(),(exp),(),( CCWCW zxEzxizxizxEzxE                       (4.7) 

with ),(CW zxE the in-focus image from the clockwise beam, ),( zx the THz-induced phase shift, 

),( zx the phase shift from the Sagnac interferometer, and ),(CCW zxE  the out-of-focus image 

from the counterclockwise propagating beam.  The image detected by the camera is: 

 .),(),(cos),(),(2),(),(),( CCWCWCCWCW
* zxzxzxEzxEzxIzxIEEzxI      (4.8) 

For simplicity, we can assume that 2/),(  zx  and Taylor expand in  .  After dividing by 

the image measured when the pump is blocked ( 0 , CCWCW0 III  ) and subtracting 1, the 

measured signal modulation for Sagnac interferometry is: 
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To quantitatively extract the phase from this measurement, we need to independently measure

),(CW zxE  and ),(CCW zxE , which is not possible because the beams are co-propagating.  In the 

experiment, this means that the diffracted light from the out-of-focus, counterclockwise beam 
shows up in the image and obscures the signal. 
 In principal this problem could be fixed by introducing imaging optics inside the Sagnac 
ring.  One setup that would do this is a 4-lens, 8-f, non-inverting imaging system which would 
use the CCW beam to create an image of the sample inside the Sagnac ring which is an equal 
distance from the beam-splitter as the sample itself.  In this way images from both beams would 
be overlapping and in-focus.  The significant difficulty involved with aligning this system 
coupled with the difficulty of controlling ),( zx , which we conveniently assumed to be π/2 in 

the analysis above, makes Sagnac imaging an inconvenient method.  Because phase contrast 
imaging described above and polarization gating described below do not have these issues, we 
discard Sagnac imaging as a competitive method for quantitative imaging of THz waves in 
patterned LN samples. We note that in clean, unpatterned samples Sagnac imaging is more viable 
because the unfocused CCW image does not have spatially varying features [Peier 2008]. 
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d.  Polarization gating imaging 

 Polarization gating, where the pump pulse introduces a transient birefringence in the 
sample, has long been a tool in ultrafast optics.  It has been used extensively for studying 
relaxation dynamics in liquids through the optical Kerr effect (OKE) [Greene 1982, Kinoshita 
1995] and for measuring THz E-field time traces through electro-optic sampling [Auston 1988, 
Valk 2004].  This method was first used to image THz fields propagating collinearly with the 
optical probe in ZnTe [Wu 1996, Jiang 1999] and more recently discussed in the non-collinear 
geometry used here [Peier 2008].  In our setup, the probe light is polarized at 45 degrees and the 
vertically and horizontally polarized beams are phase shifted by different amounts as they pass 
through the sample.  The small electric field-induced phase shift rides on top of a much larger 
phase shift between the two polarizations caused by the inherent birefringence of the LN crystal.  
We initially tried to compensate the inherent birefringence using a second LN slab of equal 
thickness with its optic axis rotated by 90 degrees, as demonstrated earlier [Peier 2008].  
However, sample imperfections and non-uniformity in the slab thickness made it impossible to 
sufficiently extinguish the beam across the entire sample when two orthogonal crystals were 
placed between crossed polarizers.  The sensitivity of the polarization state to small crystal 
variations was heightened by the large birefringence of LN (no = 2.44, neo = 2.31) [Feurer 2007].   
 To relax the requirements on sample quality, we modified the setup to be self-
compensating, as shown in Fig. 4.9(f).  The crystal is imaged onto a retro-reflecting mirror by a 
two-lens telescope with a magnification of 1.  Immediately before and after reflecting off the 
mirror, the beam passes through a quarter wave plate with its fast axis rotated to 45°.  The double 
pass through the QWP flips the vertical and horizontal polarizations.  The inverted image at the 
retroreflector is imaged back onto the sample by the same lens pair, forming a correctly oriented 
image with the polarizations reversed.  In this way the crystal self compensates any phase shift 
introduced by its inherent birefringence or by any static inhomogeneities in its thickness.  The 
pump launches the THz wave in the sample shortly before the first pass of the probe.  By the time 
the probe passes through the sample a second time the THz wave has long since decayed away 
entirely, so while the inherent birefringence is fully compensated, the detection technique is 
sensitive to the THz-induced birefringence.  After passing through the sample the second time, 
the retroreflected beam is imaged onto the camera.  En route, it passes through the non-polarizing 
beamsplitter, a QWP at 45°, and a Wollaston prism at 0° which splits the beam into vertical and 
horizontal polarizations, both of which are imaged onto different regions of a single CCD chip, 
enabling balanced imaging.  The 45° difference between the orientation of the QWP and 
Wollaston places the interfering fields π/2 out of phase, which gives the strongest, most linear 
response and assures that the induced signals in the two images have opposite signs. 
 Using the Jones calculus formalism [Yariv 2007] and assuming a perfect beamsplitter and 
mirrors (equal reflectivities for s and p polarizations and no relative phase shift between the 
polarizations, a reasonable assumption if optics are chosen carefully), the intensity detected at the 
camera is: 

))],(sin(1)[,(),( 0 zxzxIzxI                                        (4.10) 

with ),(0 zxI   the intensity in the absence of the THz field, and “+” and “-” used to indicate 

vertical and horizontal polarizations respectively. Because the signal modulation is equal in 
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magnitude but opposite in sign for the two polarizations, subtracting doubles the signal strength 
while cancelling noise, which has the same sign in both sub-images.  To correctly overlap the two 
images for subtraction in silico, an affine transformation [Goshtasby 2005], which consists of 
translation, rotation, scaling, and shear, was applied in Matlab to one of the images which maps a 
set of reference points onto corresponding points in the other image.  The transform allowed 
subtraction to be performed without any noticeable blurring of structure edges or other sharp 
features.  Taylor expanding in  , the percent signal modulation for polarization gating is: 
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Thus it is possible to quantitatively extract the phase shift and additionally cancel low wave 
vector spatial noise due to the balanced imaging.   
 

4.  Results and discussion 

 The methods described above can be compared experimentally by analyzing both the real 
space (position/time) and Fourier space (wave vector/frequency) responses.  For each technique, a 
THz wave was generated by a line focus in an unstructured LN crystal (see video clip in [Wu 
2009]).  Because of the line focus, there was uniformity along the vertical (z) dimension.  For 
each time frame in the movie, averaging over the vertical dimension, as was done to calculate 
Fig. 4.8(f), yields the spatial field profile in the lateral (x) dimension.  For each time delay, the 
resulting vector was placed in a different row of a 2-D matrix.  This matrix, a color-map of which 
is shown for each imaging method in Fig. 4.10, contains the full spatial and temporal evolution of 
the propagating THz waves.  Two counter-propagating waves were launched at t = 0, and as they 
propagated, the different waveguide modes separated and the THz pulses became highly chirped 
due to waveguide dispersion.  At intermediate times the waves reflected off the crystal edges, and 
at late times the two pulses again overlapped and interfered with one another.  For the Sagnac 
method [Fig. 4.10(c)], the propagating signal is cut by vertical nodes.  These result from 
diffraction off the edge of the crystal which showed up as fringes in the CCW propagating beam.  
Their appearance was predicted in the Sagnac analysis above, and this spatially non-uniform 
response (exacerbated in a patterned LN crystal) makes Sagnac imaging a poor method.  Fringes 
can also be seen in Talbot data [Fig. 4.10(a)], although it is not obvious from this particular 
figure.  For a clearer example of out-of-focus diffraction fringes obscuring the signal, see for 
instance [Stoyanov NM 2002].  The phase contrast method [Fig. 4.10(b)] also shows some weak 
artifacts near the edge of the crystal due to the large change in the static phase shift, but this is a 
fairly small effect.  The polarization gating method [Fig. 4.10(d)] is basically artifact free. 
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Figure 4.10 | Space-time plot.  Plots from each imaging method showing a broadband 
THz wave propagating in a 53 um thick, 1 cm wide, unstructured LN slab.  The color 
scale indicates the relative value of the electric field.  (a) Talbot imaging.  (b) Phase 
contrast imaging. (c) Sagnac imaging. (d) Polarization gating imaging. 

 
 We can analyze the wave vector and frequency response by taking the absolute value of 
the two-dimensional Fourier transform of the matrices shown in Fig. 4.10.  The time axis 
transforms as frequency and the spatial axis, which is along the direction of waveguide mode 
propagation, transforms as kx, which is often referred to as the waveguide propagation constant, β.  
The results of this transform, shown in Fig. 4.11 for the polarization gating data, are the 
waveguide dispersion curves.  The three visible lines correspond to the first three waveguide 
modes, and their locations and shapes are in excellent quantitative agreement with theoretical 
predictions [Wu 2009]. 
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Figure 4.11 | Experimental dispersion curve.  Taking the 2-dimensional Fourier 
transforms of the space-time plots in Fig. 4.10 (position transforms to wave vector and 
time transforms to frequency) yields the waveguide dispersion curves.  Here the 
transform of the polarization gating data from Fig. 4.10(d) is shown.  The dispersion 
curves for the first three waveguide modes are clearly visible. 

 
 Figure 4.12 shows the average wave vector response for each method calculated by 
averaging over the frequency axis.  The percent signal modulation, 0/ IIP  , depends on  , 

the actual wave vector content of the induced phase shift immediately after the sample, and R, the 
instrument response: )()()( xxx kRkkP  .  Although the four methods have some variation in 

the induced phase shift because the details of pumping may have changed slightly when optics 
were rearranged during the probe reconfiguration, relative differences between the traces in Fig. 
4.12 are due primarily to a varying instrument response.  The modulation in the Talbot response 
(dashed line), in particular the weakened response at low wave vectors, ~60 rad/mm, and ~120 
rad/mm, was predicted in section 3a above.  This non-uniform, wave vector-dependent response, 
coupled with out of focus imaging of structures, makes Talbot imaging a poor method.  Note that 
both phase contrast (solid line) and polarization gating (dotted line) have smooth and un-
modulated wave vector responses and large detection bandwidths.  In this case the bandwidth is 
limited by THz generation and not the detection technique.  
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Figure 4.12 | Measured wave vector content.  The measured wave vector bandwidth of 
the images, calculated by taking the dispersion curves like the one shown in Fig. 4.11 and 
integrating over the frequency axis.  The amplitude is proportional to the actual wave 
vector content multiplied by the instrument response. 

 
 Both the analysis and experimental results indicate that the phase contrast and 
polarization gating techniques show the most promise, so a more careful comparison is required.  
For phase contrast imaging,   represents the THz-induced phase shift in vertically polarized 

light.  The phase shift is: 
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where   is the slab thickness, λopt is the free space optical wavelength, eon  is the THz-field 

induced change in index for the extraordinary axis, and r33 is the appropriate electro-optic 
coefficient.  Equation 4.12 assumes that the THz field is uniform along y through the depth of the 
crystal, which is not strictly correct.  See Section 6 below for a rigorous derivation of the THz-
induced phase shift as a function of mode number and frequency.  For polarization gating,   

represents the difference in THz-induced phase shift between vertically (along the extraordinary 
axis) and horizontally (along the ordinary axis) polarized light.  It is given by: 
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Inserting Eqs. 4.11 & 4.12 into the expressions for percent signal modulation (Eqs. 4.6 & 4.11), 
we have: 
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so the signal modulation is larger for phase contrast imaging.  The significant reduction in noise 
resulting from balanced imaging, however, more than compensates for the slightly weaker signal.  
Movies captured using the polarization gating method look qualitatively better because low wave 
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vector noise resulting from pointing instability in the laser is almost completely eliminated.  In 
addition, the self-compensating geometry makes quantitative measurement of the phase shift 
more reliable because the relative phase between vertical and horizontal polarizations is uniform 
and carefully controlled.  The phase difference between the diffracted orders and the 0th order 
beam is less well controlled in phase contrast imaging because of inhomogeneities in sample 
thickness.  In addition, light diffracted at low wave vectors off relatively large static structures 
may not be sufficiently separated from 0th order light to avoid the sharp edges of the depression in 
the phase plate, further modulating the background.  These effects are visible in Fig. 4.13(a), a 
raw image from the phase contrast setup which shows significant variation in background 
intensity.  Figure 4.13(b) shows a raw image from the polarization gating setup, where the two 
bright regions correspond to the two polarizations emerging from the Wollaston prism.  The 
intensity in Fig. 4.13(b) is much more uniform due to the self-compensation.  The more reliable 
quantification of electric field and superior signal-to-noise ratio makes polarization gating the 
preferred method in most situations. 
 

 

Figure 4.13 | Raw images.  The unprocessed images of a Y-coupler structure imaged 
through (a) the phase contrast setup and (b) the polarization gating setup.  Modulation in 
the background intensity of the phase contrast image is apparent, while it is smooth and 
unmodulated for the polarization gating image.  The two images in (b) result from the 
two polarizations that have been imaged onto the same CCD chip. 

 
 Polarization gating is not the best method, however, when high spatial resolution is 
required.  The retro-reflecting geometry necessitates that there be a large number of optics 
between the sample and first lens that images the sample onto the camera.  In practice, we found 
that the shortest focal length that could be conveniently used was 20 cm, which limits the 
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numerical aperture (NA), and thus the resolution, of the imaging system.  In addition, the sample 
must be very accurately imaged back onto itself [see Fig. 4.9(f)] to obtain the NA-limited 
resolution.  In practice the resolution is on the order of 10 μm, which is significantly sub-
wavelength for 1 THz waves (λ ~ 60 μm in bulk LN) and so not an issue in most situations.  
However, if measurement of much higher wave vector waves or near-field effects around the 
edges of microstructures is desired, then the limited resolution could be an issue.  The phase 
contrast geometry is well suited for high-NA imaging and is preferred in these situations. 
 

5.  Conclusions 

 Because structured LN slabs provide a versatile platform for THz generation and control, 
it is important to have versatile detection techniques to study these systems.  Phase sensitive 
imaging is of significant interest because it enables the recording of the full spatiotemporal 
evolution of the fields.  If quantitative measurement of THz E-field strengths is not necessary and 
out-of-focus imaging of structures can be tolerated, then Talbot imaging is preferred because of 
its simplicity and ease of alignment.  For quantitative THz E-field measurement and in-focus 
imaging, the phase contrast or polarization gating methods are preferred.  Polarization gating 
provides the most reliable E-field measurements because the self-compensating geometry corrects 
for sample imperfections and variations in thickness.  It also provides the best signal to noise ratio 
because balanced imaging can be implemented.  These advantages make polarization gating the 
method of choice for most situations.  Phase contrast imaging, however, lends itself to high 
numerical aperture imaging and so is preferred when high spatial resolution is required.  Thus 
Talbot, phase contrast, and polarization gating form a complementary set of techniques for 
imaging THz waves.   
 

6.  Appendix: Quantitative E-field measurement 

  The experimental setups described above measure the induced phase shift in the optical 
probe, but generally the amplitude of the THz electric field is desired.  If the applied field is DC, 
or perfectly phase-matched detection is used, the E-field can be determined from the simple 
electro-optic effect given by Eqs. 4.12 and 4.13 above.  However, in all of our setups we detect 
AC THz waves propagating perpendicular to the direction of probe propagation, a geometry 
which is necessarily not phase-matched.  This results in a detection sensitivity that depends on 
both the waveguide mode and frequency.  By understanding frequency-dependent sensitivity, it is 
possible to correct for the phase matching error.  As a z-polarized probe pulse travels a distance 
dy along the y-direction [see Fig. 4.9(b) for axes], it accumulates a THz-induced phase shift, 
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Here ETHz is the THz electric field, ωopt is the probe frequency, c is the speed of light in vacuum, 
neo is the extraordinary index of refraction for the probe, and r33 is the appropriate electro-optic 
coefficient.  We can approximate the optical probe pulse by a δ-function in space and time when 
the optical pulse duration is significantly shorter than the THz temporal oscillation period and the 
diffraction-limited spot that can be resolved by the imaging system is significantly smaller than 
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the THz wavelength.  This lets us calculate the induced phase shift as a function of waveguide 
mode, m, and frequency, ωTHz, by inserting the theoretical description for the waveguide mode 
field profile into Eq. 4.15 and integrating.  During the integration we must account for the time 

dependent THz phase: 0optTHz0THz /   cynt , which changes as the optical probe 

propagates through the waveguide.  Putting this all together yields: 
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with   the slab thickness.  The transverse field profile of the THz wave in the lithium niobate 
given by the well known eigenstates of the dielectric slab waveguide [Cronin 1995]: 

 2/),(cos),,( THz0THz  mymkEmyE yT                                (4.17) 

Here the transverse wave vector, ky, depends on the mode number and the THz frequency.  Even 
modes are cosine functions and odd modes are sine functions, with y = 0 defined as the center of 
the crystal.  The sensitivities for the first three waveguide modes are plotted in Fig. 4.14, with the 
sensitivity defined as the phase shift induced by the THz wave divided by the phase shift that 
would be induced by a DC field of amplitude E0.  The system is most sensitive to the 0th order 
mode for frequencies below ~1.5 THz because it is the most uniform along y, and generally 
performs better for lower frequencies since these THz waves travel only a small fraction of their 
wavelength during the transit time of the optical probe pulse through the LN slab.  For situations 
where the waveguide mode and frequency are known, as is often the case for a narrowband THz 
wave [Lin 2009], the E-field can be quantitatively measured using Eq. (4.12) or (4.13) and 
dividing by the sensitivity to correct for the imperfect phase matching. 
 

 

Figure 4.14 | Detection sensitivity.  The mode- and frequency-dependent sensitivity for 
a 53 μm LN slab.  Sensitivity is defined as the actual phase shift induced in the probe as it 
propagates through the LN slab normalized by the phase shift that would be expected for 
a DC electric field.  

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

frequency (THz)

m = 0
m = 1
m = 2

φ
Δ

/Δ
φ 0



 

108 

 

D.  ADVANCES IN THz IMAGING METHODS 

1.  Introduction 

 Section 4C and the paper it was drawn from [Werley 2010] made a careful comparison of 
phase sensitive imaging techniques for visualizing THz waves in a LiNbO3 slab.  The primary 
conclusion was that phase contrast is the best choice for high-resolution imaging, while self-
compensating polarization gating offers the best signal-to-noise ratio and most quantitative 
extraction of THz electric field strengths.  Since the publication of [Werley 2010], there have 
been a number of advances in the optical design of both phase-contrast and polarization gating 
imaging, primarily targeted at increasing resolution.  In addition, there have been advances in the 
cameras and hardware to improve the signal to noise.  My aims in this section are to show the 
different iterations for both techniques, and to use that to explain the design decisions and 
hopefully point out some pitfalls to avoid in future work. 
 

2.  Phase contrast imaging 

 There are two primary decisions when designing the optical setup for phase contrast 
imaging.  The first is how to combine the pump and probe in the sample and subsequently re-
separate them without damaging any of the optical components.  For example, the pump will 
likely destroy any objective lens it passes through.  The second major consideration is what lens 
to use after the sample (this lens sets the numerical aperture (NA)), and the design of the phase 
mask paired with this lens.  Figure 4.15 shows the evolution of the imaging setup. 
 In Fig. 4.15(a), the phase mask was made by depositing a λ/4-thick layer of poly(methyl 
methacrylate) (PMMA) photoresist onto a flat fused silica substrate.  The photoresist in the center 
was then exposed and removed, resulting in a 30 x 30 μm recessed square in the center of the 
substrate.  The size of the square was designed so that the main beam would focus through the 
depression without clipping the edges, while little diffracted light would pass through the 
depression.  Gold arrows deposited on the phase mask facilitated alignment.  In this design, the 
pump light was separated from the probe light using a dichroic mirror, but it turns out that a tilted 
optic in any imaging system will introduce significant aberration and skew the image. A simple 
solution to this is shown in Fig. 4.15(b), where the dichroic mirror is replaced by an absorptive 
filter. 
 The design in Fig. 4.15(b) was a huge step forward over Talbot imaging in terms of 
image resolution.  Talbot imaging is an out-of-focus technique and the resolution is roughly 
50μm.  It is useful in some situations because the resolution is finer than the wavelength of lower-
frequency waves, but the Talbot method is obviously somewhat limited.  The iteration of phase 
contrast in Fig. 4.15(b) increased the resolution to ~ 5 μm, but there were still some challenges 
and limitations.  First, the absorptive filter and simple achromatic lens introduced some spherical 
aberration, so the image was not completely diffraction limited.  Second, the NA of the imaging 
system was fairly modest.  In addition to these standard imaging considerations, the phase mask 
had some problems.  The PMMA was delicate and was easily damaged by the tightly focused 
probe.  In addition, the gold arrows deposited on either side of the recessed region to aid in 
alignment [Wu 2009] blocked some of the diffracted light.  Finally, the pump generated 
significant second harmonic in the LiNbO3 slab, which could not be removed with a color filter 
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because it was the same frequency as the probe light.  As a result, the pump had to be sent into 
the sample at an angle, so the generated second harmonic would be spatially separated and could 
be blocked by a razor blade or other thin metal element.  Blocking the pump with a thin element 
has several drawbacks, including the fact that it is difficult to remove the pump light entirely and 
the element obscures some diffracted information in the probe. 
 

 

Figure 4.15 | Evolution of phase-contrast design.  This figure shows the optical design 
to the left and indicates key design characteristics to the right.  Abbreviations are defined 
at the bottom.  In the first two designs, probing is performed with 400 nm light, and SHG 
from the pump in the LiNbO3 must be blocked spatially.  In (c) and (d), probing is 
performed with 532 nm light from a NOPA, so pump and SHG can be blocked with a 
spectral filter.  (a) The initial design.  The pump light was reflected off a dichroic mirror 
after the sample.  The diffracted light was diverging when it passed through this angled 
optic and thus degraded the image.  (b) The dichroic was replaced by an absorptive filter 
at 0°, enabling imaging with moderate resolution.  (c) This design was used in the 
antenna studies and featured a higher NA and reduced spherical aberration.  (d) A 
proposed design, tested for regular imaging in the antenna work, which pushes the NA 
higher and further improves resolution. 

 
 The design in Fig. 4.15(c) addressed many of the problems with the design in 4.15(b).  
The primary filter was a reflective dichroic mirror, which is aberration free, and the first lens was 
an aplanat which largely removed spherical aberration (CVI part #: LAP & APM-100-20, WD = 
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45 mm, NA = 0.19, f = 66 mm).  Thus the system yielded a nearly diffraction limited image with 
a resolution of about 2 µm [λ/(2NA) = 1.5 μm].  Furthermore, instead of depositing photoresist on 
the fused silica, the glass was etched away to a quarter-wave depth in a 25 x 25 μm square, 
significantly increasing the damage threshold.  The gold arrows for alignment were also moved 
1.5 cm away from the recessed region, far enough off center that they did not block any diffracted 
light.  Finally, the probe light was switched from 400 nm (SHG of the 800 nm light) to 532 nm 
light from the output of a non-collinear optical parametric amplifier (NOPA).  Because the NOPA 
output was well separated in wavelength from both the 800 nm pump and the pump-generated 
400 nm light, it was possible to reject all pump light with a single dielectric filter (pass ~ 512 nm 
to 552 nm).  532 nm light was chosen in particular because of the availability of diverse, high-
quality optics at this wavelength.  The spectral filter let us remove all spatial blocks from the 
imaging system so the diffracted light could pass unimpeded.  This design was used to collect 
very beautiful movies of the antenna (Chapter 6, [Werley 2012]). 
 Although the design in Fig 4.15(c) is quite flexible and solved most of the problems with 
phase contrast imaging, there still remain situations where an even higher resolution would be 
desirable.  When studying the antennas, for example, the imaging resolution was already 100 
times finer than the THz wavelength, but there was structure in the near-fields that we could not 
resolve.  To improve the resolution of the imaging system further, a higher NA objective is 
required [see Fig. 4.15(d)].  Not any objective can be used, however, because the pump light must 
still be removed upstream of the objective. I propose using an experimental geometry we 
developed for aligning the probe spot into the antenna gap in point-source detection.  This method 
uses a long working distance objective and rejects pump light with an ultra-thin reflective filter 
(CVI part #: SWP-0-R800-T400-ET-25.4-0.30-UV).  The filter is thin enough that it introduces 
minimal aberration.  I suggest Mitutoyo’s long working distance objectives; either the 10x (CVI 
part #: 04OVI010, working distance (WD) = 33mm, NA = 0.28, f = 20 mm) or the 20x (CVI part 
#: 04OVI020, WD = 20 mm, NA = 0.42, f = 10 mm) seem like good candidates.  The 10x gives 1 
μm resolution, and has already been tested with the ultra-thin filter.  I believe the filter would also 
be able to protect the 20x objective without being damaged, and this would offer 700 nm 
resolution, enabling λ/300 resolution for lower THz frequencies.  While even finer resolution may 
be desirable, objectives with higher NA’s have shorter working distances and will be difficult to 
protect from the high pump fluence.  Replacing the current lens with a higher NA objective 
would require a new phase mask to be incorporated as well.  The recessed region of the new 
phase mask would have reduced dimensions (the size of the square should scale with the focal 
length of the lens).  It would also be beneficial to use a thinner substrate for the phase mask 
because it seemed the 3/8-inch substrate in the current design [Fig. 4.15(c)] introduced significant 
aberration. 
 

3.  Polarization gating imaging 

 Phase contrast imaging offers the most promise for high-resolution imaging, which is 
critical for characterizing the deeply sub-wavelength near-field structure of metal components.  
For measurement of purely dielectric structures such as photonic crystals, however, a more 
modest resolution is acceptable.  For these measurements, polarization gating imaging provides 
the most accurate quantification of THz field strengths and greatly improved noise suppression 
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via balanced imaging (section 4C and [Werley 2010]).  In polarization gating, 45°-polarized 
probe light passes through the sample and the THz is detected via the induced change in sample 
birefringence.  However, working with 45°-polarized light is challenging because each mirror has 
a different response for s- and p-polarization states and will depolarize the beam.  Another 
challenge is that the sample itself is strongly birefringent even in the absence of a THz field. 
When strategies to control the polarization state of the light are implemented, careful optical 
design is required to maintain good image resolution. 
 Figure 4.16(a) shows the first generation design for polarization gating imaging [Peier 
2008].  When the probe passes through the highly anisotropic LiNbO3 slab, the vertically 
polarized component develops a large (>>2π), wavelength dependent phase shift relative to the 
horizontally polarized component.  To compensate for this static birefringence, a second LN slab 
with its optic axis rotated by 90° was placed in the imaging path, which should in principle 
correct for the induced phase shift.  However, we found in practice that slight inhomogeneities in 
sample thickness could not be compensated and led to large spatial variations in the polarization 
state of the beam.  This prevented quantitative measurement of the THz field strength and gave 
the system a spatially varying sensitivity to THz fields.  In addition, it was difficult to separate the 
400 nm probe from the pump second harmonic generated in the LiNbO3 slab, much like in the 
early generations of phase contrast imaging. 
 The solution to these problems is shown in Fig. 4.16(b).  To address the difficulty of 
separating the probe light from the pump light, we probed with the 532 nm output of a NOPA and 
used a single dielectric filter to block all pump light.  The next advance was self-compensation.  
By imaging the sample back onto itself, after flipping the vertical and horizontal polarization 
components, it was possible to have a nearly pure polarization state after the second pass through 
the sample (see 4C and [Werley 2010]).  This also enabled balancing, which suppressed the noise 
by a factor of ~5 (see Fig. 4.6 and [Werley 2011]) and was critical for removing the low wave 
vector background flicker that appears in old polaritonics movies.  The downside of this design, 
however, was its resolution.  The sample was imaged back onto itself, and any imperfections in 
alignment hurt the resolution.  In addition, the main probe beam and the diverging diffracted light 
were transmitted through the non-polarizing beam splitter, which introduced significant 
aberration.  Perhaps the worst offender was the Wollaston prism.  The different polarization states 
refract in different directions, and that introduces significant smearing in the image.  The 
technique is “in-focus”, so the resolution is better than for Talbot imaging, but the resolution is 
only 15 – 20 μm.  For many measurements this is sufficiently fine because it is still significantly 
smaller than the THz wavelength.  However, this can be limiting when dealing with structures, 
even those without plasmonic near fields.  In a photonic crystal, for example, the bandgap occurs 
when the hole diameter is roughly 1/4 of the THz wavelength (λ/4), and fields can vary on even 
shorter length scales.  Since a 1-THz phonon-polariton has a wavelength of 60 μm in bulk 
LiNbO3, λ/4 corresponds to 15 μm.  It is desirable to use polarization gating because of its 
quantitative field measurement and low noise, but the resolution in Fig. 4.16(b) is clearly limiting. 
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Figure 4.16 | Evolution of polarization gating optical design.  Abbreviations are 
defined in the insets and performance characteristics are indicated to the right.  In the first 
design (a), probing was performed with 400 nm light, and SHG from the pump in the 
LiNbO3 had to be blocked spatially.  In (b) and (c), probing is performed with 532 nm 
light from a NOPA, so pump and SHG can be blocked with a spectral filter.  (a) In this 
initial design, a second slab of LiNbO3 with its optic axis rotated by 90° was placed in the 
beam to compensate for the static birefringence of the first slab.  The strategy proved 
ineffective due to inhomogeneities in slab thickness.  (b) The sample slab is imaged back 
onto itself (with its polarization rotated by the QWP), self-compensating its static 
birefringence.  (c) A design with improved image resolution.  The image is reflected off 
the non-polarizing beamsplitter to minimize aberration, and a polarizing beam splitter 
replaces the Wollaston prism, which smeared the image when it refracted the two 
polarization states in opposite directions. 
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 To address the resolution limitations, we redesigned the optics as shown in Fig. 4.16(c).  
The simple first correction was to reflect the image off the non-polarizing beamsplitter instead of 
transmitting through it, eliminating it as source of aberration.  Next, we placed a pinhole in the 
Fourier plane (the focal plane) of the retro-reflecting imaging system.  The pinhole size must be 
large enough to transmit the information about thickness variation in the LiNbO3 slab for self-
compensation, which tends to be slowly varying, but small enough to block the high wave vector 
information diffracted off sample structures.  Although this is inexact, we found in practice that it 
does indeed improve resolution because two images (one from each pass through the sample) 
need not be overlaid on top of each other.  Perhaps with very careful imaging in the retro-
reflecting setup using low-aberration, high NA lenses, the pinhole would have no effect on final 
image resolution.  The final step to improve image resolution was to replace the Wollaston prism 
with a polarizing beamsplitter.  Although the optical setup is more inconvenient, the design in 
Fig. 4.16(c) lets us see the whole width of the LiNbO3 slab in the two balanced images on top and 
bottom of the CCD chip.  For both images to be in-focus, the path lengths of both beams must be 
the same, and this can be tuned by changing the angle of the beam that was transmitted through 
the polarizing beamsplitter.  The advantage of the polarizing beamsplitter is that it does not 
refract the beams as the Wollaston does, and therefore introduces minimal aberration into the 
imaging system.  The above modifications improved the resolution to 5 μm, sufficiently fine for 
measurements that don’t have metal structures with strongly localized near fields.   
 In fact, for photonic crystals and other machined microstructures, we want the depth of 
focus to be equal to the slab thickness.  The depth of focus, also known as the confocal parameter 

b, is related to the numerical aperture (NA) by ].)(8/[ 2NAb    The resolution is given by 

).2/( NAd    For a 50 μm thick slab and 532 nm probe, the optimal NA is 0.06, which yields a 

resolution of 4 μm.  For small divergence angles (long focal length lenses) NA = D/(2f), so the 
lens aperture should be D ~ 0.12f.  In principle, higher NA lenses (e.g. CVI part #: LAP and 
APM-300.0-60.0, WD = 163 mm, NA = 0.19) can be used to further improve the resolution for 
studying metallic structures on the surface, but this will be difficult in practice, so phase contrast 
imaging is preferred for high-resolution imaging.  Another possible improvement to the 
polarization gating setup could come from using a Wollaston with a very low separation angle.  
This would simplify the alignment considerably over the polarizing beamsplitter and may 
introduce sufficiently low smearing to make it a better option in many situations. 
 

4.  Cameras and hardware 

 The previous two sections tracked the evolution of the optical design, which generally 
focuses on increasing image quality and resolution, filtering of pump light, and improved 
quantification of the THz-induced phase shifts in the optical probe.  In parallel with the evolution 
of optical design, the electronics, hardware, and referencing procedure have also improved.  In 
this case, the primary focus has been improving the signal to noise ratio (SNR) and reducing 
acquisition time.  To measure the THz field, it is always necessary to measure two images: a 
signal image when the pump is present and a reference image when the pump is blocked.  The 
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signal image is divided by the reference image to extract ΔI/I0, and this is used to measure the 
THz field strength.   
 To design the optimal detection setup we need to minimize total noise, which comes both 
from the laser and the detection electronics.  Although electronic noise can be significant for 
high-noise detectors such as a CMOS camera, laser noise usually dominates ultrafast 
measurements (see Ch. 4 Sec. B and [Werley 2011]).  It is of paramount importance to suppress 
this laser noise, which requires understanding its characteristics.  The largest component results 
from long-timescale fluctuations of laser power and pointing, the laser drift.  The magnitude of 
this drift is inversely proportional to the frequency, and so is called 1/f noise, a type of noise 
common in many physical systems [Bak 1987].  It can be clearly observed at low frequencies in 
our laser until it drops below the flat, white-noise floor at ~50 Hz [see Fig. 4.4(e)].  To combat 1/f 
noise, it is beneficial to record signal and reference images as close together in time as possible. 
 Table 4.1 shows the different methods for switching between signal and reference 
images, and indicates the time between them.  In the first method (first row), the reference image 
was recorded once at the beginning of data acquisition.  Then the delay stage was slowly scanned 
and a signal image was recorded at each time delay, typically taking ~30 minutes to record an 
entire trace.  During this 30-minute interval, the laser would inevitably drift significantly so that 
the signal and reference traces were quite different, leading to bad noise in the THz movie.  The 
solution to this problem was to collect both signal and reference at each time delay.  The first 
implementation of this (second row) was to place a computer-controlled shutter in the pump.  At 
each time delay the computer would close the shutter, capture a reference image, open the shutter, 
and capture a signal image.  This was very helpful for suppressing the effects of slow laser drift, 
but there was an unanticipated problem.  When the pump shutter was opened, the sample would 
heat and expand, and our phase-sensitive imaging methods would detect this change.  The movies 
showed the phase shift introduced both by the THz wave and by the temperature change. 
 To minimize the effects of sample heating and cooling we used choppers instead of a 
shutter (third row).  Both pump and probe were chopped at 500 Hz with choppers synched to the 
laser.  The signal image was collected when the choppers were in-phase: pump and probe pulses 
derived from the same laser pulse would pass through the choppers.  When the choppers were 
out-of-phase, pump and probe pulses from alternating laser shots would pass through the 
choppers and the reference was detected.  In the out-of-phase configuration, the probe pulse 
arrived ~ 1 ms after the pump, so the THz was long gone and a clean reference could be recorded.  
The pump laser hit the sample at 500 Hz when collected both signal and reference images, so the 
thermal load was constant and a temperature difference was not detected.  This acquisition 
method was slightly slower than using shutters because changing the chopper from in-phase to 
out-of-phase took approximately 1 second, but it was still much better than acquiring the 
reference only once at the beginning of the scan. 
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Pump modulation method Detector Type 
Time between 

signal and 
reference images 

Take single reference image, record signal 
images at each time delay in the entire trace. 

Slow, low noise 
CCD 

30 min. 

Place a shutter in pump, close for signal, open 
for reference at each time delay. 

Slow, low noise 
CCD 

1 sec. 

Chop both pump and probe at 500 Hz.  
Choppers in phase for signal and out of phase 
for reference.  Change phase at each time delay. 

Slow, low noise 
CCD 

2 sec. 

Chop pump at 500 Hz, detect every probe pulse 
on a camera synched to the laser. 

fast, high noise 
CMOS 

1 msec. 

Table 4.1 | Evolution of imaging hardware.  The table gives a brief description of how 
signal and reference images were collected in the first column.  The detector is indicated 
in the second column; the CCD was a Pixis camera from Princeton Instruments and the 
CMOS camera was a Fastcam 1024PCI from Photron.  The last column shows the time 
between signal and reference images.  Shorter times more effectively suppress laser 
noise. 

 
 Although using the choppers to capture signal and reference images suppressed some of 
the 1/f noise, it was still significantly slower than the ideal.  It would be preferable to reduce the 
time between signal and reference acquisition even further.  A very common noise suppression 
strategy is to modulate the pump and detect the signal at the modulation frequency, as is done for 
a lock-in amplifier or for our DAQ card detection system (Ch. 4 Sec. B, [Werley 2011]).  
Generally the modulation frequency should be as high as possible, and it should be chosen to 
avoid systematic noise, such as the AC line frequency at 60 Hz and its harmonics.  For a 1 kHz 
laser, the optimal choice is to chop at 500 Hz (every other pump pulse blocked).  To implement 
this, we purchased a fast CMOS camera from Photron that could be synched to the laser, thus 
acquiring an image for every laser pulse.  We chopped the pump at 500 Hz, so that every even 
numbered probe pulse (when the pump was unblocked) detected the signal image, and every odd 
numbered probe pulse detected the reference.  There are still some challenges associated with the 
fast camera, including difficulties in rapidly processing the massive amounts of raw data (data 
rate = 2 Gbyte/sec) and a CMOS detector that is noisier than its slower CCD counterpart.  In spite 
of these challenges, the CMOS detector is greatly preferred because of its high detection 
frequency and excellent laser noise suppression.  When combined with balancing as described in 
Fig. 4.16, movies of THz waves can be detected with sensitivity approaching that of point probe 
lock-in detection.  The exceptional sensitivity and improved resolution from these advances will 
enable a broad set of future experiments. 
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Chapter V 

Direct visualization of THz waves in classic 
experimental geometries 

 

Content from:  C. A. Werley, C. R. Tait, and K. A. Nelson, “Direct visualization of THz-
frequency electromagnetic waves in classic experimental geometries,” Am. J. Phys. 80, 
72-81 (2012). 

 
PREFACE 

 In recent years, educators in science have been striving to bring modern research into 
their classrooms and build connections between current applications and more traditional 
coursework.  As we were developing the experimental methods discussed in chapter 4, in 
particular the imaging of THz waves, we realized that many of the results had significant 
educational value.  Direct visualizations of propagating electromagnetic waves are more modern 
versions of classic water wave demonstrations.  We determined to fabricate a set of structures 
using laser machining that would demonstrate classic experimental geometries, capture videos of 
THz waves interacting with these structures, and compile and present them for use in classes and 
lectures.  This chapter is drawn from the resulting paper [Werley 2012]. 
 

A.  ABSTRACT 

 In this study, we used cutting-edge research methods to collect educational video clips of 
electromagnetic waves propagating at the speed of light. The electromagnetic waves were of 
terahertz frequencies and were generated and detected in LiNbO3 crystals structured to reproduce 
classic optical geometries and experiments, such as two-slit interference and diffraction from a 
grating. Direct visualization of the phase fronts as the electromagnetic pulses propagate, reflect, 
diffract, and interfere helps develop intuition and insight about the fundamental behavior of light 
and waves.  We believe these videos will be a valuable addition to lectures on introductory optics 
and physics, as they will bring modern research to the classroom and provide clear and direct 
experimental demonstrations of light and wave behavior.  
   

B.  INTRODUCTION 

In both optics and everyday life, the behavior of light is determined by its wave-like 
nature, but for students of optics, this can be difficult to visualize. Simple lab experiments that 
demonstrate wave behavior, such as diffraction or interference, generally do not enable direct 
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visualization of the processes as they unfold or directly follow the electromagnetic wave as it 
interacts with objects. In Young's two-slit experiment, for example, a screen is usually placed far 
from the slits to observe an intensity pattern. This is a beautiful experiment, but it does not 
highlight effects like phase front curvature or interference effects close to the slits. In this work, 
we explain an experimental technique that enables the direct imaging of electromagnetic 
waves and the capture of short video clips of waves propagating in a nonlinear optical crystal at 
the speed of light. We then present videos of some classic optical experiments collected using this 
technique which clearly show wave behavior such as reflection, focusing, interference, 
diffraction, and waveguiding.  

It is our hope that this direct experimental record of propagating electromagnetic waves 
will provide readers of this article and viewers of the associated videos with valuable physical 
intuition about wave behavior. We envision that the videos can most effectively be used in 
lectures or as supplements to lectures. For instance, after deriving the far-field diffraction pattern 
from two slits, a lecturer could very briefly explain our experimental technique (or at a simpler 
level, could just indicate that these are genuine, direct experimental measurements) and then 
show the appropriate video. Figure 5.2 and Sec. 5.C.3 present the key ideas required for 
understanding how the videos are collected. It should be possible to explain the technique at a 
basic level and show the selected videos in under 5 minutes, thus not using too much valuable 
lecture time. We think that students should be encouraged to seek experimental proof of 
theoretical concepts they are taught, and the videos here provide such proof convincingly. 
Ultimately we hope that, with the help of other labs, an online library of videos demonstrating a 
broad set of important optical phenomena will be posted.  

It is also important to consider the relative roles of these experimental videos and 
theoretical simulations. The experimentally compiled video library provides students with 
opportunities to compare classroom discussions of wave phenomena with real results including 
non-ideal behavior resulting from stochastic noise fluctuations, sample imperfections, etc. This 
sort of comparison is a key element of the scientific method. The ability to critically compare 
expectations with experimental results is critical for physicists and important for all informed 
citizens when weighing any issues at the intersection of science and society such as climate 
change, genetically modified foods, and energy resources. Theoretical simulations play a 
complementary and equally important role. Simulations can build intuition, especially in 
connection with interactive programs in which users can vary parameters and observe changes in 
system behavior. In most cases simulations are inexpensive and their results are effectively free 
of noise, yielding clear illustrations the behavior that results from a particular model. A majority 
of the results in this paper can be treated with analytical theory, as discussed in Sec. 5.D below. 
Many simple geometries from introductory electricity and magnetism can also be accurately 
modeled with finite difference time domain (FDTD) simulations (e.g. [Taflove 2005; Sipos 
2008]), and the experiments in which the wave propagates in lithium niobate can be reproduced 
with a slightly more complicated formulation of the FDTD simulation [Ward 2003]. Using 
conceptual formulation, analytical theory and simulation, and experimental results in concert can 
build competence in the specific subject being taught and in scientific thinking in general. 
 The waves displayed in the videos are terahertz (THz) frequency electromagnetic waves. 
THz radiation, roughly classified as having a frequency between 0.1 and 10 THz, is nestled 
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between the infrared and microwave regions of the electromagnetic spectrum. The wavelength of 
these THz waves, λ = c/f ≈ 30 – 3000 μm in free space, is large enough to be easily resolved 
using optical imaging but small enough that many wave cycles fit within a 1 cm square crystal. 
Insight gained at THz frequency can be generalized to any other frequency range because the 
behavior of light has no fundamental length scale [Joannopoulos 2008]. Since length and 
frequency are scaled by a constant factor )/',',','( aazzayyaxx   , the behavior is 

identical at any length scale. Many of the phenomena discussed below, such as diffraction, 
interference, reflection, and focusing, are universal for all wave types, including acoustic (sound 
or pressure) and water waves.  
 The field of THz research has been particularly active since around 1990 when new tools 
for generating and detecting THz radiation were developed [Auston 1988; Grischkowsky 1990]. 
The first experiments on THz imaging took place in 1996, where THz radiation was imaged after 
diffracting off an object of interest [Wu 1996; Jiang 1999]. In these measurements the THz field 
is used for imaging of objects, but the THz itself is not visualized. In contrast, our purpose is to 
observe the THz field itself. The first experiments of this type were presented moer than ten years 
ago [Koehl 1999]. Since then numerous experiments have employed imaging to study THz waves 
[Feurer 2007]. These techniques have been used to study THz generation [Feurer 2002; Feurer 
2003; Lin 2009] and the interaction of THz with various structures [Stoyanov APL 2002; 
Stoyanov 2002; Stoyanov 2004; Peier 2009; Peier 2010] Recent advancements in the 
methodology of imaging [Peier 2008; Wu 2009; Werley 2010] have made it possible to collect 
high resolution, in-focus videos of THz waves interacting with a variety of fabricated structures. 
These recent developments in THz imaging and generation were incorporated in this study to 
make the images and videos as clear and understandable as possible.  
 The experimental section that follows explains how THz waves are generated and 
detected and how videos of propagating waves are captured. It also explains how we produce 
samples with structures such as slits and waveguides. This background will help the interested 
reader to better understand the experiments but is not necessary for understanding the physical 
principles demonstrated by the videos that are presented in the results section. The first 
experiment highlights interference by crossing two beams, while the second emphasizes 
diffraction resulting from a wave passing through a single slit. The next three experiments 
(Young's double-slit experiment, a transmission grating, and a reflection grating) display the 
combined effects of diffraction and interference. The sixth experiment shows focusing of a 
curved phase front. The final two experiments display the capabilities and effects of waveguiding. 
The variety of geometries in these experiments demonstrate a number of important optical 
behaviors and phenomena and opens the door to many further instructive examples.  
 

C.  EXPERIMENTAL 

1.  Generation of THz electromagnetic waves  

 THz waves were generated by focusing short, intense laser pulses into a nonlinear crystal. 
The laser pulses were produced by an "ultrafast" titanium:sapphire laser and amplifier [Strikland 
1985], with a center wavelength of 800 nm, a duration of 100 femtoseconds (10-13 seconds), and 
about 1 mJ of energy. Such high-energy, short duration pulses have extremely large peak 
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intensities around 3 x 1011 W/cm2, which allow them to exert significant forces on the ions in a 
crystal lattice, displacing them from their equilibrium positions.  This class of phenomena falls 
under the umbrella of nonlinear optics, and there are many textbooks written on the subject (e.g. 
[Boyd 2008; Shen 2003]). For understanding this paper, the key result is that a small part of the 
energy from the short, high-frequency (~375 THz) optical "pump" pulse is converted into a short, 
low-frequency (~0.5 THz) THz pulse which is typically several picoseconds in duration. 
 In the present experiments, the nonlinear crystal used was lithium niobate, LiNbO3. The 
nonlinear physics of THz generation in LiNbO3 has been well studied [Auston 1988; Dougherty 
1992], and in this crystal impulsive stimulated Raman scattering is responsible for converting 
some of the optical frequency light to THz frequencies. A THz wave generated in LiNbO3 
propagates at a large angle relative to the optical pump pulse that produces it [Auston 1988] 
because the speed of the optical pulse is far higher than the speed of the THz pulse. The effect, 
labeled the “Cherenkov” effect, is very similar to that of a boat rushing through water faster than 
the speed of water waves, where the wake left by the boat propagates mainly sideways relative to 
the boat speed in a typical inverted “V” pattern. In the experiments described below, we restrict 
the THz propagation angle to be not just mainly but fully perpendicular to the direction of the 
optical pulse by guiding the THz wave with a very thin slab of LiNbO3. The LiNbO3 slab, which 
has a high index of refraction and is only 50 μm thick, acts as a waveguide that traps the THz 
wave within it through total internal reflection. (Optical fibers are also examples of waveguides; 
even when they are bent, light propagates through them without escaping into the air.) The optical 
pump propagates perpendicular to the slab surface, and the generated THz travels in the plane of 
the slab [see Fig. 5.1(a)]. Many characteristics of the THz wave can be controlled by changing the 
pump pulse characteristics [Feurer2003; Lin2009]. Here we choose the center frequency and 
duration of the THz pulse which most clearly demonstrate the optical principles involved.  
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Figure 5.1 | Experimental setup. (a) The generation geometry: the pump laser pulse 
propagates orthogonal to the slab surface, and the generated THz wave propagates 
perpendicular to the pump pulse, in the plane of the slab. (b) The vertical lines to the left 
of the sample represent the optical plane wave phase fronts of the incoming probe pulse. 
After the sample, the phase fronts are distorted due to the presence of the THz wave. (c) 
A simplified layout for the entire experiment. The short pulses coming out of the laser are 
split by the 90% reflecting beam splitter. The pump beam is routed through a delay stage 
so it can be delayed relative to the probe. The sample is placed between crossed 
polarizers so any THz-induced birefringence in the sample can be recorded on the 
camera, providing an image of THz field profile. (d) A photograph of the detection part 
of the experimental setup corresponding the diagram in (c). The drilled holes on the 
breadboard and optical table are spaced 1 inch apart. 

 

2.  Imaging of THz electromagnetic waves  

 A THz wave generated as described above propagates at the speed of light in the sample, 
and so must be detected using an extremely fast method. Here, a second ultrafast optical pulse is 
used, called a probe pulse. In these experiments, we converted 800 nm light to 532 nm light for 
the probe, so it could be separated from the pump after the sample with a single spectral filter.  
The probe light was spatially filtered to improve the mode quality and expanded [Fig. 5.1(c)] so it 
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would illuminate the whole sample. The probe is sensitive to a THz-induced change in the 
sample. Since LiNbO3 is an electro-optic crystal because of its particular nonlinear properties, an 
applied electric field changes its index of refraction: n = n0 + aE, with n0 the index of refraction in 
the absence of an electric field, E the applied field, and a a crystal-dependent constant. In reality, 
index and field are connected through a tensor relationship which depends on the angle of the 
field, crystal, and probing light [Feurer 2007], but these details are not essential for understanding 
this work. The THz wave can be thought of as a spatially dependent electric field, ETHz(x,z), 
which can be approximated as constant through the depth of the crystal due to the waveguiding 
geometry [Werley 2010]. Thus the THz field induces a spatially dependent index of refraction in 
the sample  

n(x,z) = n0 + aETHz(x,z)                                                          (5.1) 
The probe pulse is an expanded laser beam that can be approximated as a plane wave. As the 
plane waves propagate through the sample, they develop a phase shift proportional to the index of 
refraction [see Fig. 5.1(b)]. Where the refractive index has been increased, the probe light speed 
is reduced and the probe phase lags behind that of the unperturbed plane wave. Where the 
refractive index has been decreased, probe light speed is increased and the probe phase runs 
ahead. Thus, immediately after the sample, a phase pattern is imposed on the beam, and the 
induced phase shift at any point in the (x,z) plane is directly proportional to the THz electric field 
at that point.  
 The sample is imaged onto the camera using a 2-lens, 4-focal length imaging system. If 
nothing more were done, the LiNbO3 would be imaged perfectly onto the camera but no THz 
wave would be detected. The THz would not be visible because it modulates the phase of the 
probe light, and the camera is only sensitive to the intensity. Thus, some optical technique must 
be used to perform phase-to-amplitude conversion. A number of methods can do this conversion 
[Werley 2010], but here we will use the polarization gating method.  
 A simplified experimental geometry containing the key conceptual features of the 
polarization gating setup is shown in Fig. 5.1(c). Polarization gating detects a change in the 
birefringence of the LiNbO3 sample induced by the THz field, which changes the index of 
refraction of different crystal axes by different amounts. To perform polarization gating, the 
sample must be placed between two crossed polarizers. The first polarizer sets the probe 
polarization to 45 degrees, and the THz-induced change in the polarization state of the probe 
changes the transmission through the second analyzing polarizer. The quarter-wave plate sets the 
unperturbed transmission to 50% and ensures that a positive phase shift will be detected as a 
positive amplitude change and visa-versa. The detected intensity for the diagram in Fig. 5.1(c) is 
given by [Werley 2010]:  

I(x,z) = I0(x,z)[1 + sin(Δφ(x,z))]                                              (5.2) 
I0 is the unperturbed intensity measured when there is no THz wave present (e.g. when the pump 
pulse is blocked) and Δφ is the difference in induced phase shift experienced by vertically and 

horizontally polarized light in the presence of the THz wave. This is given by:  

         ),('2),(),(2),( THz
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with d the slab thickness, λpr the probe wavelength, Δnv and Δnh the THz-induced change in index 
for vertically and horizontally polarized light, and a' a material dependent constant. By measuring 
both I(x,y) and I0(x,y), the spatially dependent THz field can be determined.  
 

3.  Capturing videos of THz waves: the pump-probe method  

 The imaging method in the previous section explains how to capture the spatial profile of 
a THz wave at one moment in time. To collect a video of the wave as it propagates and evolves, 
the pump-probe method is required. The short laser pulse coming out of the laser is split by a 
beamsplitter [see Fig. 5.1(c)]. Most of the energy goes into the pump, which is used to launch the 
THz wave, and some goes into the probe, which is used to image the THz wave that the pump 
launched. Both pulses propagate in air at the speed of light, and the time it takes for each pulse to 
reach the LiNbO3 sample is given simply by the path length divided by c. Thus, the amount of 
time the probe arrives after the pump is:  

    τ = (dpr – dpu)/c                                                           (5.4) 
where dpr and dpu are the respective optical path lengths of the probe and pump pulses. When the 
path lengths of both the pump and probe arms are exactly the same, as shown in the first frame of 
Fig. 5.2, the probe measures the moment of THz wave generation. The image in the lower right 
shows the signal that would be collected on the camera for point source generation (pump 
focused into the crystal). As the pump path length is shortened (by moving the motorized delay 
stage in Fig. 5.2 toward the probe beam), τ is increased and the THz wave has longer to evolve 
before its spatial profile is captured by the probe. To make a video, an image is captured as 
described above for a series of time delays. Each delay corresponds to one frame in the video.  

 

 

Figure 5.2 | Pump-probe measurements. Three simplified pictures of the experimental 
setup showing that as the delay stage moves, the time delay between pump and probe 
pulses is changed. The images inset in the lower right of each frame show the THz wave 
that would be captured on the camera if the wave were launched by a point source pump, 
expanding outward much like the water wave that is launched when a stone is thrown 
into a pond. 
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 The general technique of increasing the delay between two pulses is called the pump-
probe method, and it is widely used to study phenomena that happen on timescales faster than ~1 
nanosecond, that is, the attosecond, femtosecond, and picosecond regimes. In order for this 
method to work, the same experiment must be performed hundreds of times (at least once for 
each time delay), and the results must be reproducible to build a consistent picture.  Here, we rely 
on the fact that nearly identical laser pulses launch the THz waves the same way every time 
without damaging or otherwise modifying the sample. Because we have to make the 
measurement at many time delays, and we average the results of many pulses at each delay to 
reduce noise, acquiring these movies often takes many hours. 
 

4.  Structuring the sample using laser machining  

 In order to recreate classic experiments in the thin LiNbO3 slab, it is necessary to 
introduce structures such as mirrors, slits, waveguides, etc. directly into the slab. These structures 
are introduced by cutting air gaps into the crystal slab. Because LiNbO3 has a very high index of 
refraction (n ~ 5.1) for THz-frequency light, reflection off air interfaces is very efficient. The total 
internal reflection (TIR) angle is only 11 degrees in bulk LiNbO3, so THz waves are reflected off 
even gently tilted surfaces with 100% efficiency. We used femtosecond laser machining to cut air 
gaps in the crystal slab [Ward 2007]. In this method, a short-pulsed laser is tightly focused into 
the sample using a microscope objective. The sample is moved along a specified trajectory using 
computer controlled motors, and the laser cuts through the crystal slab as it moves. If the sample 
is moved in a circle, a circular hole is cut out of the slab. If the sample is moved along the edges 
of a square, a square hole is cut. Any pattern can be programmed into the computer and cut into 
the sample, making it relatively easy to generate interesting structures. 
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D.  RESULTS: CLASSIC EXPERIMENTS VISUALIZED 

 Each of the following sections 1-8 describes a different experimental geometry. Each 
geometry has one or two video clips in the supporting online material, and a selection of video 
frames are shown in the associated figure. In all the videos and figures, the darker-gray region is 
LiNbO3 crystal, and the uniform, lighter-gray region is a machined air gap cut as described in 
Sec. 5.C.4 above. In Figs. 5.3-5.6, there is a theoretical prediction for the field pattern in addition 
to the experimental data. The theoretical prediction assumes a continuous wave (CW) input of 

frequency  that is truly periodic in time. It shows the root mean square electric field: 
2/11

0

2 ),,(),( 



  t

rms dttzxEzxE


 , or the square root of the time averaged intensity, which is 

what would typically be observed by eye in a simple experiment with a HeNe laser and 
diffractive optic in an introductory physics lab.  
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1.  Crossing two beams  

 In this simple experiment, two beams,which are well approximated by plane waves, are 
crossed to make an interference pattern [see Fig. 5.3(a)]. As with many of the experiments in this 
paper, the behavior is equally applicable to any kind of wave, including electromagnetic, 
acoustics (sound), and water waves. The many applications of this geometry include crossing 
beams to generate a periodic pattern in optical lithography [Mack 2007] or a transient grating for 
a wide array of experiments [Eichler 1986]. The spatial period of the intensity pattern, Λ, depends 
only on the wavelength in the material, λ, and the crossing angle, θ:  

  
)2/sin(2 


                                                                   (5.5) 

Figure 5.3(a) shows the amplitude pattern predicted for crossing two beams, one propagating 
from upper left to lower right in the figure, and the other propagating from lower left to upper 
right. Figures 5.3(b) – 5.3(e) contain frames from video 1 in [Werley 2012] material showing two 
beams crossing. Initially, a THz wave with several optical cycles reflects off two tilted surfaces. 
The reflected waves cross, forming an interference pattern with horizontal nodes as predicted by 
the theory. As the waves propagate, the phase within the intensity maxima evolves but the 
horizontal nodes in the interference pattern remain unchanged. By the end of the video, the two 
beams have separated and the interference pattern has mostly disappeared. The angle between the 
beams is 60 degrees, so Eq. 5.5 above predicts that the period of the intensity pattern should be 
equal to the THz wavelength (~ 160 μm), which agrees with the experiment. Note that Fig. 5.3(a) 
shows the time-averaged rms value of the field, so the time-dependent field oscillations between 
positive and negative values that are apparent in (b)-(e) do not appear in (a). 
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Figure 5.3 | Beams crossing at an angle of 60 degrees. (a) shows the theoretical time-

averaged E-field amplitude ( IE  ) which results from crossing two continuous-wave 

beams. (b) – (f) show frames from  video 1 in [Werley 2012] at a sequence of time 
delays. The uniform, light gray region on the left of each frame is an air gap that has been 
cut into the thin LiNbO3 slab. The THz wave is clearly visible in each frame of the  
video, with white corresponding to a positive electric field and black corresponding to a 
negative electric field. The wave is propagating to the left in (b). In (c) the wave has just 
reflected off the air interface and the upper half and lower halves of the initial pulse have 
formed two beams that are crossing at an angle of 60 degrees. In (d) the two beams are 
fully overlapped, and by (f) they have almost completely separated. 
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2.  Diffraction through one slit  

 Diffraction through a single slit is a classic wave mechanics phenomenon that appears in 
many freshman level physics texts. In this experiment, a plane wave is incident on a small slit, 
and the diffraction pattern of the transmitted light is observed. Although it is possible to 
determine the behavior near the slit (a complicated interference pattern) using the Fresnel 
Kirchhoff formula [Fowles 1989], the treatment is mathematically too complex for an 
introductory text. It is possible to determine behavior far from the slit, the Fraunhoffer diffraction 
limit, using fairly simple methods [Resnik 2002]. The far-field electric field pattern as a function 
of angle is:  
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II                                                               (5.6) 

with γ = πasin()/λ and λ the wavelength. The slit width a and the emission angle θ are defined in 
Fig. 5.4(a). If the slit width is less than the wavelength, then the slit acts like a point source, 
which yields the dipole emission pattern, and only the main central lobe is observed. This is the 
case in Fig. 5.4(a) – (f) and video 2, where the slit width is a = 4λ/5. Figure 5.4(a) and (g) show 
the RMS E-field patterns calculated exactly using the Fresnel Kirchhoff formula [Fresnel 
Kirchhoff], a method which will also be used in future Figs. 5.5(a) and 5.6(a). In Fig. 5.4(g) – (l) 
and video 3, the slit width is a = 3λ. As predicted by Eq. 5.6, there are nodes in the emission 
pattern for this larger gap spacing. The central lobe contains most of the energy and diverges 
more slowly than in the smaller gap spacing.  
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Figure 5.4 | Diffraction through a single slit. (a) – (f) are for a wave propagating 
through a slit whose width is 4λ/5. (g) – (l) are for a slit whose width is 3λ. (a) and (g) are 
theoretical predictions for the time-averaged electric field amplitudes for a continuous 
wave beam entering from the left. (b) – (f) and (h) – (l) are frames from videos 2 and 3 
respectively in [Werley 2012] showing experimentally measured electric field profiles for 
a short THz pulse entering from the left. Adjacent images have the same time delays. The 
uniform light gray regions are air gaps that have been cut into the crystal. 
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3.  Diffraction through two slits  

 Two-slit diffraction is another classic experiment discussed in many introductory texts. A 
plane wave is incident on a pair of slits of width a separated by a distance d [see Fig. 5.5(a)]. 
 Light diffracts from each slit as described in Sec. 2 above, and the light from the two sources 
interfere with each other. Again, it is complicated to analytically describe the behavior near the 
slits, but the far-field behavior can be calculated with relative ease [Resnik 2002]:  
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 II                                                          (5.7) 

where  = πdsin()/λ has a similar definition to γ in Sec. 2 above. Equation 5.7 is simply a 
periodic interference pattern multiplied by the single slit diffraction pattern from Sec. 2. In Fig. 
5.5 and video 4 in [Werley 2012], the slit spacing is d = 2.5λ and the slit width is a = λ. Because 
a is close to the wavelength, the diffraction part of the equation is smooth and slowly decaying as 
one moves away from the center. The modulation results from interference between the outputs 
from the two slits. The video shows the interference evolving close to the slits and eventually 
developing into the far-field pattern described by Eq. 5.7 above. 
 

 

Figure 5.5 | Two-slit diffraction. The figure shows diffraction through a pair of slits 
with a width of lambda and a slit center to slit center spacing of 2.5λ. (a) shows the 
theoretical, time-averaged electric field amplitude. (b) – (f) show frames from video 4 in 
[Werley 2012]. The uniform, slightly lighter gray region is an air gap. The wave is 
initially propagating to the right, and a significant fraction is reflected off the air gap 
while part propagates through the slits. The THz waves reflected or transmitted from the 
two slits interfere with one another as the waves propagate away from the slits. 
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4.  Diffraction through N slits  

 As more slits are added, the intensity maxima become narrower and brighter. Between 
the bright peaks are a set of nulls and significantly weaker maxima [see Fig. 5.6(a)]. The exact 
expression in the far-field is given by [Fowles 1989]: 
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with γ = πasin()/λ and  = πdsin()/λ. As in Sec. 5.D.3 above, the single-slit envelope function is 
multiplied by a factor describing the interference. The limit of an infinite number of slits is a 
transmission grating, in which the weak peaks disappear completely and there are a set of narrow, 
well defined diffraction directions. The experiment here, where roughly 5 slits are illuminated, 
shows an intermediate case between the double slit and a transmission grating. Although it is 
difficult to see all the minor maxima in the data {Fig. 5.6(b) – (f) and video 5 in [Werley 2012]}, 
it is interesting to see how a complicated interference pattern close to the slit evolves into a 
simpler diffraction pattern in the far-field. 
 

 

Figure 5.6 – Five-slit diffraction. Panel a shows the RMS E-field for a CW laser beam. 
Frames (b)-(f) are from video 5 in [Werley 2012]. The uniform light gray regions are air 
gaps. Part of the initially rightward propagating wave reflects off the air gaps and part is 
transmitted through the slits. Wave propagation reveals the mechanism through which 
interference close to the slits evolves into the far-field emission pattern. Slit period d = 
5λ/3, slit width a = 5λ/6. 
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5.  Reflection Grating  

 Of all the geometries described so far, the reflection grating is the most used as a 
component in typical optical experiments. Because the points of diffraction are so close together, 
a monochromatic source generates very well-defined diffraction orders. The well-known grating 
equation relating the diffraction directions and groove spacing is [Palmer 2005]:  

 )]sin()[sin( mdm                                                                (5.9) 

where m is an integer, λ is the wavelength, d is the groove period on the grating, α is the angle of 
incidence and βm is the angle of reflection as defined in Fig. 5.7(a). The convention used to 
determine the signs of the angles is indicated by the + and - in that figure. Any periodic surface 
with period d will follow Eq. 5.9. Propagating diffraction orders will exist so long as |mλ/d| < 2, 
when the sum of the sines does not exceed 2. Although the orders exist according to Eq. 5.9, the 
distribution of intensity into the different orders is determined by the detailed profile of the 
periodic structure.  
 Many gratings are created with a saw-tooth surface pattern. This allows one to selectively 
send most of the energy into a specific diffraction order and efficiencies in excess of 90% are 
routinely achieved [Palmer 2005]. In a grating with such a saw-tooth pattern, the blaze angle, or 
the angle of the tooth surface, is set so that if the surface of each tooth were extended, the incident 
and diffracted beam would obey the law of reflection. In effect, each facet or tooth behaves like a 
sub-wavelength mirror. For a overview of different types of gratings and grating designs, see 
Newport's Diffraction Grating Handbook [Palmer 2005]. The Littrow configuration, where the 
angle of incidence is equal to the angle of reflection (β1 = α), is very common due to its high 
efficiency and is shown here.   
 To prepare a grating in the Littrow configuration, the period of the steps are designed and 
the grating is angled such that the m = 1 diffraction order propagates directly back along the 
incoming direction. The grating is blazed such that the surface of each step is vertical and the sub-
wavelength mirrors reflect directly backwards, improving the efficiency. Figure 5.7(b) - (f) shows 
frames from video 6 in [Werley 2012]. The wave initially propagates to the right and diffracts off 
the grating. The zero order reflection, visible in Fig. 5.7(d) - (f), propagates up and to the left. The 
first order diffracted beam propagates directly back along the incoming direction. The intensity 
front of the diffracted wave is tilted, a feature that would not be visible if the light source were 
continuous instead of a short pulse. In fact, a grating was used to tilt the visible pump pulse that 
generated the THz wave in this video [Lin 2009].  
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Figure 5.7 | A reflection grating. Panel (a) defines the angles for the grating geometry. 
Panels (b)-(f) are frames from video 6 in [Werley 2012]. The uniform light gray region is 
an air gap that has been carved into the crystal. The grating period, angle, and blaze have 
been optimized for the Littrow configuration, shown here. The initially rightward 
propagating wave is split into the 0th order beam (the reflection that would be produced 
by a smooth surface) which propagates up to the left and the 1st order beam which is 
diffracted directly back along the input path. 
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6.  Wave Focusing  

 The simple geometry here follows a focusing electromagnetic wave. A curved THz wave 
is generated using an axicon, a glass cone, in combination with a lens to focus the pump beam to 
a ring on the sample [Stoyanov2002]. The curvature of the generated phase front is similar to the 
phase front resulting from transmission through a lens or reflection off a curved mirror. When 
collecting this data set, the right side of the ring of light was blocked to form a semicircular THz 
wave pattern. Figure 5.8 and video 7 in [Werley 2012] show the focusing THz wave. The wave 
collapses to a tight spot, enhancing and localizing the electric field, and then quickly diverges. 
The spot size at the focus is given by: 



sin2NA2

00

n
d                                                               (9) 

where λ0 is the wavelength in free space, NA is the numerical aperture, n is the index of 
refraction, and θ is the angle defined in Fig. 5.8. Lenses and mirrors with large acceptance angles 
and thus large numerical apertures, such as microscope objectives, can focus to (or resolve) very 
small spots. In the experiment shown in Fig. 5.8, the index is 6.15 and θ is almost 90°, yielding an 
NA of about 6, much larger than that of common optical lenses and mirrors. The wavelength 
observed in the experiment is λ0/n, so the diameter of the focused spot is about half the observed 
wavelength. One other interesting phenomenon noticeable in video 7 is the Gouy phase shift ─ 
the change in wave polarity as it passes through the focus [Feurer 2002; Guoy 1980]. Direct 
visualization of this effect is important for understanding how fields change in the focus of an 
electromagnetic wave. 
 

 

Figure 5.8 | Focusing. Panels (a)-(d) are frames from video 7 in [Werley 2012]. An 
axicon focuses the pump pulse into a 5 mm thick slab of LiTaO3 to generate a curved 
phase front. The rightward propagating wave is focused to a diffraction-limited spot in 
panel (c), before it starts diverging. 
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7. Y-coupler  

 A Y-coupler is a simple structure that demonstrates waveguiding and interference. Air 
gaps (light gray in Fig. 5.9 and video 8 in [Werley 2012]) have been cut into the slab leaving 
LiNbO3 in the shape of a “Y.” A tall, uniform THz wave is launched initially and a small section 
of it is incident on the top and bottom arms of the Y. These sections of the THz wave are 
waveguided, trapped inside the high index of refraction material due to total internal reflection. 
(Recall that THz waves inside a lithium niobate slab are already in a planar waveguide, but since 
the confinement is along the same direction as the optical pump and probe beam propagation, 
preventing the THz waves from escaping the plane of the lithium niobate, the images do not 
directly illustrate waveguiding. In the present case, waveguiding is apparent in the images 
because confinement prevents the THz waves from propagating along some directions within the 
image plane.) The THz waves travel down each arm of the Y until they meet in the center and 
interfere. The wave resulting from their superposition is further guided down the stem of the Y 
until it is emitted. The idea of using a high-index material to trap and guide light is an important 
one because it is responsible for the functioning of optical fibers and other photonic components. 
 

 

Figure 5.9 | Y-coupler. Panels (a)-(f) are frames from video 8 in [Werley 2012]. The 
uniform light gray region is an air-gap carved into a 50 μm slab of LiNbO3. The 
rightward-propagating THz wave is initially guided down each arm of a “Y”. When the 
waves meet in the middle they interfere, and are further guided down the stem of the Y. 
When the THz wave is emitted at the end it starts to diverge due to diffraction. 
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8.  Dielectric slab waveguide propagation  

 As mentioned briefly in the experimental section, THz waves were guided in a slab of 
LiNbO3 for most above measurements. The waveguiding was useful because it confined the THz 
wave to a thin region that could be imaged. The final experiment demonstrates how waveguiding 
behavior can be visualized and studied in the imaging setup. Before showing the experimental 
results, a quick review of the dielectric slab waveguide, also called a planar waveguide, will be 
presented. Unlike the material from the previous sections which would generally be covered in an 
introductory physics class, the material discussed in this section is slightly more advanced and 
would usually be covered in a graduate or advanced undergraduate optics class. In spite of the 
disparity in complexity, we discuss waveguiding here because the experiment provides a clear 
qualitative and quantitative visualization of waveguiding behavior which could be very helpful in 
a more advanced class. Below, we discuss the results and solutions to the dielectric waveguide 
but not their derivation, which can be found in many textbooks, e.g. [Cronin 1995].   
 A dielectric slab waveguide consists of a high-index core, such as LiNbO3, surrounded by 
a low-index material, such as air. In a waveguide, the profile of the electric and magnetic field 
down the depth of the crystal [along y in Fig. 5.1(a)] does not change as the wave propagates. 
This is similar to an eigenmode in quantum mechanics, with time t from quantum mechanics 
replaced by the distance along the propagation direction x, and the solutions for the transverse 
electric (TE) mode of the dielectric slab waveguide are exactly the same as those for a particle in 
a box with finite potential walls. Discussion here will be limited to the TE modes, which have the 
electric field parallel to the slab surface and perpendicular to propagation direction, because they 
are the only modes generated in the experiment. For a specific propagation constant, β = 2π/λ, 
with λ the wavelength along the direction of propagation, there are multiple modes with different 
numbers of nodes. The 0th mode has no nodes, the 1st mode has 1 node, etc. Profiles of the first 
three modes in a 50 μm thick LiNbO3 slab in air with β = 100 rad/mm (i.e. a wavelength λ = 63 
μm) are shown in Fig. 5.10(a). The solutions are harmonic inside the high-index material (cosine 
for the even, symmetric modes and sine for the odd, antisymmetric modes). In contrast, the 
solutions are evanescent and exponentially decaying in the low-index material outside.  
 The wavelength inside the high-index material and the decay length in the low-index 
material depend on the frequency. Focusing only on one waveguide mode, one can see how the 
profile changes with frequency [see Fig. 5.10(b)]. At low frequencies, i.e. long wavelengths, the 
evanescent decay length is very long and most of the wave’s energy is in the air, while at higher 
frequencies, i.e. shorter wavelengths, the evanescent field decays very quickly and most of the 
energy is localized in the LiNbO3.  
 One common way to plot this frequency- and mode-dependent behavior is with a 
dispersion curve [see Fig. 5.10(c)]. A dispersion curve shows the frequency (or energy) as a 
function of wave vector. The two thin dashed lines show the dispersion curve for air, ω = cβ, and 
for bulk LiNbO3, ω = cβ/n. The dispersion curve for the waveguide shows that at low 
frequencies, the wave behaves more like a wave in air because so much of the energy is in the 
evanescent field. At high frequencies, the wave behaves more like a wave in bulk LiNbO3 
because most of the energy is in the LiNbO3 slab. The lowest mode extends all the way to zero 
frequency and wave vector. The higher modes, however, have cutoff frequencies below which 
there are no modes with the appropriate number of nodes bound in the slab.  
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Figure 5.10 | Analytical waveguide solutions for TE modes in a dielectric slab 
waveguide. (a) shows the E-field profile of the first three modes at a specific propagation 
constant β = 100 rad/mm. (b) shows the E-field profiles for the lowest mode at three 
different frequencies. The wavelength along the propagation direction is indicated below 
the frequency. (c) shows the dispersion curves for the first three modes. (d) shows the 
effective group index (upper three, thinner curves) and effective phase index (lower three, 
thicker curves) for the waveguide. 

 
 Another way to display the same information is with the effective indices of refraction, 
both the phase index, nph, and the group index, ngr. The phase index is defined as nph(ω) = cβ(ω)/ 
ω. The velocity at which a single phase front moves, the phase velocity, is given simply by vph = 
c/nph, and the wavelength along the direction of propagation is given by λ = 2πc/(ωnph). The lower 
three, thinner curves in Fig. 5.10(d) show the phase index as a function of frequency for the 
lowest three modes. nph transitions smoothly from the index of air to the index of bulk LiNbO3. 
The velocity at which a pulse or wave-packet travels, the group velocity, is given by vgr = c/ngr = 
dω/dβ. Although the group index starts close to 1 for each mode, it quickly increases until it is 
larger than the group index for the bulk material [see the upper three curves in Fig. 5.10(d)]. The 
large group index means that wave-packets of the appropriate frequency actually travel more 
slowly than in the bulk material. As the frequency increases and the slab becomes thick compared 
to the wavelength, both ngr and nph approach the value for the bulk index of the dielectric ─ the 
group index from above and the phase index from below.  
 In the experiment described here, THz waves are excited in a plain, unstructured 
waveguide by focusing the pump beam to a line in the LiNbO3 slab. This geometry excites a 
single-cycle THz wavepacket that contains many frequencies and the first three waveguide 
modes. Figure 5.11 shows frames from video 9 in [Werley 2012]. Initially two counter-
propagating single-cycle waves are launched. As the waves propagate, the first three waveguide 
modes separate due to their differences in group velocity. The three modes are clearly visible as 
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distinct wavepackets in Fig. 5.11(c) & (d). Looking just at the 0th waveguide mode, it is easy to 
see the lower frequency, longer wavelength components travel faster than the high-frequency 
components, a consequence of the fact that the low-frequency, long-wavelength components are 
propagating mostly in air. This leads to the pulse broadening and becoming "chirped", i.e. having 
a time-dependent frequency. The waves reflect off the crystal edge after frame (d) in Fig. 5.11 
and eventually cross, at which point the two counter-propagating waves form a standing wave 
[Fig. 5.11(f)]. Counter-propagation is a limiting case of Eq. 5.5 in Sec. 5.D.1 with θ = π. The 
interference pattern that is formed by the intersecting beams is striking because the fringe spacing 
starts out relatively large and gradually becomes smaller as the shorter-wavelength components 
arrive at the region of intersection between the two beams. 
 

 

Figure 5.11 | Images of a broadband, guided THz wave. Panels (a)-(f) are frames from 
video 9 in [Werley 2012] depicting broadband THz waves propagating in an unstructured 
LiNbO3 crystal. Counterpropagating waves are launched by a cylindrically focused “line” 
of pump pulse light in (a). The first three waveguide modes are clearly visible in (c) and 
(d). After frame (d) the wave reflects off of the crystal edges so the waves are 
propagating toward one another in (e), and they have begun to overlap and interfere in 
(f). 

 
 In every frame in video 9, the E-field is uniform along the vertical (z) direction. As a 
result, it is possible to compress each m x n picture into a 1 x n array by averaging over the 
vertical dimension with no information loss. The 1 x n array is the electric field profile as a 
function of horizontal position at one time delay. The compression is performed for each frame in 
the video, and each 1 x n array is placed into one row of a matrix, one above the other, in time 
order so that from bottom to top the field profiles at successively later times are stored. The 
resulting space-time plot shows the full evolution of the wave as it propagates [Fig. 5.12(a)]. In 
this single figure, it is possible to see the modes separate, the pulses begin to become chirped, and 
the reflection and interference of the waves. In this plot, the slope is directly proportional to the 
index: m = Δt/Δx = 1/v = n/c. The slope of the wavepacket is given by the group index, and the 
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slope of the phase front is given by the phase index. It is clear from examining the figure that the 
group index of the second mode is higher than that of the first mode, but the phase index is lower. 
Taking the 2D Fourier transform of the matrix in Fig. 5.12(a) enables a quantitative comparison 
with analytical theory. The time dimension transforms to frequency and the spatial dimension 
transforms to the propagation constant, so the result of the 2D Fourier transform is a direct 
experimental determination of the dispersion curve. Figure 5.12(b) shows this matrix, which is in 
good agreement with the analytical theory shown in Fig. 5.10(c) [Wu 2009]. The direct 
observation of guided electromagnetic waves helps develop intuition for the formation of discrete 
modes and waveguide dispersion, effects common to optical fibers and many other waveguide 
geometries. 
 

 

Figure 5.12 | 2D plots of a waveguided THz wave. (a) is a space-time plot showing the 
evolution of a broadband THz pulse in an unstructured slab waveguide.  The 2D Fourier 
transform of (a) yields the experimentally determined dispersion curves shown in (b). 

 

E.  CONCLUSIONS 

 The experimental technique described above enables visualization of electromagnetic 
waves propagating at the speed of light. Videos of classic experiments help build intuition for 
wave propagation and fundamental effects like waveguiding, interference, and diffraction. 
Directly observing the phase fronts highlights the wave nature of light, and the time-resolved 
measurement solidifies builds understanding of group and phase velocities and their 
ramifications. We hope that this paper and its accompanying  videos can help bring modern 
research into the classroom and provide a valuable tool in an introductory and intermediate 
physics curriculum. We also hope that other researchers in THz optics and spectroscopy will 
contribute additional figures and videos to a growing library of illustrations of wave mechanics 
principles. To facilitate the growth of such an online library, we would gladly add videos from 
other researchers (with appropriate attribution) to the collection already on our website. 
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Chapter VI 
Time-resolved imaging of near-fields in THz 

antennas and direct quantitative 
measurement of field enhancements 

 

Content from: C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and 
K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative 
measurement of field enhancements,” Opt. Express 20, 8551-8567 (2012). 

 

A.  ABSTRACT 

 We investigate the interaction between terahertz waves and resonant antennas with sub-
cycle temporal and λ/100 spatial resolution. Depositing antennas on a LiNbO3 waveguide enables 
non-invasive electro-optic imaging, quantitative field characterization, and direct measurement of 
field enhancement (up to 40-fold). The spectral response is determined over a bandwidth 
spanning from DC across multiple resonances, and distinct behavior is observed in the near- and 
far-field. The scaling of enhancement and resonant frequency with gap size and antenna length 
agrees well with simulations. 
 

B.  INTRODUCTION 

 Antennas, which convert electromagnetic radiation into electrical currents and vice versa, 
have important applications spanning the electromagnetic spectrum from radio to visible 
frequencies. The technology is mature at radio and microwave frequencies where antennas are 
used in mobile telephones, television broadcasting, and many other applications. At these 
frequencies, study has focused on sending and receiving information [Balanis 2005] and therefore 
has primarily considered signals far from the internal antenna elements, i.e. in the far-field. More 
recently, studies at infrared and optical frequencies have focused instead on the antenna’s ability 
to provide field enhancement and subwavelength field localization [Kinkhabwala 2009; Fromm 
2006; Willets 2007; Cubukcu 2008; Muhlschlegel 2005; Ghenuche 2008; Ward 2010; Crozier 
2003; Barnard 2011; Schnell 2010]. Antennas have been used in single-molecule fluorescence 
[Kinkhabwala 2009], surface enhanced Raman spectroscopy [Fromm 2006; Willets 2007], near-
field scanning optical microscopy [Höppener 2008], photonic devices [Cubukcu 2008] and novel 
nonlinear optics [Muhlschlegel 2005; Ghenuche 2008; Ward 2010]. Although near-field signals 
assume primary interest in these studies, it has proved difficult to quantify electric field 
amplitudes and enhancements and characterize field profiles around the antenna because of the 
small length scales and a lack of methods for direct field visualization. It has also been difficult to 
determine the full spectral response because of the ultra-broad bandwidth required: an antenna 
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resonant in the visible displays important behavior spanning from DC to ultraviolet frequencies. 
Because of the experimental challenges, most of the understanding of near-field behavior in 
antennas has relied on simulations that have only been experimentally verified in the far-field. 
Comparing near-field simulations with experiments is complicated by sample inhomogeneity, 
surface roughness, and chemical adsorbates; even the ideal case presents challenges because 
modeling tightly localized fields requires a very fine mesh, while capturing the far-field behavior 
needs a large simulation volume. In short, quantitative measurement of near-field behavior is 
critical for validating theoretical methods that will be used in the design of future devices and 
experiments. 
 Many experimental studies at THz, infrared, and visible frequencies have tried to 
characterize fields around resonant antennas [Cubukcu 2008; Muhlschlegel 2005; Ghenuche 
2008; Ward 2010; Crozier 2003; Fischer 2008; Bitzer 2010; Blanchard 2011; Barnard 2011; 
Schnell 2010], but results have not been definitive. Scanning near-field probes yielded high-
resolution field maps [Cubukcu 2008; Imura 2006; Schnell 2010], but there is strong evidence 
that scanning tips significantly perturb the fields being measured [Imura 2006; Mujumdar 2007; 
Wang 2004]. Nonlinear microscopy at visible frequencies [Ghenuche 2008] and electro-optic 
probing at THz frequencies with sub-wavelength resolution [Bitzer 2010; Blanchard 2011] made 
it possible to map antenna mode structure without seriously perturbing the system, but the tightly 
localized, strongly enhanced fields near antenna ends and gaps were not spatially resolved or 
directly quantified. Recently, photocurrents in an optical antenna were measured [Barnard 2011], 
but volume-averaging of fields prevents the quantification of near-fields with subwavelength 
resolution. Another recent study determined field strengths in angstrom-sized gaps between 
electrodes using tunneling currents [Ward 2010], but it is difficult to infer antenna behavior from 
the atomic-scale gaps in these irregularly-shaped structures. We use a THz polaritonics platform 
[Feurer 2007] to study antennas without perturbing the system or compromising on spatial 
resolution. 
 The polaritonics platform allows versatile THz generation [Feurer 2003; Lin 2009], 
control [Stoyanov 2002; Peier 2009], and time-resolved imaging of THz electric fields [Koehl 
1999; Peier 2008; Wu 2009; Werley 2010]. Several favorable considerations enable particularly 
incisive study of antennas and other metallic microstructures using this system. First, because the 
THz wave propagates in an electro-optic medium, it is possible to directly record its electric field 
(E-field) and thus quantify field enhancement, a capability that has proved difficult in previous 
experiments. Second, the E-field is imaged with an optical probe without the need for a tip or 
other intrusive element. The spatial resolution is ultimately set by the optical diffraction limit 
[Wu 2009; Werley 2010], which is hundreds of times smaller than the THz wavelength. The 
temporal resolution is set by the duration of the femtosecond optical probe pulse, which is a small 
fraction of the THz period. Third, the THz antennas can be deposited directly onto the THz 
propagation medium with high precision using optical lithography. Finally, facile control over the 
THz field allows us to initially probe the antennas with broadband THz waves in order to 
characterize the frequency-dependent response from 0.1-2 THz and survey for resonances. We 
subsequently drive the antennas with multi-cycle THz waves tuned to the antenna resonance 
frequencies in order to study the resonant responses in detail and maximize field enhancement. 
Because of the versatility of the THz polaritonics system and its ability to spatially, temporally, 
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and spectrally resolve the antenna response, it is possible to develop a detailed and scalable 
understanding of antenna behavior.  
 

C.  RESULTS AND DISCUSSION 

 The experimental geometry is shown in Fig. 6.1. An 800 nm, 80-fs pump pulse passes 
through a thin LiNbO3 slab where it generates a THz response via impulsive stimulated Raman 
scattering [Dougherty 1992]. The THz field is wave-guided within the high-index LiNbO3 slab, 
propagating from the generation region to a gold micro-antenna deposited on the crystal surface. 
The antenna was a pair of half-wave strips aligned end-to-end with a small gap between them, as 
shown in Fig. 6.2(a). Strips were chosen because they generate larger enhancements than other 

geometries [Crozier 2003; Fischer 2008], and the ends were given a smooth, 5 m radius of 
curvature so that fields in the gap would be relatively uniform and undistorted by sharp tip 
effects. The antennas were 150 nm thick gold deposited with optical lithography (see Sec. E). All 

antennas studied were 10 m wide, with lengths ranging from 30 to 110 m and gaps ranging 

from 2 to 20 m. Figure 6.2(b) shows an image of a typical antenna. The white spot in the gap is 
the reflection of a tightly focused optical beam (see Sec. G, Fig. 6.8), which was used for 
recording THz transients in the gap. 
 

 

Figure 6.1 | The experimental pumping 
geometry. A THz wave is generated by an 
ultrafast optical pump pulse and guided 

down the 30 m thick LiNbO3 slab until its 
evanescent field interacts with the gold 
antenna deposited on the surface. 

 
 When driven on resonance, current flow in a half-wave antenna results in a standing 
wave charge distribution with maxima at the ends of each antenna arm. The antenna pair acts like 
a small capacitor [Kang 2009], and the E-field, represented by green lines in Fig. 6.2(a), is 
confined and enhanced in the subwavelength gap. To study field localization and mode structure, 
we excited the antenna on resonance with a multi-cycle THz wave [Lin 2009] and recorded 
movies of the wave as it interacted with the antenna using time-resolved, phase-sensitive imaging 
techniques [Wu 2009; Werley 2010] as illustrated in Sec. F, Fig. 6.7. Figure 6.2(c)-(e) are frames 
from such movies, which show the E-field of the propagating THz wave. Figure 6.2(c) (see 
Media 1 [Werley 2012] ) shows a zoomed-out view of the THz wave tuned to 255 GHz, the 
frequency of maximum enhancement (see below), as it interacts with the antenna at image center. 
Figure 6.2(d) is zoomed in on the antenna. Field enhancement at the antenna ends and even 
greater enhancement in the gap center is visible, in agreement with the qualitative depiction in 

Fig. 6.2(a). Figure 6.2(e) (from Media 2 [Werley 2012]) shows the more complex  
antenna mode. The left side of the image shows the field emitted from the antenna just after the 
rightward propagating THz wave has passed. Figure 6.2(f) shows the predicted wave pattern 
emitted from a pair of  

THz 
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Figure 6.2 | Antenna design and images of THz fields. (a)-(f) w = 10 μm and g = 5 μm. 
In (b)-(d) μm 94 and in (e) and (f) μm 110 . (a) The charge distribution and electric 

field lines (in green) for the lowest antenna mode. (b) An optical image of the antenna. 
(c) An experimental image of the full E-field profile at one moment in time as a 
rightward-propagating, resonant THz wave interacts with the antenna in (b). (d) A 

magnified view of (c) with better than 2 m resolution. (e) The field profile soon after a 
rightward-propagating THz wave at 760 GHz (the second antenna resonance) has passed 
the antenna. (f) The theoretical wave pattern emitted from a pair of 2/3  wires in 

free space. 

 

3/2 wire antennas in a homogeneous dielectric oriented and separated to match experiment 
[Balanis 2005]. The radiation pattern emitted from each antenna arm has two horizontal nodes, 
and interference generates the observed E-field profile.  
 In order to perform spectroscopy on the antennas, we switched from imaging the THz 
waves to localized detection, which provides a higher signal-to-noise ratio (S/N). We focused the 

probe beam to a 1 m diameter spot which could be accurately positioned relative to the sample 
(see Sec. G) to enable direct probing of the field in the antenna gap. Spectroscopy was performed 
both in transmission and reflection geometries. Transmission yielded excellent S/N but measured 

the THz E-field averaged through the 30-m crystal thickness. In contrast, reflection yielded 
weaker signals but quantitatively measured the E-field amplitude directly at the LiNbO3 surface 
on which the antenna was deposited (see Sec. G). 
 To find the resonances of the antenna, the structure was interrogated with a broadband 
THz wave and detected in the optical transmission geometry. We recorded the time-resolved THz 
transients [Fig. 6.3(a)] at three locations as shown in the inset of Fig. 6.3(b): a reference trace far 
removed from the antenna, a point soon after the THz wave had propagated past the antenna 
(similar to a typical THz transmission measurement), and directly in the antenna gap as seen in 
Fig. 6.2(b). The THz amplitude spectra, calculated by taking the Fourier transforms of the time 
domain signals, are shown in Fig. 6.3(b), and the transmission spectra, the ratios of signal and 
reference, are shown in Fig. 6.3(c). The spectrum measured after the antenna (orange) shows 
clear dips, corresponding to transmission minima resulting from resonant modes of the antenna. 
The two lowest modes ( 2/  at 350 GHz and 2/3  at 860 GHz) are clearly visible. The 
ratio between these frequencies would be exactly three for an extremely thin wire in a  
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Figure 6.3 | Time traces and spectra. (a) Time traces of a broadband THz wave 
measured far above the antenna (blue spot in the inset of (b), the reference field location); 

~100 m after the antenna (orange spot); and directly in the 5 m antenna gap (green 
spot). (b) The spectral amplitude of each trace calculated from the Fourier transform of 
data in (a). (c) The ratio of signal and reference traces shown in (b). (d) The time trace for 

a multi-cycle reference THz wave (blue) and the enhanced field measured in a 2 m 
antenna gap (green). 

 
homogeneous dielectric [Balanis 2005], but it is significantly lower here because of the complex 
geometry (a finite width antenna deposited on a high-index planar waveguide substrate [Lin 
2009; Werley 2010]). 
 Behavior in the antenna gap [green traces in Fig. 6.3] is very different from that measured 
after the antenna. The amplitude spectrum in Fig. 6.3(c) reveals a clear and strong enhancement at 
255 GHz. The frequency shift between the in-gap enhancement maximum and the maximum 
scattering frequency (the transmission minimum) is not unexpected, as such a shift has been 
previously predicted [Messinger 1981] and observed [Ghenuche 2008] in similar structures. Other 
notable features of the in-gap spectrum are enhancement down to DC and an amplitude reduction 
at a higher frequency than the transmission minimum (~490 GHz). The DC enhancement, 
amplitude reduction, and in-gap enhancement maximum are also present in other antennas with 
different arm lengths and gap sizes (see Fig. 6.4 & 6.5), showing that these are general behaviors 
for half-wave antennas. They can be understood qualitatively by thinking of the antenna as a 
damped driven harmonic oscillator, which also has an amplitude maximum that occurs at a lower 
frequency than the resonant frequency, a DC response that depends only on the resonant 
frequency and oscillator strength, and a frequency-dependent phase shift (see Sec. H). Above the 
resonant frequency, the phase shift leads to destructive interference between the driving field and 
induced response, which is evident in our results as an enhancement minimum with a value less 
than unity. 
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 To determine the effects of antenna geometry on the antenna response (enhancement, 
resonant frequency, etc.), we fabricated antennas with different arm lengths and gap sizes. The 
amplitude ratios between reference traces and scans recorded in and after the gap, like those 
shown in Fig. 6.3(c), are shown for each antenna in Fig. 6.4. In Fig. 6.4(a) & (c), which vary the 
gap size but keep the antenna arm length constant, the DC offset and the maxima, minima are 
clearly visible for the first two modes of each antenna. Other than the magnitude of the near-field 
response, the spectra are nearly independent of gap size. In contrast, the resonant frequencies, 
linewidths, and peak response depend strongly on antenna length [Figs. 6.4(b) & (d)]. In the 30 

m long antenna [dark green in Fig. 6.4(b)], for instance, the enhancement is weak and nearly 

constant for frequencies below ~750 GHz. The 110 m long antenna [dark purple in Fig. 6.4(b)], 
in contrast, is sharply peaked at ~200 GHz and shows much larger enhancements. 

 

Figure 6.4 | Transmission and enhancement spectra. In-gap enhancement spectra 
[green dot in Fig. 6.3(b)] for various antennas are shown in (a) and (b), and transmission 
spectra [orange dot in Fig. 6.3(b)] are shown in (c) and (d). (a) and (c) Spectra for a fixed 
arm length μm 94 for different gap sizes. (b) and (d) Spectra for a fixed gap size g = 5 

μm for different arm lengths. 

 To understand the scaling of antenna properties with arm length and gap size, we 
extracted the frequency at which minimum transmission occurred and the frequency at which 
maximum enhancement occurred from the traces in Fig. 6.4. In addition, traces like those in Fig. 
6.3(d) were recorded in reflection for each antenna to quantify the peak field enhancement. Finite 
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difference time domain (FDTD) simulations were performed using the commercial software CST 
Microwave Studio to corroborate experimental results. Experimental results (solid symbols), 
simulation results (dashed orange and solid green lines), and simple trend lines (dotted and dot-
dashed black) are collected in Fig. 6.5. 
 Figure 6.5(a) shows the frequency of minimum transmission and maximum enhancement 

for the /2 (lower set of data) and the 3/2 (upper set of data) modes. Experiment and simulation 
show these frequencies are nearly independent of gap size. This lack of dependence indicates that 
the length of a single antenna arm determines the resonant frequency, and coupling between 
antenna arms is weak at these gap sizes. Figure 6.5(b) shows the frequencies as a function of arm 

length   for both the /2 and 3/2 modes. Large frequency shifts between near- and far-field 
resonances are clearly visible for all gap sizes and antenna lengths. Experiment and simulation 
agree that the resonant frequency increases sharply for shorter lengths. Microwave theory predicts 
that antennas in free space will have maximum scattering at a frequency where the arm length is 
an integer number of half the wavelengths, m, with m odd [Balanis 2005]. We fit the data with a 
simple one-parameter model:    effreseffres 2// nmcncf   , where an effective index, neff, is used 

to account for the complex sample geometry of an antenna deposited on a subwavelength, high-
index substrate. Although it was not possible to fit the peak scattering frequency with a single neff 
as was expected, the simple /1  fit agrees reasonably well with the frequency of peak 

enhancement for both the /2 and 3/2 modes; the dotted black line in Fig. 6.5(a) & (b) is the 
resonant frequency predicted for neff = 6.4, an index higher than the substrate. Even though the 
theory of microwave antennas is quite mature, it is still important to do careful experiments and 
modeling to fully understand the behavior of samples with non-ideal geometries. 
 Figure 6.5(c) shows the peak amplitude enhancement (measured in the frequency 
domain) as a function of gap size. As the gap is decreased, the enhancement increases rapidly. As 
was discussed previously, at a given instant the antenna can be thought of as a capacitor, where 
the charge driven onto the ends of the antenna arms by the incoming THz wave is independent of 
gap size. For smaller gaps, the same voltage drop occurs over a smaller distance, resulting in an 
increased E-field. Experiment, simulation, and intuitive modeling all indicate that even larger 
field enhancements would be present in gaps smaller than the ones measured here, consistent with 
THz enhancements estimated in nano-slits [Seo 2008; Seo 2009]. The black dot-dashed line 
shows the arm length divided by the gap size, g/ , with no fit parameters. This can serve as a 

rule of thumb for predicting antenna enhancement. 
 Figure 6.5(d) shows the enhancement in the gap as a function of arm length when each 
antenna was driven by a multi-cycle THz pulse tuned to its frequency of maximum enhancement. 
Small imperfections in the antenna structures and variations in the multicycle THz waveforms at 
the different frequencies as well as limited S/N in the reflection measurements all contributed to 
scatter in the plot, but the results and those of simulations and transmission measurements [Fig. 
6.4(b)] all indicate that, for a given gap size, the peak enhancement increases approximately 
linearly with length. This results from the fact that electrons from the entire length of the antenna 
are concentrated at the ends when excited on resonance, leading to more charge, and thus a larger 
field, in longer antennas. Again, the black dot-dashed line shows g/ . 
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Figure 6.5 | Resonant frequency and enhancement trends. Trends as a function of gap 

size for a fixed arm length of 94 m [(a) and (c)] and as a function of arm length for a 

fixed gap size of 5 m [(b) and (d)]. (a) and (b) show the frequency at which the peak 
enhancement occurred (green) and the frequency of the antenna for which the 
transmission was minimized (orange).The upper set of data in (a) and (b) (circles and 

triangles) corresponds to the 3/2 antenna mode and the lower data corresponds to the 

/2 mode. (c) and (d) show the maximum amplitude enhancement in the antenna gap. 
Green circles are experimental measurements in the gap and orange triangles are 
experimental measurements after the gap. The solid green (in gap) and dashed orange 
(after gap) lines are the results of FDTD simulations with the same gap sizes and arm 
lengths as in the experiments. 

 

D.  CONCLUSIONS 

 Our measurements have revealed key antenna features including the near-field spectral 
response, magnitude of the maximum field enhancement, and the time-dependent near-field 
profile in unprecedented detail. This will facilitate antenna design at all frequency ranges. Our 
methodology can also be applied to complex structures including metamaterials whose unique 
capabilities are based on near-field profiles and enhancements within antenna-like elements. In 
addition, enhancements of almost 40-fold and greater enhancements in future antennas with 
smaller gaps will enable new nonlinear THz phenomena to be explored. In spite of the fact that 
the enhanced field is tightly localized, the ability to probe exclusively in the gap region lets us 
take full advantage of the enhancement. High THz peak fields have been generated by other 
tabletop, ultrafast methods [Bartel 2005; Yeh 2007; Hirori 2011], but the THz output is typically 
a single-cycle pulse that has its energy distributed over a broad spectral range. The THz transients 
measured in our smallest antenna gaps have greater than 500 kV/cm peak-to-peak field strengths, 
comparable to those in strong single-cycle pulses. Our antenna-enhanced multicycle transients, 
however, have their energy concentrated in a much narrower spectral range, with spectral 
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brightness exceeding that of the most intense broadband THz pulses. This spectral brightness 
makes it possible to strongly drive selected resonant transitions (electronic, vibrational, or 
rotational) for waveguide-based nonlinear spectroscopy and coherent control, while avoiding 
unwanted responses driven by extraneous frequency components. In the future, substantially 
larger E-fields could be produced by driving the antennas with stronger THz waves produced 
simply with additional optical pump pulse energy or with intensity-modulated optical pump 
waveforms tailored for efficient generation of multi-cycle THz pulses. 
 

E.  SAMPLE PREPARATION 

 The antennas, patterned by direct laser writing with a DWL 66 (Heidelberg Instruments), 

were deposited on a 30-m LiNbO3 substrate. First, a 1.4 m thick layer of photoresist (AZ5214 
E from Clariant Co.) was spin-coated onto the LiNbO3. The sample was then scanned in the plane 
of the laser focus with the photoresist exposure calibrated appropriately for resist thickness and 

substrate. This allowed programmable patterning with ~1 m resolution. After development and 
removal of the exposed photoresist [Fig. 6.6(a)], a 10 nm adhesion layer of chromium followed 
by a 150 nm layer of gold was evaporated on the photoresist and the patterned areas [Fig. 6.6(b)]. 
The final structure was achieved through a lift-off process [Fig. 6.6(c)]. Due to the negative wall 
profiles of patterned photoresist, the gold on AZ5214 E can be gently rinsed with acetone and 
removed without an ultrasonic process that could damage or crack the thin slab. 
 

 

Figure 6.6 | Sample fabrication procedure. The optical lithography process for 

depositing 150 nm thick gold antennas on a 30 m thick LiNbO3 slab. 

(a)

(b)

(c)

photoresist

LiNbO3

gold
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F.  ULTRAFAST PHASE SENSITIVE IMAGING 

 All experiments studying the interaction between THz waves and the gold antennas used 
ultrafast methods. Both the imaging experiments (Figs. 6.2 & 6.7) and single-point spectroscopy 
measurements (Figs. 6.3, 6.4, 6.5, and 6.8) were conducted with an amplified titanium-sapphire 
laser with a repetition rate of 1 kHz and a pulse duration of 100 fs. A beamsplitter separated 
pump and probe pulses, and the pump was delayed relative to the probe using a mechanical delay 
stage. 
 

 

Figure 6.7 | Experimental geometry for imaging. The experimental geometry for time-
resolved, phase contrast imaging of THz waves in LN sample. 

 

 To study the antenna mode profile, we used time-resolved, phase-sensitive imaging 
[Koehl 1999; Peier 2008; Wu 2009; Werley 2010] as discussed more fully in sections 4C & 4D. 
The pump generates a THz wave that is wave-guided down the thin LiNbO3 slab. The THz 
electric field changes the LiNbO3 index of refraction via the electro-optic effect. A spatially 
expanded probe beam is routed through the sample (see Fig. 6.7), where it accumulates a spatially 
varying phase shift due to the THz-induced change in index: ),(),(),( THz yxEyxnyx  . 

Because the camera detects intensity, a phase-sensitive imaging technique is required to observe 
the phase shift. We used phase contrast imaging [Wu 2009; Werley 2010]. In the back focal plane 
of the first lens after the sample, i.e. the Fourier plane, the light diffracted off the THz wave is 

spatially separated from the zero-order beam. In that plane, a mask (a flat plate with a 25 m x 25 

m recessed region) introduces a /2 phase shift between the zero-order and diffracted light, and 
when the light recombines at the image plane it interferes to make an amplitude image which is 
detected by the camera. By changing the time delay between pump and probe, a series of images 
were recorded and compiled into a video clip showing the propagation of the THz wave (see 
Media 1 and 2 in [Werley 2012]). 
 We used a non-collinear optical parametric amplifier (NOPA) to generate 100 fs probe 
pulses at 532 nm. A spectral bandpass filter before the camera transmitted the 532 nm probe light 
but blocked the 800 nm pump light and 400 nm light resulting from second harmonic generation 
in the LiNbO3 sample. To facilitate tight focusing of the zero-order probe beam at the phase mask 
and high resolution imaging, the first lens after the LiNbO3 sample was an aplanatic lens with a 

numerical aperture of 0.15, resulting in an image resolution better than 2 m. 
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G.  SPECTROSCOPY IN REFLECTION AND TRANSMISSION 

 In order to perform careful spectroscopy of the antennas, we switched from imaging to 
point source detection, which greatly enhanced the signal to noise ratio (S/N) and enabled 
reflection measurements. To generate broadband THz waves for spectroscopy, such as those 

shown in Figs. 6.3(a)-(c), the pump was focused to a line (~1 cm tall, 30 m wide, 100 J pulse 
energy) in the lithium niobate sample [Wu 2009]. For quantitative measurement of E-field and 
antenna enhancement, multi-cycle, “narrowband” THz waves tuned to the antenna resonance 
were preferred over broadband THz waves [see Fig. 6.3(d)]. Pumping the antennas on resonance 
increased the peak E-field enhancement and the spectral amplitude of the signal for improved S/N 
in reflection mode measurements. Because of waveguide dispersion, different THz frequencies 
propagate at very different velocities, so a tilted intensity front in the optical pump pulse can be 
used to velocity match, and thus coherently amplify, a selected THz frequency [Lin 2009]. The 
tilted pump pulse for narrowband THz waves was prepared by imaging a diffraction grating onto 
the sample (see Fig. 6.8), and the tilt angle was controlled by changing the magnification of the 
imaging system. We used 1 mJ pump pulse energy with a spot size at the sample of ~5 mm wide 

and 300 m tall. The two pumping geometries complement each other in that the broadband THz 
pulse can be used to scan a wide frequency range and determine the resonant frequencies of the 
first several antenna modes in a single measurement. The narrowband pulse can then be tuned to 
the resonant frequency of the antenna to measure field enhancement and characterize the resonant 
response. 
 To fully characterize the THz fields, it was necessary to focus the probe tightly enough 

that it could fit into a 2 m antenna gap and to position the probe relative to the antenna with sub-
micrometer accuracy. It also was beneficial to make both optical transmission measurements, 
which have the excellent S/N required for broadband spectroscopy, and optical reflection 
measurements, which enable quantitative determination of THz E-fields at the surface of the 
lithium niobate crystal where the gold antenna was deposited. This was important because the 
THz field is not uniform throughout the LN thickness for two reasons. First, the LN slab acts like 
a planar THz waveguide, and while the lowest-order waveguide mode that predominates far from 
any antenna structure is fairly uniform as a function of depth in the crystal, the higher-order 
modes that are weakly excited are not. Second, in the antenna regions where THz field features 
vary sharply on micron length scales, the variation is sharp as a function of depth as well as 
lateral position, so averaging over the LN crystal thickness is particularly inaccurate for 
quantitative characterization of the field profile and enhancement in the antenna gap. The 
experimental setup in Fig. 6.8 enables tight focusing and high-precision positioning of the probe 
beam as well as switching between transmission and reflection modes without adjusting the 
sample or any beam-steering optics.   

 In this setup, 800 nm light in the probe arm is frequency-doubled to 400 nm in a -BBO 
crystal. The 400 nm light is spatially filtered and expanded to make a Gaussian beam with a 
diameter designed to back-fill the objective used to focus the probe onto the sample. To prevent 
sample damage by the tightly focused probe, the beam is attenuated to less than 1 nJ/pulse. After 
a polarizer, which is used to control the polarization state in transmission and reflection 
measurements, 20% of the probe beam is reflected off the beamsplitter (BS2). This light is then 
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transmitted through a dichroic mirror and focused onto the sample with an 0.28 numerical 

aperture, 3.3 cm working distance objective lens, resulting in a 1 m probe spot at the lithium 
niobate surface.  
 In addition to the 400 nm probe light, incoherent, 530 nm light from a light emitting 
diode (LED) is incident on the sample from the back side. The sample is imaged onto the camera, 

and the objective used to focus the probe is the first lens in this imaging system, yielding 1 m 
imaging resolution. In addition to the incoherent light being imaged onto the camera, a small 
fraction of 400 nm probe light reflected from the sample surface (~10%) is also reflected from the 
532 nm reflecting dichroic mirror and imaged onto the camera. The image on the camera shows 

the antenna structure and the 1 m probe spot. The sample is mounted on a 3-dimensional 
translation stage with differential micrometers, allowing positioning relative to the probe spot 
with ~200 nm accuracy. Figure 6.2(b) shows the probe accurately positioned in the middle of a 5 

m antenna gap. After the sample was correctly positioned, the LED was shut off to prevent 
extraneous light from hitting the photodiodes during pump-probe measurements. 
 

 

Figure 6.8 | The experimental geometry for point-source detection. The sample is 
imaged onto the camera using incoherent 530 nm light from an LED source. A small 
fraction of the 400 nm probe light also reaches the camera, allowing simultaneous 
visualization of antenna and probe spot. The sample is mounted on a 3D translation stage 
with differential micrometers, making it possible to position the sample with ~200 nm 

accuracy relative to the probe spot which is focused to 1 m with a 0.28 numerical 
aperture microscope objective [see Fig. 6.2(b)]. After the sample is correctly positioned, 
the THz transients can be measured in transmission or reflection mode. The intensity 
front of the optical pump pulse is tilted by imaging a diffraction grating onto the sample. 
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 After correctly positioning the pump, probe, and sample, optical transmission or 
reflection mode measurements could be made without changing alignment. For both transmission 
and reflection measurements, the pump was chopped at 500 Hz and the signal was detected at the 
modulation frequency using a data acquisition (DAQ) card [Werley 2011]. Balancing was 
implemented between photodiodes PD1 and PD2 for transmission and between PD3 and PD4 for 

reflection (see Fig. 6.8). The overall minimum signal detection threshold was 4
0 10~/  II . 

 Transmission was used for broadband THz measurements because of the excellent S/N. 
To correctly implement transmission measurements, it is necessary to control the beam 
collimation. After passing through the sample, the transmitted probe beam is rapidly diverging. 
Before being collimated, it passes through a R800 nm/T400 nm dichroic mirror angled at 45°, 
which changes the apparent location of the focus for divergence along the horizontal and vertical 
directions. A cylindrical lens (see Fig. 6.8) corrects for this, and makes it possible to focus the 

probe to ~100 m and later to collimate the beam. The pinhole was necessary to block 400 nm 
light that was generated through second harmonic generation of the pump light in the LiNbO3 
sample, which could not be rejected by a spectral filter like the 800 nm pump light.  
 In transmission mode, the THz signal was encoded as a change in the polarization state of 
the probe. The probe polarization was initially set to 45º, and the THz induced a change in the 
relative index between vertically and horizontally polarized light in the LiNbO3. The change in 
relative index was encoded as a phase shift, Δφ, between the horizontal and vertical components. 
The final quarter wave plate (which changes the 45º polarized light to circularly polarized light) 
and Wollaston polarizer convert the phase shift to an amplitude shift. The signal detected at the 
photodiodes is (for ideal optics): 

)sin1(0  II                                                                  (6.1) 

where the “+” corresponds to PD1 and the “–” to PD2. Subtracting the output of the two diodes 
doubles the signal and suppresses common mode noise. The second slab of LiNbO3, located just 
before the quarter wave plate, is rotated 90º relative to the sample to correct for the inherent, 
static birefringence of the LiNbO3 sample. Additional adjustment is needed to correct for the 
depolarizing effects of the beamsplitter and three dichroic mirrors between the two polarizers that 
reflect or transmit the probe. These optics affect the relative amplitudes of vertical and horizontal 
polarization components and introduce a static phase shift between these components. Jones 
matrix analysis [Yariv 2007] shows that the amplitude change can be corrected by rotating the 
input polarizer away from 45º, and the static phase shift can be corrected by tilting the quarter 
wave plate so that it induces a phase shift greater than 90º. After making these corrections, we 
observe a nearly ideal polarization state after the quarter wave plate, and can use supplemental 
Eq. 6.1 to quantitatively extract the THz-induced phase shift.  
 The THz-induced phase shift is directly proportional to the THz electric field, with the 
proportionality constant determined by the electro-optic effect. Taylor expanding Eq. 6.1 in   

gives [Werley 2010]: 
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where   is the LiNbO3 slab thickness, λopt is the free space optical wavelength, eon  and on  are 

the THz-field-induced changes in refractive index for the extraordinary and ordinary axis, 
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respectively, 33r  and 13r  are the appropriate electro-optic coefficients, and THzE  is the average 

THz electric field experienced by the probe as it propagates through the crystal. Transmission 
mode has very strong signals (typical peak 0/ II  is 20%), and in an unmodified dielectric slab 

waveguide the effect of averaging the THz E-field through the crystal depth can be calculated 
analytically [Werley 2010] and used to quantitatively determine the peak E-field. The antenna, 
however, strongly localizes the electric field, and averaging through the crystal depth prevents 
accurate quantitative measurement of enhancements in the near-field region of the gap. 
 To measure the THz electric field at the surface where the antenna is deposited, reflection 
mode measurements are required. For reflection measurements, the 400 nm probe is polarized 
vertically, parallel to the THz polarization, the optic axis of the LiNbO3 crystal, and the long axis 
of the antenna. Of the probe light that is incident on the lithium niobate crystal, about 14% is 
reflected off the front surface, and this is collected and collimated by the same objective lens used 
to focus the probe. The majority of this reflected light is transmitted through the dichroic mirror 
(R532 nm/T400 nm) and beamsplitter (BS2) and detected by photodiode PD4. 
 At normal incidence, the reflection off a dielectric interface is given simply by 

2
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12 )/()( nnnnR  . Given that the vertically polarized optical probe is incident from free 

space, then, the signal modulation after Taylor expansion in eon  is 
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Here surf
THzE  is the THz electric field at the surface of the LiNbO3 slab. Because fields parallel to a 

dielectric interface must be continuous, this measurement reports directly on the E-field in the 
antenna gap and can be used to quantify field enhancement.  
 Equation 6.3 assumes that eon is uniform through the depth, while in fact the THz field 

weakens as one moves away from the surface and gap. To confirm that the non-uniform THz 
field profile has a negligible effect on R , we calculated the reflectivity for a material with a 
depth-dependent induced change in index [Thomsen 1986]. The amplitude reflection coefficient 
(Eq. 32 from [Thomsen 1986] after substitution of variables) is given by 
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with k the optical wave vector in the LiNbO3 and )1/()1(0 eoeo nnr   the reflectivity from the 

dielectric interface in the absence of a THz field. We assume the field decays exponentially away 

from the surface: )/exp()( surf lznzn eoeo  . Evaluating the integral in Eq. 6.4, calculating 0/ RR  

using 2
rR  , and keeping only terms that are first order in n  yields 
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which can be compared directly with Eq. 6.3. The signal strength is not attenuated appreciably 
relative to Eq. 6.3 so long as nm 14)4/(opt  eonl  . Because we expect the decay length of the 
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THz field to be on the order of the gap size, for the gaps in this paper l is far larger than 14 nm 
and 0/ RR  is accurately predicted by Eq. 6.3. 

 A drawback of reflection measurements is that reflection mode signals ( 0/ RR ) are 

roughly 700-fold weaker than transmission mode signals ( 0/ II ), as can be seen by comparing 

Eqs. 6.2 and 6.3. This reduction in S/N makes it difficult to perform broadband spectroscopy in 
reflection mode. An additional drawback of reflection mode measurements is that the beam has 
contributions from reflections off both the front and back surfaces of the LiNbO3 slab, but the 
enhanced electric fields are localized at the front surface where the antenna is deposited. To 
eliminate the reflection off the back surface of the slab, the reflected probe beam was focused 

through a 15 m pinhole with a 30 cm focal-length lens. In addition to excluding the reflection 
off the back surface, the pinhole also blocked 400 nm pump light. When the pinhole was 
translated along the direction of beam propagation, the reflections off of both surfaces could be 
clearly observed 5 mm apart, as predicted by Gaussian beam analysis [Saleh 2007]. When the 
pinhole was correctly positioned to transmit the reflection off the front surface, the back surface 
reflection was attenuated by ~15-fold, effectively eliminating its contribution to the enhanced 
signal in the antenna gap. As a control, the probe polarization was rotated 90° to horizontal. The 
reflection signal was reduced by a factor of ~3 as predicted by the electro-optic effect (

3 3
0 33 13/ / 3.1eo eo on n r n r n    ), indicating that the signal was accurately described by Eq. 6.3. 

 When capturing reference scans, in which there was no field enhancement at the front 
surface, the pinhole’s 15-fold attenuation was not sufficient to completely suppress the 
contribution from the back surface reflection, which was strongly modulated by the THz during 
its round-trip through the sample. To measure the reference scan, we recorded the THz time trace 
in transmission mode. Rearranging Eq. 6.2, the electric field at the surface in a plain, unstructured 
slab waveguide is given by: 
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where THz
surf
THz   is the ratio between the E-field amplitude at the crystal surface and the average 

E-field experienced by the probe as it passes through the crystal. Because the mode structure in a 

planar waveguide is well known, THz
surf
THz  , which is on the order of 1, can be determined 

analytically as a function of mode and frequency [Werley 2010]. This correction can be applied in 
the Fourier domain to quantitatively determine spectral amplitudes at the surface of an 
unstructured waveguide from a transmission mode setup. To confirm the ability to quantitatively 
measure surface fields in transmission mode, we recorded reflection and transmission scans in an 

unstructured waveguide and used Eqs. 6.3 and 6.6 respectively to calculate surf
THzE . To eliminate the 

contribution from the back surface in the reflection measurement, we used a longer focal length 

lens before the 15 m pinhole to increase the attenuation of the back surface reflection. In 
addition, we coated the back surface of the LiNbO3 slab with nail polish, which served as a 
simple antireflection coating since its index was intermediate between LiNbO3 and air. A scan of 
the pinhole confirmed that a negligible amount of light from the back surface made it through the 

pinhole. Measurements of peak surf
THzE  calculated with the two methods differed by ~10%, 
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confirming the ability to use transmission scans for reference measurements. Transmission mode 
reference measurements were used to record the blue trace in Fig. 6.3(d) and for determining field 
enhancements in Fig. 6.5(c) & (d). 
  

H.  MODELING THE ANTENNA AS A DAMPED DRIVEN HARMONIC 
OSCILLATOR 

 As mentioned in the main text of the paper, the line shape can be understood qualitatively 
by modeling the antenna as a damped driven harmonic oscillator. The amplitude of the E-field in 
the antenna gap should be proportional to the amount of charge built up at the antenna ends. The 
differential equation describing the charge is: 
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Here  is the driving frequency, 0  is the undamped resonant frequency, and γ is the damping 

ratio. The well known solution (ignoring transients) is a harmonic response at the driving 
frequency with a driving frequency-dependent amplitude and phase: 

)](2sin[)()(   tAtQ                                                        (6.8a) 
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The amplitude and phase are plotted in Fig. 6.9(a) with γ = 0.18. The amplitude has a DC 

response, peaks at 2
0max 21    (slightly lower in frequency than the undamped resonance), 

and decays to zero at high frequencies. The response is at very low frequencies, is phase shifted 
by -π/2 at 0 , and is out of phase at high frequencies. 

 Because the signal strengths were too weak to measure the broadband response in 
reflection mode, we recorded these spectra in transmission mode as described above. As a result, 
the measured near-field signal interferes with a background accumulated as the probe travels 
through the depth of the crystal. The measured signal is approximately the near-field signal plus 
the reference signal: )()()( refnfsig  EEE  . The traces plotted in Figs. 6.3 and 6.4 are 
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 is a measure of the antenna response. Figure 6.9(b) shows the 

in-gap signal for a 110 μm arm-length antenna from Fig. 6.4(b) and 1)( Q  with ν0 = 0.24 THz, 

γ = 0.18, and A0 = 0.14. The characteristics of the spectrum are predicted fairly well, including the 
DC response, the enhancement peak, and a minimum above the resonance. The minimum results 
from destructive interference between the near-field signal, which is somewhat out-of-phase with 
the driving field, and the background signal. The structure in the data at higher frequencies than 
the minimum (above ~0.45 THz) is complicated by the higher order antenna modes, so it is 
probable that the response from the lowest mode decays away as predicted. It is possible to 
capture many of the high-frequency features in the spectrum by including additional resonances 
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in the model. One feature not completely explained is the observed frequency difference between 
the enhancement maximum and the transmission minimum, which is significantly greater than the 
red shift from the undamped resonance shown in Fig. 6.9(b). In spite of this difficulty, it seems 
that thinking of an antenna as a damped harmonic oscillator with charge driven by the input wave 
provides excellent intuition for observed antenna behavior. 
 

 

Figure 6.9 | Modeling the antenna as a damped harmonic oscillator. (a) The 
amplitude and phase of a damped harmonic oscillator (γ = 0.18) as a function of the 

normalized driving frequency, /0, with 0 the resonant frequency. (b) The 
experimentally measured enhancement in the gap of a 110 μm arm-length antenna 
(purple) and |Q+1|, the interference between the harmonic oscillator response and a 
constant background (orange). 
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