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ABSTRACT

This work describes a phenomenological approach for modeling linear and nonlinear infrared
spectroscopy of condensed phase chemical systems, focusing on applications to strongly hydrogen
bonded complexes. To overcome the limitations inherent in common analytical models, I construct full

time trajectories for spectroscopic variables, here the vibrational frequencies and transition dipole
moments, and use these as inputs to calculate the system response to an applied electric field. This
method identifies key dynamical variables, treats these stochastically, and then constructs trajectories of

spectroscopic variables from these stochastic quantities through mappings. The correspondence of such

fluctuating coordinates and spectroscopic observables is demonstrated for a number of simple cases not

adequately addressed using current approximations, including liquid water, strong hydrogen bonds, and
proton transfer reactions using ab initio calculations, model potentials, and molecular dynamics.

Dynamical information is bestowed upon these trajectories through either a Langevin-like Brownian

oscillator model for the bath, full molecular dynamics calculations, or experimentally motivated empirical

formulae. Utilizing the semiclassical approximation for the linear and nonlinear response functions, these

constructed trajectories give us the ability to numerically calculate nonlinear spectroscopy to examine

phenomena previously difficult with other methods, including non-Gaussian dynamics, correlated

occurrences, highly anharmonic potentials, and complex system-bath relationships.

Thesis Supervisor: Andrei Tokmakoff
Title: Professor of Chemistry
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Chapter 1 : THE HYDROGEN BOND AND PROTON TRANSFER

Atoms and molecules tend to stick together. The forces that cause this, however, are rather subtle and of

many different forms, and many commonplace and seemingly simple intermolecular interactions are still

not entirely understood. Attractive and repulsive forces between molecules were first postulated to

account for observations of nonideality in gasses and liquids in the late 1800s [1]. Since this first

introduction of bonds and molecular interactions, one peculiar rather weak attractive force - the hydrogen

bond - has become perhaps the most important and useful chemical structural concepts in all of chemistry.

A huge variety of chemical and biological phenomena can be traced back to hydrogen bonding, but

despite its ubiquity, we still lack a coherent predictive theoretical understanding which captures the many

varying properties of these intermediate strength chemical interactions. In part this is due to the difficulty

in even defining what makes a hydrogen bond. It is an interaction which lies between the weak

omnidirectional nonbonded dispersion forces and the strong full chemical bond, spanning a large range of

possible energies and geometries.

Alfred Werner was among the first to investigate the unusual properties of the hydrogen bond when he

proposed that ammonium salts contain a shared proton between the ammonia molecule and an anion in

1902, a full eleven years before Niels Bohr proposed his quantized model of the hydrogen atom [2].

Investigations of the hydrogen bond began in earnest as early as 1920 when the term first introduced by

Latimer and Rodebush, and the consequences of this interaction on the absorption of infrared radiation

was realized soon thereafter. Despite some sporadic early work, it is really Linus Pauling who cemented

the idea firmly in the minds of chemists and first popularized the term, writing "...under certain

conditions an atom of hydrogen is attracted by rather strong forces to two atoms, instead of only one, so

that it may be considered to be acting as a bond between them. This is the hydrogen bond" [2-6].

HYDROGEN BONDS

At its core, the hydrogen bond is an attractive interaction between a proton donor D-H (X-H) and an

acceptor moiety A (Y) [2, 6-8]:

D-H --- A or X-H --- Y

The recent IUPAC definition of this phenomenon emphasizes that "it is best considered as an electrostatic

interaction, heightened by the small size of hydrogen, which permits proximity of the interacting dipoles

or charges" [9]. That being said, this bond, depending on the strength, can have significant covalent and
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dispersion character in addition to electrostatic, and many different pictures have been utilized to describe

this interaction, including various orbital methods and valence bond frameworks [10, 11]. Much work has

even found it fruitful to describe the character as part covalent bond and part charge transfer [12-15].

Hydrogen bonds are also unique because only the hydrogen atom lacks inner shell electrons, thus the

bond itself is quite polarizable as the entire electron density around the hydrogen is directly influenced by

the surrounding electrostatic environment [16]. As a result of this polarizability, the relative directionality

of the donor-acceptor interaction is exceptionally important, as the dipoles involved are clearly oriented.

Despite its ubiquity, the hydrogen bond can be rather difficult to empirically define. Gilli and Gilli write

that "the unique feature of the H-bond is that bonds made by the same donor-acceptor pair may display an

extremely wide range of energies and geometries" [1]. There are a few general trends, however. A key

feature of this interaction is the short X-Y internuclear distance upon bond formation, oftentimes shorter

than the sum of the two van der Waals radii. In general, the stronger this attractive force, the more linear

the X-H---Y angle, generally remaining above 110*. Linearity should be considered one of the main

signatures of a hydrogen bond, as it is this directional anisotropy which structurally distinguishes it from

isotropic van der Waals-like forces [17].

IMPORTANCE & INTEREST

Although weak compared to most chemical forces (spanning a rather wide energetic range, with a binding

energy AE often between 1-20 kcal/mol), the hydrogen bond is responsible for a huge variety of

macroscopic chemical phenomena, including the unique properties of water and ice, aqueous charge

transport, protein folding and macromolecule stabilization, corrosion, and a variety of other phenomenon

ranging from the interactions in the famous Watson-Crick base pairs of DNA to small molecule binding

in enzymes [1, 18, 19]. The hydrogen bond is an especially important interaction in biological systems,

where aqueous environments are common, proton motion is an important component of energy storage,

and noncovalent interactions often work cooperatively to construct large polymers and molecular

aggregates with well defined geometries.

Water is particularly significant with regards to hydrogen bonding and proton transfer, as each water

molecule is capable of simultaneously donating and accepting multiple hydrogen bonds, and these

interactions dominate the dynamics and structure of the condensed phases. The water dimer hydrogen

bond, of energy approximately 5.5 kcal/mol, is of particular interest in biological systems as it is only one

order of magnitude above kBT at room temperature [20]. The relatively small energy of the hydrogen

bond puts it in the "goldilocks zone" of chemical interactions for earth temperatures - not too strong, not

to weak, but just right. kT at room temperature (298K) is 0.593 kcal/mol (256meV , 207cm'), which
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means the energy of each interaction is just strong enough that the bonds are stable but weak enough that

relatively small thermal fluctuations can lead to appreciable bond breaking or forming. This is in sharp

contrast to the typical covalent bond, which is typically 0(1 OOkBT) at room temperature and requires

significant effort to break.

THE GEOMETRY OF HYDROGEN BONDS

We can define a coordinate system for the prototypical hydrogen bond to describe the relative

arrangement of each nucleus [2, 21]:

WY

R R

Figure 1: Hydrogen bonding coordinate system

This set of coordinates as defined specify the bond vector for the X-H bond r as well as the intermolecular

coordinates R, 0, and (e describing the location and orientation of the acceptor. Motion along R serves to

modulate the hydrogen bond distance, and motions along 0 and (e (in water for instance these coordinates

are connected to what are known as librational modes) allow the bond to deviate from linearity. In

addition to this geometry, sometimes a proton transfer coordinate is defined as 6 = rXH ~~ rYH, with donor

acceptor distance R.

Common hydrogen bonding definitions are based upon instantaneous geometric criteria, examining these

coordinates at any given moment in time and thus excluding any dynamics or large scale network

properties [22, 23]. Typical hydrogen bond cutoff criteria are set somewhere near 3.5A for the

internuclear donor-acceptor R (coming from the first observed minimum in water's radial distribution

function) and 3Q0 deviation from linearity in 0 and e (a number chosen largely based upon the angular

amplitude of librational motions in water). This picture ignores any motions or distortions, and simply

focuses on the instantaneous geometric arrangement of the donor and acceptor. For example, a molecule

undergoing a rapid rotation may pass these criteria fleetingly but continue rotating past the linear
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arrangement, only qualifying as "hydrogen bonded" for a few femtoseconds. In their book "The Structure

and Properties of Water," Eisenberg and Kauzmann attempt to incorporate timescale explicitly in defining

the "structure" of water, with different aspects of the structure accessible at different time scales of

measurement, but this is still a rather atypical definition [24].

With this geometric coordinate system defined, we can add in the electronic coordinates re for each

electron e with mass me and momentum Pe which allows us to write the full system Hamiltonian for all

nuclei and electrons:

2 2  P 2

H(re, r,R)= A + P+---+U(r,, r, R)(1)
2m, 2m 2M

where for a quantum mechanical system we use the momentum operators p = -ih - and P = -ih 1 .
ar aR

Applying the Born-Oppenheimer approximation to separate the fast electronic motions from the nuclear

coordinates we can solve just the electronic portion of the wavefunction to obtain

H,,(r, r, R)$,, (r , r, R) = V(r, R)#, (r., r, R) (1.2)

Expanding this potential V(r, R) about the minimum V(ro, R) as a power series we can write [21]:

1 21
V(rR)= V(ro,R 0 )+-mw2 (R)(r -r 0 )2 +-M02 (R -1RO)2 (1.3)

2 2

Here we are expressing the anharmonic coupling between intermolecular position and X-H bond

stretching as a frequency dependence in the intermolecular stretch, o. This frequency dependence can be

expanded in powers of R about minimum Ro:

da (R-R 0 )2 O2,
co(R) = o(Ro) +(R- do ( -R)-+ 2 +.. (1.4)

dR 2 aR2

Assuming the electronic energy is minimized for a linear bond orientation (9 = 0, $ = 0 ) we can also

include the bend or out of plane motion in this expansion:

dco 02 2 2 a 22 (R-O)2 2 22
(R)= (R)+(R - R)dco- -+ + +...- (1.5)

dR 2 a0 2 2 a#2 2 aR
2
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The overall observed linear IR spectrum then can contains absorptions at the transitions between these

energies, ho, and we should expect an anharmonic band with the potential for local minima and maxima

in the spectrum. We can see here that bending intermonomer modes can shift the center of the vibrations

and alter the overall shape. The electronic structure of the bond and thus the stretch are extremely

sensitive to the nuclear position, especially that of the hydrogen atom itself, so this should come as no real

surprise.

PROTON TRANSFER

Perhaps one of the greatest successes of modern theoretical mechanistic chemistry has been the

development of both theoretical descriptions and experimental techniques with which to study electron

transfer in condensed phases [25-30]. Ultrafast visible spectroscopy combined with synthetic ingenuity

has allowed for the verification and investigation of various regimes of predicted behavior for this

fundamental charge separation process, and the past 50 years has provided a wealth of understanding and

insight regarding the transfer and translocation of electrons. Like electron transfer, proton transfer

generally begins with neutral reactants and results in separated, stabilized charged product states. For a

general donor-acceptor pair, we can compare the reactants and products of this acid-base reaction:

D + A -D*+ A-

DH + A - D+ AH*

Proton transfer, however, is only sometimes adequately described with the Marcus description, and

difficulty in predicting the dynamics certainly is not due to relative importance or scarcity - the entire

complex biological machinery of photosynthesis exists to ultimately create a proton gradient, and this

occurs predictably many thousands of times per second in each cell. The most obvious reason for the

continuing uncertainty is that unlike electron transfer, proton transfer involves the actual breaking and

formation of a chemical bond with all the associated complex electronic consequences. With this comes

the challenge of the proper picture for the transfer: one can consider it similar to the Marcus picture of

solvent reorganization and a tunneling event, or as a more classical motion of the proton crossing over a

barrier - both views are valid depending upon the reaction barrier height, shape, well depth, and

corresponding proton wavefunction [21, 31-33].

Perhaps even less understood, local hydrogen bonding involving the proton of interest can greatly

accelerate the transfer, serving to facilitate proton motion from donor to acceptor and define a reaction

pathway. The structural rigidity provided by the hydrogen bond can also serve to pre-arrange the proton

donor and acceptor in a favorable geometry - one can think of the proton transfer process as nothing more
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than a large amplitude vibrational stretch in this prearranged donor-acceptor complex, and hydrogen

bonds may be considered the semi-stable partially activated precursors to proton transfer reactions [7]. In

fact, proton transfer in the absence of a guiding hydrogen bonds has only recently been observed in any

system [34].

In densely hydrogen bonded compounds, it is known that proton diffusion is enhanced significantly. The

"Grotthuss mechanism" describes the anomalously fast diffusion of protons in water as a topological

defect propagation via structural diffusion - not unlike a string of marbles being pushed through a garden

hose, with a concerned shift of protons along pre-arranged hydrogen bonding pathways [35-37]. This was

proposed schematically by Theodor Christian Johann Dietrich von GrotthuB, who said that positive

charges resulting from electrolysis could be transported in water through "structural diffusion," hopping

from one molecule to another as seen from his original figure:

P+

Figure 2: The original Grotthuss illustration of the propagation of charge (+) through a pre-arranged linear

chain of chaged moieites [361

Upon discovery of the proton (credited to Rutherford over 110 years after Grotthuss's publication!), this

was proposed to be the mechanism of charge transport in water as well - that is, proton diffusion taking

place via a series of bond breaking and formation events involving hydrogen bonded O-H- 0 bonds,

resulting in net long-distance charge translocation without the long distance movement of any individual

proton [38-41]. Hydrogen-bonded water molecules seem to also be capable of storing and directing

protons within proteins [42-44].

Water wires like those proposed in the Grotthuss mechanism play a key role in charge recombination in

water, and even rather distant solvent molecules can play a role in autoionization and recombination,

cauing what Chandler et al describe as "highly unusual fluctuation in proton potential" [45, 46]. The
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pathways available to any given proton depend upon the solvent structure around the proton itself, which

is extremely dynamic and in protic species often dominated by breaking and forming hydrogen bonds.

The structure and dynamics adjacent to the proton are inherently intertwined and both contribute in

significant ways to the entire process of proton transfer, mapping out the landscape over which the

transport is possible.

MODELS OF THE PROTON POTENTIAL

In the condensed phase, the solvation of charged particles involves many molecules, and thus it is difficult

to identify one suitable reaction coordinate with which to describe proton transfer. Because of the

relatively weak nature of the hydrogen bond, small solvation changes can nudge the energetics just

enough to initiate a proton transfer solely through collective small motions of the surrounding molecular

environment. In water, the prototypical protic solvent with both a high dielectric constant and an

extensive and complex network of hydrogen bonds, the underlying structure is essential in both defining

the rate of transfer and the reaction coordinate itself.

To cut through this molecular complexity, as early as the 1930s, chemists and physicists have pictured the

schematic one dimensional potential experienced by the transferring or shared proton [47, 48]. These

potential models have been refined and used to calculate bond energies, bond distances, and OH

vibrational frequencies as a function of internuclear distances [49]. Recent studies have focused on one

dimensional coordinates useful for describing and thinking about the transfer process, ranging from the

geometric coordinates, such as the 0-0 distance for water or the change in the donor-acceptor center of

mass, to coordinates such as the electric field, and all forms generally take the form of an asymmetric

double well potential relating spatial position (x axis) to potential energy (y axis), shown schematically

for the -OH stretch along the bond vector in water during a transfer event in Figure 3 [50-55]. When the

proton is localized on either the donor or acceptor, this potential appears roughly Morse-like, and when

symmetric there is a double well shape with a small barrier.
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Figure 3: Double well potential model of proton transfer

In the simple 1 D model, transfer of a proton is favored when the well becomes completely symmetric,

which lowers the barrier such that the lowest vibrational eigenstate energies can become nearly

degenerate, and the 0--+ 1 stretching transition frequency drops significantly, while the higher energy

transitions are also perturbed, hinting that changes in vibrational energy levels may serve as spectroscopic

indicators of proton transfer events. In what Borgis and Hynes deem "adiabatic proton transfer," the

stretching motion of the proton is much faster than the fluctuations of the surrounding solvent network

(that is, the two motions are adiabatically decoupled due to their disparate timescales), such that any

rearrangement of the solvent results in an essentially instantaneous adaptation of the potential governing

the stretch, and efforts have been made to map the asymmetry of a model double well potential directly to

the vibrational frequencies observed [32, 56, 57]. These sorts of effective proton potentials have been

applied to systems ranging from the water dimer to ferroelectric materials [58-61].

Taking these one dimensional potentials as static, it is tempting to consider the effects of proton tunneling

behavior through this barrier. Saykally is not the first and will certainly not be the last to claim that "one

of the most fundamental, yet enigmatic, of all chemical processes is the transfer of protons in liquid water,

which occurs via ultrafast quantum tunneling in the hydrogen bond network" [62]. But this is not the

whole story. The potential experienced by the proton is itself dynamic, influenced by the large bath

around it, and obsession with the tunneling proton neglects important realities of the proton potential.

This overemphasized importance of proton tunneling to proton motion is all too commonplace, especially

in the water literature, and oftentimes proton transfer is treated entirely nonadiabatically with a double

well potential having a barrier height much higher than kbT and the dominant contributor to transfer being

tunneling [56, 63]. That is of course not to say that the proton does not behave quantum mechanically, as

it most certainly does, but the structure of the barrier is such that tunneling is oftentimes the wrong picture

[64].
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Bernal and Fowler wrote in 1933 that "when two systems are in close contact as neighbors in the water...

only a small barrier hill survives or the barrier may have almost totally disappeared, that that in either

case the proton moves fairly freely from one system to the other during the period of this intimate

contact" [65]. For many configurations, the potential energy surfaces have a low barrier at the shared

state, which can easily be overcome when small solvent structural rearrangement occurs as the proton

moves [66]. In fact, for low barrier potentials, quantum zero point motion alone can delocalize the proton,

but it is largely a classical-like barrier crossing process [67]. In strong hydrogen bonding interactions, this

barrier is effectively zero, and it is instead the small fluctuations in the proton environment which dictate

proton dynamics [39, 68]. With this picture, Marx claims that "the picture of the 'tunneling proton in

water', once obtained from oversimplified theoretical considerations, should finally be banished to the

past" and that transfer of a proton occurs due to "mainly quantum mechanical zero-point vibrations-and

not tunneling-in cooperation with 'appropriate fluctuations' of the hydrogen-bonded network in the

vicinity of the excess charge" [69]. One recently used coordinate for these fluctuations driving proton

transfer in a liquid is a "collective solvent coordinate" defined as the difference in energy of the stretching

potential at the two proton minimum positions (on the "donor" and "acceptor"), such that when equally

shared (a symmetric well) this value is zero [55, 70, 71].

While a useful conceptual model, this picture of simple potentials is complicated greatly when the solvent

becomes part of the path of the proton as well, mediating the transfer process and connecting the acid and

base through space, a situation we can depict for aqueous solutions schematically as:

DH --- (H2 0)n.-- A -+ D~ --- H30*(H2O)n- --- A -+ D~ --- (H 20)n.-- AH*

For such a scenario it is not clear whether the intervening water molecules accelerate the transfer, provide

local minima which stall the proton in a stepwise or random-walk fashion, or introduce even more

intricate dynamics. Water is a complex molecular network with a dynamic structure fluctuating and

reorganizing on the order of 1 Ofs to I0ps, breaking and forming hydrogen bonds and undergoing both

collective and individual molecular motions. The interconnected pathways formed by this hydrogen-

bonding structure dictate how energy and particles move through the solvent, and protons are guided and

assisted by this underlying structure and rapid fluctuations so dramatically that even the inclusion of one

or two water molecules greatly alters the fundamental proton transfer timescales and energies.

REPORTING ON H-BONDS AND PROTON TRANSFER

The effects of hydrogen bonding become apparent in a large variety of experimental methodologies,

including microwave spectroscopy, nuclear magnetic resonance, infrared spectroscopy, x-ray absorption

and emission, and both coherent and incoherent scattering [10, 21]. The electron density changes due to
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this bonding can serve to deshield the shared hydrogen, leading to changes in the proton shielding tensor

and thus altering NMR chemical shifts, anisotropies, and peak volumes, and nuclear couplings change

quite noticeably when H-bonding is present [8]. It has also been shown that in some systems, NMR can

even help to determine the shape of the proton potential [72-74].

For the same reasons that protons prone to hydrogen bonding can easily transfer to adjacent molecules,

the stable hydrogen isotope deuterium, "2H" or "D", can be easily exchanged with 1H protons.

Importantly, the extra neutron in the deuterium nucleus doubles the mass of the nucleus compared to that

of a proton without changing the charge. The deuteron, being heavier, behaves more akin to a classical

particle. Just due to its mass, D has a lower zero point energy and a narrower spatial extent of its nuclear

wavefunction. With the extra uncharged neutron, the electronic structure of deuterium remains identical

to that of the proton, so only spectroscopic properties which rely upon the nucleus in some way are

altered. For example, the deuteron is a boson made of two spin 2 particles, thus having a nuclear spin of

+1 and radically different NMR signatures from the spin V2 proton, but the visible absorption of

deuterated compounds does not change considerably from the protonated species. The dynamics of

deuterium motion are also significantly altered by the doubling of the mass, and everything from

macroscopic diffusion to enzyme turnover rates changes upon deuteration. Because the substitution of

deuterium for hydrogen is effectively nonperturbative to the geometry and electronic structure,

deuteration provides a useful tool with which to examine the effect of mass upon the properties of the

hydrogen bond and the nuclear potential surface. Recent theoretical work has hinted that nuclear quantum

effects contribute meaningfully to the strength of the hydrogen bond itself due to modifications of

bending and stretching potentials [67, 75].

IR SPECTROSCOPY

Infrared spectroscopy is perhaps the most informative technique for studying hydrogen bonds. Infrared

spectra contain a wealth of information including both the dynamic electronic and nuclear components of

bonding interactions, and it provides direct access to molecular motion. Modem spectroscopy in the IR

region has been made simple and inexpensive by the proliferation of Fourier transform spectrometers

(FTIR), and it has become one of the most commonly used methods of learning about condensed phase

chemistry. IR spectroscopy has proven especially enlightening for hydrogen bonded systems, and by

examining inter and intramolecular vibrations it is possible to obtain both geometrical and dynamical

information on the nature of the bond.

THE STRETCH
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Hydrogen stretching vibrations are particularly useful reporters on the local hydrogen bonding

environment for a number of reasons. The stretch is classically the first motion in a full proton transfer,

but exciting the hydrogen bonded stretch v,(XH-- -) to the first excited state with laboratory-scale electric

fields has been shown in general to not break the hydrogen bond [76]. IR spectroscopy of the stretch is in

a sense supersensitive to hydrogen bonding because formation of the bond actually increases the

absorption, as the changes in dipole due to polarization upon bond formation tend to increase the

absorption intensities, so hydrogen bonded compounds are oftentimes easier to detect than unbound

molecules.

Upon the formation of a hydrogen bonding interaction, most vibrational stretch bands red shift to lower

frequencies as the X-H bond weakens, and the amount of red shift observed in the X-H stretch tends to

correlate well with the strength of the hydrogen bonding interaction. Compared to the gas phase value,

very strong hydrogen bonds can weaken the bond force constant enough to red shift the stretch well over

1000 cm', while water, shifts a more moderate 300 cm' in the liquid phase [77-82]. In addition, the bond

energy of H bond is also related to the stretching vibration intensity and the stretching frequency often

correlates to the bond distance [83, 84]. Shared or transferring protons can demonstrate very dramatic

changes in stretching frequency, and the shared proton in a water-hydroxide dimer exhibits strong IR

absorption band as far down as 697 cm' in Ar, with a significantly enhanced transition moment (-1000x

larger than a free OH stretch) [85]. Spectroscopic signatures of the shared proton in hydrogen bonded

species of the form [A -H*-B] have been identified in the gas phase, but clear IR signatures of this

intermolecular proton in the condensed phase are still difficult to classify [13].

IR spectroscopy does not directly measure geometric parameters, but spectroscopic observables are

oftentimes closely related to the molecular geometry. Fecko et al. have shown that in simulations of liquid

water, the stretching frequency can be nearly perfectly correlated to the projection of the sum total electric

field along the OH bond at the proton position [86]. In addition, the energy of the proton stretch generally

linearly increases as a function of equilibrium O -. 0 distance Roo. This goes in accordance with a trend

often cited as "Badger's rule," first published in 1934, which relates the bond strength to the internuclear

distance, thus connecting bond distance to vibrational frequency [87-89]. A similar study by Novak in

1974 on the IR spectra of hydrogen bonding in solids inspired many experiments to quantify Roo distance

fluctuations using the vibrational stretching frequency as a reporter [90]. This trend can be seen for over

135 different compounds containing OH .0 hydrogen bonds in Figure 4:
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Figure 4: Stretching frequency vs. equilibrium internuclear distance. Data taken from Sokolov 1990 [811.

Because the substitution of hydrogen with deuterium changes the energy level structure within the

vibrational potential, changes in the vibrational frequencies upon isotopic substitution can provide insight

into the nature of the potential and thus the bonding environment. One can define the isotopic stretching

frequency ratio of hydrogen to deuterium as [81]:

7= DO-H

0o-D

(1.6)

The isotopic stretching frequency ratio is shown below as a function of Roo for well over 100 different

small molecule compounds containing a proton or deuteron shared between two oxygens.
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Figure 5: Isotopic stretching frequency ratio in O-H-O bonds as a function of hydrogen stretch. Data taken

from Sokolov 1990 [811.

Although indirect, this change in stretching ratio is related to the shape of the proton potential which

dictates the vibrational energy level structure, and if nothing else, the change in stretching frequency upon

deuteration can also serve to shift specific protons of interest into a useful spectroscopic window. Some

work has been made in connecting the shape of the proton potential to the IR spectrum in hydrogen

bonded species for a more general case [91-94].

STRONGLY HYDROGEN BONDED SYSTEMS

As a simple conceptual model of a strongly hydrogen bonded system, we can think of the normal mode

vibrations of a dimer. Consider a complex involving two individual molecules, A and B, containing NA

and NB atoms, respectively. Each molecule has 3(NA)-6 and 3(NB)-6 internal degrees of freedom and thus

the same number of modes of motion. The AB dimer system, however, has 3(NA+NB)- 6 internal degrees
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of freedom, and as a consequence six additional modes are obtained, stemming from possible

intermolecular vibrations (for example, the A-B stretch or relative twisting).

A simple model for both inter- and intra- molecular vibrations is that of rigid bodies connected by

classical springs. Houjou demonstrates this with a model consisting of the geometry

A, - All <- BI, - B, with spring constants Kinter and Kintra [95]. For a total mass of molecule A of

m = MA + mAI the lowest frequency eigenvalue of the system is

O2 ( K,,,. +Kiner -KJ ,,.a+ K nr .er)
m

where of course o/2 n = v.

For simple harmonic motion, this frequency v is related to the classical Hooke's law restoring force k and

1 k k
the reduced mass of the oscillator p by v = - and since o = 2ny, co = -. The quantum

1 11

mechanical harmonic oscillator has energy En = hy = h(n + -) - - for a given vibrational quantum
2 27 m

number n. The new vibrational modes which arise due to the dimerization lie low in energy - considering

a sufficiently rigid small molecule dimer generally between 10-300 cm'. In contrast to the lower energy

intermolecular motions, intramolecular stretching modes typically are observed between 400-4000 cm-,

as stronger, covalent bonding interactions give a higher classical "spring constant."

If we suppose there is a low frequency intermolecular stretching mode (here subscript S) which changes

the X- .- Y distance, the vibrational Hamiltonian becomes (following from (1.3)):

p+ MR2 1r) 21~n R
H(r, Rs)= + Rs +Z (Rs)(r -r22 (1s(R.-7)

2m 2Ms 2 2

For a single intermolecular stretching motion changing the hydrogen bond distance, it is reasonable to

truncate (1.5) at just the linear term, giving oi(R,)= oR. We can then consider the timescales of these two

motions. The shorter, stronger XH bond will be fast and high frequency, while the intermolecular X.--Y

motion will be substantially slower. If we separate this fast X-H stretching motion (generally near 3000

cmI which is a vibrational frequency of 11. 12fs) from the slower stretching motion (say, approximately

200 cm 1, corresponding to a vibrational period of approximately 170fs ) such that the fast stretch only
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depends on the present value of R, and not its dynamics (analogous to the Born-Oppenheimer

approximation):

#N (r, R,) = X, (r, Rs), N(Rs) (1.8)

Where X, (r, Rs) is the wavefunction for the fast XH stretch and the afN (Rs) is the wavefunction of the

slow mode when the fast stretch is excited to the n* state. Again assuming co(R,)= oR, we can solve for

the energies allowed here [21, 82, 96]:

( 1Q 1 1 )2 h2 do 1)
EN "= n+- Jh6(Ro)+ N+-jhQ,- n+- ~ (1.9)E" n+2)h R0+(N+ 2) 2 2MQs d S)

dw.
Given the observed trends of stretching frequency the term d is positive, and this variation is mostly

dR

linear (see Figure 4). For even a linear dependence on R, additional transitions corresponding to

excitations of the intermonomer mode become possible, and the stretch gains structure similar to the

Franck-Condon progression observed in electronic spectroscopy which has been observed in many gas

phase hydrogen bonded systems [93, 97, 98] In a liquid phase where these intermonomer vibrations can

span a wide range of values the primary stretching lineshape can simply broaden out to a smooth

distribution reflecting the many intermonomer distances accessible.

It is also worth noticing that at room temperature the Boltzmann population of a fast 3000 cm-1 stretch is

e kBT _1-7 while a slow low frequency motion at 200 cm-1 has the nontrivial thermal population of~0.4 at

300K. As a result these low frequency modes modulating the internuclear distance are appreciably

populated and there is constant fluctuation in these distances. This same sort of approach can be applied

to more complex potentials as well, and has proven exceptionally useful for the Morse potential [99].

WA TER

Water is the most ubiquitous and most intensely studied of hydrogen bonding molecules, and the one with

which most people interact in their everyday lives. Water seems initially rather simple and uninteresting,

as the water molecule contains only three small atoms and has no notable visible absorption. Because our

daily lives revolve around floating ice cubes, easily poured liquid water, a high water boiling point, and

beverages which maintain their temperatures for a relatively long time, we do not generally think that

these properties are particularly peculiar, but for such a small molecule, water is a very unique liquid.
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The interesting properties of the water molecule appear primarily to us in the condensed phase, which

consists of a hyperdense hydrogen-bound network of molecules, with each molecule able to participate in

four hydrogen bonds. At room temperature, a majority of the possible bonds are indeed present, and

liquid water contains ~90% of the hydrogen bonds found in the familiar form of solid ice. As a result, the

extended tetrahedral structure present in solid water is also a major feature in the liquid [24, 100]. Even

with these structural similarities between the condensed phases of water, the charge distribution in the

liquid phase of water is quite different, with a liquid phase dipole moment of 2.6-3.0 D, compared to the

gas phase value of 1.85 D [100-102]. The compact nature of the liquid phase and the strong interaction

between hydrogen bonding partners dictates much of the reactivity, and the fluctuating bonding network

can significantly change what chemical processes take place, including proton transfer, charge separation,

and even vibrational relaxation [103]. For example, the anomalously large diffusion of protons in water

has been known for years, and at room temperature the diffusion constant of a proton in bulk water is

-9.3 x 10- cm 2/sec, over 4 times faster than any other cation in water [37, 104, 105].

Despite the reasonably well characterized average structure of water, these hydrogen bonds are extremely

fluxional, and both collective and local motions can lead to bond breaking and forming. Pure water forms

an extended and dense hydrogen bonding network, yet the relatively weak nature of these bonds allows

them to rapidly break and form, creating temporary defects in the extending bonding structure and leading

to unique dynamical properties as well. One cannot truly understand water without understanding these

dynamics, which span timescales ranging from tens of femtoseconds to tens of picoseconds. Hindered

rotations of water molecules occur on the 50fs timescale, bond stretches take place between 150-200fs,

and bending motions occur on the longer 500fs timescale. Larger scale collective motions involving

multiple water molecules such as translation or solvation can take many picoseconds. The wide range of

possible bonding configurations which are sampled rapidly over very fast timescales lead to dynamic

vibrational frequency fluctuations (spectral diffusion), which gives rise to broad absorptions in the

infrared [22, 24, 77, 86, 106-113].

COOH DIMERS

Another interesting and historically important system for spectroscopy of strong hydrogen bonds is one

containing to carboxylic acid moieties each donating and accepting one hydrogen bond as illustrated here:
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Figure 6: Carboxylic acid dimer structure

This cyclic hydrogen bonding interface allows for tautomerization by proton transfer, protonating each

carbonyl C=O bond and simultaneously transferring electrons in such a way as to create no new charge

separation [114]. In these systems, the OH stretch band is exceptionally broad with many structural

features due to coupling to low frequency bending and stretching interdimer modes and with two carbonyl

stretches as well. The simplest of these possible dimers are those containing two formic acid or acetic acid

molecules, and these dimers are known to dominate much of the condensed phase structure [76, 115-121].

In these acetic acid dimers, the C=O and OH stretches show complicated band sub-structure due to

anharmonic effects and coupling to intermolecular stretches and bends. Other dimers with similar cyclic

interfaces have been studied, including 7-azaindole, a model for the hydrogen bonding interaction in

DNA base pairs and a compound capable of rapid phototautomerization (the mechanism of which -

stepwise or concerted - is still rather hotly contested) [122-125].

In order to understand and examine these unique molecular interactions, the next chapter will work to

calculate spectroscopic observables for such systems and map these to potential reaction coordinates,

working to answer questions regarding how transition frequencies and dipoles vary over the course of a

proton transfer. From this static understanding of molecular quantities and a mapping of these in relation

to one another, we will then be in place to develop dynamical models to calculate multidimensional

spectroscopic experimental observables.
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Chapter 2 : MAPPING SPECTROSCOPIC VARIABLES: THE

SYSTEM

In this chapter I discuss methodologies for evaluating and describing the relationships between static

spectroscopic variables, such as the instantaneous vibrational frequency or the transition dipole moment.

First I will review the concept of correlation functions as a means of describing the properties of a general

classical or quantum observable. Then the discussion will turn to quantum mechanical observables useful

for describing and modeling spectroscopy, first reviewing quantum mechanical formalisms often applied

to spectroscopic systems along with the material response to applied electric fields. Finally this chapter

will show methods for mapping static values for the vibrational frequency and transition dipoles utilizing

a variety of models and methodologies, demonstrating the basic principles on simple hydrogen-bonded

systems.

CORRELATION FUNCTIONS

For an observable A and its equilibrium ensemble average at thermal equilibrium, classically we calculate

the expectation value

(A) = Jdpj dqA(p,q; t)p(p,q) (2.1)

Where we use the partition function to obtain the canonical probability distribution

p e-fH (2.2)
Z

Quantum mechanically this expectation value is

(A)= p, (n I A In) (2.3)
n

where

p = (2.4)
Z
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Just as random single variables are described by moments of their distributions; stochastic processes are

characterized by time correlation functions, a relationship which will be further developed in a later

section. We can define the correlation function (covariance) as

CAB =(AB)-(A)(B)

CAB (t, t')=( A(t)B(t'))

(2.5)

(2.6)

From this and equation (2.1) we can write the classical correlation function

CAB (t, ') = f dpf dqA(p, q; t)B(p, q; t')p(p, q) (2.7)

and the quantum correlation function from (2.6) and (2.3)

CAB (t, 0=) = p, (n I A(t)B(t')I n) (2.8)

Classical correlation functions are real and even in time [1, 2]

(2.9)

(2.10)CAA(t)= CA (-t)

while quantum correlation functions are complex and have the property that [3]

CM*(t) = CA(-t) = CA(t -ip3h) (2.11)

The first equality following from the properties of the quantum time propagator U

(A(t)A(O))* = UtA UA(o))* = (A(O)UtA U) = (A(O)A(t))

(A(o)A(t)) =(A(O)UtA U) = (UA UtA(0)) = (A(-t)A(o))

(2.12)

(2.13)

Because these quantum correlation functions are complex quantities, it is often useful to break them up

into two real functions: the symmetric real and asymmetric imaginary components

(2.14)
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We will also be interested in the Fourier transform of time correlation functions given by

O0() = dte''C4 (t) (2.15)

which according to the time symmetries results in a real valued quantity C (w) > 0. For the quantum

time correlation function detailed balance also results in the condition [3]

C (-co) = e-hO (0)) (2.16)

Taking the real and imaginary parts defined in (2.14) and this detailed balance condition (2.16) we can

obtain the result

= dte"tC'A (t)
~A, (2.17)

CAAA (co) = i. dte'w'C f A(t)

CAA A (W) = C s (co) tanh(phco /2) (2.18)

where S and A stand for symmetric and asymmetric, respectively. Likewise in the time domain then we

can obtain, by term by term inverse Fourier transform [4]

sin a (t)=-Cos ha C "A (t) (2.19)
( 2 t )2 8t)

where sin and cos of operators are defined by their series expansions. With this the full correlation

function can be expressed in terms of just its imaginary part

CA (t) = do cos(aot) coth 0 "(CO) - if da sin(cot)O "(w) (2.20)

or its real part via substitution of (2.18) into (2.20). This implies equivalence between the information

contained in both parts of the correlation function in the time and frequency domain representations.

Notice that these results do return the expected behavior in the classical limit where h -> 0 , as in this

limit the imaginary part C " (t) -> 0 from (2.19) and from (2.16) the classical correlation function in

the frequency domain is even as CO (-a)) = CA (CO).
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A consequence of the properties in (2.10) and (2.11) is that we cannot directly equate quantum and

classical correlation functions, which will become important in the application of the classical Langevin

description to fully quantum systems. Oftentimes one is able to compute a classical time correlation

function either analytically or through molecular dynamics, but determining a corresponding approximate

effective quantum correlation function from this is a topic of ongoing interest - for instance see Egorov et

al. for a comparison of four of these schemes [5].

INPUT FOR CALCULATING SPECTROSCOPY

The most common description of spectroscopy starts with a simple matter-field Hamiltonian of the form

H = Ho +V(t) (2.21)

where Ho is the matter Hamiltonian which describes the system when it is not interacting with light and is

thus time independent, and V(t) describes the time dependant electric field E which can interact with the

matter through the quantum mechanical dipole operator I [1, 6]. It is oftentimes expedient to focus

specifically on the degrees of freedom of the system which interact with the perturbation by partitioning

the matter Hamiltonian into a "system" which contains variables P and Q resonant with the E field, a

"bath" which contains the remaining variables p and q, and an additional term describing the interaction

between the "system" and "bath" as follows:

Ho=Hs +HB +HSB (2.22)

The dynamics of any system (with general coordinates q here) are described in how the wavefunction

evolves according to the time dependant Schrodinger equation

a 1
-y(q, t) = - H(q, t)y'(q, t) (2.23)

at ih

The time evolution under the time independent Hamiltonian Ho is rather trivially solved by directly

integrating (2.23), giving for initial time to and time t

Vf (qt) =exp -Ho(t-to)) V(qto) (2.24)
ih

We can define this first term as the time-evolution operator, an exponential operator which can be applied

term by term according to its Taylor expansion
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U(t, to) = exp I HO(t -to) (2.25)
(ih

which acts to propagate the wavefunction in time under the time-independent Hamiltonian. We can also

then propagate a wavefunction backwards in time under this Hamiltonian using the relation

_/ (to) =exp . HO (t -to) /(t)

(_ih (2.26)

= U, (t, towy/t)

It is oftentimes useful to utilize the interaction representation, where the time evolution under this trivial

time independent Hamiltonian is incorporated into the operators as

A, (t) = exp < Ho(t -to) A(t)exp+- Ho(t -to)
( h (ih (2.27)

= Ut(t'tO )A(t)U(t' to )

This is technically an application of a general unitary transformation on the Hilbert space. Without an

external time dependant perturbation (that is, when H = HO), the operators in this picture are the same as

those in the Heisenberg picture, with a time constant wavefunction and operators which evolve with time.

Utilizing (2.27) we can we can then rewrite (2.23) as

a 1
-- y!,(t)= -V,(t')y 1 (t) (2.28)

at ih

It is worth noting that here V, (t) acts as an effective Hamiltonian [6].

We can iteratively solve (2.28) by formally integrating it

y/,(t) = y, (to)+-- drV, (r)yI (r) (2.29)
ih to

Then upon repeated substitution of (2.29) into itself we obtain

y/ (t) = y/, (to ) ' fJ drn" dr. 1 " --- drV,(r ) V,(r --- V, (1)y/ (to) (2.30)
n=1 a mt or

Which if desired can be truncated at mth order:
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V,(t) =y, (to)+ - j'dr "dT~<--- dr+V (r)VK ,(r_)- --( 1 )l y,(t 0 )

(2.31)

+ - J dr, d,, f 7 _ 2- drIV (r,)V, (r,-V ..,)

This perturbative expansion approach allows us to make use of the fact that interactions with an external

potential (say, the electric field) are generally much weaker than molecular interactions, and thus we can

expand about the unperturbed molecular wavefunction in powers of this much weaker interaction.

Here it is useful to introduce another formalism which more easily incorporates some of the phenomena

we wish to describe. Consider a quantum system with spatial coordinates q. The wavefunction of this can

be expanded onto a properly chosen orthonormal basis set of functions pn

N

V(q, t) = c,(t)#,(q) (2.32)
n=1

or in somewhat sloppy Dirac notation

N

V/) = c,(t)|#A1) (2.33)
n=1

With this we can define the complex, Hermitian density matrix as the N x N matrix with elements

Pm ,(t) = c, (t)c (t) (2.34)

The nomenclature here is chosen for compliance with the historical literature, but the terminology

"density matrix" has an unfortunate side effect of adherence to this framework - the "matrix" is in fact

best defined as an operator, but it is commonly still referred to as a "matrix" thus leading to the

exceptionally awkward phrases such as "the matrix elements of the density matrix" [7]. These matrix

elements are produced by the Hermitian density operator

= lw y(t) (t)| (2.35)

Which is the projector onto the ket Vf(t)) such that

= c* (t)c(t)
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In a coherent superposition this matrix contains only diagonal elements, while in statistical mixtures this

matrix contains off-diagonal terms. Of course, the distinction here between a coherence or a population

depends upon the basis chosen for the state space, and because the density matrix operator is Hermitian, it

is always possible to find an orthonormal basis {| 7,)} over which it is diagonal, in which case the density

matrix describes a statistical mixture with no coherences of the states X,) [8].

This notation is particularly useful because we can easily extend it to a system which may be in a

statistical mixture of states. Consider a system where for a finite dimensional function space the state has

a probability Pk of being in the pure state I y/k) . This system cannot be represented with a single

wavefunction as a puse state can. As before we can define as the density operator this time as a sum over

the projection operators of each state weighted by a probability

,D A I Y'k)(Yfk~
k (2.37)

= PPk W
k

This in principle can be extended to an infinite yet countable space with the careful introduction of

integrals in place of some sums, but for our purposes the dimensionality of the function space is of

minimal importance [9-12]. The quantum system is them completely described by the time evolution of

the matrix elements of this operator, ^(t), and the expectation value of operator A corresponding to

matrix A with element Am = (n I A Im) is

A) = Tr(pDA) (2.38)

The time evolution of this density matrix then can be described by the Liouville-von Neumann equation,

equivalent to (2.23) [8]

d 1
- - Ip (2.39)
dt ih

Sometimes written in terms of the Liouville superoperator L which forms the commutator (or Poisson

bracket, depending) between the Hamiltonian and the operator being acted upon

d 1
- = -1 (2.40)

dt ik
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Because we can think of the density matrix as a combination of Schrodinger kets and bras as illustrated in

(2.37), for a time-independent Hamiltonian the density matrix can be acted upon by the time propagator

(2.25):

p(t)= exp -Ho (t - to)j k(O)exp- Ho(t -to)(
ih ih (2.41)

= U(t, to) (0)Ut (t, to)

As with the wavefunction, we can define the density matrix in the interaction picture, utilizing the time

propagators

k

= Pkexp 1o (t - to) 7,0 ( 0) p SW lex -H -to ) (2.42)

=Ut(t,to),(t)U(t,to)

This allows us to transform the von Neumann equation (2.39) into the interaction picture for a

Hamiltonian of the form (2.21) to obtain

yd Y,(t),y,(01 (2.43)

An in the same manner as equation (2.30), formal integration and self substitution yields

p,(t = p,(to )+ dr " dI_ J--- dr [/ (r,),[ V(r_---,r , (to ).- 1](2.44)

And then going back to the Schrodinger picture from the interaction picture using

p (t)=U(t,to)A(t)Ut (t,to) :

(t) = p() )(t)+ - dI f '" df,_,-
n=1 ih ' 'o' (2.45)

U(t to) lera(ivl we cn di tsin s(11), P (to) of -- Ud (t, to)

Or alternatively we can define this in terms of n* order density matrices:
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p(t) p ( (t) + pt "(t") (2.46)
n=1

Where obviously

p("(t)= drJn dr, --- dr,
ih 'f t o 'to (2.47)

U tt, to) Y ,((TI), Y , r _I, - Y , r ) p (to)] . ] --- U (t,to)

For spectroscopy, the time dependant perturbation is the interaction between a system and an applied

external electric field from the light. This interaction can be written as an expansion in powers of the

applied field utilizing transition tensors of increasing rank

V, = p, E(r, t)+a, : E(r, t)E(r, t) +- - (2.48)

Where given (2.27) the dipole operator in the interaction picture is

PA (t) = U, (t, to)tto (2.49)

Because the time dependence of this transition dipole operator only emerges in the interaction picture,

oftentimes the subscript I is dropped, as if there is any time dependence to this operator, it is in the

interaction picture, and if not, it is in the Schrodinger representation.

For vibrational spectroscopy the field-matter interaction occurs between molecular bonds and dipoles on

the order of angstroms while the radiation wavelength is on the order of a few microns, and thus it is valid

to make the "dipole approximation" where each molecule is approximated as a point dipole and the only

pertinent quantity for which we must take account is the transition dipoles. We can assume the major

contribution to the perturbative interaction is just the first term

V, (t)~ -p,^(t)E(t) (2.50)

What we measure for nonlinear spectroscopy is the macroscopic polarization in the sample generated

from the interaction with a series of external electric fields. This induced nonlinear polarization comes

classically from Maxwell's equations, which when in a source free (V-E = 0) isotropic medium tell us:
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aVxE=--B
at (2.51)
a pOH
at

And allowing the material to be nonlinear such that the constitutive relation for the displacement current

is D= cE= &OE+P(E)

V x H = J+-aD
at (2.52)

= J+ aEE + a- P
at at

The nonlinear polarization density term P in (2.52) can be found to act as a source by arriving at the wave

equation the usual way - combining these two equations and assuming the region of space of interest

contains no free currents so J = 0 [13-15]:

V2  n2 a2 a2

c t E=po 2 P (2.53)

Nonlinear material polarization is oftentimes described by expanding the polarization as a power series in

the field, introducing the susceptibility tensors X . For the pure electric dipole case this looks like [16]:

P = X-E + X : EE+:EEE+- -- (2.54)

In the language of quantum mechanics (and dropping the bold notation), the total polarization of the

sample is the expectation value of the dipole operator:

P(t) = Tr (A (t)p(t) (2.55)

which may also have spatial dependence. Utilizing the perturbative expansion of the density matrix in

(2.46) we can obtain a perturbative expansion of the polarization where similarly to (2.54) the nth term

describes n matter-field interactions:

P(t) = Tr( p(t )p()(t)) (2.56)
n=1
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Utilizing the dipole approximation for the perturbation term (2.50) we then obtain for the nth order

polarization:

Pf'(t)= drnJ" dr,_1 -- - drE(rn)E(rq)--- E(r) )
i O ' o o (2.57)

Tr( A(t)[ A Ir.,[ nr-_), -- [(ri), pAto)] .. -)

where the disappearance of the time evolution operators comes from the property that the trace is

invariant with respect to cyclic permutation of elements and the added presence of this last interaction

p(t) which is not part of the commutators. To agree with the literature, we change the time variables

here according to times 1, and time gaps defined according to Mukamel [17]:

t 1 2 r 2 - T I, t2 'r3 - r2' tn t -rn (2.58)

Allowing us to rewrite the polarization in (2.57) as:

(i) 00 0 00

E(t - tn)E(t - tn -_)-- t - -tn_---- (.9

Tr ( ^ (t + tn + tn_ -- -+t '(pt_ -- t)--[ ^(11) ~)--

The general description of the n* order polarization introduces an nth order response function, R "), a rank

n+1 tensor which is a function of the n time variables -c1, ... , r, which describes how the system responds

to n separate matter-field interactions. The nt order polarization is expressed as a convolution of this

response tensor with the n input electric fields:

p(n)(t) = 0 dt* dt 1_, -- dt,fo di o dt- (2.60)
E(t -t, )E(t--tt )--E(t -tn ----- t,)R (")(t.,...,t, )

Where the response function is

R" '....t) -(t)O(t 2 )---O(tn)(ih (2.61)

Tr (P pP +t+n-+-+I)$t_ +--+ ti),--((1), p(to )''
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With the Heaviside step functions introduced to allow integration from -oo to oo. Due to the invariance of

the trace under cyclic permutation, the set of commutators here can be written in a variety of orders. In

the frequency domain, the Fourier transform of the response function gives the frequency susceptibility

X() = J R(t)e!'"tdt (2.62)

This n* order response function contains within it all the molecular information necessary to predict the

material polarization response to applied electric fields. Looking at (2.59) it becomes obvious that this

response function is, in the dipole approximation, related directly to the time evolution of the dipole

matrix elements. Although it should not come as a surprise that the molecular dipoles dictate the response

to an applied electric field, this cannot be stressed enough. The dynamics of the time dependent quantum

mechanical dipole operator dictate how the system polarization responds and thus any nonlinear signals

emitted.

QUANTUM DYNAMICS

If we consider a general non-Hermitian quantum operator A, the time dependence of this operator in the

Heisenberg framework is, under Hamiltonian H [6]

A(t) = e ibAe'I (2.63)

And the expectation value / ensemble average of this is obtained via the traces

Tr e-IA]
(A) = (2.64)

Tr[e-pH

The evolution of a quantum system over time is often modeled in the framework of time correlation

functions, as many important physical observables can be described in this language - for instance, the

velocity-velocity autocorrelation function is related to the bulk diffusion constant, and the time

autocorrelation function of the dipole moment operator is directly related to the absorption spectrum [1, 2,

6, 18]:

0-(cO) oc f dte-'m {C -(0)s - ,(t)) (2.65)

Combining (2.27) with (2.38) and (2.6) we can write out the time correlation function for two operators

with of a pure state yAO as
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(2.66)

This full operator time evolution is, unfortunately, a quantity which is exceptionally difficult to compute.

Obtaining complete and exact knowledge of the full quantum dynamics of any system is a computational

challenge, and for condensed phase systems this is effectively impossible with current computational

methods beyond anything larger than a few tens of atoms. So in order to actually deal with this dynamic

evolution, we will have to make a number of approximations.

LINEAR RESPONSE

As we cans see from (2.61), the response function depends upon the time evolution of the dipole operator.

Oftentimes this is expressed in terms of correlation functions in p. For the case of linear response, we can

write out the response function by expanding the commutator:

R*')(t) = -r 0(t)Tr ( P(t)[P(r), p(to)])
\lJ 

(2.67)

= - B(t)Tr (A(t)A(r)p(tO) - A(t)p(to)A(r1))

Defining time rl as 0 and assuming that p(to) = p(-cO)= Peq (that is, the density matrix is at equilibrium

until perturbed) we can then use the definition of the correlation function (2.8) and the definition of the

density matrix (2.37) along with the fact that the expectation value of an operator is given by (2.38) to

rewrite this as:

R~(t) = - (t) ((/(t)A(0)) -(K(0)A(t))) (2.68)

We can explicitly expand this out in terms of system eigenstates if we realize that the dipole operator in

an arbitrary basis (for which the basis functions evolve over time and thus are time propagated under the

unperturbed Hamiltonian Ho) can be written as:

P(t)= I Y(t)){Y a(t|p(t)|It)Kbt)
a,b

I= ZVa ()ia(t) Yhb(t)I
a,b

= Ut (t, 0) a) pab (t) (b U(t, 0) (2.69)

ab

= : exp _ Hot)Ia)Pab(t)(b exp -~Hotj
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We then get for the first term in the expansion of the commutator from (2.67)

-I HIt)

Tr ( (t )p(0)p,, = Tr J e- '^
(a,b

a Hota) pab(t )(b Ie^ |hIb) pa (0){ a~p,

We can then make use of the operator

IHat -- H t

e e = = exp+ [Jd-Hab (r)]I hf

With the + subscript indicating a time ordered exponential series, describing in practice how this operator

is applied:

(2.72)exp, [ drA (r) = 1+ drn f dr1 ... f2 drA (r)A(r,_I)... A (r,)
n=1

It is also useful to utilize the identity:

H t - 1Hal
e' "h e it,=1 (2.73)

The time dependant transition energy of the system for which the unperturbed Hamiltonian takes the

form HO = Hs + HB+ HSB as in (2.22) is given by the difference in energies of two system states averaged

over the bath degrees of freedom:

(a|HS+HSBa) (b|Hs+HSB)
Coab(t) =

h h
(2.74)

All this allows us to rewrite the first term in the expansion of the linear response commutator (2.70)

TrP((t)A(0)pq)=Tr Pb (t)papb (0) exp- dm> (pe
alb

(2.75)

This is actually the only term we need to calculate the full linear response, as the second part of (2.67) is

the conjugate (technically the Hermitian adjoint) of this term.

What we see here is that the pertinent variables for calculating the response are

1) The values of the transition dipoles over time, piab(t)

44

(2.70)

(2.71)



2) The full dynamics of the transition frequencies oab(t)

This provides a key physical picture to how one predicts the response of a molecular system to an external

electric field - if we can calculate trajectories describing how both pt and o evolve in time, we then we are

able to calculate the full response.

FREQUENCY R ELA TIONSHIPS

The overtone transition o12 is, in most molecular potentials, slightly lower energy than the fundamental

cooi transition, a trend which can be characterized by an "anharmonicity"

A = - c1  (2.76)

So named because in a harmonic potential the energy gap is constant and 12 = 0 0i. Correlation between

the anharmonicity and fundamental frequency coo for the water -OH stretch can be mapped empirically

from general trends in calculations, for example something entirely phenomenological based upon

experimental observations, such as [19]:

012 (t) - 472 (2.77)
126

or the anharmonicity can be assumed to be constant across the entire stretching band.

DIPOLE RELATIONSHIPS

The so-called Condon approximation is used to adiabatically separate "fast" and "slow" coordinates,

much like the familiar Born-Oppenheimer separation. In gas phase spectroscopy, this oftentimes is used

to separate the electronic transition dipole moment from vibrational coordinates and treat the two

independently. It is common in ultrafast condensed phase work to utilize a similar framework and treat

the vibrational transition dipole as independent of the other degrees of freedom, such as rotational and

translational coordinates. As a result, this means that people commonly assumes that a vibrational

transition dipole is independent of the solvent degrees of freedom and thus constant across a given

vibrational band [20, 21]. This breaks down dramatically in strongly hydrogen bonded systems, where it

is known that the hydrogen bond greatly enhances stretch absorptions and different hydrogen bonding

environments lead to different absorption intensities, and thus a variation in transition dipole across band

[20, 22-27].

When the transition dipole is treated as a constant, dipoles can be generated from one of the many

experimentally motivated empirical mappings, for instance, in water Roberts has utilized [28]
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with frequencies in cm- and dipole moments in Debye. With the fundamental transition evaluated, higher

transition dipoles can be generated from harmonic scaling

poI = 1 pM2 (2.79)

or through other empirical mappings. Dipoles can also be directly calculated from numerically solving the

Schrodinger equation for the potentials, as will be demonstrated shortly.

MODEL POTENTIALS FOR PROTON TRANSFER

A particularly useful schematic tool for considering the motion of a proton along a hydrogen bond is

picturing the actual potential experienced by the proton along which it may move. In the simplest case,

this can be modeled by an effective 1 D potential, which, considering the strong directionality of the

hydrogen bond, is a reasonable approximation for the full potential energy surface. This generally takes

the form of a double well potential, as discussed in Chapter 1, with energetic minima for the proton

residing on both the donor and acceptor at an appropriate bond distance [29]. When the hydrogen bond is

short and strong, the proton is essentially shared between the two larger nuclei, and this potential becomes

a single well in shape with only one clear symmetric minimum [30]. When the internuclear distance is

large, the hydrogen bond is weak and the potential should look very much like two separated harmonic or

Morse potentials. The surrounding solvent fluctuations can further alter this potential, in a manner

analogous to reorganization terms in electron transfer theory - sometimes favoring localization of the

proton on the donor or acceptor by shifting the energetic potential minimum.

Such highly anharmonic potentials pose a number of extra challenges for calculations and experimental

observation, including large non-Condon effects for which the transition dipole moments change greatly

depending upon the bond energy and length, relaxation of the restrictions imposed upon direct 0-2

transitions which are harmonically forbidden, large changes in transition energy gaps allowing transitions

to move in and out of a spectroscopic experimentally accessible range, and possible negative

anharmonicities where 012 > 00. With these sorts of potentials, the chemist's ingrained harmonic

oscillator intuition can fail spectacularly.

With the proton potential in hand, it is possible to solve the nuclear Schrddinger equation to determine the

vibrational energies and transition dipoles. This is done numerically for an arbitrary potential through the

implementation of Colbert and Miller's discrete variable representation (DVR) [31]. Briefly, this

approach allows for numerical solutions to the SchrIdinger equation in an arbitrary number of dimensions
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without explicit integration through a grid point representation to create a tractable linear algebra

problem. A sparse Hamiltonian is constructed by creating a diagonal potential energy matrix and an

infinite order finite difference approximation based construction of the kinetic energy component on the

grid. This approach has been shown to be a more accurate method of the computation of anharmonic

frequencies than fitting to a Morse potential or harmonic approximations for proton transfer scenarios in

liquid water [32].

For a model asymmetric double well proton potential we can then obtain the vibrational energy levels and

wavefunctions. Using these wavefunctions, we can also calculate the transition dipole element, as the

transition dipole element is, for displacement vector d pointing from positive charge +q to negative

charge -q:

=KVa |qdIVb) (2.80)

=q(V'a dIYbV)

Here for our one dimensional potential this displacement vector is related to the 1 D position coordinate

and thus we can compute the 1 D wavefunction position overlap integral for each set of wavefunctions.

The potential model used contains an asymmetry term A which is linear in position, shifting the double

well such that when "asymmetry" = 0 the well is symmetric with minima at x = ± - and a barrier
2a

#32
height of -:

4a

V(x) = ax 4 - Qx 2 + Ax + (2.81)
4a

The parameters alpha and beta are given an additional constraint such that they give minima

corresponding to the water dimer, which has an average 0-0 distance of approximately 2.7A. These

potentials can then be plotted and the corresponding proton wavefunctions and energy levels solved for.

For example, when the well is very asymmetric, corresponding to a proton localized on a single water

molecule, we see a potential which appears somewhat Morse-like for lower energies and harmonic for

higher energy levels:
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Figure 7: Asymmetric model double well potential

is perfectly symmetric the resulting wavefunctions and energy levels are:

20

15

10
C

CO

N

C6
0

5

0

-5

-10'-6 -4 -2 0
r

2

E 6

E5

E
4

4 3

E2

4 6

Figure 8: Symmetric model double well potential
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We can then vary the value of the asymmetry A and calculate the transition frequencies and transition

dipoles for a range of possible potentials. In a condensed phase system such as liquid water, the

surrounding solvent environment can cause the proton potential and thus these values to rapidly fluctuate.

For this potential, varying the asymmetry from -5 to 5 (corresponding to a proton localized on one oxygen

and then moving to be localized on the other, passing through an equally shared state A=O) we can map

out the transition frequencies:

7000

E

co vs Asymmetry

0'-
-5 0 5

Asymmetry Parameter

Figure 9: Transition frequencies vs. double well asymmetry

The vibrational energy level structure changes considerably as the potential moves to completely

symmetric and back, and near the symmetric state there is a negative anharmonicity for the o2 transition,

actually moving higher in energy than the fundamental. In addition, the weakly allowed 02 transition

drops significantly down into the same frequency regime as that of the fundamental for the localized

proton. Plotting the transition dipole magnitudes we see similar dramatic changes near the completely

symmetric potential shape where the proton is shared, including clear non-Condon dipole scaling:
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Figure 10: Transition dipoles vs. double well asymmetry

AB INITIO APPROACHES

The calculation of both the structure and interaction energies of hydrogen bonded species presents a

number of challenges for even modem numerical quantum chemistry techniques. Many of these

challenges arise from the unique nature of the hydrogen bond interaction itself, including the important

contributions of computationally challenging effects such as polarizability, induction, dispersion

interactions, nonadditivity, and small exchange repulsion energies [33]. In addition, for bonds on the

order of only 5 kcal/mol, small errors in absolute energies lead to predictions of very different physical

properties.

Density functional theory and wavefunction-based methods both can provide reasonably accurate

geometries, dipole moments, polarizabilities, and binding energies for small molecules (for example,

(H20)2), but quantum chemical calculations tend to be significantly less reliable in predicting intra- and

intermolecular vibrations in these hydrogen bonded species, in part because modem vibrational energy
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calculation schemes cannot properly account for strongly anharmonic vibrational potentials [34-37]. For

hydrogen bonding interactions, large and polarizable basis sets are required and nonlocal corrections to

exchange with electron correlation effects must be carefully incorporated as well [38]. For anything

beyond qualitative level predictions of hydrogen bonded systems, ab-initio methods are often required.

These are commonly implemented utilizing electronic structure software packages such as Gaussian and

Q-Chem [39, 40].

To highlight the challenges still faced in quantum chemical calculations of hydrogen bonding parameters,

it has been shown that for no-CP SCF-MP2 work a basis set as large as aug-cc-pVQZ (348 functions!) is

required for even medium accuracy agreement with absolute experimental values and isomer stability

predictions [41, 42]. One must be exceptionally careful in choice of basis sets and initial unoptimized

geometries in expecting computational chemistry packages to converge upon an energy minimizing

hydrogen bond interaction, as even the water dimer does not necessarily converge to a bonding type

interaction at the SCF level. The hybrid functional B3LYP has been shown to produce results, at least for

the water dimer, comparable to the more expensive MP2 level [43-45].

One major difficulty in obtaining accurate quantum chemical vibrational energy calculations for these

systems is that usually the potential energy is truncated to only include second order terms, thus creating a

harmonic potential [46]. One of the characteristic features of hydrogen bonds is a very anharmonic

potential, and thus the typical approaches to vibrational frequency calculation in quantum chemical

software packages often does not give reasonable results. Instead of making the harmonic approximation

and calculating vibrational energies from the Hessian matrix, I will map out the proton potential for a

strongly hydrogen bonded system through a series of single point energy calculations corresponding to

different small steps in proton position over a range of internuclear separations and solvent

configurations. The different total energies obtained for each scan of proton position allows us to

construct a one dimensional proton potential. This then allows us to assemble a Hamiltonian over which

the Schr6dinger equation may be solved, and utilizing the same DVR approach discussed previously, we

can obtain vibrational energy levels and transition dipole moments.

Due to the relatively weak interaction energy of the hydrogen bond, it should be emphasized that the

assumption of a single equilibrium geometry is of limited utility. Because bonds can break and form

quickly and only persist for a limited amount of time at room temperature, the dynamics of bonding are as

important if not more than the energetics. The purpose here is to map out static trends in observables upon

which can later be imposed dynamics. For HF, some excellent work has been proton potentials have been

mapped for the water dimer as well [47, 48]. Recent developments in full quantum treatments of water,
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generally relying density functional theory utilizing the local density approximation, have proven useful

and exiting for small numbers of water molecules (0(100)), and with computational advances it is

becoming possible to come close to simulations adequate to describe the condensed phase, including

mixed QM/MM simulations to study dynamics [49-54].

As an example of this static mapping, we can consider the simple acid-base system of a protonated water-

ammonia dimer, [H20-H-NH 3]* [55-58]. For a given fixed ON distance (RON) a constrained geometry

optimization is performed to calculate the molecular configuration of lowest energy. The shared proton is

then scanned in small steps and the resulting single point energy is calculated. The single point energy is

then plotted as a function of the proton position to approximate the proton potential at any given point in

space. This can also be done with optimization of the peripheral atoms allowed (with a fixed ON distance

and fixed proton position), but assuming a separation of timescales between proton motion and motion for

the rest of the molecular degrees of freedom, the following results do not allow for geometry

reoptimization during the scan.

Figure 11: Acid-base proton transfer geometry in [H20-H-NH 3]*

Using the hybrid B3LYP/6-3 1 G(d) model in the Gaussian 03 software package, the geometry was

optimized for a fixed internuclear distance, and then the shared proton was scanned along the 0-0

internuclear coordinate vector [39]. Figure 12 and Figure 13 illustrate the results of this approach for two

different fixed values of RON:
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RON= 2 .6 Angstroms

o0 =1906.352

12 =1613.0427

(0 =3519.3947

16000[

14000-

u9 12000-

10000~

8000-

6000.

4000

2000 -

.- 5-

-

-.-

-

E1

1 1.5

Figure 12: Calculated proton potential for IH20-H-NH 3 ]* with an ON distance of 2.6 Angstroms

If the intermolecular separation is increased, the potential begins to more clearly gain two separate

minima
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Figure 13: Calculated proton potential for [H20-H-NH 3]* with an ON distance of 2.9 Angstroms
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There are a few key things to notice here. First, this heterodimer expectedly produces an asymmetric

potential, and as a result the proton is clearly more likely to reside on the nitrogen. Second, we notice that

when close together, the barrier is very low, and the potential looks quite Morse-like, while as we increase

the interdimer distance, the two minima more clearly appear. This general method can be applied to other

heterodimer systems, and explicit solvent molecules in various configurations can also be included,

although the simple gas phase dimer is demonstrated here to simply examine the resulting trends.

Plotting the calculated vibrational frequencies from these potentials we see the effects of internuclear

distance upon the energy level structure, here shown without any correction directly from the calculated

potentials:

o vs R O00 RON 0
B0 I 0 O 2l
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3.4 3.6 3.8

Figure 14: Calculated vibrational frequencies for IH20-H-NH 3] as a function of ON distance

The dipole moment trends reflect the extra polarization due to hydrogen bond formation, and single

quantum transition dipole intensities increase for distances where the proton takes part in a strong

hydrogen bond:
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Figure 15: Calculated transition dipoles for [H20-H-NH 3]* as a function of ON distance

The calculations here reproduce many traits which we would classically expect for a traditional harmonic

or Morse potential. The 0-+2 transition is forbidden in a harmonic potential, and here we see a very low

transition dipole for this as well. In addition the 1-+2 transition in the harmonic potential should scale as

I2 oi , and for this system the ratio remains between 1.39 and 1.53 across the range of RON
po0

internuclear distances scanned.

Similarly we can also consider the very simple case of the shared proton in the water-hydroxide ion dimer

H302~, shown in Figure 16:
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Figure 16: H30 2 equilibrium geometry

Solvation of a real hydroxide in the condensed phase is significantly more complicated and requires a

large number of water molecules, and it is only for illustrative purposes that two molecules are shown -

one can also perform this same sort of calculation for geometries obtained from snapshots of molecular

dynamics trajectories, which tend to be dominated by three and four coordinate hydroxide species [28,

59]. The shared proton in these sorts of water-hydroxide complex has been shown to absorb strongly as

low as 700 cm', with a large enhancement in the dipole compared to pure water [60]. This same sort of

low frequency absorption and transition dipole enhancement manifests itself in the results obtained

through the calculation of the proton potential. For the case of hydroxide, the potential is symmetric and

thus has some degeneracy, as can be seen for Roo distance of 2.9A, for which the two lowest energy

levels are effectively equal, a trend observed in other symmetric proton transfers as well [61].
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Figure 17: Degeneracy in equally shared proton for H30 2~

We then can map as described and plot out transition frequencies as a function of internuclear distance:
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Figure 18: Calculated vibrational stretching frequencies for H30 2 as a function of 00 distance

Because of the degeneracies due to the symmetry here, I have chosen to plot a significantly larger number

of possible transitions, as the 0-*1 transition goes to zero when the proton potential takes the form of two

distinct wells.
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Figure 19: Calculated stretching transition dipoles for H30- as a function of 00 distance

As we can see here, the dipole strengths of the 0-* 1 , 1 ->2, and 2-*3 transitions come out as the largest,

and thus these transitions may dominate the absorption. All of these stretching frequencies, however, are

low in frequency, dipping well below 1500 cm-' for small to mid 00 distances. The other transition

dipoles remain low, and we begin to see the complexity of the higher vibrational levels, and likely are

beginning to enter a regime where more careful, higher level calculations are required, and the neglecting

of other solvent molecules likely plays a significant factor here.

After considering the absence of a proton in water, it is also worth considering the effects of an additional

proton. The structure of the solvated excess proton defect in the hyperdense hydrogen-bound network of

water molecules has been the subject of much controversy, and rightfully so, as this structure is inherently

tied to the dynamics of aqueous proton transfer. The current thinking is dominated by two limiting

structural motifs: the Eigen cation (H30* or solvated as H90 4+) species, where a proton is largely localized

on one water molecule which is triply coordinated, and the Zundel (H50 2*) species where it is shared
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between a pair of water molecules. As another example, this sort of mapping can also be applied to this

Zundel ion, HO, as shown in Figure 20and Figure 21 [62-70].

Figure 20: Proton transfer in a Zundel ion
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Figure 21: Sample calculated Zundel ion proton potential

For this sample calculated Zundel ion potential, obtained as before with the medium size B3LYP/6-

31 G(d) functional in the Gaussian 03 software package, the barrier height and well curvature can make it

as such that the proton is effectively delocalized even in the ground state. A shared proton like this

experiencing various amounts of asymmetry in its potential would appear as a broad IR continuum band

spanning many different frequencies, and indeed, the addition of acids to water brings about a few key

changes in the IR spectrum, shown in Figure 22 - notably a broad shoulder in the low frequency of the 0-

H stretch band (normally centered at 3400 cm'1), as well as changes in the stretch and bend regions (1650

cm~' and below), and the development of a broad continuum band between the water OH stretch and the

H-0-H bend regions [71, 72]. For the Zundel species, there is evidence of a rather large amount of proton

"rattling" between the oxygens (from both computational work and spectroscopy of gas phase clusters),

adding IR intensity in the region between the water -OH stretch and bend modes, 1600-3400 cm-1, and it

is generally agreed that the intermolecular O---H*---O Zundel ion stretch and bend peaks lie in the 900-
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1200 cm~1 regions of the spectrum, respectively, with most results identifying 1200 cm-1 as band center

for v(OHO) of H502+ [68, 69, 73-78].
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2 -

0.5-

0 1000 1500 2000 2500 3000 3500 4000
Frequency (cm1)

Figure 22: Mid-IR spectrum of HCI in H20 with proposed Eigen and Zundel vibrational contributions

This sort of broad continuum absorption hints that many different proton potentials may be sampled over

a short time span, as a large variety of different vibrational transition frequencies are present, and thus to

gain a full understanding of the way these potentials interconvert and change, we need to also consider

the dynamics which make this possible. The strong correlation between water's hydrogen bonding

network and the motion and stability of the aqueous proton highlights the subtle interplay between

structure and dynamics which makes the study of water so complicated, as a complete understanding of

one requires a clear picture of the other simultaneously. The next chapter will focus on methods for

describing these dynamics, focusing on modeling the bath and its influence on the proton potential itself.
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Chapter 3 : OPEN QUANTUM SYSTEMS AND THE LANGEVIN

APPROACH: THE BATH

In the previous chapter, methods for evaluating and mapping static spectroscopic variables were discussed

- focusing on the vibrational energy gaps and transition dipole moments. These variables were mapped to

a variety of model parameters, including double well asymmetry and internuclear distance. The

discussion which follows focuses on a dynamical description of the bath which influences the time

evolution of these spectroscopic variables. The dominant approach in this chapter is that of Langevin-type

equations which treat parts of the bath stochastically, allowing us to write equations of motion for

quantum variables in open dissipative systems and calculate the associated correlation functions. We will

also examine the useful concept of a bath spectral density and see how this connects to the Langevin

approach. This chapter will ultimately bring us to the Brownian oscillator model for the bath and a

discussion of its usefulness in modeling strongly hydrogen bonded systems.

OPEN QUANTUM SYSTEMS

Condensed phase quantum systems, such as a chemical bond surrounded by a collection of solvent

molecules, are very often described using a conceptual model consisting of one or a few dynamical

variables of interest in contact with a large environment containing many more or infinite degrees of

freedom. The choice of "variables of interest" or the "system of interest" is often dictated by what is

experimentally accessible (say, for instance, a spectroscopic observable such as the vibrational frequency

of a bond), and it is the physical properties of this small system about which we care. To utilize this

conceptual partitioning framework, we must treat the quantum system of interest as open, as the

interaction between the system and the environment allows for energy and information flow. The system

of interest and the external environment (sometimes called the reservoir or the bath) together are part of a

larger closed quantum system [1-3].

LANGEVIN APPROACH

The most common approach to characterize the dynamics of a classical open system is that of the

Langevin equation, developed by Paul Langevin as an alternate description of the Brownian motion

problem of Einstein and Smoluchowski [4-6]. Langevin managed to establish a stochastic description of

Brownian motion by way of careful elimination of bath variables, creating fluctuation terms through

which bath variables manifest themselves. In this framework, there is a single degree of freedom q(t) and
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an environment which interacts with it via two forces: a frictional force y (sometimes divided by mass for

convenience) which dissipates energy from the system into a bath and a stochastic fluctuating force 4(t)

through which the bath variables interact. In the absence of an external driving force, this interaction with

the bath takes the system from an initial state to thermal equilibrium. Note that the presence of a friction

term inherently implies that momentum and kinetic energy are transferred to the bath - that is, energy is

dissipated out of the system.

Various restrictions can be imposed upon this stochastic force, but to strictly be a "Langevin force" as

applied to Brownian motion 4(t) is generally is considered to be white noise, irregular and unpredictable

but with certain properties (namely properties of its moments):

1) It is a stochastic process (that is, for stochastic variable X, f(t)= f(X,t) and properties

averaged over an ensemble are predictable.

2) ((t) acts as an external force with a vanishing average {(t)) =0.

3) The autocorrelation function of this force is postulated such that successive collisions are

uncorrelated so (((t)((t')) oc 9(t - t') [4].

This lumping of the bath into a stochastic force is justified when the bath interactions are so fast that they

reach equilibrium instantaneously (the so called "repeated randomness assumption"). For such a white

noise source with a stochastic force due only to a heat reservoir with no memory (that is, 6-correlated in

time) and an optional applied external potential V(q,t) (which in general may be time dependant as well)

the differential equation of motion is [4, 7]

Mj(t) + My4(t') + V'(q, t) = ((t) (3.1)

Where V'(q, t)= V(q, t). If the reservoir is a source of noise which has some finite memory (so-
aq

called colored noise), this is generally characterized as a Langevin-like equation and the system dynamics

evolve according to the phenomenological stochastic differential equation

Mij(t) + M dt'y(t - t')4(t') + V'(q, t) =(t) (3.2)

which will be more rigorously justified shortly. The difference here lies in the time correlation of the

friction term y, which can also be nonlocal in space. When there is time dependence to this friction, we
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often speak of the frequency-dependant dampening which is the Fourier transform of the time dependant

friction term above

y(w) y'(0) + i "() = dty(t)e"' (3.3)

The so-called Green-Kubo relations connecting integrals of time correlation functions to transport

coefficients allow us to connect this damping coefficient to the time autocorrelation function of the

classical stochastic fluctuating force as [8-10]

y(w) = foKdt((t) ))cos(wt) (3.4)

It makes sense that frictional force should be related to the random force, as both come from the same

source: the bath. Random collisions with bath molecules when a particle is stationary manifest themselves

through (t), and the random collision effects that lead to drag when a particle is moving through the same

bath lead to y(t). The relation between the systematic friction and random force interactions of the bath is

described by the so-called fluctuation-dissipation theorem, which has been discussed in more detail

elsewhere. Briefly, the fluctuation-dissipation theorem ties the dissipative portion of these microscopic

forces from the bath, y(t) and 4(t), which can also be characterized with a correlation function (discussed

later with, for example, equations (3.38) and (3.39)) to the response of that system to an external

disturbance [11-13].

It is somewhat of a misnomer to refer to the stochastic force term as "random," and a few other properties

of this term are worth discussing. First, 4(t) does not in any way depend on the system coordinate. It is, in

a phase space sense, "orthogonal" to the dynamics of the system. It is also somewhat misleading to

consider this force as nondeterministic - the force is in fact fully defined by initial positions and

momenta, although these initial conditions are oftentimes impossible to know. Instead we commonly

describe the statistical distribution of these initial conditions, which still can tell us a great amount about

the behavior.

BATH OF HARMONIC OSCILLATORS

It is typical to partition the classical system Hamiltonian into three parts: a system (S) containing the

variables of interest, a bath (B) which interacts with this system, and an interaction (I) term describing the

coupling between these two. This is written as [14]

H = Hs+ HB + H, (3.5)

69



Where we have the system Hamiltonian with degree of freedom q and conjugate momentum p and mass

M

2

HS = +V(q) (3.6)
2M

And the bath, here consisting of N harmonic oscillators each described by oscillator position xa and

momenta pa with oscillator frequency (o, and mass m,

N pa, + (3.7)H B -_ a~)X
1 2 m. 2

Notice that in this notation p refers to the momentum corresponding to the system degree of freedom

while p, refers to the momentum of the cx bath harmonic oscillator. This notation is standard in the

literature and is used for this reason and generally does not lead to confusion. Occasionally one sees the

system variables as (Q, P, M) with bath variables as (qa, pa, ma) which is clearer. For a single harmonic

oscillator as the system degree of freedom, oftentimes q = x - Y. It is worth noting that is approximation

- that is, a reservoir of harmonic oscillators, has been shown to be rather general and provide a good

description of low temperature environments in a variety of systems [15-18].

We then also introduce an interaction term, in the simplest case linear in bath coordinates

H =- F F(q)x, ±AV(q) (3.8)
a=1

where the counter term AV(q) is added to renormalize the potential due to the linear coupling term and

each Fa(q) describes the coupling of the system degree of freedom to each bath mode. Without this

F (q)
counter term, the minimum of the potential at a given q value is xa = a . For simple dissipation only

mom

without renormalization,

A V(q) =_I F (q (3.9)
2 a=i maoa

One special case of interaction that is often of interest is that of a separable interaction with the bath,

where each bath mode couples in the same way to the system degree of freedom
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F,(q) = cF(q)

Which applies in the case of state-independent dissipation (linear dissipation) where F(q)=q and thus

F,(q)= caq (

N

3.10)

3.11)

resulting in a coupling of the form qZ cax, . This sort of coupling is typically referred to as "bilinear"
a=1

(sometimes it is also called the Caldeira-Leggett model or the Zwanzig-Caldeira-Leggett model). With a

separable interaction (but not necessarily bilinear coupling), we obtain the total Hamiltonian of the form

H =- 2 +V(qt)+ 2 P + m M x
2M 12 ma=2 a

System Harmonic bath

2 N 2

H ="' +V(q,t)+ " +
2M 2 ma

System

2 -F(q)c x F(q)2  c 2

a= a 2 a=1 ma
Coupling Counter term

2 )2

maw <Xa -F(q) C j
m c

Bath+couplings

In the general case of separable interaction as in (3.10), we can take Hamilton's equations of motion of

the form [19]

.aH p

8p M

aH _V(q,t) 8F(q) N
p------ + caq aq aq a=1

x -pa

aPa ma

H -_m O2
X, +c F(q)

b a Xa a aO

and rewrite as a second order differential equation, as is standard, to obtain

M4 + V(q, t) Ca (q F(q) - (q)
aq a=1 ma_ q 8q a=1
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(3.12)

(3.13)

xa - F(q)
" m 0),

(3.14)

(3.15)



ma2a +ma q x, = cF(q)

As shown by Weiss, the use of Green's function techniques (Laplace transforms) for arbitrary initial

values xa(O) and p4(0) at t=O results in [7]

x, (t)= x(0) cos(oat) + "( 0 )sin(mot)
maa 

(3.17)

+ ca f dt'sin[co, (t - t')]F[q(t')]

and using integration by parts we can get the solution for xa(t) as a functional of the particle velocity.

With this in hand it is then possible to return to the dynamical equation in (3.15) to get

SF[q(t)] t c2 SF[q(t)] aV(q)
M4(t)+ f dt'I Wt -t')z "2Cos [CO,(t -t')] i q(t ')(0+ aiSq(t) 0 a=1ma Sq(t) ((3aq

- (3.18)
- M q(t )F[q(O)] + SF[q(t)] N Ca (0) Cp0a + Pa (0)=-M y(t) L0]+c Ia0csmt+" snmt

5q(t) Sq(t) a=1 maoa,

Clearly this equation is hideous looking and one wonders why we would even bother to write it in such a

form. But this form of the dynamical equations of motion is more clearly important if we define a

memory dependant friction (obeying causality with the Heaviside step function)

1 N 2
7(t -t') = (t -t') -Z 2 cos[co,(t -t')] (3.19)

M a=1 macoa

This has the Fourier transform

N 2

f(O-) = limn -1)Z C" ~a (3.20)
-+ M a=i ma a -0)2 -ic sgn()

and random force

)= ca Xa()cos(cot)+ Pa () sin(coat) (3.21)
ia=1a maI I
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Substituting these definitions in to (3.18) and shortening the normal and functional derivatives with the

notation V'(q) = aV(q)and F[q(t)] we see that we get a Langevin-type equation
aq 8q(t)

M(t) + MF' J dt';y(t - t')F'[q(t')]4(t') + V'(q) (3.22)

= F'[q(t)]{(t) - MF'[q(t)]y(t)F[q(0)]

For the case of bilinear coupling, we can reduce this to obtain an ordinary Langevin equation with a

friction force containing memory and a transient "slippage term" dependent upon the initial conditions

M4(t) + M dt'y(t - t')4(t') + V'(q) = {(t) - My(t)q(0) (3.23)

The initial value slip term My(t)q(0) is often absorbed into a shifted random force

f(t)= ((t) - My(t)q(O) (3.24)

This gives the standard form of the GLE introduced in equation (3.2).

Environmental Spectral Density

For a particle coupled to a small finite number of oscillators (say, when N is 0(10)), the bath reservoir

does not truly lead to dissipation. To approximate a real heat bath, we instead introduce the spectral

density of the environment which serves as a coupling strength weighted density of bath modes [7, 20]:

N 2

j(C) c"SO_- 0) (3.25)
2 ma m 0cm

If we take this as a smooth function of o and move to the continuum bath limit, we can replace the sums

as integrals, and using the relation [20]

N 2 0
" (o, - - daJ(c)f(c) (3.26)

a macoa gr

we obtain a new form of the equation (3.20)

~(c) -im 2 -dWJ(w') 1f(q) = lim ---- I 0 do' J(o)1(3.27)
(-40+ M ;r Jo CO' v2- CO 2 -i sgn(o)

or alternatively
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1 2 J(CO)
(t)= E(t)-- do cos(cot) (3.28)

M /- CO

and the inverse of this gives

J(co) = Mco dty(t)cos(cot) (3.29)

or defining the density of modes for a macroscopic system

N

g(co) = (S(o-ma) (3.30)
ar=1

then defining the coupling density as

N

c2 (0))g(o) = Zc (W - Co) (3.31)
a=1

we can also write (3.25) as [21, 22]

J(o) = 1 C 2 (w)g(w) (3.32)
2 m co

Equations (3.28) and (3.29) are important results and we should take some time to consider their

consequences. In this case of linear dissipation, that is, where the damping does not depend on the state of

the system, the influence of the environment as characterized by the spectral density J(o) serves to

uniquely determine the damping kernel f(co) and vice versa. This spectral density can be determined

analytically for various model systems, and its behavior can also often be inferred from classical motion.

This friction kernel is in principle something that is fully microscopic and well defined, although actually

obtaining this is often quite difficult (for the case of harmonic vibrations, projection operator methods

have been used formally to derive these, but without a clear microscopic guide to the development). In

addition, the sorts of couplings which contribute to a given spectral density can be molecularly motivated

- for instance if there is a dominant intermolecular motion in a system, the corresponding vibrational

modes can be expected to dominate J(co).

To explicitly examine the frequency dependence of the frictional damping term, occasionally the Laplace

transform f(z) is introduced [23, 24]
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f(z)= {y(t)} = dsy(t)e-"

which, being careful with the domain of the damping functions via analytic continuation

f(z) f 0 = iz)
(3.34)

7(m)= lim y(z =E - io)

gives us

N 2 z
fY(z)= - ca

M a=i m.O (2 + z 2) (3.35)
1 2 - J() z

M Jr O (02 + z 2 )

which can also be used to express the spectral density in term of this transformed damping kernel through

inversion of (3.35)

J(w) = lim -M [f(E + io)+ f(E - io)] (3.36)
e-O+ 2

These sort of classical damping terms have also been used to model a variety of systems, including for

instance some involving explicit quantum mechanical variables such as rates of tunneling though barriers,

often describing the dynamics in a manner analogous to what was shown in (3.14) [25, 26].

Connection to Correlation Functions

A particularly important example of the relationship between time correlation functions and stochastic

observables is that the spectral density discussed in (3.25) is related to a time correlation function for the

bath. For any observable, say bath A represented by a stochastic process x(t) which can be expanded in

mass weighted harmonic normal modes with coordinates {u1 }

A(t)= cA)U(t) (3.37)

The correlation function is given by the harmonic oscillator equations of motion resulting in
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CAA(t) = kBT c' 2 
COS(COat)

a Wa (3.38)
2kBT A

> 7 dco cos(cot)
(0

Where J(o) is indeed the bath spectral density, which also contains within the dynamics of the variable A

[21]. This general connection between the time correlation function and the spectral density is the

Wiener-Khinchin (sometimes Wiener-Khintchine or even Khinchin-Kolmogorov) theorem, proven in

Nitzan Appendix 7D and van Kampen 111.3, which says that the spectral density of a stochastic process is

related to the Fourier transform of the corresponding time autocorrelation function [4, 21]

IA()= 0dtCA(t)e"'

( 1 (3.39)
Ca (t) = - doI (w)elc''

For consistency with different literature notation styles we have defined

IA (c= (3.40)7z coj

A third notation, with S(co) as the "power spectrum" is sometimes used. Thus we see that the spectral

density can be thought to measure the frequency content of the time variation of a stochastic variable and

likewise the autocorrelation of this variable is the Fourier transform of the spectral density.

As an example, for an isotropic system of harmonic modes with N identical atoms, it can be shown that

the density of normal modes (see (3.30)) is related to the atomic velocity time correlation function by [21]

g(o) 3m f dte-' (*(0)i(t)) (3.41)
N ;rkB T

This general connection between correlation functions (which are oftentimes accessible with classical

dynamics simulations) and the spectral density has been applied broadly to a number of seemingly

disparate systems. For instance, this relationship has been used to calculate the spectral density governing

electron transfer in protein environments by calculating the time correlation function for the energy gap

between reactant and product states which fluctuates due to thermal motion of the protein, highlighting

the relationship between the rate of a chemical process and the motion of the bath environment in which it

is embedded [27-29].
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Ohmic Friction

We can think of the frequency dependant friction term f(w) as describing the timescales of the thermal

motion of the bath, and in the case that these motions are all much faster than the oscillator of interest,

they become independent of o. It is common in the case of a harmonic oscillator to impose the condition

of Ohmic damping, in which this friction is frequency independent, thus

y(w)= y (3.42)

In this Ohmic regime (so named for similarities to the instance of a series resistor in an electrical circuit

which shows a linear I-V curve starting at the origin, thus following Ohm's law) moving to the time

domain shows that this corresponds to memory-less friction [14]

y(t) = 2 y8 (t) (3.43)

For a clearer picture of the "Ohmic" designation, consider the simple example presented by Hanggi and

Ingold of the response of the current 61 in an electrical circuit when there is a voltage change 6V [30]. The

basic statement of Ohm's law for electrical circuits is that the current applied I is linearly proportional to

the applied voltage V, where the constant of proportionality is the reciprocal of the resistance R. The

general current response is determined by Y(o), the transfer admittance (inverse impedance), which

provides a mapping from force to motion such that

SI(w) = Y(C0)SV(w) (3.44)

In this form it is apparent that the admittance Y(o) is identical to the susceptibility x(o). Here a damping

kernel with memory y(t) corresponds to a frequency dependence in the admittance Y(o), while in the

Ohmic case Y(w) = - and thus the damping force is proportional only to the velocity, as is immediately
R

evident in (3.1) [7, 12, 31].

If we return to the simple case of Ohmic frequency-independent damping in equation (3.42), where

y(w) = y , this leads to Markovian damping terms in the classical equation of motion, which becomes

1 8
M+ q+---Ve =0 (3.45)
M aq

Using (3.29) we see that this form of the friction kernel we have a spectral density of the environment

which is linear with frequency:
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J( 0 ) = Myw (3.46)

Clearly this completely memoryless friction is not entirely realistic, as a linearly increasing spectral

density diverges instead of vanishes as o -+ oo (this also leads to the divergence of certain parameters as

which occur in classical Markov processes, for instance, here (p2) is logarithmically divergent). One

reasonable constraint upon this result is to add a cutoff frequency oc and impose that the spectral density

drop to zero exponentially for o > coc [21]

J(co) = Mycoe '" (3.47)

This model has been used, for instance, to model the optical Kerr effect in acetonitrile, which based upon

Stokes shift data has a cutoff frequency of-51 cm-1 [32].

Oftentimes this problem of divergence at high frequencies is also addressed through what is known as the

Drude model (or Lorentz-Drude regularization) by incorporating a microscopic memory time rD I

CD

under which there are effects of inertia in the bath. This serves as a sort of environmental cutoff time

longer than which the bath is memoryless but shorter than which there is memory to the friction. With

this, the damping kernel can be written as simply

y(t) = ycoD(t)e-D' (3.48)

And then in the frequency domain

f( ) = (3.49)

OD

Which corresponds to spectral density of

J(a)= MCo (3.50)

1+C
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This Drude model behaves effectively the same as the Ohmic model with r = J dty(t) except for times

shorter than . We can see the general shape of all three spectral densities, (3.46), (3.47), and (3.50),
pOD

plotted for the arbitrary values of M=1, y=550 cm-1, and a cutoff frequency (oc or(OD) of 300 cm:

1

-e

1000
m (cm1 )

2000

Figure 23: Simple spectral density models

Liquid Friction and Vibrational Relaxation

In moving to a description of liquids on the molecular perspective, this sort of Langevin approach is still

broadly applicable, despite the seemingly large number of approximations necessary to describe the bath

variables. The harmonic bath model discussed above is useful in that it often provides analytical solutions

to the equations and one does not have to think in terms of the timescales of molecular motions. If one

uses a simple Onsager model for a liquid, it is actually possible to relate the spectral density to a

frequency dependant dielectric function, a measurable quantity [33, 34].
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J(aO)= Im (6(CO) C) (3.51)
27rega a I 2c, (CO)+ C,

where (o) is the complex solvent dielectric function and c, is the static dielectric constant of the cavity

of radius a in which the solute sits. More complicated Onsager inspired models for chromophores in a

variety of solvation scenarios, including more complicated models of chromophores inside a solvated

protein cavity can also be solved analytically and related to measurable dielectric responses [33].

For a more general bath, it is possible to consider the density of modes of the condensed phase system,

something which can be explicitly computed from the velocity-velocity autocorrelation function from a

molecular dynamics trajectory or from the spectrum of eigenvalues for each configuration averaged over

a thermal distribution of configurations (the instantaneous normal mode picture) to approximate (3.41).

As opposed to the equilibrium normal mode approach where the Hessian is diagonalized at a local

potential minimum, the instantaneous normal modes are obtained by diagonalizing the Hessian matrix at

each instantaneous configuration, giving a time dependant evolution [35-40]. The frequencies are then the

square root of the eigenvalues of this diagonalization, such that negative eigenvalues give imaginary

frequencies (often plotted on the negative x axis, as seen in [41]).

This is valid in situations where the solvent motion is rapid and thus successive collisions are largely

uncorrelated and where the system is near equilibrium so that imaginary frequencies (which arise because

some configurations have negative curvature when they are not local minima) do not contribute [21, 22].

These approximations are relatively good for small solvents such as water, and have been applied to use

the velocity-velocity correlation function to calculate the instantaneous normal mode density from

classical MD for SPC water at 300K, which has been shown to lead to very good agreement with

experimental observables, giving appropriate widths and frequencies for the water bend, stretch, and low

frequency intermolecular and librational motions [42].

Independent of the mechanism of friction, the diffusion constant of a Brownian particle is given by the

Einstein relation (Einstein-Smoluchowski relation), a consequence of the fluctuation-dissipation theorem

[43]

kBTD= B(3.52)
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which is a direct consequence of linear response and not debated [44]. The Stokes-Einstein relation can be

written from this by assuming friction behavior consistent with classical, non-molecular hydrodynamics

for a spherical particle, but this is only appropriate in the large solute (Brownian) limit [45].

1
The relaxation rate for an oscillator in this picture is often described with a single timescale, - which

has been shown to be well approximated by the Fourier component of the friction at the main oscillator

frequency, and it is this friction that leads to population relaxation [46-48]. Actually extracting the friction

kernels which govern this relaxation is possible, and is effectively just the correlation function of the

force which would be exerted by the solvent upon a rigid vibration [49, 50]. In practice this is often done

by freezing the bond of interest then calculating the solvent force autocorrelation function on this frozen

rigid bond where jf") (t) = f()(t) - f (0)

Cgf(O)gf(o,(t, ') = (sf() (t)ff ') (t ')) (3.53)

As another example, in liquids, Berne et al demonstrate that the dynamic friction can be obtained in a

simple case from the velocity autocorrelation function or more completely by taking the fluctuating force

5f on a bond a propagating this via the true Liouville propagator L = -i{- -, H} giving the random force

(3.24) as [50, 51]

M feQLf)(3.54)
(P 2)

That is, the autocorrelation function of the time-propagated fluctuating force gives us the friction. The

static component of this is easy to obtain from MD simulations, as one only needs to calculate how the

Hamiltonian evolves:

= d f f (3.55)
kB

More recent work has focused on the origin on friction in liquids and what exactly this means

molecularly. Effectively the problem is in making a physical assignment of these x, oscillators and ca

couplings. This can be done by focusing on instantaneous normal modes of the solvent to write the

Hamiltonian and obtain the frequencies and coupling coefficients for every mode a for each instantaneous

liquid configuration [52, 53]. With this in hand it is possible to calculate from the approach taken in
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(3.19) and (3.25) the Hamiltonian-derived friction by averaging over instantaneous liquid configurations

to get

N 2

= 2 [cos cot -1] (3.56)
a=1 0a

which effectively depends only on the spectrum of couplings and a weighted instantaneous normal mode

density of states.

QUANTUM DISSIPATION

Coherence in a quantum system can be thought of as an ordering of the relative phases between two

states. The major consequence of this is a phase angle between the two states, leading to interference.

Using Dirac notation where I y/) = i)y/, and V/ = (i l V) in the case of the traditional probability

amplitude, the probability that a system S in the state I V/) will be found in arbitrary state 1#) is the

number resulting from the square of the modulus of the inner product of the two states [54, 55]

prob(Vf > 0) =1 (0 V)|2 -= *Vi1 2

0,*, 2 + 01 1 y/i, (3.57)

I 0 2 lf12+IO*fK

The terms in 1 #,*/, for which ifj, in explicit Dirac notation written as (0 i>(f I 0)( I j)(i I Yf),

represent interference between "alternative" intermediate states I i) and I j). These sorts of interference

terms vanish in the case that intermediate state I i) is measured or coupled to the environment. This is the

effect of the environment - to destroy coherences between quantum states of the system. This loss of

phase coherence is not egalitarian, and some subset of states will be more affected by the environment

than others. Those that remain (referred to by Zurek as "pointer states") are in a sense selected for by the

environmental interaction [54, 56-59]. Zurek refers to this process as einselection (environmentally

induced superselection), a selective loss of information due to interactions with the environment which

leads to classicality, leaving a collection of those states orthogonal to the environment. These selected for

states (pointer states) still stable and the preferred states for observation, as they are persistent and still

stable despite the interaction [59-63].
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It is worth noting that the term "quantum decoherence" is often used to describe such scenarios, but this is

somewhat misleading. This so-called decoherence is not a manifestation of wavefunction collapse, but

instead an appearance of a collapse, as the system wavefunction loses its "quantum" nature through

thermodynamically irreversible interactions with the environment. An overall global wavefunction still

exists and remains coherent, but the individual "system" wavefunction loses coherence due to phases

acquired as a result of interactions with the surrounding environment. This is in effect a spreading of

correlation from the system to the environment. Caldeira and Leggett wrote in 1981 that what matters

here is the "relative importance and nature of the coupling to the environment" and in strongly damped or

overdamped systems, "we are often ignorant of the precise details of the coupling and are reduced to

describing its effects by phenomenological friction or viscosity coefficients which must be taken from

experiment" [14].

In applying the generalized Langevin equation to an actual quantum mechanical system to try and

describe this interaction between the system and environment and loss of information, the strategy now

commonly taken to obtain formal equations for the quantum Langevin equation (QLE) or quantum master

equation (QME) for thermally equilibrated systems is that of the projection operator [15, 20, 30, 64, 65].

The generalized Langevin equation applied to quantum systems first appeared in a paper (without

potential renormalization) in a Soviet journal in 1959 taking the form of (3.23) [30, 64, 66, 67]. This

quantum Langevin equation is best viewed as an operator equation which is applied over a total Hilbert

space of both system (S) and bath (B) which results from the tensor product [30]

' =S 1 O B (3.58)

With the total Hamiltonian given by

Ht= HS 9 B OH H, (3.59)

With ZB and Is being the projection operators of the bath and system, respectively, required for the

dimensionality of the addition to be correct. Sometimes this dimensionality issue is ignored or assumed

and (3.59) is rewritten as H = Hs + HB+ H . This operator approach applies to the entire space, system

and bath, which differs from the classical GLE for which the stochasticity applies only to the system as

the random force contains classical noise properties specified in order to account for the bath interactions.

Elimination of the fast bath variables (that is, as in the classical Langevin equation, obtaining a self-

contained equation for the system alone such that the stochastic bath dynamics acting solely upon the
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system) is difficult if for no other reason than the extra importance of the system-bath interaction in

quantum mechanics. This interaction influences the time evolution of both system and bath and thus will

be inexorably approximate. In many instances the common approximations fail, for example the use of

the rotating-wave approximation has been shown to lead to a violation of the Ehrenfest theorem (which

states that mean values obey classical equations of motion - that is, the correspondence between the time

evolution of an operator and the commutator of that operator with the Hamiltonian) [68]. Only for very

specific situations can an exact QLE be obtained - for instance, when a quantum degree of freedom

interacts with the bath in such a way that [HI, Hs]=0 corresponding to pure dephasing, or when the

coupling takes the form of a operator-valued function of q or p with linear bath degrees of freedom, but

these are generally rare and of limited application [30, 69-71].

BROWNIAN OSCILLATOR

One approach to bridging the gap between the classical Langevin equation and the full quantum

counterpart of has been popularized by Mukamel and is known as the Brownian oscillator model [72]. For

the Mukamelian multimode Brownian oscillator model, the goal is to provide a detailed picture of the

bath influence on a particular quantum mechanical transition. This bath is modeled through a GLE-like

equation containing two parts: a few slower primary coordinates which are expected to dominate the

interaction with the quantum system and then slow primary nuclear coordinates are then themselves

coupled linearly to a bath of harmonic oscillators as is typical for the GLE (the bath is chosen to be

harmonic to allow for an arbitrary spectral density and temperature) [72]. This is the case, for instance, in

a molecular dimer such as acetic acid, where low frequency dissipative slow nuclear motions couple to

one main higher frequency vibrations (say, and -OH stretch) in a larger solvent bath. For primary slow

oscillator j the coupling to the bath oscillator a is described in a similar fashion to (3.13) as [15, 20, 73,

74]

N 2 2 2

H'= E "a +m.c x, -qj c" (3.60)
2 ,a ma Ma,-

This allows us to construct a Langevin-like equation for each slow mode, with Brownian force j(t) on

each and an added independent external driving force Fj(t) which couples as Fj(t)qj

M 4j(t) +mjt q (t)+M I dt'y-(t -t')4Q(t') = 4j(t) + F (t) (3.61)
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The solution to (3.61) then provides a description of the coordinates which will influence the primary fast

(potentially quantum) degree of freedom - for instance, an electronic transition or a fast vibrational

motion such as an -OH stretch.

The problem in application of the classical Langevin equation to quantum systems which becomes

immediately apparent is that a quantum correlation function is expected to be complex and satisfy (2.11)

while the classical correlation function should be real and obey(2.10). To address this problem in

obtaining the quantum correlation function, one calculates the imaginary part of the frequency response

spectrum, C "(c) for each mode based on (3.61). As shown earlier in (2.20), the entire quantum

correlation function can be written in terms of just this imaginary part, and so once this is obtained, the

entire correlation function C(t) can be obtained in a manner such that it satisfies all the properties of a

quantum correlation function (and consequently the fluctuation-dissipation theorem). There are a few

approaches to calculating C "(w) from the GLE. The approach taken by Grabert et al utilizes a Green's

function approach and is more mathematically rigorous and general [20]. To provide perhaps somewhat

more physical intuition, we can take another approach which leads to the same result. We can use the fact

that the linearity of the Langevin equation here allows us to examine the susceptibility x(o) through

ensemble averages and then Fourier transform of both sides of (3.61), giving

(q(c)) af dt (q (t))e ol (3.62)

= %y (o)F1 (m~)

where

1 1
Zy (0)= 2 2 . (3.63)

The correlation function of the primary (slow) coordinates we are searching for is

C (t) - (q1 (t)q (0)pg ) (3.64)

Where pg is the ground state density operator of the variable which we wish to interact with the

Langevin-like bath system

e--QHg

Pg -Tr [e-H] (3.65)
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This gives the response

X,(a) =Jdt - i[qj(t), qj(0)] p,) e""' (3.66)

and then we obtain

01 "(L)= ,m -r() (3.67)

While results can be obtained from this point on for an arbitrary spectral density / damping, for the case of

Ohmic damping for each mode as shown in (3.42), (y1 (co) = y ) we can then use (2.20) obtain the

imaginary and then real parts of the time correlation function, respectively,

(3.68)
h 2 -y

C1 "(t) = -r L2 
2exp( jsin( co - yj t)

2mj -y 2

C1 '(t) = h 2 -[coth(i0hp /2) -exp(-#jt) - coth(i#, 'hp8 / 2) -exp(-#j't)
2m, 2-7Y

27,- 2h/n
mj, n=1 hp8L )

exp - t)
/ hp 2

2zn
Sh/38

where #=1+± o-yand # = - co~ - y, which are the eigenvalues of a harmonic

oscillator with Ohmic damping (although in the case of Mukamel there is an unfortunate albeit not

entirely unexpected mixup of T and p', here corrected) [20, 72]. This is often slightly simplified by

defining another quantity, the frequency of damped oscillations (, = (which becomes

imaginary when overdamped, with large y).

BROWNIAN OSCILLATOR RESULTS

It is useful to examine a few numerical results of this model to get a sense of the types of bath behavior

which can be described in this framework. For a single slow bath mode, we can change the damping y to
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range between overdamped (yj> oj, where the system returns to equilibrium without a full oscillation),

underdamped (yj < oj. Causing the system to oscillate at a slow frequency down to equilibrium), or

critically damped (yj = oj, where the system returns to equilibrium as fast as possible). We can look

directly at the components of the time correlation function for these three damping scenarios at a fixed

oscillator frequency:

Im[c(t)]

--- Overdamped
-- Intermediate
-- Underdamped

-4

-6
0 200 400 600 800

t (fs)

Figure 24: Single Brownian oscillator correlation function for three limiting friction cases

1000

Plotting the frequency domain representation of this result we can see the general shape of the spectral

density under various damping regimes:
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Figure 25: Frequency domain representation of the Brownian oscillator spectral density for three limiting friction cases

These demonstrate the range of damping available in this bath for a single "Brownian oscillator," and

additional oscillators add in linearly (see (3.60)), allowing for a bath of arbitrary complexity to be

constructed from a series of oscillators at different frequencies and different damping conditions. We will

see this bath model applied to spectroscopic systems in the next chapter.

EXTRACTING TIME CORRELATION INFORMATION FROM MOLECULAR DYNAMICS

SIMULATIONS

A more computationally expensive but more molecularly motivated approach to quantifying time

evolution is to propagate Newton's equations of motion numerically in molecular dynamics to construct

classical trajectories. One can then use the results of these dynamics simulations in the construction of

frequency and dipole trajectories. These sorts of molecular dynamics simulations (MD) have become a

fundamental tool for relating experiments to atomistic and microscopic molecular behavior. As

Berkeley's William Miller has been known to say, this is effectively doing 17' century physics on
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computers - simply solving the equations of motion in small timesteps based upon an empirical potential

energy [75, 76]. It has also insightfully been called "pursuing Laplace's vision on modern computers," as

a fully deterministic prediction of all motion, past and present, is given by the forces and positions at a

given moment [77].

For two-dimensional infrared spectroscopy this is not a new approach, and many groups now commonly

incorporate molecular dynamics in their interpretation of spectra [78-84]. Here it is worth focusing on

utilizing MD for time correlation information only and then incorporate mapping results from higher level

quantum chemical calculations to construct trajectories. To calculate fluctuating transition frequencies

and transition dipoles from molecular dynamics, the most common approach is to extract random small

portions of solute and surrounding local solvent environment from a simulation to create a subset of

configurations to serve as a sample of the possible solvent environments. For each of these solvent

configurations, full electronic structure calculations are performed to calculate points on the potential

energy curve for the vibrational motion of interest. Corcelli et al have fit this potential to a Morse

oscillator and then with a multiplicative scaling factor to correct for systemic errors in frequency, each

local solvent configuration can be assigned a set of transition frequencies [85].

The time trajectory is constructed from the full MD simulation by creating a single mapping coordinate

which can be quickly computed for each time point in the molecular configuration and assigning to each

time step snapshot (that is, each set of solvent nuclear configurations) a set of transition frequencies and

dipoles. For instance, it is common to project the solvent electric field onto the bond of interest, and the

transition frequency can be mapped to this projection based upon the ab initio calculations of frequencies

for the randomly selected solvent cluster configurations [85-89]. It is also possible to compute the

classical force exerted on a particular bond over the course and use this to approximate the vibrational

frequency by perturbatively calculating the expected frequency shift away from the fundamental

frequency if no force is exerted on this oscillator [90].

To demonstrate the extraction of time correlation and force information from a molecular dynamics

simulation, we can examine the simple case of pure water. Liquid water is of course known for its

complex hydrogen bond dynamics, with rapid bond breaking and forming. Molecular dynamics models

for water have been developed for over 40 years, and much insight can be gained from surprisingly

simple models [91, 92]. Utilizing the Gromacs 4.5.1 molecular dynamics package, a box of 216 SPC/E

water molecules at 300K was equilibrated and allowed to evolve in 2 fs timesteps for a total of 1 ns [93,

94]. The classical SPC/E water model is a simple three-site rigid water molecule, where point charges are

located at the nuclear positions of the hydrogen at oxygen atoms with fixed rigid bonds of 1.0 A, and
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HOH angle of 109.470, and a net dipole of 2.35 D and an average polarization allowed in the potential

energy function along with electrostatic interactions and a Lennard-Jones potential for the oxygens [95-

97]. For illustrative purposes, a single -OH bond was chosen within the box and the forces projected

along this bond were calculated. Force units here are the fundamental units of force in Gromacs,

kJ
( m), approximately 1.66 pN [93, 94].

(mol -nm)

1800
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Figure 26: Force projected along the OH bond axis over a portion of an MD trajectory containing SPC/E water

This 100 ps trajectory of projected forces then gives us a histogram of forces along the bond:
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Figure 27: Histogram of projected forces along an SPC/E OH bond over 100ps from a 1ns MD trajectory

And we can calculate the projected force-force correlation function from the trajectory as well:
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Projected Force Correlation Function
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Figure 28: Calculated force-force correlation function for the projection of forces along an OH bond using 100ps of

SPC/E water

This classical correlation function then describes the time correlation behavior of the bath, giving us the

option of obtaining our dynamics from a simple analytical expression as will be demonstrated shortly, a

Langevin-type Brownian oscillator as in (3.68) and (3.69), or from the dynamics of particular variables in

molecular dynamics simulations. The molecular dynamics of chemically reactive systems can also be

modeled in a similar fashion through a variety of methods - for example, Roberts et al have utilized EVB

models to examine the dynamics of proton transfer in aqueous hydroxide, although such techniques

oftentimes require significant effort, expertise, and computational resources [98-100].
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Chapter 4: CALCULATING NONLINEAR SPECTRA

This chapter seeks to unite the static relationships and mappings of Chapter 2 and the tools for describing

dynamics introduced in Chapter 3 to calculate nonlinear spectral responses, focusing on the third order

response function R 3 > which describes a variety of four wave mixing experiments. A new approach to the

construction of time trajectories for transition energy gaps and transition dipole moments is introduced,

and these trajectories are used with the semiclassical approximation to calculate spectroscopic

observables for a few model systems of chemical interest. This chapter specifically examines the

applicability of this approach to the calculation of two dimensional infrared spectra (2D IR) of strongly

hydrogen bonded systems and demonstrates a few simple examples of this methodology in practice.

THIRD ORDER RESPONSE

Ultrafast nonlinear spectroscopy has emerged as one of the most information-rich techniques for

understanding dynamics of the condensed phase. Linear spectroscopies such as FTIR are sensitive to the

distribution of system eigenstates. Nonlinear spectroscopies, however, allow for the possibility of

interrogating both the distribution of eigenstates and the dynamics of the molecular environment. The

time evolution of spectral variables such as the transition dipole and stretching frequency is by no means

simple, and determining the relationship between molecular processes and spectroscopic observables

remains a difficult challenge. Comparing experimentally measured spectra to simulated nonlinear spectra

allow us to gain insight regarding the molecular microscopic dynamics and can help provide physical

intuition with an emphasis on chemically relevant quantities.

The lowest order optical nonlinearity which does not disappear for any point group symmetry is third

order (second order signals vanish in isotropic media). Third order nonlinear spectroscopy has proven

useful in interrogating chemical processes such as solvation dynamics, vibrational couplings, hydrogen

bond dynamics, peptide structure, and proton transfer. Perhaps the most powerful of four-wave mixing

third order spectroscopic techniques is that of two dimensional infrared spectroscopy (2D IR) [1-9]. This

corresponds to n=3 in (2.60), and can be expressed in the frequency domain using a fourth-rank

susceptibility tensor describing the interaction of matter with three separate input electromagnetic fields

[10-12]:

p( 3) +o + + o 3 ) = ZE, (r, t)E 2 (r, t)E3 (r, t) (4.1)

or utilizing the third-order response function in the time domain
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P (t) = fdtf, dtf dti RW (3,t2,)E(t -1 3)2(r, t - r3 - r2)E3 (r, t - -3 ~ -2 ~ rI) (4.2)

where the third order response function, per (2.59), is composed of the nested commutators of the

transition dipole operator evaluated at the time of interaction with each input field:

R(3) (t3 , t2 , t) ti3(t)O(t 2 )O(t 3 )(ih (4.3)

Tr(A(t3  2 +t1) [(t 2 +t]), [(t 1 ), [k i = 0), p(to = -0o)]

Here in addition to the time intervals introduced in (2.58) we make the choice of time zero as the time of

the first interaction with an external field, so 1=0, and we also assume that p(to) does not change when

unperturbed (that is, it is at equilibrium under the system Hamiltonian) and thus p(to) is equivalent to p(-

00).

We can then expand this set of nested commutators, write out each term, and group creatively:

(t3 +t 2 +t0[(t 2 +,), [(t 1 ), [(O), P(-o)]]]

A(t3 + +tI) [A(t 2 + t )A(t )f(0)p(-oo)- p(-oo)A(O)A(tI)P(t 2 + ti)] +

A(t 3 +t2 + tI) [P(t2 0t )p(-oo)()A(t 1 )- A(t)(0)p(-oo)(t 2 + tI)]+ (4.4)

A +t2 )[A(ti)p(-oo)A(O)A(t 2 + At)- A(t 2 +t)A(0)p(-oo)/A(t)] +

+t + +t)[(O)p(-oo) )(t/)(t2 +t 1 )- A(t2 +t iA(t)p(-o)A(0)]

Because the dipole operator and the density matrix are Hermitian, we can write each term in brackets in

(4.4) as a combination of a term and its associated adjoint ("conjugate"). For example:

A(t2 +±t)A(t)A(O)p(-oo) = (p(-oo)A(0)A(t)A(t 2 + ti))t (4.5)

With this realization we can write the third order response using four components, which we will write as

R..

FR e(3) (to, t2, t,) an R, a)- R*iserti) (4.6)
ih n=

For a set of complete system eigenstates and some careful reordering and insertion of the identity, we get:
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R] = IPa (9ab 3 + t 2 +t c )9bQ2 + tlcd Q lda (0))
abed

R 2 = Z a (.ao b9 QlbcQ2 + tlIcd (t 3 +t 2 +tl )pda (0))
abd(4.7)

R3 = I Pa (pdc Q1 )cb Q 3 +2 + tl)ba Q 2 + t.)*ad (0))
abed

R4 = Pa (pdc ( 2 + ti )Pcb (t3 + t2 +t)i )Pa Q1 )ad (0))
abed

What has been discussed here so far neglects orientational contributions to the response function. A

general treatment of rotational-vibrational coupling has proven exceptionally difficult, and so we typically

separate the orientational and vibrational contributions to the response function by adding an additional

term YijL where capital letters refer to the directions in the laboratory frame and lowercase indices are

unit vectors in the fixed molecular frame, such that this orientational response tensor projects the

laboratory frame onto the molecular frame at each interaction time. Within this term we have all classical

rotational and translational motion, and it can be viewed as an inherent property of the medium itself.

With this notation we can more carefully note that the vibrational contribution should be expressed in

terms of the molecular frame, thus Rijki. For the isotropic distribution of spherical rotors these

orientational response functions can be analytically determined [13-15]. For a full description of the

general case of multiple states, see the classic papers of Sung and Silbey [16, 17]. While in general a

tensor with 8 indices (i, j, k, 1, I, J, K, L) corresponding to spatial dimensions has a total of 38 total terms,

due to symmetry considerations for isotropic media, only four unique tensor elements remain, and each of

these can be independently measured through control of the polarization of the input and detected fields.

In order to obtain an expression for the polarization in (4.2), we must write out an explicit expression for

each interaction with the field. We can write each input electric field as a separate pulse Ea, here taken as

a simple cosine written in complex form as

E, (rt)= 1I A, (t -t,)s (r)exp[i(kar-oa) (t-t,)+#a)]+C.C. (4.8)

Where e is the vector component of the electric field polarization in the laboratory frame, A, is the

pulse envelope intensity as a function of time, k. is the wave vector of the incident field pointing in the

propagation direction, oa is the pulse frequency, and <pa is a phase factor. For a third order signal, these

electric fields are multiplicative (see (4.1) and (4.2)), giving a sum of complex exponentials. The

propagation direction of a third order signal is determined by these different k vectors, and utilizing what

is referred to as wavevector matching, one can measure different signals independently due to their spatial
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separation, according to ksingal = k, +kg +k, for the different possible combinations of signs. For example,

the ksingal ki -k 2 +k 3 condition gives the "transient grating" or "nonrephasing" signals while spatially

separable ksingai = k, -k 2 -k3 signal (equivalently, -ki +k 2 +k 3) is the "photon echo" or "repahsing"

contribution. Each of these contributions can be calculated independently utilizing the groupings in (4.7)

and made spatially distinct with clever control over the directions of the input fields.

To obtain analytical expressions for these response functions, historically a series of approximations are

made, including bilinear coupling between the system and the bath, the second cumulant approximation

(the Gaussian approximation), and the Condon approximation for the dipoles. These approximations

sacrifice the ability to describe many important kinds of dynamics, including the non-Gaussian sorts of

dynamics which dominate hydrogen bonded systems. The approach taken here is mixed quantum-

classical model for nonlinear spectra, calculating quantum observables and their static relationships

explicitly, creating a mapping of these variables to one another, and then creating time correlated

trajectories according to a specific model for the bath. This approach is in many ways analogous to the

early Langevin approach, for which details of the bath motions are selectively eliminated and allowed to

manifest themselves instead through stochastic forces. Here the details and dynamics of the bath express

themselves in the time correlation of the variables of interest, as it is fluctuations in the bulk bath which

modulate spectroscopic variables such as the transition dipole moments and the energy gap fluctuations.

This approach specifies the dynamical characteristics of the bath and maps this to spectroscopic variables

in order to calculate experimental observables.

SEMICLASSICAL APPROXIMATION TO THE THIRD ORDER RESPONSE

Given only a classical trajectory describing the evolution of stochastic variables of a system, we require

some simplification of the third order response equations which can be used to calculate spectroscopic

observables without the entire full quantum dynamics. With what is known as the "semiclassical

approximation," the third order response function (4.3) can be calculated directly from the dynamics of

the transition energy gap Oab(t) and the transition dipole moments gab(t). Here we consider the weak field

limit, where the dipole approximation holds for the interactions between the applied fields and the matter

of interest. The semiclassical approximation assumes that we can replace each term in the response

function with its classical analogue, which allows us to effectively remove time ordered exponentials in

equation (2.72). We can also then replaces the trace over the bath with an equilibrium average over phase

space. Without this, we technically require complete knowledge of the quantum dynamics of a system -

that is, how the entire quantum system evolves over time, a knowledge which we can never hope to obtain

for condensed phase matter, especially interacting molecules in a liquid. With the approximation, we

transform quantum time propagator into an ordinary exponential function [18, 19]
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R= , P, (t 3 +2 +tl) be (t2 +tl)cd (t1)Pda (O)0,bcd
ahcd

R 2 = Pa ab(91 bc ( 2 )1)Pe 1c 3 + 2 l )1 (da(O ) d
abcd(4.9)

R3 = a (9da (0)1.ab (2 + tI )bc (t3 2 cd i (d
abcd

4 = 1: P (p9a (0)pab ( h)eK (t3 + t2 +tI)pcd (t2 1)bcd
abcd

where Pabed is a set of dephasing functions defined by

11 +12 +13 1+12 11

cabd fexpba (r dr-i f -r dr -i da () dr
1+t2 1, 0

11+'2+13 1+'2 t1

abed( ep f dc (r) dr - i fmcod (r)j dr - if 'ma (r) dr
11+12 11 0

- (4.10)
a e +t2 +13 1 +12 11

abd .-3 b)e drvi + ca( )dr+i oda () dr
1 +12 1t 0

[ +12+13 11+12 11
b) d -i bc (r dr +i f cod (r)dr+if da (-)dr]

Oabed e f Co bc'~ a d

11+12 11 0

For a third order response, the 2D IR line shape is constructed from the Fourier transform of the sum of

the rephasing and non-rephasing signals, where for rephasing (-) signal is emitted in the kR=-kl+k 2+k 3

direction and nonrephasing (+) we have kNR=kl-k 2 -k 3 phase matching directions. For a single vibrational

resonance ignoring population relaxation and reorientation, can group equation (4.9):

R(ab t3 + t 2 + tl)plbc (t2  ) ti )cd (t1 )9da (o)ff1cd

abed
R = (d2ti )9bc(3+ t2 + t1 *ab (tIda(0)fa-c)

t3 +t2 +tI t2+tI ti

fabcd f~ - ba ca (dr d i-i(aoda(() dzf(+) ex (0 tf (Oda.(c&

t2 +tI t 0
(4.12)

t3+t2+t t2+tI t

abcd ) dc-(Tde dd-(id -if oda T
t2+tl tj 0

Where indices a throughf denote vibrational states (v = 1 to 4), including pathways that exclusively

involve one- or two-quantum transitions, those that involve mixed one- and two-quantum transitions, and
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those pathways that involve coherence during the waiting period t2 . The full response is the sum of these

rephrasing and nonrephasing contributions:

Ro (t 3 , 2 t)= R 3 (t3 ,t 2,t)+ R) (t 3, t2, t) (4.13)

FLUCTUATIONS

Due to the relatively weak nature of the hydrogen bond, thermal fluctuations alone are enough to cause

significant changes in bonding geometry and energy. In liquid water, for instance, fluctuations in the

extended hydrogen bonding network are substantial and rapid and thus have significant consequences on

chemistry and spectroscopy [4, 6, 20-27]. If the molecular Hamiltonian is fluctuating over time, the time-

evolution operator (2.25) must be replaced with the formally integrated solution to the Schrodinger

equation (2.23) [28, 29]

U(t + St, t) = exp - drH(t +r) (4.14)

Utilizing the time propagator (4.14) from the formally integrated Schrodinger equation, this equation has

also been used to numerically compute the same quantities as our approximation. Regardless, as the

system Hamiltonian changes in time, the associated vibrational transition frequency Oab(t) of an oscillator

inherently changes with time due to the push and pull of solvent molecules. The local electric field change

due to differing solvation or bond breaking and forming then technically appears as a time dependant term

in the molecular Hamiltonian. For a time dependant transition frequency, we often write two terms - a

mean average time-independent frequency and a rapidly fluctuating part Sooi(t) for which (S0) = 0

o I(t) =(co )+ mo0 I (t) (4.15)

The Anderson-Kubo model assumes that the transition frequency fluctuations are due to the time

evolution of the environment, and treats this frequency as a classical stochastic variable fluctuating with

exponentially correlated Gaussian statistics [30, 31]. In the late 1960's Ryogo Kubo developed a theory to

describe the dephasing of NMR transitions which ultimately proved useful for modeling vibrational

lineshapes [32]. These fluctuations induced by the solvent can be described with the Langevin approaches

mentioned in the previous chapter, and some success has been had in directly propagating the transition

frequency as a stochastic variable in a Langevin type-equation [33, 34]. It is also possible to assign these

fluctuations to another hidden variable which influences the frequency - for instance, the local electric

field along the bond or the number of hydrogen bonds in which the molecule is participating [35].
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A PHENOMENOLOGICAL APPROACH

The general approach utilized here for the calculation of spectroscopic observables is illustrated

schematically in Figure 29.

-I

Figure 29: Schematic for spectral calculations

In practice this looks like:

104



2 X 104

1.5

1

0.5

0
0 0.05 0

Q
nA1

0.08

q(t) 0.06
0.04

0.02

00

O- C

.1

I I'rv
1 2

t

p(0)p(t)- exp i &o(r)dr )0-

1
0.8
0.6
0.4
0.2
0

0 1000 2000
t [fs]

I I

fri

3 4
[fs]

38,
36,E

%'341

i
5 60s

x 10

0.3
0.2
0.1

0 0.04 0.08
q

M

0

3200 3400 3600
co [cm-1]

Figure 30: Schematic procedure for calculating a linear spectrum using a time correlated stochastic variable,

mapping this to frequencies and dipoles to create trajectories for the semiclassical response function

calculation [361

The main inputs which must be generated to utilize (4.11) are classical frequency and dipole trajectories,

which go directly into the calculation of the third order response function using the semiclassical

approximation. For the simplest case, one requires the dynamics of the frequencies and transition dipoles

of both the 0-> 1 and 1--+2 transitions, (010 (t), 012 (t), PO (t), p2 (t)). These in general are obtained by
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choosing one dynamic variable of chemical or spectroscopic significance, treating this variable

stochastically, constructing a properly time correlated trajectory of this variable, and then mapping the

fluctuations in the chosen variable onto variables necessary for the calculation of the response function.

A map relating instantaneous vibrational frequencies and dipoles to the chosen stochastic variable can be

generated in a variety of ways. For some variables, these relationships can be determined empirically,

such as non-Condon scaling of the transition dipole with frequency or the general trends relating

internuclear distance to stretching frequency. These maps can, however, be quite difficult to compute

directly. For example one often seeks to create a map which relates microscopic coordinates such as bond

distance or proton transfer with transition dipoles and frequencies. The benefit of this approach is that

these relationships only need to be determined once, and thus computationally expensive calculations can

be utilized at this step to effectively generate a lookup table of relationships.

The choice of this suitable mapping variable upon which is bestowed time correlation is nontrivial and

often guided by chemical intuition. We wish for a single valued mapping, linear or nonlinear, with no

discontinuities. Clearly one wishes for this variable to be something which can either be treated as a

reaction coordinate, has a clear physical motivation, or can be extracted from simulation (say, molecular

dynamics) with relative ease. For example, using an EVB simulation of hydroxide in water, it has been

shown that the collective electric field projected along the 0-H bond is a useful mapping variable

essentially directly correlated to the stretching frequency [6, 23, 37]. In some complex systems, there is

no clear stochastic variable which contains the majority of the dynamics, in which case this method

cannot be easily applied, and the statistical, Langevin approach to dynamics (discussed earlier) becomes

the best description of the bath.

The use of a Langevin type equation for IR spectroscopy by calculating the autocorrelation function of the

dipole moment operator through the assumption of a randomly modulated oscillator is not new [38, 39].

In fact, for many years it has been possible to take a classical stochastic approach to IR spectroscopy in

liquids treating the low frequency modes as randomly modulating, including Fermi resonances [40].

Many others have taken similar stochastic approaches to modeling the anharmonic potential and IR

lineshape [41-50]. The extension of this to nonlinear spectroscopies, however, is new and only beginning

to be explored [34].

TIME CORRELATION

With a dynamic variable Q chosen, time correlation must be imposed. This is done here by first

constructing an uncorrelated trajectory obeying a desired statistical profile. This uncorrelated trajectory is

then time-correlated through convolution with a correlation function for this variable,
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CQ (t) = (Q(t)Q(t)). The uncorrelated trajectory contains a series of uncorrelated Q values chosen

randomly from the desired distribution function P(Q), giving a vector for which the i* entry is Q(i) and

(Q(i)Q(j)) = (Q 3(i - j). Given the time correlation function CQ(t) of equal length with time spacing

At, the convolution desired that of the uncorrelated trajectory with the time correlation function:

Qcorrelated () = CC (t) * Q(t)
1 (4.16)

= J drCO (t - (Q.1)

If we realize that for Laplace transforms f(t) = 0 when t < 0 and g(t-r) = 0 for t > T we can write this same

integral with infinite limits:

J drC (t - r)Q(r) = f drCQ (t - r)Q(r) (4.17)

For numerical efficiency this convolution is accomplished through Fourier synthesis utilizing the Cooley-

Tukey fast Fourier transform (FFT) algorithm [51, 52]. According to the convolution theorem, for

functions f(t) and g(t) and their Fourier transforms Y{f(t)} = F(O) and F{g(t)}= G(co), assuming

J dt I f(t)g(t) is finite, the product of the two Fourier transforms is the Fourier transform of the

convolution. The Wiener-Khinchin theorem mentioned earlier is actually a special case of a related more

general cross-correlation theorem. Through the definition of the Fourier transform and a simple variable

substitution this can be shown [53]:

F{f(t)} -F{g(t)}= F(o) -G(w)

, ~2 _ dxdre-""(x+ f(x)g(r)

= )' 00 dte-''' [ drf(t - r)g()] (4.18)(2 2
f - dte-'''f(t)* g(t)

= If{f(t)*g(t)}(2;r
And thus we can do the desired convolution through element-by element multiplication in the frequency

domain followed by an inverse Fourier transform, noting that care is required in ensuring proper

normalization:

107



QLorrelated (t) = Td {F{Q (t)}. F{Q)} (4.19)

We then take our stochastic variable trajectory with specified dynamics and correlate this to a single

valued mapping of the observable variables, here {O01 (Q(t)), o1 (Q(t)), poP (Q(t)), p2 (Q(t))} , that

is, we seek to define a set of operations which can map the time trajectory of this single coordinate onto a

set of dynamic observable variables, here specifically:

Q(t) ->J{co (t), 12 (t), po1 (t), p12 (t)} (4.20)

VARYING THE FREQUENCY DIRECTLY

Perhaps the easiest and most obvious variable to treat stochastically is the fundamental stretching

frequency <0o1. As molecules move and rotate in the liquid phase, different electrostatic environments

influence each bond and as a result the vibrational energy gap changes dynamically with time. This

energy gap has even been examined as a possible reaction coordinate for proton transfer [54]. From a

simple linear IR lineshape we can impose a restriction upon the statistical distribution of allowed

frequencies, and allow Gaussian frequency fluctuations around this [55]. With the time evolution of the

fundamental transition specified, we then map to the rest of the quantities necessary for spectroscopic

calculation, {o'i (t), o 2 () 0 1(t)), poi (OO 1(t)), A2 (M1 (t))1

WA TER

The hydrogen bond in water has been modeled as a Brownian oscillator to describe such varied

experimental observables as the vibrational Stokes shift and high order Raman spectra [56, 57]. The

broad OH stretch absorption is an obvious vibrational target for spectral simulations of hydrogen bonded

complexes, and much experimental work has been focused on this transition in the infrared. For the case

of an overdamped single OH stretch, the simulated time-time response obtained from (4.11) looks

something like:
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Figure 31: Sample time-time response of overdamped single oscillator at 3400cm 1 (timesteps in fs)

As a simple test of the methodology, we can allow o to fluctuate according to Gaussian statistics with a

full width half max scaled to match the full-width of the linear infrared spectrum of HOD in D20.
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Figure 32: Construction of a sample stochastic trajectory with given statistical distribution

We can then, to continue the example, choose a simple time correlation model to impose upon this

trajectory - here a double exponential, a common model for early time water stretching dynamics, with

these parameters roughly matching the time correlation function of the OH stretch vibration of HOD

solvated in D2 0 for the SPC/E water model [37, 58]:

C(t) = 0.55 -e "fs + 0.45 -e O4Ofs (4.21)

Convolution of the uncorrelated stochastic frequency trajectory with this time very simple correlation

function as described in (4.19) then produces the desired time correlated frequency trajectory:
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Figure 33: Sample stochastic trajectory after time correlation

To experimentally study the dynamics of OH frequency fluctuations in water, the three-pulse echo peak

shift (3PEPS) measurement as been used to extract time correlation information from measurable

observables. For instance, Fecko et al. extract the OH frequency correlation function through fitting their

experimentally measured three-pulse peak shift decay iteratively utilizing different correlation functions

and accounting for long time behavior contributions including real pulse effects, population relaxation,

thermally-shifted ground state, and reorientation [2]. In addition, transient hole-burning has been utilized

for the same purposes [59, 60].

In the mapping of the stochastic variable to the m 1(t) -+ 0 12(t) we can choose either a static anhamonicity

or a frequency-dependant anharmonicity. For a fixed anharmonicity of 012 - oo = 200 cm'1 we obtain a

spectrum:
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Figure 34: Water OH stretch, Condon approximation, fixed anharmonicity

If there is a frequency dependence to the anharmonicity, we can utilize simple empirical relations for

water such as (2.77). With this linear anharmonicity change the spectrum calculated is:
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Figure 35: Water OH stretch, Condon approximation, empirical anharmonicity

To map the transition dipoles to the fundamental frequency, 0oor(t) -+ por(t) --+ 9 12 (t) we utilize the

empirical non-Condon relationship mentioned previously, (2.78). The 1--*2 transition dipole is assumed

to follow harmonic scaling and map directly from the 0- 1 transition. With this non-Condon effect

accounted for, we obtain the following spectrum:
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Figure 36: Water OH stretch, non-Condon effects incorporated empirically

These spectral shape changes and subtle but important, and results of this type of model, taking all effects

into account, have allowed for the successful calculation of measured 3PEPS data [36].

To demonstrate the effect of the Brownian oscillator model instead of this simple double exponential time

correlation, we can time correlate using single mode spectral densities at 200 cm' in the underdamped

and overdamped limits:
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Figure 37: Example spectral densities in the underdamped and overdamped limits used for time correlation

For this illustration we can take the simplest case, fixing the 0 -* I transition at 3400 cm 1 and impose a

static anharmonicity of 200 cm-, treating this fundamental transition stochastically with Gaussian

fluctuations with a full width half max of 300 cm-1 and using harmonic scaling for the dipole moments.

The fluctuating fundamental transition is given time correlation using the underdamped and overdamped

time correlation functions. Plotting the lowest 20% contour levels to focus on cross peaks and couplings,

we see clear effects of interactions with this 200 cm" Brownian oscillator mode when underdamped, but a

broad single transition with no clear structure for the overdamped limit:
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Figure 38: 2D spectrum of a single oscillator with an overdamped spectral density at 200 cm-1
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Figure 39: 2D spectrum of a single oscillator with an underdamped spectral density at 200 cm~

VARYING DOUBLE WELL ASYMMETRY

The next step in complexity in the construction of these classical trajectories is to treat an external

variable stochastically and connect this to each of the input trajectories required, as described in (4.20).

To model the effect of a direct proton transfer upon the spectrum, we return to the model potential picture

presented in Chapter 1. For this model, the fluctuating dynamic variable is not the fundamental frequency

but instead the asymmetry of the proton potential, representing the fluctuations in the local electric field

experienced by the proton. Chandler et al write that "when such an extreme fluctuation in proton potential

occurs, it does not last long, only 0.01 to 0.1 ps. This time interval is nonetheless long enough for the

destabilized chemical bond to break" [61]. For the following we will allow for Gaussian fluctuations in

the asymmetry parameter, with a full width half max of 2, chosen such that an asymmetry of 3 or -3 gives

a fundamental vibrational frequency of 3400 cm-1.

If we use an exaggerated underdamped and an overdamped limit for the Brownian oscillator correlation

function, as has been suggested by Ando (who proposed a double well coupled to a dissipative Langevin

bath), we can then mapping this fluctuating, time correlated asymmetry to the variables necessary for the
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calculation of spectroscopy as in Figure 9 and Figure 10. With these trajectories we can then calculate a

spectrum for each average asymmetry value, this time cutting off above 50% to highlight lower intensity

features:

Overdamped

a

Underdamped

9

Figure 40: Double well potential with varying asymmetry time correlated using a single mode Brownian oscillator

centered at 200 cm-1

With this we obtain subtle but noticeable structure in the measured spectral response of the localized

proton species due only to the difference in this single low frequency mode [62].

Imposing time dynamics with the same double exponential correlation function (4.21) instead, we can

again map the asymmetry to the transition dipoles and frequencies. We can also allow the asymmetry of

the proton potential double well to vary from -3 to zero, with a fixed fluctuation full width half max again

of 2:
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Figure 41: 2D spectra for a model proton transfer: double well asymmetry varying from an asymmetry

parameter of -3 (upper left) to 0 (bottom right)

If we were to alter the proton potential smoothly in such a way as to induce a shared proton state - for

instance, by creating a stronger and stronger hydrogen bond to an adjacent molecule or by photoinitiation

of a proton transfer, altering the environment in such a way that the proton is delocalized over a small

barrier, this predicts that we would observe a dramatic shift to lower frequencies as the ID potential

becomes effectively wider, and depending on the potential shape, a negative anharmonicity can be

expected for the equally shared state as well.
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CONCLUSIONS

Vibrational spectroscopies have, over the past few decades, proven to be exceptionally useful techniques

for examining molecules in condensed phases. Common approaches for the calculation of vibrational

spectra, especially nonlinear and ultrafast techniques, rely upon a few approximations which limit the

sorts of systems to which they can be applied. Popular nonlinear spectroscopic models all rely upon a

perturbative approach to describe the dynamics, expanding in terms of the dipole operator, but in order to

make this computationally tractable and achieve analytical expressions, other classes of approximations

are made, including bilinear coupling, the second cumulant approximation, and the Condon

approximation. For systems with highly anharmonic potentials and non-Gaussian fluctuations, such as

strong hydrogen bonds, these approximations are not valid and neglect describe much of the important

underlying physics.

The trajectory mapping approach discussed here utilizes the semi-classical approximation for calculation

of the nonlinear response, but in a manner which is far less restrictive than these other common models.

This approach sets a probability distribution for one or more internal variables, treats this variable

stochastically and then imposes upon it time correlation based upon either analytical empirical dynamic

behavior, a Langevin-like bath model composed of Brownian oscillators, or specific quantities extracted

from molecular dynamics simulations. From this time correlated trajectory, the full time evolution of the

spectroscopic variables (transition frequencies and transition dipoles) are constructed through mappings

in order to evaluate the semiclassical nonlinear response function.

By explicitly constructing classical time trajectories of the spectroscopic variables pt and o in this manner,

a general set of previously intractable dynamics and relationships can now be examined. For example,

highly anharmonic potentials governing proton transfer through hydrogen bonds can be postulated or

mapped out directly from ab initio calculations so that the non-Condon behavior inherent in these systems

can be fully incorporated into calculations. In addition, system dynamics which depend on an evolving

bath coordinate can be included and modeled, including explicit interdimer modes modulating the stretch

in strongly hydrogen bonded dimers. Constructing trajectories utilizing this sort of mapping can be

somewhat more computationally intensive, and the numerical integration over these trajectories required

for the evaluation of the nonlinear response can be slightly more time consuming, but with this added

complexity comes significant added flexibility, allowing for a variety of stochastic variables,

experimentally motivated constraints, mapping parameters, and dynamics, with which we can begin to

directly correlate infrared spectroscopy and complex chemical dynamics in a multitude of systems.
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APPENDIX A: SAMPLE CODE

INTEGRATION OF SEMICLASSICAL APPROXIMATION (MATLAB)
function [ xR1 xR2 xNR1 xNR2 Rminus Rplus mean freq_10] =
wtto2Dparallel_2_waterwt( wtTrajectory, dt, tau_2, NumberofPoints, delta
%WTTO2D Construct Response Functions from wOl frequency Trajectory and
Mapping for Water
% Using R+/-
% wtTrajectory = trajectory
% dt = trajectory timesteps
% tau2 = waiting time
% NumberofPoints = duration of t1 and t3
% delta = anharmonicity, or it can be a mapping

%% Setup
matlabpool open

%% Prep

% Constants
c = 2.99792e-5; %Speed of light [cm fs-1]

% Load
Trajlength = length(wt Trajectory);
time = linspace (0,Traj length-1,Traj _length) .*dt;
wtTrajectory_2=wtTrajectory';
w_10 = wtTrajectory_2;

%subtract off the mean
meanfreq_10=mean(w_10);
omega_10=(w_10-meanfreq_10)*c*2*pi;

% Create anharmonicity
if delta=='mapping'

% Empirical linear mapping made up from J.Chem.Phys. 123 114504 (2005)
omega_21=(((137/126)*w_10-472)-mean freq_10)*c*2*pi;

else
omega_21= (w_10-mean freq_10+delta)*c*2*pi; %static /fixed anharmonicity

end

% Set dipoles
% mu 10=(1.8336 - w_10*1.2973e-3 + (w_10.A2)*4.7136e-7 - (w_10.A3)*6.8016e-
11); %Non-Condon empirical mapping
mu_10=ones(1, Trajlength); %Condon Approximation
mu_21=sqrt(2)*mu_10; %harmonic scaling

% Integration variables and such
length_tl=NumberofPoints;
lengtht3=NumberofPoints;
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tau_1_vector=[1:length-t1];
tau_2=tau_2/dt; %to make it an index not a time

N averages = Trajlength-2*NumberofPoints-tau_2-1;

% Integral Prep
omega_10_integral = cumtrapz(time, omega_10);
expomega_10_integral = exp(li*omega_10_integral);
omega_21_integral = cumtrapz(time, omega_21);
expomega_21_integral = exp(li*omega_21_integral);

avgplus_1 = zeros(NumberofPoints);
avgplus_2 = zeros(NumberofPoints);
avgminus 1 = zeros(NumberofPoints);
avg minus_2 = zeros(NumberofPoints);

%% Timing Run
numcores=4;
parallelscalefactor=1.3; %Empirical factor to try and guess the timing (not
exactly 4 times faster with 4 cores)

actualtime = clock;
disp(['The time right now is ' sprintf('%02d', actualtime(4)) ':'
sprintf('%02d', actualtime(5)) '.']);
%Note: sprintf('%02d', number) gives 'number' as string, with 2 digits,
including leading zeros

for tau_3=1

tstart = tic;

avgplus_1_temp = zeros(l, NumberofPoints);
avg_plus_2_temp = zeros(l, NumberofPoints);
avg minus_1_temp = zeros(l, NumberofPoints);
avgminus_2_temp = zeros(1, NumberofPoints);

for n average=l:Naverages
Ilplus=expomega_10_integral(tau_1_vector+n average-1).*...

conj(expomega_10_integral(n-average));
Iiminus=conj(Ilplus);
12=expomega_10_integral((tau_3+tau_2+tau_1_vector+n average-1)).*...

conj (expomega_10_integral ( (tau_2+tau_1_vector+n average-1)));
13_plus=Ilplus;
13_minus=Ilminus;
14=expomega_21_integral((tau_3+tau_2+tau_1_vector+n average-1)).*...

conj (expomega_21_integral((tau_2+tau_1_vector+n-average-1)));

avgplus_1_temp = avgplus_1_temp +...
mu_10(tau_3+tau_2+tau_1_vector+n average-1).*...

mu_10(tau_2+tau_1_vector+naverage-1).*...
mu_10(tau_1_vector+naverage-1).*...
mu_10(n average).* ...
Ilplus.*I2;

avgplus_2_temp = avgplus_2_temp +...
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mu_21(tau_3+tau_2+tau_1_vector+naverage-1).* ...
mu_21(tau_2+tau_1_vector+n average-1).*...
mu_10(tau_1_vector+naverage-1).* ...
mu_10(naverage).*...

I3_plus.*I4;

avg minus_1_temp = avg_minus_1_temp +...
mu_10(tau_3+tau_2+tau_1_vector+naverage-1).*...
mu_10(tau_2+tau_1_vector+n average-1).* ...
mu_10(tau_1_vector+naverage-1).*...

mu_10(naverage).*...

Ii minus.*I2;

avg minus_2_temp = avg_minus_2_temp +...
mu_21(tau_3+tau_2+tau_1_vector+naverage-1).*...

mu_21(tau_2+tau_1_vector+n average-1).* ...
mu_10(tau_1_vector+naverage-1).*...

mu_10(naverage).*...

13_minus.*I4;
end

avgplus_1(tau_3, :) = avgplusl_temp;
avgplus_2(tau_3, :) = avgplus_2_temp;
avgminus_1(tau_3, :) = avgminus_1_temp;
avgminus_2(tau_3, :) = avgminus_2_temp;

telapsed = toc(tstart);

end

totalt = (length t3.*telapsed/numcores)*parallelscalefactor;
hrs = actualtime(4)+floor(totalt/3600);

mins = actualtime(5)+floor((totalt-3600*floor(totalt/3600))/60);

if mins >= 60

mins = mins - 60;
hrs = hrs + 1;

end
if hrs >= 24

hrs = hrs - 24;

end

disp(['The ' num2str(tau_2*dt) 'fs surface will be done at roughly
sprintf('%02d', hrs) ':' sprintf('%02d', mins) '.']);

%% Response Functions
% Calculate the response function R+-
% R- = rephasing

% R+ = nonrephasing

parfor tau_3=2:length-t3 %picking up where timing run left off

avgplusltemp = zeros(l, NumberofPoints);
avgplus_2_temp = zeros(1, NumberofPoints);
avgminus_1_temp = zeros(1, NumberofPoints);
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avg minus_2_temp = zeros(1, NumberofPoints);

for naverage=1:Naverages
Il_plus=expomega_10_integral(tau_1_vector+n average-1).* ...

conj(expomega_10_integral(n-average));
Iiminus=conj(Ilplus);
12=expomega_10_integral((tau_3+tau_2+tau_1_vector+n average-1)).*...

conj (expomega_10_integral((tau_2+tau_1_vector+n average-1)));
I3_plus=Il_plus;
13_minus=I1_minus;
14=expomega_21_integral((tau_3+tau_2+tau_1_vector+n average-1)) .*...

conj (expomega_21_integral((tau_2+tau_1_vector+n average-1)));

avgplus_1_temp = avg_plusltemp +...
mu_10(tau_3+tau_2+tau_1_vector+n-average-1).*...
mu_10(tau_2+tau_1_vector+n-average-1).*...
mu_10(tau_1_vector+naverage-1).* ...
mu_10(n average).*...
Il_plus.*I2;

avgplus_2_temp = avg_plus_2_temp +...
mu_21(tau_3+tau_2+tau_1_vector+n average-1).* ...
mu_21(tau_2+tau_1_vector+naverage-1) .*...
mu_10(tau_1_vector+naverage-1).*...
mu_10(n average).* ...
I3_plus.*I4;

avgminus 1 temp = avgminus_1_temp +...
mu_10(tau_3+tau_2+tau_1_vector+n average-1).* ...
mu_10(tau_2+tau_1_vector+naverage-1).*...
mu_10(tau_1_vector+naverage-1).* ...
mu_10(n average).* ...
I1_minus.*I2;

avgminus_2_temp = avgminus_2_temp +...
mu_21(tau_3+tau_2+tau_1_vector+n average-1).* ...
mu_21(tau_2+tau_1_vector+naverage-1).*...
mu_10(tau_1_vector+naverage-1).*...
mu_10(n average).*...
13_minus.*I4;

end

avgplus_1(tau_3, :) = avgplusltemp;
avgplus_2(tau_3, :) = avgplus2temp;
avg minus_1(tau_3, :) = avg minus_1_temp;
avg minus_2(tau_3, :) = avg minus_2_temp;

end

avg_plusl=avgplus_1./N_averages;
avg_plus_2=avgplus_2./N_averages;
avg minus_1=avgminus_1./N averages;
avgminus_2=avg minus_2./N-averages;

% Put terms together
R_plus=(2*avg_plus_1-avg_plus_2);
R-minus=(2*avg minus_1-avgminus_2);
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xR1 = real (Rminus);
xR2 = imag(R minus);

xNR1 = real(R_plus);

xNR2 = imag(Rplus);

%% Close parallel pool
matlabpool close
end
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DVR FOR MAPPING TRANSITIONS FROM DOUBLE WELL POTENTIAL (MATLAB)
%% Coding Variables
entrynumber=1;

% Which Eigenstates to work with
state i=1;
state f=6;
n_states=(statef-statei)+l;

%% Constants and Variables
hbar=1;
% Mass (reduced mass, in kg/molecule, for water, 1.49510A-23 g/molecule)
mass=1;

% Variables for the DVR Grid / Matrix
N=600;
xmax=5.5;
xmin=-5.5;
dx= (xmax-xmin) /N;

%% Start varying the potential
for d=-5:0.1:5 %d=linear parameter adding asymmetry to double well

%% Construct V and T Matricies
Vm=zeros (N);
Tm=zeros (N);
xaxisdata=zeros(N,1);

%% Fill up matrices
gp=hbar^2/(2*mass*dx^2); %grid parameter
for i=l:N

for j=l:N
if i==j

Tm(i,j)=( (gp*(-1)^(i-j) )*((pi^2)/3));
ri=xmin+i*dx;
Vm(i,j)=V(ri, beta, alpha, d);
%this is where the potential script is called
%this is where the potential script is called
xaxisdata(i)= (ri);

else

Tm(i,j)=(e(gp*(- )^(i-j))*(2/(i-j)^2));
end

end
end

%% Add to get H
H=(Tm+Vm);

%% Compute!
[Vectors, Values]=eig(H);
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% Vectors is a matrix with eigenvectors as columns
% Values is a matrix with eigenvalues along the diagonals
E=diag(Values);

for state=statei:state_f
% Get Normalization Factor for Wavefunction
Nstate(state)=(Vectors(:,state)'*Vectors(:,state));
NormVectors(:,state)=Vectors(:,state)/sqrt(Nstate(state));

% Frequencies of transitions
dvalue=d;
wOl= (E (2) -E (1))
w12= (E (3) -E (2)
w02= (E (3) -E (1));
w24= (E (5) -E (3)

end

% Vmn = <njxjm>
Vmn=zeros(nstates);
for i=statei:state_f

for j=state i:state f
Vmn(i,j)=(NormVectors(:,i)')*(xaxisdata.*NormVectors(:,j));

end
end

% Save data
mapping(entrynumber, :)=[dvalue wOl w12 w02 w24 Vmn(2,1) Vmn(3,2)];
entrynumber=entrynumber+l;

end

function [ Vx ] = V( x, beta, alpha, d
%POTENTIAL The Potential Energy Function in 1D
% Double Well Potential Here

%% Here's the Potential Function!
% Minima = sqrt(beta/(2*alpha))
% Barrier Height = beta^2/(4alpha)

V_x=alpha*xA4+...
-beta*xA2+...
((betaA2)/(4*alpha))+...
d*x;

end
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