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Abstract

Let C be a smooth connected projective curve of genus > 1 over an algebraically
closed field k of characteristic p > 0, and c E k \ F,. Let BunN be the stack of
rank N vector bundles on C and Ldet the line bundle on BunN given by determinant
of derived global sections. In this thesis, we construct an equivalence of derived
categories of modules for certain localizations of the twisted crystalline differential
operator algebras DBunNet and DunN, det/c

The first step of the argument is the same as that of [BB] for the non-quantum case:
based on the Azumaya property of crystalline differential operators, the equivalence is
constructed as a twisted version of Fourier-Mukai transform on the Hitchin fibration.
However, there are some new ingredients. Along the way we introduce a generalization
of p-curvature for line bundles with non-flat connections, and construct a Liouville
vector field on the space of de Rham local systems on C.

Thesis Supervisor: Roman Bezrukavnikov
Title: Professor of Mathematics
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Chapter 1

Introduction

Fix an algebraic curve C and a reductive group G. The geometric Langlands cor-

respondence (GLC) is a conjectural equivalence of derived categories between D-

modules on the moduli space BunG of G-bundles on C and quasi-coherent sheaves on

the moduli space Loc of local systems for the Langlands dual group LG. It has a clas-

sical (commutative) limit which amounts to the derived equivalence of Fourier-Mukai

type between Hitchin fibrations for G and LG. The latter is a fibration T* BunG - q

over an affine space with generic fibers being abelian varieties (or a little more general

commutative group stacks).

In [BB], a characteristic p version of GLC is established. Namely, the setup

of crystalline (i.e., without divided powers) D-modules in positive characteristic is

considered. In this setting, the category of D-modules does not get far from its

classical limit: it is described by a Gm-gerbe on the Frobenius twist of the cotangent

bundle. So the GLC becomes a twisted version of its classical limit. Based on this

reasoning, the GLC is constructed "generically" for the case of general linear group

G = GLN-

In this paper, we apply the same technique to the quantum version of GLC. This

deformation of GLC has the same classical limit, but now both sides are "quantized."

So in characteristic p we get (generically) a twisted version of the same Fourier-Mukai

transform. However, the proof that the twistings on both sides are interchanged by

the Fourier-Mukai transform is more complicated than in the case of usual GLC, and
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contains several new ingredients. Also, we restrict to the case of irrational parameter c

because there is a certain degeneration happening at rational c.

First, we need a description of the category of modules for a twisted differential

operator (TDO) algebra. The center of a TDO was already described in [BMR],

but the description of the corresponding gerbe presented here seems to be new. A

convenient language for this turns out to be that of extended curvature-an invariant

of a line bundle with a (not necessarily flat) connection taking values in a canonical

coherent sheaf T on the Frobenius twist of the variety. This is a generalization of

the p-curvature of flat connections. Just as with the usual p-curvature, every section

of T defines a gerbe whose splittings correspond to connections with that extended

curvature. Now, if L is a line bundle and c E k \ IF, then the gerbe describing Dec

corresponds to c - at where aC is the extended curvature of the pullback of L to the

associated twisted cotangent, equipped with the canonical ("universal") connection.

We then apply this to the determinant bundle on Bun whose corresponding twisted

cotangent is identified with Loc. So, to construct the desired equivalence, we have to

split a gerbe on the fiber product of dual p-Hitchin fibrations Loc -+ 0'). (Although

for GLN the p-Hitchin fibrations are the same, we use differently scaled projections to

the Hitchin base.) This is done by constructing an explicit line bundle with connection

on this fiber product. The problem then reduces to proving certain equality involving

0 = aL for L being the determinant bundle on Bun, and the torsor structure on the

p-Hitchin fibration.

We prove this property for another section Oo of TLoc and then show that 0 = 50.
The section 6o is constructed from a vector field (o on Loc lifting the differential of

the standard Gm-action on the Hitchin base. This vector field comes from an action

of fiberwise dilations of T*C(l) on the gerbe describing D-modules. Such structure

is not unique (it depends on the choice of lifting of C to the 2nd Witt vectors of k),

however the corresponding vector fields (o all differ by Hamiltonian vector fields and

give rise to the same 00.

This version of the text contains only a sketch of some of the arguments (and

some proofs are missing). A more detailed exposition will be presented in the next

10



versions of the paper.

1.1 Quantum geometric Langlands conjecture

Let C be a smooth irreducible projective curve of genus g > 1 over an algebraically

closed field k of characteristic 0 and G a reductive algebraic group. We denote by

BunG = BunG(C) the moduli stack of G-bundles on C. The quantum geometric

Langlands correspondence is a conjectural equivalence between certain derived cate-

gories of twisted D-modules on BunG and BunLG where LG denotes the Langlands

dual group. The twistings should correspond to invariant bilinear forms on the Lie

algebras of G and LG that induce dual forms on the Cartan subalgebras (up to the

shift by the critical level). When one of the forms tends to 0 the other tends to

infinity, which corresponds to degeneration of the TDO algebra into a commutative

algebra of functions on a twisted cotangent bundle to BunG. This shows that the

quantum geometric Langlands is a deformation of the classical geometric Langlands,

which is an equivalence between the category of (certain) D-modules on BunG and the

category of (certain) quasi-coherent sheaves on the stack LOcLG of LG-local systems

on C.

We will be interested in the case G = GLN-the general linear group. In this case,

we think of the quantum Langlands correspondence as the equivalence DBunN,e 0-mod

D BunN10 1/c-mod where Ldet is the determinant line bundle on BunN = BunG = BunLG
Ldet

given by (Ldet)b = det RF(C, Eb) for any b E BunN where Eb denotes the rank N vec-

tor bundle corresponding to b. (There is a subtle question of what kind of D-modules

one should consider, but we'll ignore it for now.)

1.2 The characteristic p case: classical story

In [BB], R. Bezrukavnikov and A. Braverman established a version of the classi-

cal geometric Langlands correspondence for "crystalline" D-modules over a field k of

characteristic p > 0. Recall that, for a smooth scheme X over k, the sheaf Dx of
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crystalline differential operators is defined as the universal enveloping algebra of the

Lie algebroid T of vector fields on X. The main tool for studying modules over

such algebras is their Azumaya property (see [BMR]). Namely, Dx turns out to be

isomorphic to (the pushforward to X of) an Azumaya algebra bx on T*X(l)-the

cotangent bundle to the Frobenius twist of X. This allows one to identify the category

of D-modules on X with the category of coherent sheaves on a Gm-gerbe on T*X(l).

This observation is generalized in [BB] to the case of (a certain class of) algebraic

stacks. Namely, for an irreducible smooth Artin stack 9 over k with dim T*Y =

2 dim 9 (i.e., 9 is good in the sense of [BD]), they construct a sheaf Dy of algebras

on T*9(l) with properties similar to the Azumaya algebra bx described above. The

pushforward of b to 9(1) is isomorphic to Fry, D3 where DY is the sheaf of differ-

ential operators as defined in [BD]. Moreover, the restriction of bD to the maximal

open smooth Deligne-Mumford substack of T*O'(l) is an Azumaya algebra.1

The stack BunN is almost "good," namely, it locally looks like product of a good

stack and BGm. So one can apply the above construction to 3 = BunN to get

an Azumaya algebra on T* Bun?1 ) - Higgs('). The latter stack is the total space of

the Hitchin fibration h('): Higgs(') -+ 01) whose generic fibers are Picard stacks of

(spectral) curves. On the dual side, one has the "p-Hitchin" map Loc -+ 01) given by

p-curvature. Generic fibers of this map are torsors over the same Picard stacks, and

each point of such a torsor (which corresponds to G-local system on C with given

spectral curve) gives a splitting of NBun on the corresponding fiber of HM. This

splitting defines a Hecke eigensheaf corresponding to the local system. The geometric

Langlands is thus realized as a twisted version of Fourier-Mukai transform.

'In fact, this construction can be strengthened, namely, one can define a Gm-gerbe on all of
T*9(1), not just its smooth part, as we show in 2.4. This gerbe classifies D-modules on 3, defined
in a way similar to [BD, Sect. 1.1]. The "regular" D-module, however, corresponds to a coherent
sheaf on this gerbe which is locally free only on the smooth part-that's why D, which is (opposite
of) the endomorphism algebra of this coherent sheaf, is an Azumaya algebra only on that smooth
locus.

12



1.3 Quantum story

In this paper, the same ideas are applied to quantum geometric Langlands correspon-

dence. To that end, we generalize the above Azumaya algebra construction to the

case of twisted differential operators. The only TDO algebras we will encounter are

of the form Dc where L is a line bundle and c E k (and external tensor products of

such). In this case, the situation is essentially analogous to the non-twisted case, ex-

cept that the Azumaya algebra will now live on the twisted cotangent bundle, where

the twisting is given by (cP - c) times the Chern class of L() (cf. [BMR]). We will only

consider the case of irrational c (i.e., c V Fp): in this case one can identify this twisted

cotangent bundle with the Frobenius twist of the space tirX of 0-jets of connections

on L. This is discussed in 2.3.

It is not hard to extend it to the stack case using the above-mentioned results

from [BB] for usual D-modules on stacks. Thus, for a line bundle L on a good

stack 9, one gets an Azumaya algebra 'b3rg on the smooth part of (r*)). (For

a discussion of twisted cotangent bundles to stacks, see A.1.)

1.3.1 Main result

We apply this to the determinant bundle Ldet on Bun. One can check (see Ap-

pendix A) that the corresponding twisted cotangent is identified with the moduli

space Loc.1/2 of rank N bundles on C endowed with an action of the TDO al-

gebra Dw,/2. In fact, we can identify Locg1/2 with Loc by tensoring bundles with

W (p-l)/ 2 . Thus, both sides of the quantum Langlands are described (again, generi-

cally over the Hitchin base) by certain gerbes on (Loc0 )('). Here Loc0 = Loc xe(i) (40)(1)

and 0 C J is the open part parametrizing smooth spectral curves. Using the p-

Hitchin map as above (this time to V(2)), we see that these gerbes live on two torsors

over the relative Picard stack mentioned above. So we get again two "twisted ver-

sions" of the derived category of coherent sheaves on this Picard stack. In contrast to

the classical (non-quantum) case, however, we have both "torsor" and "gerby" twists

on each side. These two kinds of twists are interchanged by Fourier-Mukai duality.

13



In other words, we prove the following:

Theorem 1. There is an equivalence between bounded derived categories of modules

for Dc = NBun,cet I(Loco)(1) and E-1/c = EBun 1/c (Loco)(1). The corresponding kernel
det

is a splitting of De M DP/c c ZD 11 c on the fiber product (Loc0 )(1 ) X(2),c, (Loc0 )(1 )

where the projection from the second factor to 4(2) is modified by the action of cP E

Gm. If we choose, locally on V(2), a trivialization of the torsor LocM 2),

then there are splittings of De and D_ 11 such that the equivalence is identified with

the Fourier-Mukai transform on the Picard stack Pic((,W0 )( 2 )/( 2 )). (Here 50 C

T*C x 40 is the universal spectral curve.)

Note that, although the underlying spaces of the torsors are the same on both

sides (namely (Loc0 )M1 ), in order to make the duality work, one has to normalize the

projection to q(2) differently. This can also be guessed by considering what happens

at rational c (including c = 0, oo).

1.3.2 Extended curvature

So, all we need to check is that the torsors with gerbes corresponding to De and D_ 11

are interchanged by Fourier-Mukai duality. For that purpose we need a description of

gerbes attached to TDO algebras. Recall that in the non-twisted case, the splittings

of Dx on an open subset UM1 c T*X(l) correspond to line bundles on U with flat

connection of p-curvature equal to the canonical 1-form on T*X(l).

To extend this description to the TDO case, we introduce a generalization of the

notion of p-curvature to non-flat connections. For a line bundle L with connection V

on a smooth variety X, we define in 2.5 a section 6irv(L, V) (called the extended

curvature) of the quotient sheaf Tx of Q' by locally exact forms. This sheaf maps

to Q2 via de Rham differential; this map carries curv(L, V) to the usual curvature.

On the other hand, for flat connections, cijrv(L, V) is a section of closed modulo

exact forms, which corresponds to the p-curvature of V under Cartier isomorphism.

This construction also allows, starting from a section a E Tx (such a section will

sometimes be referred to as a generalized one-form), to define a Gm-gerbe on X):

14



its splittings correspond to line bundles with connection whose extended curvature is

equal to a.

Now, the pullback of any line bundle L to its associated twisted cotangent tJX

acquires a canonical connection. If c denotes the extended curvature of this connec-

tion, the gerbe on (i*X) ) corresponding to the Azumaya algebra n, for c E k \ Fp
is obtained from the above construction applied to caz.

1.3.3 The Poincard bundle

Then we construct an explicit kernel of the equivalence (an analogue of the Poincard

bundle). This is a line bundle with connection on the fiber product of two copies of

Loco over the Hitchin base (see formula (4.6)). The construction is similar to that of

Poincard bundle on the square of the Picard stack of a curve:

Poincare(L, L') = det RF(2 0 L') 0 (det RF(L) 0 det RF(L'))- 1 .

Namely, the determinant bundle on the Picard stack gets replaced by the deter-

minant bundle on Loco with "tautological" connection (the same one that is used to

describe the gerbe on (Loc0 )(1), while the role of tensor product of line bundles is

played by the addition map on the fibers of the p-Hitchin map:

Loco x Locc -+ Loco+.
2(1)

Here subscripts indicate scaling of the projection to the Hitchin base. The fiber

of Loco classifies splittings on the spectral curve of the gerbe corresponding to the

canonical 1-form on T*Cl) multiplied by c. This map can then be thought of as

"tensoring over the spectral curve."

The main difficulty is then to check that this bundle with connection has the cor-

rect p-curvature. This reduces to a certain linear equality on the extended curvatures

(formula (4.8)). This formula can be interpreted as a kind of additivity of the general-

ized one-form c-'6 on Loco with respect to the addition maps above, where 0 denotes

15



the extended curvature of the tautological connection on the determinant bundle.

1.3.4 Antiderivative of the symplectic form on Loc

In 4.2, we construct another generalized one-form 50 on Loc0 (actually on the maximal

smooth part of Loc) whose image in Q2 coincides with that of 9 (both are equal to

the symplectic form on Loc4) but whose behavior with respect to the p-Hitchin map

is more controllable. We prove the additivity property for it, and then show that

9 = 0. In fact, 00 lifts to an actual antiderivative 00 of the symplectic form. Such

antiderivatives correspond bijectively to Liouville vector fields. We construct such a

vector field using an equivariant structure of the gerbe on T*C(l) under the Euler

vector field. Such structures correspond to liftings of C to the 2nd Witt vectors of k.

Since 9 - 50 is closed, it corresponds by Cartier to a 1-form #o on (Loco)(') and we

have to prove that it is 0.

The definition of Locc above makes sense for all c - k; in particular, for c = 0

it gives Loco = Higgs('). On Higgs(') we have the canonical 1-form 0(l) (as on a

cotangent bundle). We prove that both 9 and 0 are compatible with 9l5) with

respect to the action map

Loco x Loc0 -- + Loco.
0(1)

In the beginning of Section 4 we prove this for 9. It is enough to prove it on the

image of the Abel-Jacobi map in Higgs, which in turn reduces to studying how the

determinant bundle (with connection) on Loc0 changes when we twist the local system

by a point of its p-spectral curve. The compatibility of 0 with 0(l) is proved as part

of the additivity for 90. (In fact, the additive family of 1-forms on Loco constructed

in 4.2 specializes to 00 for c = 1 and to 09() for c = 0.)

From this we conclude that #o descends to the Hitchin base. On the other hand,

in 4.3 we study the behavior of 0 with respect to the projection Loc -+ Bun. First,

by a degree estimate we show that the restriction to the fibers of this projection have

constant coefficients. Then, a global argument shows that in fact this restriction must

16



be 0. The fibers of the two projections Loc -+ 01) and Loc -+ Bun are generically

transversal (at least, we know how to prove this for one of the components of Loc

assuming C is ordinary), which gives the desired equality 3o = 0.
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Table of notation

k - an algebraically closed field of characteristic p > 0

G - the general linear group GL(N)

C - a complete smooth algebraic curve over k

Bun - the moduli stack of G-bundles on C

4 - the Hitchin base (the affine space Ej H0 (C, wj))

,40 C -4 - the open part classifying smooth spectral curves.

Higgs - the total space of the Hitchin fibration, the moduli stack of Higgs

bundles, Higgs = T* Bun

- "universal spectral curve," W C T*C x 4
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Chapter 2

Differential operators in positive

characteristic

2.1 Frobenius morphisms and twists

For any scheme S of characteristic p (i.e., such that P9 s = 0) the absolute Frobenius

Frs/,: S - S is defined as ids on the topological space and FrO (f) = fP on

functions. For any S-scheme X -7r S one constructs a commutative diagram

FrX/F,

xSSF

S ">S

where the square is Cartesian. We call the S-scheme X(s) - S the relative Frobe-

nius twist of X over S, and call FrX/s the relative Frobenius morphism. We will

denote by o(s) the pullback by FrS/F, or Wx1s. In the case S = Spec k we will drop

"S" and write Frx and X(1 ) instead of Frx/s and X(s). The k'th iterate of 9(1) will

be denoted *(k).

21



2.2 A-connections

Recall that a A-connection on a vector bundle E on a smooth variety X is a k-linear

morphism of sheaves V: 8 - Q1 0o E such that

Vf E O Vs E S V(fs) = f - s + A -df & s

where 8 is the sheaf of sections of E.

Define the curvature of a A-connection V to be the section Ft of Q2 0 End E

corresponding to the O-linear map 92S -+ 2 0 where V is extended to Q* 0 8

by the following "Leibnitz rule":

V(w 0 s) ( 1 )e*"o A Vs + A -dw 0 s.

An alternative definition of Ft is that for any (, q E Tx we must have

Ft y) =[Vi, to] - A -t

If Ft = 0, we say that V is flat.

For A # 0 if V is a A-connection then V = A- 19 is a connection, and vice versa.

In this case, the curvature of a A-connection can be expressed in terms of the ordinary

curvature: Ft = A2Fv. The case A = 0 can be thought of as a limit when A -+ 0. In

particular if 8 is trivialized, and t = Ad + 0 then Ft = AdO + 0 A 0

Vector bundles with a flat A-connection correspond to 0-flat 0-coherent modules

over the algebra D,\ which is the universal enveloping algebra of the Lie algebroid

TX,A = Tx over 0 with rescaled commutator: [, 11 = A[ , T]. There is an inclusion

OTX1> - Z(DA) (the center of DA) which is an isomorphism for A # 0. It is given

by f(1) -4 fP, M(1) + P - AP-'t[P where in the LHS is regarded as a fiberwise linear

function on T*X, and in the RHS is the corresponding element in D\. For A = 0

the inclusion is just the Frobenius map r*: OTX(1) -+ OT-X.

We can then define the p-spectral variety of a A-connection V on a vector bundle E

22



as the support of the corresponding DA-module regarded as an OTX(l)-module. By

the p-curvature map of V we will mean the map curv,(V): S -+ 0 Fr* Q1 coming

from the action of OT.X(1) on 8. For A / 0 it is related to the ordinary p-curvature

by curv,(V) = AP curv,(A 1 V) (here A-1 V is a usual connection).

For a line bundle L on X and A e k, define a torsor TfX over T*X whose sections

are A-connections on L.

Remark 1. As a variety, tX is isomorphic to tJX := fr 1X for A # 0 and to T*X

for A = 0.

2.3 Twisted differential operators

If X is a smooth algebraic variety and L is a line bundle on it, we define a sheaf of

algebras Dx,cc for any c C k as follows. For any local trivialization #: Ou ~+ Lu of

L on an open set U, we have a canonical isomorphism ap: Du ~> Du,c, and if 0' on

U' is another trivialization then the gluing isomorphism a, o ao is given by

f f for f E Ox, and

{ - c (h)/h for E: Tx

where h EoX (U n U') is such that (#)-1 o #: O (U n U') -+ OD(U n U') is given by

multiplication by h.

Just as the sheaf of usual differential operators, the algebra Dx,cc has a filtration

with the associated graded isomorphic to (the pushforward of) OTx. In particular,

taking the first filtered piece gives an extension of coherent sheaves on X:

0 -+ Ox -+ D|c , - Tx -+0.

Moreover, it is not hard to check that the torsor of splittings of this extension is

canonically identified with the torsor tJX of c-connections on L.

Now let V be such a c-connection. Then the obstruction for the corresponding
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map lv: Tx - T4re to be a map of Lie algebras is given by the curvature of V:

where Ft E Q2 (X) is the curvature of the c-connection V. Consequently, a structure

of a Dec-module on a given quasi-coherent sheaf E is equivalent to a connection V'

on E with the curvature given by

Fv, = Ft -ide.

Proposition 2. Denote by Y the relative spectrum of the center of Dc: Y =

Specx(1) Z(Frx* Dxcc). Then Y is canonically isomorphic to Ti()cPcX( 1 ) (as an

X(1)-scheme). Moreover, FrxDc& is the pushforward of an Azumaya algebra Dec

on Y.

If we are given a trivialization &: Ox 24 L then the following diagram commutes

(where the vertical arrows are induced by p and $(l), and the bottom arrow is the

standard isomorphism (see e.g., [BMR, Lemma 1.3.2])):

Specx(1) Z(Frx* Dx) ~> T*X(1)

Proof. It is enough to construct the identification for the trivial line bundle L and

then prove that it is independent of the trivialization. But for the trivial line bundle

we already have such an identification (referred to as "standard" in the formulation).

To show the independence of the trivialization, suppose we have an automorphism

of the trivial line bundle Ox given by an invertible function h. The corresponding

automorphism Oh of Dx is given by (2.1). Combining with the formulas for the
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identification of Z(Dx) with the pushforward of OT*Xs:

f () 4 fP

( ' (P

for f E Ox;

for ( E Tx

we see that, for any vector field ( on (an open subset of) X, the action of 4h on the

element of Z(Dx) 2 Sym Tx) corresponding to (1) is given by

Using - te) - ( - ca(h)nh)y - (I -c isc)

Using the identity (in any associative algebra in characteristic p)

(a + b)P = aP + b + (ad a)P--(b) if [[a, b], b] = 0,

the above expression can be rewritten as

Ohe- &'4P) - (e - &'P) - cPQ (h)/h)P + c(e"(h)/h - -(hlh)

Now note that when c = 1 we have Oh = Ad h. Therefore, since (P - PI is central,

we must have @h((" - &IP]) = P - &I] in this case. Thus, the above equation gives

(((h)/h)" + (P(h)/h - P--1 ((h)/h) = 0,

and hence, for arbitrary c, the formula becomes

O( - &4]) = ( P - &)- (cP - c((~hP

We see that this formula coincides with the action of h on linear functions on the

twisted cotangent T()CP-CXM. E

Remark 2. Another way to finish the argument is as follows. Let us observe that

the effect of Oh on Dx-modules is equivalent to tensoring by the line bundle with

connection (0, d+c- d log h). Therefore its effect on the p-support is given by the shift
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by the p-curvature of d+c-d log h. This p-curvature equals (c-d log h)() -C(c.d log h) =

(cP - c) -d log h0) (where C is the Cartier operator), hence we get the desired formula.

2.3.1 TDO with "Planck's constant"

Suppose X, L are as in 2.3. Define the k[c, h]-algebra D'h(X) as follows. Let 7r: X -

X be the principal Gm-bundle corresponding to L. Denote by Dh(X) the algebra of

"differential operators with parameter," that is, the algebra

Dr(1) := eD<n()
n>O

over k[h] where the inclusion k[h] c-+ Dh(1) is given by h - 1 E D 1 (X). Here

we introduce its TDO analog. For E T let be the corresponding element in

D!l C D. Let Eu be the Euler vector field on X (the differential of the Gm-action).

Now set

Dch(X) := (7*Dh(X))Gm.

This is a k[c, h]-algebra via h '-+ h E Dh(X), c i-+ Eu. Note also that rDh(X) has two

gradings: one comes from the definition of Dh as a direct sum, and the other comes

from the Gm-action on X. But on the Gm-invariant part, we have only one grading

(the first one), and with respect to this grading deg c = deg h = 1. The algebra

Dgh being graded implies that it carries an action of Gm and, in particular, if 'Dc

denotes the specialization c '-+ co, h '-+ ho of the algebra D'9 (where co, ho E k) then

D, t D (2.2)

for any A E kx.

The specialization c '-+ 0 gives the algebra D, defined above, and in particular,

DEo = (prx)*(9 T*X where prx: T*X -+ X. Furthermore, it is not hard to show that

Do, = (pr' ),Of ,x (where pr' is again the appropriate projection to X). One can

also check that specialization h '-+ 1 recovers the algebra De from 2.3. Taking the
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isomorphism (2.2) into account, we can summarize:

r pr OT*x if co =ho = 0;Dcho pr'Oj;, x if co #0, ho = 0;

DCcolho if ho # 0.

The following theorem is a generalization of Proposition 2:

Proposition 2'.

1. The center of the algebra D'h(X) is canonically isomorphic to O where 3 =

T*(1)cP - nP-1 *()1ChX 
scn ncly s m rhct ,,w ee-

2. Moreover, if co, ho E k, the specialization c F-+ co, h |-+ ho induces a map

O10rc -+ Z(D Qro) which is an isomorphism if and only if ho # 0, in which

case DI, is an Azumaya algebra over -cono.

3. The isomorphism (2.2) is compatible with the Gm-action on -T given by scaling

connections by AP.

2.3.2 Central reductions

Suppose X, L are as above, c E k. Then any (cP - c)-connection Vo on L( 1) gives a

section of the bundle i(lcCcX( 1 ) over X(1 ) defined above (we've changed notation

from co to c). Denote by Dcto the pullback of Ucc to this section. It is an Azumaya

algebra on X(1). If c g F, then (cP - c)-connections on (1) correspond bijectively

to ordinary connections on L(1) by multiplication by cP - c, and, by a slight abuse

of notation, we will sometimes denote the algebra Dcgt by Dc,vo where Vo is the

connection on L(1) for which 90 = (cP - c)Vo.. One can check that in this case then

0-coherent modules over Dccto correspond to pairs (8, V) where E is a coherent

1- is a scheme over k [c, h]. One should extend the definition of T, X to the case of families over
an arbitrary scheme in order to make sense of the definition of -T.
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sheaf on X and V is a connection on E such that

FV = c - Ft,;

VP - Vip] = c - ((VO)P - (V')&1)

for any ( E Tx, where V' is a (usual) connection on X such that Vo = V (The

operators in the RHS are always multiplication by a function 2 (resp. a two-form), and

we want the LHS to be multiplication by the same function (resp. two-form), though

on a different bundle.) We will give another interpretation of these conditions in 2.5.

Now assume for simplicity that c i' Fp. Let TZX be the twisted cotangent bundle

associated to L. The pullback L' of C to TrX has a canonical "universal" connection

which we will denote by Vc.

Proposition 3. There is a canonical Morita equivalence of Azumaya algebras on (irX)( :

Proof. First we will construct a functor Dec-mod -+ DL c,v. -mod and then explain

why it is an equivalence. Let 7 denote the projection TrX -+ X. We define the

desired functor as the composition of the following functors:

Lrcc-mod - Dc-mod T Dec-mod -+ Dyc vs.-mod.

Here wr is the usual pullback for twisted D-modules (given by the 0-module pullback

of the underlying quasi-coherent sheaves), and the last functor is given by induction

(i.e., central reduction).

In order to check that this functor is O§ X-linear and is an equivalence, it is enough

to consider the case when L is trivial, which reduces to the analogous statement for

non-twisted D-modules. This was proved in [BB]. D
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2.4 TDOs on stacks

In this section we are going to generalize the above results to the case of stacks. So let

3 be a smooth pure-dimensional Artin stack over k, L a line bundle on 3", and c C k.

The D-modules and twisted D-modules on stacks are discussed in [BD, Sect. 1.1]

for the characteristic 0 case. For the non-twisted case in characteristic p, see [BB,

Sect. 3.13].

Recall that a quasi-coherent sheaf, resp. D-module, on W is defined as a datum,

for every smooth morphism S -+ § from a scheme S, of a quasi-coherent sheaf, resp.

D-module, Ts on S, together with identifications f*Fs 4 Ts' for every morphism

f : S' -+ S of smooth schemes over 3 (i.e., S runs over the smooth site 9sm of 9).

These identifications are required to satisfy the cocycle condition for compositions.

Similarly, one can define the category of Lc-twisted D-modules on 9. In this subsec-

tion we will construct a certain Gm-gerbe g3,tc on ig(l)CP_c1) such that modules

over it are equivalent to LC-twisted D-modules on 3(. For the sake of brevity of

notation, we'll denote the latter twisted cotangent by t*g(1), and for (S, 7r) E

denote by T*S(1) the twisted cotangent bundle for (7r*L)(1)'-c.

First of all, in order to define a Gm-gerbe on t*9(l), it's enough to supply a Gm-

gerbe on S() x3() t*9(l) for every S E 9sm (together with compatibility isomor-

phisms). But we have a map S(1) x(1) *9(1) + i*S(i), and we have a gerbe 9s,,*Lc

on T*S(l) corresponding to the Azumaya algebra Vs, 1 *,cc, so we can let (gy,,c)Sm be

the pullback of gs,,*,c under this map. These gerbes are compatible with pullbacks:

the equivalence is given by the TDO analog of the D-module Ds-s from [BB]. The

compatibility of these equivalences with compositions follows from the isomorphism

Dsnas' * Vs,-s Dsls for a pair of morphisms S" 4 S' -+ S, which in turn

follows from the isomorphism (fg)! = g'fI for D-module pullbacks, and similarly for

the cocycle condition.

For a Gm-gerbe 9, we denote g-mod the category of "9-twisted quasi-coherent

sheaves," i.e., the 1st component of the category of quasi-coherent sheaves on the

"total space" of 9.
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Theorem 4. There is a natural equivalence of categories

D-modc (4) ~gLc-mod.

Proof. It is easy to construct a functor in one direction. Namely, given an object M E

g3,Lc-mod, we can construct an Lc-twisted D-module M on 9 as follows. Given any

(S, 7r) E Mm, we have maps (dx)( 1): S(1) x3() t*m *S(1) and fR1): SM x3((a)

f*W T*g(l. So we can consider the gsLe-module given by (di)(l)r(1*M; this

makes sense because by definition we have the canonical equivalence (d7rj)(l)*gsre C

fr~ ~c We let Ms be the Ds,Irtc-module corresponding to this 9scc-module. It

is clear that for a map f: S' -+ S in 3(Am we have an isomorphism Ms, 2 f!Ms

and these isomorphisms are compatible with compositions, so the modules Ms for

every S E 9m define an Ec-twisted D-module M on 3. Moreover the assignment

M '-+ M gives a functor 93,Lc-mod -+ D-modec (9), which we (temporarily for this

proof) denote by <D.

Note that for any (S, 7r) E Om, since7r is smooth by assumption, the map d7r (and

hence (d~r)(1)) is a closed embedding. Therefore the functor (d ) is fully faithful.

Being by definition a limit of such functors, our functor <D is thus fully faithful as well.

It remains to show that it is essentially surjective. Fix an object M E D-modec,(9).

We see that M is in the essential image of <D if and only if, for every (S, 7r) E 3m,

the Ds,,*c-module 7r!M = MS has p-support inside S(1) x3() * C T*S(l).

To see that the p-support of Ms is indeed contained in this closed subscheme,

consider the fiber square Q = S x1 S and denote by pri,2 : Q - S the two pro-

jections. We have an isomorphism pr' Ms ~ MQ ~ pr' Ms of twisted D-modules

on Q. But note that the p-support of pri Ms is inside Q() x r'S(') T*S(l), and

the above isomorphism forces this p-support to lie in the intersection of these two

closed subschemes inside T*QG). This intersection coincides with QM X >(1) t*g -

Since pri are surjective, the equality supp, pri Ms = Q(1) xs(1) suppp Ms implies that

supp, Ms C S x3> *W(1) as desired. E

Now we will prove an analog of Proposition 3 for the stack case. For a smooth
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stack 9, a line bundle L on W, a scalar c E k \ F,, and a connection V on L1),

define a Gm-gerbe 9 ,,c,v on W(1) as follows. By definition, the connection V defines

a section sv of the projection (Ti )) -+ 91). Let g3,,c,v be the pullback of gy,c

by this section.

Proposition 5. For 3, L and c as above, we have a canonical equivalence of gerbes

over ((T*f)(l)sm.

where (L', Vcan) is the pullback of C to (iW )", equipped with the canonical connec-

tion.

The proposition will follow from the following lemma:

Lemma 6. Let f : W - _ be a map of smooth stacks and L a line bundle on -. Let

/0: 0)x gT> T~a _T() -+f M~D and jf (): 7Wm x _TMg 0 9f G

be the natural projections. Then we have an equivalence

0)*9YLc ~ if (1)*g3,fc.

Proof. We have already mentioned this fact in the case when 3 and -T are smooth

varieties. In this case, the statement follows from the fact that there is a splitting

of by,f tc Z Db sc given by DY1~c (see [BB, Proposition 3.7] for the non-twisted

case; the twisted case in completely analogous).

The stack case can easily be obtained by descent.

Proof of Proposition 5. We apply Lemma 6 to the map f: (Ti3)sm -± 9 and the

line bundle L. Consider the diagonal map A: (T*)Sm (ppy3(s m x, ti3. It is

easy to see that the map f o A is the inclusion (Tr*)m Tr1* and the map df o

A: (T-*)Sm T f Tf3g)sm corresponds to the connection Vcan on 1'. Thus, pulling

back the equivalence in Lemma 6 by the map A, we get the desired statement. E

31



2.4.1 The regular D-module and its endomorphism algebra

It is clear that the forgetful functor D-modc(Y) -+ QCoh(W3) has a left adjoint.

Denote by D ,c the image of OQ under this left adjoint; this is a twisted D-module

(in particular, a quasi-coherent sheaf) on 9. In other words, this is the object

(co)representing the functor of global sections F: D-modec(g) -+ QCoh3 -+ k-Vect.

Let also D3 CC be the opposite to the sheaf (on Kn) of endomorphism algebras of

as a twisted D-module, i.e., (DWLc)s = Ec Since Osm C

Z(Ds,,-c) for every (S, r) E 3m, we can regard DLtc as an Og)-module. One

can check that for any map f : S' -* S in 3sm, we have (DVsc)s' = f l*(D'~c)s, so

D , Lc is a quasi-coherent sheaf on 3 .

To describe these sheaves in more concrete terms, fix (S, 7) E Wm and consider

the left ideal I in Ds,,*,c generated by the image of the map Ts/y -> Ds-ec (this is

the canonical lift of the map Tsy -+ Ts which comes from the fact that the vector

fields on S coming from Ts/, have canonical lifting to the total space of 7*L), and

let N(I) be its normalizer. Then (DOsc)s = Ds, and (Dc)s = N(I)/I.

Remark 3. In the non-twisted case, the sheaves DO and D are what is denoted by

Dy and Dy respectively in [BD] and by Dy and Dy respectively in [BB]. In [BB], the

authors state that the definition of D5 should be modified in characteristic p because

they want (V)s, to be the Zariski (or etale) sheaf-theoretic inverse image of (DV )s

for any morphism S' -+ S in 3m, as it happens in the characteristic 0 case. Although

this property doesn't hold in characteristic p, the fact that we have a quasi-coherent

sheaf on 9M can be regarded as a substitute.

By definition we have that Dic is a right module over D c. Actually, Dc is

(the opposite of) the endomorphism sheaf of DYOLc. We also have a canonical "unit"

global section of Doc. Thus there is a map u: ,c -+ of sheaves on Om.

Claim 7. The map u induces an identification D5 F D

Note that for any (S, 7) E 3m the quasi-coherent sheaves (DVLc)s and (D9,1 c)s

on S are push-forwards from §*S ), since they are acted on by the center of DS,,r*,ic.

Denote by (yi ,c)s and (biLc)s the corresponding sheaves on T*S). As we saw
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in the proof of Theorem 4, these sheaves are actually supported on S) xa() t*Sl).

Moreover, the Os-module structure on (D3 ,C)s allows us to view (LCc)s as a quasi-

coherent sheaf on S X3a> T*( ?). Thus we see that the collection of (1c)s for all

S E Osm defines a quasi-coherent (actually, coherent) sheaf bDYc on W x3(,) t*9 ,

whereas (D ,Lc)s define a coherent sheaf f con W(). It is clear from the above

claim that boc is the pushforward of D 'c along the map 3K x() t*9(1)

Proposition 8. Assume that Y is "good" in the sense of [BD, Sect. 1.1.1], i.e.,

its cotangent stack has the expected dimension: dimT*W = 2dimW,'. Denote by

(T*WY(1))Ym the maximal smooth open substack of T*W(). 3 Then

a. The restriction of the coherent sheaf F on Q3,rc corresponding to DOYc to

(T*W3(l))sm is locally free of rank pdimK.

b. The restriction of the algebra bbLC to (t*W(l))m is an Azumaya algebra of

rank p2dim

c. The gerbe gaycc|(§-*a)).m classifies splittings of b, e|c1 SM.

Proof. We first note that (b) and (c) are direct consequences of (a). Indeed, (b)

follows since bY Lc is the endomorphism sheaf of F, and the identification in (c) is

induced by F.

Now, to prove (a), it is enough to show that for any (S, 7r) E 3sm the sheaf -7S

on S) X3() gLc given by pullback of F is locally free on S X ) x(> (T*3(())sm c

S) x4( >*W() of rank pdim3. We will achieve that by showing that the twisted

D-module (Do9,Cc)s corresponding to Fs is Cohen-Macaulay of depth k dimy S =

dim S - dim W. (We assume that this dimension is constant along S, for example, it

is true if S is connected.)

Denote D[ = Ds,,.*tc for short. We can express (Do~ )s as the homology in the

last term (which we put in degree 0) of the complex

D's 9 A Sly _ D' 9 Ak- 1s/3 V - ' Tsw n D' (2.3)
Os Os Os

3 Jt is easy to see that (T*0(/) m is a smooth Deligne-Mumford stack.
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where the rightmost map is constructed as in the first paragraph in this subsection,

and the other maps are obtained from it by the Leibnitz rule. There is a natural

filtration by degree on this complex, and the associated graded is isomorphic to the

Koszul complex for Sym Ts 0'm Os. The goodness condition on W implies that

this Koszul complex has cohomology in degree 0. (This complex can be thought of

as functions on S xy T*3 where T*9 is understood in the derived sense, and the

goodness condition guarantees that T*3 is actually non-derived.) Therefore the same

is true for the complex (2.3). So (2.3) is a locally free resolution of (D ,sc)s.

Now, it is easy to see that applying Verdier duality to (2.3) gives the same complex

up to a twist by r*wy [dim 9]. Since the Verdier duality for D-modules agrees with

the Serre duality for modules over the gerbe 9 s,,*-c up to a twist by line bundle and

the identification of T,* S( with T,* _)) _cP SC1 via multiplication by -1,

we see that (-Do ,)s is Cohen-Macaulay of depth k, as desired.

To see that the generic rank of Fs is equal to pdim , we have to show that the

generic rank of ($ ,Lc)s as an OT-s()-module along its support is pdim .rk Ds, ,-c =

pdimY+dims. But this can be checked on the level of the associated graded module,

which reduces to the fact that the pushforward of Osxr,,T under the Frobenius

map has that generic rank, which is true since dim(S x y T*W) = dim W + dim S by

goodness assumption. E

2.5 Extended curvature

Let X be a smooth variety. Define a (coherent) sheaf Tx of OP-modules (= coherent

sheaf on X()) by the exact sequence

0 - Ox(> 1)-Ox 4  43 x --+ 0. (2.4)

Then we also have an exact sequence

0 -+QV(> X 7x 4 Q1 +x(, - 0 (2.5)
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where P is induced by (the inverse of) Cartier isomorphism Coker(Ox -+ 4 l)

X(1)I Q is induced by d: Q' - F1 and C is the Cartier operation. It is immediate

from the definition that

6(w) = P(C(w)) for w E Oh"s. (2.6)

If we define r,: Q' --+ Jx by setting

K(W) = P(w( 1 ) - 6(w) (2.7)

then we will have an exact sequence

0 (O)P -+ 0' -4 x -+ 0. (2.8)

(Unlike (2.4) and (2.5), (2.8) is not k-linear.)

Now, if (L, V) is a line bundle with connection, we define its extended curvature

cu-rv(, V) E F(X, Tx) to be locally given by

Ciiv(L, V) = K(W)

if (L V) - (0, d + w). It is clear from (2.8) that this is independent of the trivializa-

tion, and that Q(Ci7v(L, V)) = Fv - the usual curvature of V.

Proposition 9. Suppose given a line bundle L, a connection V on it, and c E k\F,.

Then splittings of the algebra Dec,vom defined in 2.3.2 correspond canonically to line

bundles on X with connection (L',V') such that

curv(L', V') = c - ci'rv(L, V). (2.9)

Proof. As we saw in 2.3, the connection V on L gives an identification of the cate-

gory of Dec-modules M with the category of quasi-coherent sheaves with connection

(F, V') such that V' is projectively flat of curvature cFv. Moreover, F is a line bun-
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dle if and only if M is locally free of rank 1 over Ox, which is -equivalent to Frx, M

being locally free of rank pdimX over OX(1). Now denote by M the Thzc-module corre-

sponding to M, and let 7r: (frX)(') -+ X) be the projection. Since Frx, M = r,M

and Dc is an Azumaya algebra of rank p2dimX, the above condition means that M

is a splitting of b-c on a section of the map r. So all that remains to check is that

this section corresponds to VD) if and only if (2.9) is satisfied with L' = F.

Since this question is local, we can assume that L = L' = 0. The trivialization

of L gives rise to an equivalence Dx,cc-mod ~ Dx-mod. Under this equivalence, the

Dec-module M corresponds to the following line bundle with connection:

(L', V'- ca) = (0, d + # - ca),

where a, # are the forms of the connections V, V' in the chosen trivializations: (L, V) =

(0, d + a), (L', V') = (0, d +,8).

Now, if we identify TZX with T*X using our trivialization of L then using the

diagram

Specx~i) Z(Dc) ~ T* cXM)T XM)

SpecX(1) Z(Dx) T*Xl) T*Xl)

we see that the connection on L() corresponding to the support of M is given by

d+ (cP - c)- 1 ((# - ca) ) - C(# - ca)). (Note that since do = F = cFv = c da, the

form # - ca is closed, so it makes sense to apply C to it.) So our condition now takes

the following form:

(cP - c)-((3 - ca)) - C(# - ca)) = a

which can be rewritten (after multiplication by cP - c and canceling cPaM) = (ca)('))

as

#0() - caul) = C(# - ca).
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Now, applying P (which is injective) to both sides, and using (2.6) and (2.7), we

see that the above equation is equivalent to

,(#) = cK(a)

which is the same as (2.9) by definition of the extended curvature. E

Remark 4. It is clear (by descent) that this proposition extends to smooth Artin

stacks, in particular, it can be applied to X = (' , Bun)sm.
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Chapter 3

D-modules on BunN and the

Hitchin fibration

In this section we will recall some constructions from [BB] and extend them to twisted

D-modules.

3.1 Hitchin fibration

Let C be a smooth connected projective curve over k of genus greater than 1, and

fix an integer N > 1. Denote by BunN the moduli stack of rank N bundles on C.

By definition, for a scheme S, the groupoid of maps S -+ BunN is equivalent to the

groupoid of rank N vector bundles on C x S. It is classical that the cotangent bundle

to BunN is identified with the stack Higgs of Higgs bundles. Recall that for a vector

bundle 8 on C, a structure of Higgs bundle on it, also known as a Higgs field, is an

0-linear map 8 -+ 8 0 wc = 8 (9 Q. Denote by 4 the scheme which the affine space

corresponding to the vector space

N

F(C, woi).

Define the Hitchin map H: Higgs --+ 4 as follows. For a k-point y of Higgs

corresponding to a Higgs bundle (E, a), we define H(y) to be the point of 9 given by
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(tr a, tr A2a, ... , tr ANa = det a) (one can extend this to S-points in a straightforward

way). Here is another interpretation of the Hitchin map. Note that a Higgs field on a

given vector bundle E is equivalent to a map Tc 0S -+ E, and therefore to an action

of Sym T on S. In other words, a Higgs bundle of rank N is equivalent to a coherent

sheaf S on T*C whose pushforward to C is a rank N vector bundle. Now define

a divisor D C T*C as the "support with multiplicities" of S (i.e., each irreducible

component of supp S is taken with multiplicity equal to the length of the stalk of S

at the generic point of that component).

It is clear that the divisor D is finite of degree N over C. We claim that such

divisors are naturally parametrized by R. Indeed, let x: T*C -+ C be the projection,

and let s be the canonical section of 7r*wc. Then any S-point b of M given by

(r, ... ,TN) where i E IF(C x S, w Z Os) defines a section tb of 7r*wcN M Os by the

formula
N

tb = s N Z 1 + -1)i( x ids)*Ti 0 ( 5 ®Ni M 1).

i=1

The divisor O of zeroes of tb is finite of degree N over C x S, and it is easy to see that

b '-4 Ob defines a one-to-one correspondence between maps S -+ 2 and divisors in

C x S finite of degree N over S. Moreover, in the situation of the previous paragraph,

the point H(y) corresponds to the divisor D: D = CH(y). (This is essentially because

the support divisor of 5 can be computed using the characteristic polynomial of a.)

Also, we will need the universal spectral curve W C T*C x 4 -+ C x 4 (so that, in

the above notation, Ob = V x- {b}).

We will be interested in the open subset of 4 parametrizing smooth spectral

curves, that is, the maximal open subset 0 C 4 for which the map W = - x - 4 -

,0 is smooth. One can show that 40 is non-empty, and that fibers of V0 -+ 20 are ir-

reducible (and smooth). Denote also by Higgs0 the preimage of 40 under the Hitchin

map H:

Higgso := Higgs x4 0 .

We claim that there is a natural identification Higgs0  Pic(W0 / 0 ). Indeed, for an

S-point y of Higgs4, one can define a line bundle on CH(y) := W XQ,Hoy S as follows.
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Let (E, a) be the S-family of Higgs bundles corresponding to y. As discussed above,

this is the same as a coherent sheaf 5 on T*C x S, and the support of this sheaf

is OH(y). Moreover, since H(y) E 40(S), the spectral curve CH(y) is smooth over S,

and 5 must be the pushforward of a line bundle on CH(y). This is the desired line

bundle, which gives an S-point of Pic('e 0/2 0).

3.2 The p-Hitchin fibration

In this subsection, we will present a description of the stack Loc = LoCN of de Rham

local systems of rank N on C, analogous to the one given above for Higgs. Recall that

by "de Rham local system" we just mean a vector bundle with a flat connection (since

C is one-dimensional, all connections on it are automatically flat), so for a given test

scheme S, the groupoid LocN(S) is defined as that of rank N vector bundles on C x S

equipped with a connection in the C-direction.

The construction of the p-Hitchin map is similar to that of the ordinary Hitchin

map, but uses the notion of p-support, and so exists only in positive characteristic.

It is a map x: Loc -+ 0() defined as follows. Suppose we are given an S-point

of Loc defined by an S-family of local systems, i.e., a vector bundle S on C x S of

rank N with a connection V relative to S. We can think of (8, V) as an S-family

of D-modules on C; in particular, similarly to the Higgs field case, we can define

its p-support with multiplicities-this is a divisor in T*C(l) x S finite of degree N

over 01) x S. The corresponding S-point of 0') is by definition the value of x

on (8, V). Again, another way to define it is to apply the invariant polynomials to

the p-curvature map curv,(V): E -+ E0 (Frc Q 1 Os).

One can show that, 6tale locally over 01), the p-Hitchin fibration X: Loc -

,0') looks like the (Frobenius twisted) usual Hitchin fibration HM: Higgsm a 4)

(see [Gr]). The identification of formal neighborhoods of fibers over a given point

of MM can be constructed using a splitting of the Azumaya algebra bc on the

formal neighborhood of the corresponding spectral curve. Similarly, an 6tale local

identification near a given point b E 0() can be obtained from a splitting of the
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pullback of Nc to () X (i) U where U -+ M) is an 6tale neighborhood of b in 0).

(See ibid. for the proof of the existence of such a splitting.) The identification is

canonical up to the action of a section of the group stack Pic(W(1 )/0( 1 )) on Higgs(1 ),

where the latter stack is identified with the "compactified" relative Picard stack of N()

over 01).

We will be mostly concerned with the part of Loc lying over (2o)) which we will

denote by

Loc0 := Loc x (0)(1).

As explained above, we have an identification Higgs0 = Pic(W0 /2 0 ), and hence

(Higgs0 )(1) 2 Pic((WO)(21(,0)(1)). Moreover, these identifications are compatible

with the action of the corresponding Picard stacks. Therefore, from the results dis-

cussed in the previous paragraph, we see that the stack Loc0 carries a natural struc-

ture of Pic((' 0 )(1)/( 0 )(1))-torsor. This torsor can be described as that of fiberwise

(along fibers of (0)) (20)) splittings of the Azumaya algebra (prlwc)*Do

where prlec is the natural projection 60 -+ T*C (obtained by restriction from the

projection ' -+ T*C).

3.3 D-modules on Bun

Now we apply the above results to the main objects of study in this paper-twisted

D-modules on Bun. Let us begin by recalling the non-twisted case. According to

Theorem 4 (with L = 0), D-modules on Bun are classified by a certain gerbe

on Higgs(') - T* Bun('). The class of this gerbe on the smooth part (Higgssm)()

of Higgs(') (in particular, on (Higgso)(1)) corresponds to the canonical 1-form on

(Higgssm)(l) as on (the smooth part of) a cotangent bundle.

Now we turn to the twisted case. The twists that we will consider are of the form

Edet. Here Ldet denotes the determinant bundle on Bun: for any vector bundle E on C

of rank N, the fiber of Ldet at the corresponding point of Bun is given by det RI'(E)

(and similarly for families). In Appendix A, we prove that the corresponding twisted
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cotangent bundle is isomorphic to the moduli space Loc,1/2 of Wc 1/2 -twisted de Rham

local systems of rank N on C. Therefore, according to Theorem 4, for any c E k \ Fp,

the Ldet-twisted D-modules on Bun are classified by a Gm-gerbe on LocW1
/2

3.4 Connections on determinant bundles

We already said before that we identify the twisted cotangent bundle corresponding

to the determinant line bundle on BunG. For that (and for later use) we'll need some

facts about connections on determinants. So let 7: X - S be a smooth projective

morphism of relative dimension 1, and let S be a vector bundle (or an S-flat coherent

sheaf) on X. We are interested in the line bundle det Rr8,E.

Define the sheaf of relative differentials Q' = Wx/s as usual. By an "S-relative

connection" on S we mean a map S -* 0 @S satisfying the usual Leibnitz rule.

Proposition 10. Suppose X is a trivial family, i.e., X = Xo x S for some curve Xo.

1. Let E be as above, and V an S-relative connection on 8 @ wi/2. Then there is

a canonical connection on the line bundle det RrS.

2. Let 8, 8', 8" be three sheaves equipped with the data of point 1, and we have an

exact sequence

0 -+ S' -+ S -+ 8" - 0

compatible with connections. Then the corresponding isomorphism of line bun-

dles det Rirg _ det RirE' 0 det RwrE" is also compatible with connections.

Proof. See Appendix A. D
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Chapter 4

Proof of Theorem 1

4.1 Main part of the argument

We begin by stating the following proposition:

Proposition 11 (cf. [Al). Suppose X is a variety (or a stack) and 7r: A -+ X,

,v: Av - X are dual families of abelian varieties. Suppose we have a torsor 9 -+ X

for A -+ X and a gerbe 9 on 7 with a fixed degree of the splitting. Then there is a

canonical dual torsor 7v over Av and a gerbe 9v on it such that the derived categories

of coherent modules over g and gv are equivalent.

Idea of proof. When the torsor ? and the gerbe g are trivial, we can take 7v and 9v

to be trivial, and use (the in-families version of) the usual Fourier-Mukai transform.

In general choose a (say, 6tale) cover X of X on which 7 and g trivialize so that we

can apply the trivial case to get an equivalence over X, and then use properties of

the Fourier-Mukai transform (namely, that it interchanges shifts along A with twists

by line bundles) to descend it to X. l

We will apply the above proposition to X - (o0)(2), A = Av = (Higgs")(2 ),

*= i cc Bun1 = (*, Bun)(') - (Locol/ 2 )(1 ) (since c § F,) and the gerbe g
Ldet

corresponding to the Azumaya algebra Dbc (Bun). We need to prove that gv is also

isomorphic to Loc, 1 / 2 and 9v corresponds to the Azumaya algebra D 1 c (Bun).
det
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First, we prove that 7v (Loc .1 /2)(1). This is equivalent to the existence of

an "action" on the gerbe 9 of the gerbe g1 on A = (Higgs0)(2) where !i is dual

to the torsor gv = (Loc 1 / 2 )(1 - ( )(2) with the projection rescaled by cP. To

describe what we mean by an action of 91 on g, consider the graph of action of

the group scheme (Higgs0 )(1) (over (0)(1)) on Loco1 / 2 - it is a closed substack I

in Loco 1 / 2 xo Loc0 1 / 2 x9o(Higgs0 )(1) isomorphic to Locol/ 2 xx(Higgso)(1). From this

graph we have three projections pri, pr2 , pr3 to the factors. An action of g1 on g is by

definition a splitting of pril)* g o pr®)* g-1 9 prl)*!91 satisfying a cocycle condition.

Now, according to Proposition 5, the gerbe g corresponds to the algebra Dre,'t,v

where L'et is the pullback of the determinant line bundle, and V is the canonical

("universal") connection on this pullback. One can also show that 91 is given by the

Azumaya algebra D&eO(Higgs 0). Now the statement follows from the results of 2.3.1

and the following proposition (whose statement does not depend on c).

Proposition 12. The line bundle with connection

(S, Vs) := pr*(L'et, V) 0 pr*(L't, V)0- 1 0 pr*(O, d + 6(l)

on F is flat and has p-curvature pr"6(2)

If we define = curv(L'et, V) then Proposition 12 implies the following identity:

pr* 0 - pr* 0 = P(pr* 0(2)) - i(pr* 0(1)) = 6(pr* 0(1)) (4.1)

where P, K, 6 are defined in 2.5.

For the proof of this proposition we will need the following lemma which will also

be useful later.

Lemma 13. Let Pic(C) denote the Picard stack of a smooth projective curve C. Let

pri, a: Pic(U) x C -+ Pic(C) be the projection and addition maps, respectively (a

is obtained from the Abel-Jacobi map). If L is a line bundle on Pic(C) such that

pr* L 2 a*1L then L is trivial.

46



We will prove that the restriction of the line bundle from Proposition 12 to the

preimage FAJ in F of the image of Abel-Jacobi map in Higgs0 = Pic(W0/ 0 ) under pr3

is flat and has p-curvature pr 6(2). This will follow from an alternative description of

this bundle with connection. Namely, we have an equivalence Dc-mod ~ DT-c,o-mod

(6 is the canonical form on T*C). Moreover, the "in-families" version of this is true.

So if _ is any stack then the category of ""(' 1)-families of Dc-modules" (i.e., quasi-

coherent sheaves on C x _(1) equipped with a connection along C) is equivalent

to the category of DT*cxY,prl o-modules. If we replace C by C(1) and _2 by Loco

then we have the universal bundle with connection (along C(1)) on C(1) x (Loco)( 1),

so applying the equivalence gives a D-module on T*C(1) x Loco with p-curvature

pr* I(1). It is supported on (_)(1) x (2o)m Loc0 ~ FAJ and therefore corresponds to a

DrAJ,pr; 0(2)-mOdule which we denote by (L, V)univ.

Lemma 14. The restriction to FAJ of the line bundle with connection (S, Vs) from

Proposition 12 is isomorphic to (L, V)uni, where we identify Loc with Loc 01 / 2 via

twisting by -1)/ 2

Proof. We will first construct an isomorphism of line bundles, and then prove that

it is compatible with connections. From the definition of FAJ it is easy to see that a

point -y E 1 AJ corresponds to a pair of rank N bundles with wi/ 2 -connections (V1, V 1),

(E2, V 2 ) that fit into a short exact sequence of Dcw/2-modules

0 - S2 -+ E1 -+ F -- 0 (4.2)

where F ~ og is an irreducible Dc,w/2-module corresponding to a point (x,() E

T*C(l). Now recall that the fiber of S at -y is given by det RF(E1) 0 (det RF(E2 ))® 1 ~

det RF(F). If (2, ) C T*C is such that (x, () = (2, ()1) then F has a filtration
P(P -1) Lefor which gr F ~ Ft 0 w c Therefore det RF(F) = F:" 0 o 2. Let

F' = FDoc W ( 2 - it is an irreducible Dc-module supported at 2t. Then we can

rewrite S., = det RF(F) = (F)'P. Let C C T*C(l) be the spectral curve of E1 (same

as that of E2). So O = (Wx() {Ei}. Let Li (i = 1, 2) be DT*c,o-modules corresponding

to Ej. They are supported on the Frobenius neighborhood of O in T*C, and .C1/L 2 is
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the irreducible corresponding to F', which is supported at (2, ). From the definition

of the equivalence Dc-mod - DT*c,o-mod we see that F = (-142)(., ) = (C1)(X,).

Unraveling the definition of Luniv, one can see that its fiber at 7 is identified with

(Luniv), = =( )(X,= = (')®P = S- .

Saying this for -y being an S-point for arbitrary scheme S, we can thus prove that

Luni, and S become isomorphic after pullback to FAJ X c() C. To prove that they are

isomorphic on FAJ, we'll use the following

Claim 15. Let 7r: T -+ S be a smooth morphism of relative dimension 1. Let #: T -

i := T) x s() S be the relative Frobenius map, and L a line bundle on T. Then there

is a canonical isomorphism

det R#*, ~ L(s) 0 (Q ( )(p-1)/ 2  (4.3)

where L(s) is the "relative Frobenius twist" of L: it is the pullback of L) along the

map i - T).

Now suppose we are given an S-point y of F. It corresponds to a sequence (4.2)

of (Os M DC,,1/2)-modules where 8 1, E2 are rank N vector bundles on S x C, and F

is a line bundle on supp.F = S xc() C C S x C for a certain x: S -+ C). Just as

before, we have SY = det R7r.F where 7 is the projection S x C -+ S. Now note that

F = E1|sappzr. Let F2 C S x CM be the graph of x. Then R7rF = ((ids x Frc)*1)|r.-

Now, Claim 15 gives

S, = det RrF = (det (ids x Frc),E1)|r,

= ((g)(S) 0 (O Wo(p-1)2) ((s) * (p-1)/2
rx Os

We claim that the right-hand side is canonically identified with (Lui,)7.

To prove that this isomorphism is compatible with connections, we will need the

following statement:
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Claim 16 (cf. Proposition 35). Suppose that T = C x S -"> S is a trivial family of

smooth curves and s: S -+ T(s) is a section of T(s) * S. Let (F, Vjz) be a coherent

sheaf on T with an S-relative w1/2 -connection and assume that F is a pushforward of

a line bundle L on the closed subscheme Z = S xs,T<s> T. Let Vdet be the connection

on L' := det RrF given by Proposition 10. Let w: S -+ Z be the (k-semilinear)

map such chat t z o w = WT/S o s. Then V. gives rise to a connection V, on

L" := W*(L 0 W (-li)/2).

The two line bundles with connection are related by

(L', Vdet) a (2", Vw - 9*0) (4.4)

where 9: T*(T(s)/S) = T*C(l) x S is the section of T*(T(s)/S) -* S whose image

is the p-support of (F, V) and 0 is the pullback of the canonical 1-form on T*C(l)

under the projection T*C(l) x S -+ T*C(l).

El

Proposition 12 (at least, restricted to FAJ) is an immediate consequence of Lemma 14.

Denote by 3e -+ (0)(1) the torsor over (Higgso)( 1) -+ (90)(1) pulled back from

the standard torsor Loc, 1 / 2 -+ (,0)(1) under the action of c E kX on (90)(1).

Now, to prove Theorem 1, we need to construct a line bundle (L, V)ker with

connection on 1 x(2o)() 7 satisfying

curv((L, V)ker) = c -ciii(pr*(1L, V)det) + C1 - ev(pr(1, Vaet). (4.5)

The sought-for bundle with connection will be given by

(L, V)ker a* (det, Vdet) & pr*(L' ~, V17e) 9 pr* (Lo'-, V'iet) (4.6)

where (L'det, Vdet) is the universal line bundle with connection on Loc, and a is the

"addition" map 31 x(2o)() c -+ 71+c (one can check that the torsor 31+c is the sum

of the torsors 31 and c). Define 0 = 6ufv(L, V)det. Then substituting (4.6) in (4.5)
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LHS - RHS = ciu-r((L, V)ker) - c - pr* 5 - -1 pr 0

= a*e- pr* -pr* -c-pr* - c-1 -pr*

= a*# - (1 + c) -pr* -(1 c-1 ) -pr*.

(4.7)

So we need to show that

(1 + c-la*# = pr* # + c-1 pr*. (4.8)

To prove formula (4.8), we proceed as follows. Let d = (1 + c)-'a*# - pr* # -

c- 1 pr* 0; we want to prove d = 0. Consider the two projections

pri,3, pr 2 ,3 : 31 x 5/1  x
((20)(1) (240)(1)

As a first step, we prove that the difference between two pullbacks pr*,3  - pr*3  = 0.

Let pr' (i = 1, 2, 3) be the projection from 1 x (2g)(1) 1i x (20)(1> 7, to the i'th factor,

and ai, 3 = a o pri,3 (i 1, 2). We also have a "difference" map s: 31 x -+

(Higgs")(1 ); denote s1 ,2 = s o pri,2. Now we calculate

pr, 3 5 - pr 3 5 = (1 + c)-la,3 - pr' r - - p'3 6

- [( + c-la,35 - pr'* # -- pr'3 *
(4.9)

= (1 + c)- 1 (a*,36 - a*,35) - (pr'* 6 - pr'2 6)

= (1+ c)o16(s*,2 ((1 + c)9(1))) - 6(s*, 20(1 )) = 0,

where in the last line we used formula (4.1).

The formula (4.9) implies that & = pr* d' for some d' E F( , g). Similarly, we

can show that d = pr* d" for " E F(31,73J). It follows that a = (x0 x20 XO)M*

for some F F(Q 0,T2o). So we need to show that 4 = 0.
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4.2 Alternative construction of 0

Let QLoc be the canonical symplectic form on the smooth part Locm of Loc, so

that QLoc= Fvdet. We will construct a 1-form 0o on Locm such that QLoc = dO0

and 6(0o) = 0 (where 6 is defined in 2.5). Since QLoc is symplectic, constructing 00

satisfying the first condition is equivalent to constructing a vector field o which is

Liouville, i.e., L OQLoc = QLoc where L denotes the Lie derivative.

First, we need another interpretation of the form QLoc. Note that for a Gm-gerbe g

on a smooth variety X, and two g-modules M and K with proper support, we have

the following version of Serre duality: RHom(M, .N)* ~ RHom(K, M 0 wx) [dim X]

where Wx is the sheaf of top degree differential forms on X. In particular, if X is a

symplectic surface and M = M, we have a nondegenerate (in fact, antisymmetric)

bilinear form on the space Ext1 (M, M) which is identified with the tangent space

at M to the moduli space .,x,g of g-modules on X, so we get a non-degenerate

2-form on this moduli space. One can use properties of the Serre duality to show that

this form is closed.

Lemma 17. The form QLoc coincides with the one just described, where we put X =

T*CM, and g = go- is the gerbe corresponding to the Azumaya algebra Dc.

Proof sketch. It is known that (in any characteristic) the category of D-modules on a

smooth variety Z admits a Serre functor Sz which, moreover, is canonically isomor-

phic to the shift by 2 dim Z. The same is true for D'-modules where D' is any twisted

differential operator algebra. We will need the case D' = DC, 11 2 . The lemma will

follow from the following two statements:

* The curvature of (L, V)det coincides with the 2-form constructed from this iso-

morphism Sc ~ [2].

" The composite equivalence Dc,wl/2 ~ DC-mod ~ go-mod is compatible

with the trivializations of Serre functors.

The first statement makes sense in any characteristic and should be well known. As

for the second statement, the difference between two trivializations is an invertible
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function on T*Cl), therefore a constant. With a little more work, one can show that

this constant is equal to 1.

In the situation above, consider the open substack kffg C ,&x,g consisting of

modules which (locally after splitting g) look like (pushforward of) a line bundle on

a smooth curve in X. Denote by 40 the moduli space of proper smooth curves in X,

and let Vx C 201 x X -+ 4x be the universal family of curves. Then we have a

map X: ,g'0 -+ 40% given by taking supports, which presents x,!g as a torsor for

the relative Picard stack Pic(V6/60x). One can show that this defines an integrable

system (i.e., that the fibers are Lagrangian).

Denote 'D = Spec(k[E]/e 2 ). A vector field on Loc" is the same as an automor-

phism of Locm x'D over D which is identity on Locm c Locs" x'D. Let h be the

automorphism of T*C(l) x 'D corresponding to the Euler vector field on T*C(l). Since

H 2(T*CM), 0) = 0, there exists a (non-unique) equivalence

<b: pr* Qv ~ h* pr* gEv

which is identity on T*C(l) x pt c T*C(l) x 'D. Now, if we have a D-module M on C,

let M' be the corresponding 9v-module, and let M = <D-lh*(M' 9 OD) - this is a

pr* gD-module on T*C(l) x D, and denote by M4 the corresponding Dc H O-module.

By construction, M/EM _ M, so M defines a tangent vector to Locm at M. This

way we get a vector field on Locm which is the desired field (0. Denote 0 = tOQLoc-

Proposition 18. The vector field to is Liouville. Equivalently, dO0 = QLoc

Proof sketch. The proposition follows from the functoriality of the Serre duality.

Namely, if we have a symplectic surface (X, Q) with a Gm-gerbe g and an auto-

morphism # of the pair (X, 9) such that #*Q = AQ for some A e k, then the

corresponding automorphism q of the moduli space /g of (coherent, properly sup-

ported) g-modules will satisfy =* Q = where Qa is the symplectic form

constructed by the Serre duality. One can also formulate an in-families version of

this statement. In particular, if we take X = T*C(l), g = go and the 'D-family
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of automorphisms given by (h, 1)), then the equality h*QT-cm = (1 + E)QT-cm im-

plies that h*QLoc = (1 + E)QLoc which means (since I = 1 + E~o by definition) that

L 0 QLoc = QLoc- E

Proposition 19. The class of o modulo Hamiltonian vector fields does not depend

on the choice of (D.

Proof sketch. Suppose we have two equivalences (1, (D2: pr* Go ~ h* pr* GEo. Then

they differ by an auto-equivalence -1 o<D2 of pr* Go which corresponds to an element

# E H1(T*Cl), 0). From any such element we can construct a function fj on 9)

as follows. If a point b (E 0) corresponds to a smooth spectral curve C C T*C(l)

(i.e., if b E (90)(1)) then we just put fo,(b) = (#|c, 0|a) where (., -) denotes the Serre

duality pairing. (It can also be defined for b V (0)(1).) One can check that the

pullback fo of fo, to Locm satisfies Ho = fo,1 - 6O,2 where (0,1 and o,2 are the p0's

corresponding to (1 and 42, respectively. E

Recall (see 2.3.2) that for a smooth variety X and a 1-form 0 on XM we denote

by Go the Gm-gerbe on XM) corresponding to the Azumaya algebra Do. It is straight-

forward to generalize this to the case of families X -+ S for arbitrary k-scheme S. We

will need the case when S = 'D. We know that the gerbe Go on T*Cl) is equivalent

to Go where 0 is the canonical 1-form on T*C. One easily checks that Go depends

additively on 6 in the sense that G01+02 ~ G01 ' G02. Therefore on T*Cl) x D we have

pr* go-1 -h* pr*GQv ~ Gh-0-o = Geo = Ge-o ~ e* pr1 Gv

where 0 here is considered as a relative 1-form on T*Cl) x 'D over 'D, and e: T*Cl) x

D -+ T*Cl) x D is given by fiberwise multiplication by E. Now, e factors through

the 1st infinitesimal neighborhood Z1 of the zero section in T*Cl). Therefore the

above equivalence 4) can be constructed from any trivialization I of goD on Z1 which

coincides with the canonical trivialization on the zero section. We assume from now

on that (D is obtained in this way.
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Note that, given T, one can construct a family of equivalences

cD,: pr*!9Qco-~ h* pr*!gQco (4.10)

parametrized by c E k (we just have to replace e by fiberwise dilation by ce). One can

check that JDc is additive in c, i.e., compatible with the equivalence 9(c+c')o ~ 9 co -!9c'O

and, if c E kX, <bc is obtained from 1 by conjugation with dilation by c on T*C(l).

Proposition 20. If the equivalence D is from the class just described then, in the

notation of (4.8) (for any c E k \ Fr), we have

(1 + c)-la*0o = pr* 0o + c-1 pr* 0o. (4.11)

Proof sketch. First we'll show that

(1 + c)la*QLoc = pr BLoc + c-1 pr* QLoc- (4.12)

This will follow from a more general statement:

Lemma 21. Let X be a symplectic surface, 9, ', g" three Gm-gerbes on it, and sup-

pose we are given an equivalence ! ~'.g". Consider the corresponding Pic (W /0s) -

torsors 37 = , 7' = A g,, .7" = A. ,g,, endowed with symplectic structures.

Clearly, 7 is identified with the sum of torsors 7' and 7", so we can define the

graph of addition F c 7 x 7' x 7". Then F is a Lagrangian subvariety in

(7 x 7' x .7", - ,- Q ).

Proof sketch. Suppose we want to prove that F is Lagrangian in a formal neighbor-

hood of some point -X E F, and let C C X be the corresponding spectral curve. Clearly

one can replace X by the formal neighborhood O^ of C in X. Since H 2 (CA, 0) = 0,

we can trivialize g on OA. So we can assume that 9 is trivial. Then F is the graph

of addition on Pic(WS, 20s). It is a well-known fact that this graph is Lagrangian (at

least for the usual Hitchin fibration, i.e., for X = T*C). l
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Note that for X = T*Cl), g = Go the torsor .fxg is identified with 9c from the

previous subsection. Moreover, under this identification, we have C-1QLoc = QOfI0-

Therefore, formula (4.12) follows from Lemma 21 applied to G = g(1+c)o, 9' =Go,

9" = Geo.

Denote by (0,c the vector field on 7e obtained from o under the identification 7c '

Loco. Then, in order to prove Proposition 4.11, we need to prove that the vector field

Uc = pr* (o,1+c+pr* o,1+pr* do,c on x+cX 1 x ,c preserves F (because F is Lagrangian,

and this vector field corresponds to the 1-form (1 + c)- 1 pr* 0 - pr* 0o - c- 1 pr* 00).

To see this, note that 0,c can be obtained the same way as (o with 4D replaced by

J c from (4.10). Now, ', comes from an infinitesimal automorphism of the quadruple

(X, go, Gco, 9(1+co) given by (h, (1, , (51+c). Additivity of (Dc in c implies that this

automorphism is compatible with the equivalence go - geo 9 (1+c)o. Therefore r/c

preserves F, which is what we want. E

Lemma 22. The extended curvature 0 of the determinant line bundle with connection

(L, V)et on Loc"" is equal to 6(0o).

Since 3 is k-linear and compatible with pullbacks, Lemma 22 implies formula (4.8)

and therefore Theorem 1.

We'll prove Lemma 22 in subsection 4.2. Here we prove the following partial

result:

Proposition 23. We have 0-6(60) = P(X'()*#6') where x' is the map Locm - 2(),

6 and P are defined in 2.5, and 0% is some form on 2).

Proof sketch. Denote do = 6-6(0o). We have already mentioned above that Q(6(0o)) =

dO0 = QLoc = Q(6). So Q(d 0 ) = 0, which means that do = P(ao) for some

ao E F(201), Q1)). We want to prove that ao = x'()*#31 for some #06. We'll show

that ao|Loco is a pullback of some 1-form /o on go('). Using the properties of x', we

can then deduce that 0 extends to the whole 0) since X'0()*#o extends to Locs".

Now let F be the graph of addition in Higgso(l) x g( Loco x(i) Loco. The argument

of the proof of Proposition 4.11 applied to c = 0 shows that on F we have pr* 0(1) +

pr* 0o = pr* 00 where 0 is the canonical 1-form on Higgs = T* Bun. (We use that the
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vector field (o,o on Higgs coincides with the Euler vector field, and therefore 00,0 = 0.)

Applying 6 yields J(pr* 0M) + 6(pr* 00) = 6(pr* 0o). On the other hand, we know

from (4.1) that 3 (pr* 0M) + pr* = pr 0, so subtracting the previous equation, we

get pr(l)* do = pr l)* do, so do|Loco is a pullback of some 6 E p(,00(,),7 ). Since

do E Im(P), we must have ( E Im(P), so = P( 0 ) for some #0. E

4.3 Proof of Lemma 22

Denote by Bun[d the connected component of Bun consisting of vector bundles of de-

gree d and Loc 4 its preimage in Loc. Note that Loeff is nonempty only for d divisible

by p.

We can deduce Lemma 22 from the following statement:

Lemma 24. For generic curve C the fibers of the maps q: Loc -+ Bun and X: Loc -+

JR) are transversal generically on Locl"3.

Namely, we will show the following:

Proposition 25. The 1-form #0 = X(l)*O3 (where #3 is defined in Proposition 23)

vanishes on q- 1 (b) if b E Bun is such that q is smooth over b.

Clearly, together with Lemma 24, this implies the desired equality /3 = 0.

Consider the stack Loc over A' whose fiber over A E A1 (k) = k is the stack

LocA of rank N bundles on C with A-connection. The stack Loc has a canonical

Gm-action lifting the dilation action on A1. Consequently, we have an isomorphism

Loc X A1 Gm ~ Loc xGm. Let t be the coordinate function on A1 . Denote by Locm the

smooth part of Loc and by Loc the maximal open substack in Loc smooth over A1 .

The stack Loc defines a filtration on functions, differential forms, etc. on Loc (and

on open substacks thereof): a form 71 on Loc belongs to the k'th filtered piece iff

the pullback of q to Loc x Gm -+ Loc has pole of order not greater than k along

Higgs = Loc XA1 {0}. This filtration is compatible with the de Rham differential.

Similarly, we get a filtration on F(JLoc) oesm /dLocsm). All these filtrations

will be denoted by F*.
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For example, there is a relative symplectic form on LocS m /A of weight 1 with

respect to the Gm-action. Its restriction to the fibers over 0, 1 E A' are the standard

symplectic forms on Higgs" and Loc' m . This means that QLoc G F Q 2 (Locsrn). It is

also straightforward to check that

0 c FPT(Locm). (4.13)

Lemma 26. We have O E FP+1Q1(Locsr). Equivalently, (o G FPT(Locn).

Proof. We need to prove that tP o extends to Ecm. Recall that the value of (o

at a point corresponding to a bundle with connection (or 0-coherent D-module)

M = (S, V) is given by the infinitesimal deformation M = (E, V) of M constructed

in 4.2.

We will think of M as an extension of M by itself. Recall that the construction

of M in 4.2 uses the splitting of the gerbe g on the 1st infinitesimal neighborhood of

zero section in T*C('). This splitting can be thought of as an extension of D-modules

o - (c) _ , -+ Mo -+ Oc -+ 0. Denote by v E ExtD(Oc, T(o)) the class of this

extension. We will also need the p-curvature of M thought of as a map of D-modules

curvp(M): M & o) -+ M. By unwinding the definition of M, it is not hard to

check the following:

Claim 27. The class of M in Extb(M, M) is given by

class(M) = curv(M) - (idM Ov)

where - denotes the composition Homo(M 0 Tj>) M) 0 Ext(M, M 0 TA)) 4

Extb (M, M). More precisely, the exact sequence 0 -+ M - M -+ M M 0 is

canonically isomorphic to the pullback of M 0 (0 -+ (C) - Mo -+ Oc -+ 0) by

curvp(M).

In order to construct the vector field o on Loc extending tP~o, recall the notion

of p-curvature of a A-connection from 2.2. It allows to extend the above construction
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of M to A-connections to get the desired vector field o. (We just need to multiply

the connection on M 0 by A and use tensor product of A-connections.) I

Proof of Proposition 25. From Lemma 26 and formula (4.13) we see that P(#o) =

0 - 6(0o) E FP+13~(Loc m ). So we must have

#0 E F1lQ((Loc m)(1)) (4.14)

(otherwise P(O) M 10(G.) extended to ocm would have a pole of order > 2p > p +1
sm [Z] -sm

along Higgs). Let O ' be the open part of Higgs given by : Higgs=m[pz Loc XA1

{O}. Then we get a 1-form #1 on Y(1) obtained by extending the (relative) 1-form

t0o from (Loc"m)(1) x Gm to (aocm) and then restricting to (1. The form #1 has

weight 1 with respect to the Gm-action on Y1 C Higgs('). For b E Bun as in the

statement of Proposition 25, (4.14) implies that #O|Locb is a translation-invariant form

on Locb, and the restriction of #1 to the fiber Higgsb of Higgs at b is the corresponding

translation-invariant form on Higgsb (recall that Locb is an affine space over the vector

space Higgsb).

Denoting by Eu the differential of the Gm-action on 9, we get a function F =

tEu 3 1 on 9M(I of Gm-weight 1. The restriction of F to Higgsb is a linear function

whose differential is #1|fHiggsb. Since the projection 4' - q is proper over 0, the

restriction of F to each component of Higgs must be a pullback of a function F' on J.

This function must also have degree 1 with respect to the standard Gm-action on q.

We want to show that F' = 0 and hence F = 0. This will imply that #1|IHiggsb = 0

and therefore #o|Loeb = 0'

Since we know that #0 descends to 4, the function F' does not depend on the

choice of connected component of Higgs. Now consider the Serre duality involution -

on Loc.1/2. Via the identification Loc.1/2 ~ Loc given by M - M (

it corresponds to an involution on Loc given by M F-+ Mv 0 weP which we will

also denote by o. It is easy to see that the determinant line bundle with connection

(L, V)det is invariant under o-, hence so is its curvature QLoc and extended curvature 6.

The vector field (o can also be shown to be invariant under o. So the 1-form 0 is
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o-invariant as well. Recalling that P(#O) = # - 6(00), we see that 0 must also be

o-invariant. Thus for the function F we get that it is invariant under an analogous

involution on Higgs. But then for F' it means that it should be invariant under the

action of -1 C Gm on 2, whereas in the preceding paragraph we saw it is anti-

invariant under the same element. The desired equality F' = 0 follows. E
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Appendix A

Twisted cotangent bundle to the

moduli stack of coherent sheaves

The main goal of this appendix is to show that the twisted cotangent bundle to

the stack of coherent sheaves on a smooth projective curve is identified with the

stack of half-form twisted coherent D-modules on that curve. This is a characteristic-

independent statement, except that we have to assume that the characteristic is not 2.

In fact, we prove it for arbitrary base scheme S defined over Z[1/2].

We will understand all derived categories in the higher-categorical (i.e., (oo, 1) or

DG) sense, so that it makes sense to talk about homotopies between (1-)morphisms.

(In fact, the (2, 1)-categorical level would suffice: all our morphism spaces will be

1-groupoids.)

A.1 Twisted cotangent bundles to stacks

Let S be a (Noetherian?) scheme and X -_ S a smooth Artin stack over S. For an

R-point x of X where R is a commutative ring, consider the groupoid '/sx of all
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dotted arrows in the diagram

Spec R X

L 7(A.1)

DR 1 7 JO >S

where DR = Spec(R[E]/E 2 ) and t: Spec R -+ DR, p: DR -+ Spec R are the natural

morphisms. This is an R-linear Picard groupoid, so it corresponds to a 2-step complex

of R-modules T living in degrees 0 and -1. This complex is perfect, compatible

with derived base change and satisfies descent, and therefore defines a perfect object

Ts E- D6(X). It is called the tangent complex of X over S. The cotangent stack

is then defined as

T*(X/S) := Spec(Symo., Wt(T /S))

where WO is taken with respect to the natural t-structure on Db(X).

Now let L be a line bundle on X and 9 -+ X the corresponding principle Gm-

bundle. Then T;/s is a Gm-equivariant complex and therefore descends to a complex

T/,'L on X which fits into an exact triangle

OX 4 7I/s, -+ TI/s 4 05[1] (A.2)

We will sometimes refer to as the extended tangent complex. Now define the

twisted cotangent stack T(X/S) as

T(X/S) := Spec(Symo, WO(iX/s,()) X f 'Is (A.3)
Al

where the morphism from the first factor to A' is induced by i.

Remark 5. There are several alternative interpretations of the stack fr(X/S):

1. It is the spectrum of the quotient of Sym- 0 (T /S) by the ideal generated by

1 - i(lo ).

2. Its ft-points lying over x: Spec ft - are given by "splittings" of the pullback
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under x of triangle (A.2).

3. These splittings are the same as null-homotopies of 62.

There is a closed substack _T c X consisting of points x E X where i acts

non-trivially on local cohomology. Then the map T(X/S) -4 X factors through Y

and over _; it looks like a torsor for T*(X/S).

Another way to define the complex ij Se is as follows. For an R-point x of X

let BGa(R) denote the classifying groupoid for the group Ga(R) = (R, +). We will

define a functor 6': 'I/s,x -+ BGa(R). Namely, for any z: DR -+ X as in (A.1),

we set 6x'(z) to be the torsor of isomorphisms z*L 4 p*x*L whose restriction to

Spec R c DR is idx.. The action of Ga(R) on 6'(z) is given by the composition

Ga(R) > 1 + ER c R[E]/E 2 = O(DR) -+ End(z*L). The map 6' corresponds to a

map 62: T-/s, -+ R[1]. The maps 6 for all R and x glue to a map 6: T/ +O [1].

Then / can be reconstructed as "the" cone of 6.1 Below we write 6 instead of

6 to show explicitly the dependence of 6 onL.

We will need the following lemma whose straightforward proof is omitted.

Lemma 28. Let f X -+ 3( be a morphism of smooth Artin stacks and L a line

bundle on W. Then we have a commutative diagram

Ti/s >041]

dfI

f*T/s f *0[11

A.2 The stack Coh(C) and its twisted cotangent

bundle

Now let C -+ S be a smooth proper family of algebraic curves. We work with schemes

over S throughout, so we will often drop "S" from the notation writing TX, T*X,

'In order to reconstruct IISL canonically, one needs to understand the derived categories in
the (oo, 1)-categorical (or DG) sense.
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x, etc. instead of Tr/s, T*(X/S), xs, etc. If R is a ring, and s: SpecR -+ S is

an R-point of S, we will denote by C, or CR the base change of C by s, that is,

C, = CR := C x s,, Spec R.

We consider the stack Coh(C) of coherent sheaves on fibers of C. Its groupoid of

R-points is given by

Coh(C)(R) = (sF)
s E S(R);

F is an S'-flat coherent sheaf on C,

Below we abbreviate Coh = Coh(C). Consider the determinant bundle Ldet on Coh.

Its fiber at an R-point x of Coh corresponding to a coherent sheaf Fx on CR is given

by

(Ldet)x = det R1F(CR, Fx).

From now on we assume that

2 is invertible on S, i.e., 2. lo(s) E O(S)x.

We will be interested in the twisted cotangent stack corresponding to L£et. Namely

we will prove the following.

Theorem 29. There is a canonical isomorphism of stacks over Coh:

T* Coh " Conn coh
Cdet 1/2 (A.4)

where Conn w is the moduli stack of Oc-coherent modules over the algebra DC,112 of

differential operators in w®01/2
LJC

Denote Tioh,'Cet byToh. Now it follows from the formula (A.3) that the datum

of an R-point of tid Coh lying over x E Coh(R) is equivalent to the datum of a

nilhomotopy of the map

6x: Toh,x -+ f.

We can therefore reduce the study of ildtCoh to the study of 62.
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It is known 2 that the tangent complex Tc'h,x to Coh at a point x E Coh(R) is

canonically isomorphic to (REnd T) [1] E Db(R-mod). So we have to study the map

6x[-1]: REnd TF -+ R. Using the Serre duality, we get a map

ax: TF -+ Fx 0 cR/(R[11.

The map a corresponds to an extension

0 -+ FX 0 WCR/R -+ 1), 2) -+ F -+ 0. (A.5)

It is clear that, for any R and a map s: Spec R -+ S, the assignment F -+ I(D 2) de-

fines a functor from the groupoid of R-flat coherent sheaves on C to itself compatible

with base-change of R. In other words, we have a morphism of stacks 4: Coh -+ Coh.

We will show that @D extends to non-invertible morphisms of sheaves and, more-

over, has the following description:

Proposition 30. Let A be the 2nd infinitesimal neighborhood of the diagonal Ac C

C x C and p, q: A ( C the restriction of the two projections C x C = C. Denote

also by PR, qa their base-change by s: Spec R -+ S. We have a canonical isomorphism

s(D ) a qR (p*.F 0 (s x ide )*(p*wC 0 q*wc J-)i/ 2 ) (A.6)

where 01/2 denotes the canonical square root of the line bundle on A which is trivial

on AC. (It exists and is essentially unique due to the assumption (*).)

Denote by <I,(F) the right-hand side of (A.6).

Proposition 30 implies Theorem 29. According to Remark 5, point 3, for any

x: Spec R - Coh the elements of Homcoh(Spec R, Tjdt Coh) correspond bijectively

to null-homotopies of the map 6x. By the Serre duality isomorphism, these are the

same as null-homotopies of ax and therefore the same as splittings of (A.5). Now,

2At least for the open part of Coh parametrizing vector bundles; but the same proof works for
all of Coh.
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using (A.6), it is not hard to see that these splittings correspond to (s x idc)*Dcw1/2

module structures on ,. E

Lemma 31. For any s: Spec R -+ S the map of groupoids (D: Coh(R) -+ Coh(R)

extends to a self-functor of the category of R-flat coherent sheaves on C x, Spec R.

In other words, 4), extends to non-invertible morphisms.

Proof. Let pri,2 : Coh x Coh -4 Coh be the projections and E: Coh x Coh -+ Coh

the map classifying direct sum of coherent sheaves. By the properties of determinant,

we have a canonical isomorphism

pr* Ldet 0 pr2 Edet EZLdet. (A.7)

Applying Lemma 28 to Ldet and E yields a commutative diagram on the left:

6r-*'Cet *Ldet

TCOh x Coh 0  Coh x Coh[1] REnd(F2) e REnd(F ) R[1]

dE VY £det I *det

*TC'oh 0 OCoh x Coh [1] R.Lnd(F2k. x GFTO) R[1]

Pulling it back under some (x, y): Spec R -+ Coh x Coh, we obtain the diagram on

the right (boxed). From (A.7) we see that the top arrow of this diagram is equal

(canonically homotopic) to 6fdetpi + 6detp 2 where pi, P2 are projections to the sum-

mands. Note also that the left vertical arrow is given by direct sum of (derived)

endomorphisms.

Now if we apply the Serre duality to the boxed diagram, we get

aE(2,Y) = a eD ay: FX e F7Y -- + (2 EDTY) w cR/R[1].

(Note that the 'equals' sign here again really means 'canonically homotopic.') In

other words, we have an isomorphism

lbs(xED TY) I~ 8 (Tx) eD(.9(y
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We already know that (D is functorial with respect to isomorphisms, so (FeFy)

is acted on by the automorphism group of F, e .Fy. Moreover, since 4 is compatible

with base change, we have an action of the group-scheme over R given by R' F-+

Aut((FT E .Fy) OR R'). In particular, consider the automorphism af = id id) for

some f: F7 x Fy. It can be shown that 1(af) has the form . Now

we let zD(f) = . Using triple direct sums, one can prove that ID(g o f) = (g) o @(f)

for any g: Fy -+ F;.

Lemma 32. Let L be a line bundle on Spec R and p an R-point of C. Let "Y, =

(p, idspec R): Spec R -+ CR = C x Spec R be the embedding of the graph of p. Then

Proposition 30 holds for F = 1,L.

Proof. Let x: Spec R -+ Coh be the point corresponding to F and F, = 7, (Spec R) =

supp F C CR. First we will show that the two extensions of F 0 w by F in the two

sides of (A.6) have the same class in Extl(F, F 0 w). Note that for the "relative

skyscraper" as in the lemma, this R-module is identified with R. We claim that

the classes of both extensions are equal to 1 under this identification. For the RHS

of (A.6) we have pushforward of a line bundle on the 2nd infinitesimal neighborhood

of F, whose restriction to F, is L. Now the statement can be easily seen from the

construction of the identification.

For the LHS we are interested in the image of ax under the projection

RHom(.F,F 0 w[1]) -+ Ext(F,.F 0 w).

By Serre duality, this map is dual to (End F)[1] 2 H- 1(T*oh,x)[1 (REnd.F)[1] a

TCoh,x. Therefore we have to study the restriction of 6x to the (-1)st cohomology

of Toh,x. This restriction is responsible for the action of infinitesimal automorphisms

of x on (Ldet)x. The group scheme of automorphisms of x is identified with GmR,

and it acts on (Ldet)x via the tautological character. This means that 6x restricted

to H-1 (Toh,x)[11 2 (EndF)[1] R R[1] is the identity. Now the statement about the

class in Ext1 follows from the fact that the Serre duality pairing of the canonical

generators of End.F and Ext1 (F, F 0 w) is equal to 1.
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Thus we showed that the two extensions in (A.6) are non-canonically isomorphic.

The set of isomorphisms is a torsor for the group R which is compatible with base

change. So we get a Ga-torsor A on the open piece Coh 1 ' C x BGm of Coh

classifying length 1 sheaves, and we need to construct a canonical trivialization of A.

Consider the involution a on Coh given by Serre duality: F - F' W. We have

o-*Ldet = Ldet- One can check that the isomorphism RHom(F , E2@w) a (TVoh,)

( Toh,a(x)) V RHom(.F,(, aF(2) 0 w) is given by taking dual morphism. Hence the

morphism 62 is dual to 6,(,), and therefore I((F) (

Restricting to CohP, for the torsor A we get (UCoh[]i)*A a -A. On the other

hand, any Ga-torsor on Coh1 2 C x BGm descends to a torsor A on C. We get

A 2 -A and thus A is trivial due to (*), so we are done.3

Lemma 33. Suppose x is an R-point of Coh corresponding to a line bundle L on

CR. Then Proposition 30 holds for x.

Proof. Consider the S-scheme S' := CR and let A: CR -+ Cs, = C xs C xs Spec R

be the diagonal embedding. Let Ls, be the line bundle on Cs, obtained from L by

base-change along S' -+ Spec R. Now consider the map of coherent sheaves on Cs,:

f: 1 s' - A,L = A*A*Ls,.

According to Lemma 31, we have a map

Is,(f): pr* @I(%C) -+ Is\(A*L)

(we used that D is compatible with base-change), and therefore, by adjunction, a map

g: @((L) -+ pri, I5s,(AL).

By Lemma 32, we have @(s,\(AL) 2 (s,(AL). Also, from the definition of 4 one

can see that pri, es,(A*L) 2 4,(L). So g is a map (,(L) -+ N(2(L). By construction,
3 Actually, we will also need the statement that the isomorphism (A.6) in the case in question is

compatible with morphisms of L's that are not necessarily isomorphisms.
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g is a map between extensions of L by 0w, so it gives the desired isomorphism. E

Proof of Proposition 30 (sketch). Locally on Spec R, we can find a resolution of a

coherent sheaf F on CR by direct sums of line bundles. Any two such resolutions are

related by a sequence of homotopy equivalences. Thus, due to the functoriality of <D

(Lemma 31), we can reduce Proposition 30 to Lemma 33. E

A.3 The determinant bundle with connection on Connc

For a smooth stack X and a line bundle 1 on X, the pullback of L to TrX carries

a canonical connection. Applying this observation to X = Coh(C) and L = Ldet,

and taking Theorem 29 into account, we get a connection Vdet on the pullback C'et

of Ldet to Conn . In this subsection we state some properties of Ldet and Vdet-

Suppose we have an S-scheme S', and a short exact sequence of S'-families of

coherent D,1/2-modules on C, i.e., of S'-flat coherent sheaves on Cs,:

0 - Y:' - T -+ T" -+ 0 (A.8)

with compatible (relative over S') w/ 2-connections. Let x, x', x" E Coh(C)(S') be

the corresponding points of Coh. Then we have the following relation between the

pullbacks of the determinant bundle:

(Ldet)x ( (det)x, & (Ldet)x". (A.9)

Now from the connection Vdet we get connections (over S) on both sides of the above

isomorphism.

Lemma 34. The isomorphism (A.9) is compatible with connections.

Proof. We first reduce the statement to the case where the exact sequence (A.8) splits.

Namely, note that for a general exact sequence we can construct a family of coherent

sheaves with w112 -connections on C parametrized by S' x A1/Gm whose restriction to

Cs, - Cs, x (A1 \ {0})/Gm -+ Cs, x A1/Gm is isomorphic to T and whose restriction
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to Cs, x {0} "+ Cs, x A' -+ Cs, x A1/G. is isomorphic to F' @ F". Denote by z the

corresponding map S' x (A1/Gm,) -+ Conn "h. Pulling back (L't, Vdet) under z we

get a line bundle with connection on S' x (A1/Gm) over A1/Gm. We want to compare

this connection with the one obtained as direct sum of pullbacks by x' and x". The

difference is an A1 /Gm-family of one-forms on S'/S. But any such family is necessarily

constant. So it is enough to prove that it is 0 on {0}/Gm where the exact sequence

splits.

For split exact sequences, the statement is equivalent to compatibility of the iso-

morphism (A.4) with symmetric monoidal structure on both sides given by direct

sum. D

A.3.1 The case of characteristic p

Now suppose that S is a scheme in characteristic p, i.e., for a prime p we have

POs = 0. Then there is a component ,9 of Conn1", classifying irreducible D-modules.

We identify Conn"4 with Conn"" by . o WO(p-1)/2. Recall the Azumaya algebra

Dc/s on T*(C(s)/S) whose pushforward to C(S) is isomorphic to Frc/s* Dc/s. For

an S-scheme S', the S'-points of J correspond to pairs (y, S) where y is an S'-point

of T*C(S), and E is a splitting of y*Vc/s. In other words, 0 is isomorphic to (the

"total space" of) the Gm-gerbe go on T*C(l) where 6 is the canonical 1-form on T*C.

We want to describe the restriction of (Ltie, Vdet) to J.

Because of the equivalence Pc-mod - DT*c,o-mod, the gerbe go also classifies the

irreducible modules over DT*C,O. Therefore we can consider the universal object: this

is a coherent sheaf on J x T*C with connection in the T*C-direction and with support

given by J9 XT*c(i) T*C. Now if we apply the relative Frobenius twist over .O to this

sheaf, the resulting sheaf on f x T*Cl) will have connection along both factors. So

we get a P-module on J x T*C(l) supported on the Frobenius neighborhood of the

"diagonal" or, more precisely, of the graph of v: J -+ T*C). The restriction of this

D-module to the graph itself is a line bundle on J with connection which we will

denote by (Luniv, Vuniv).
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Proposition 35. There is a canonical isomorphism of line bundles with connections

on 0:

(4Iet, Vdet) (Luni,, Vuniv - v*O) (A.10)
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