
MIT Open Access Articles

Verification of microarchitectural
refinements in rule-based systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dave, Nirav et al. “Verification of Microarchitectural Refinements in Rule-based
Systems.” 2011 9th IEEE/ACM International Conference on Formal Methods and Models for
Codesign (MEMOCODE) IEEE, 11-13 July 2011. 61–71. Web.

As Published: http://dx.doi.org/10.1109/MEMCOD.2011.5970511

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/73470

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73470
http://creativecommons.org/licenses/by-nc-sa/3.0/

Verification of Microarchitectural Refinements in
Rule-based Systems

Nirav Dave∗, Michael Katelman†, Myron King∗, Arvind∗, José Meseguer†
∗ Massachusetts Institute of Technology - Computer Science and Artificial Intelligence Laboratory

Cambridge, MA 02139, U.S.A.

{ndave, mdk, arvind}@csail.mit.edu
† University of Illinois at Urbana-Champaign - Department of Computer Science

Urbana, IL 61801, U.S.A.

{katelman, meseguer}@uiuc.edu

Abstract—Microarchitectural refinements are often required
to meet performance, area, or timing constraints when designing
complex digital systems. While refinements are often straightfor-
ward to implement, it is difficult to formally specify the conditions
of correctness for those which change cycle-level timing. As
a result, in the later stages of design only those changes are
considered that do not affect timing and whose verification can
be automated using tools for checking FSM equivalence. This
excludes an essential class of microarchitectural changes, such as
the insertion of a register in a long combinational path to meet
timing. A design methodology based on guarded atomic actions,
or rules, offers an opportunity to raise the notion of correctness
to a more abstract level. In rule-based systems, many useful
refinements can be expressed simply by breaking a single rule
into smaller rules which execute the original operation in multiple
steps. Since the smaller rule executions can be interleaved with
other rules, the verification task is to determine that no new
behaviors have been introduced. We formalize this notion of
correctness and present a tool based on SMT solvers that can
automatically prove that a refinement is correct, or provide
concrete information as to why it is not correct. With this tool, a
larger class of refinements at all stages of the design process can
be verified easily. We demonstrate the use of our tool in proving
the correctness of the refinement of a processor pipeline from
four stages to five.

I. INTRODUCTION

Modular refinement is an important technique in designing

complex digital systems because it eases architectural explo-

ration for better performance, area, and power. For modular

refinement to be viable it should be relatively easy to deter-

mine if a local change preserves the overall correctness of the

design. Generally, it is extremely difficult for a designer to give

a full formal correctness specification for a system. Specifying

correctness requires a level of knowledge of the overall system

and familiarity with formal verification methods that few

designers possess. As a consequence, common practice is to

settle for partial verification via testing. Testing works, but as

test suites tend to be built in conjunction with the design itself,

designers rarely gain sufficient confidence in their refinements’

correctness until the final stages of the design cycle.

An alternative is to restrict the types of refinements to ones

whose local correctness guarantees that the overall behavior

will remain unaffected, and designs usually rely on the notion

of equivalence supported by the design language semantics

for proving or testing local equivalence. As most hardware

description languages describe synthesizable systems at the

level of gates and wires, this amounts to FSM (finite-state

machine) equivalence. Tools usually require the designer to

specify the mapping of state elements (e.g., flip-flops), and

thus reduce the problem of FSM equivalence to combina-

tional equivalence, which can be performed efficiently. FSM-

equivalence-preserving refinements have proven to be quite

useful because tools are available to prove the local correctness

automatically and there is no negative impact on the overall

verification strategy. However, FSM refinement is too restric-

tive, disallowing many desirable changes such as adding a

buffer to cut a critical path in a pipeline. Thus these tools are

limited to verification in the later stages of design when the

timing has been decided.

Recently, languages like Bluespec [4], which describe de-

signs not as gates and wires but as a set of guarded atomic

actions (or rules) on state elements, have been proposed.

Over the last six years, it has been established that Bluespec

programs not only can produce no-compromise hardware [1],

but that keeping programs at the rule level allows more

flexibility in design and refinements [8], [9]. For instance, the

addition of a pipeline stage can be implemented in a natural

way by splitting the rule corresponding to the appropriate

stage into multiple rules, and introducing state to hold the

intermediate results.

A Bluespec program can be reasoned about at two levels.

At the first level we deal with rules in an unscheduled manner.

The semantics state that we compute by selecting any valid

rule (i.e., one whose guard evaluates to true) for execution,

update the state by executing the body of the rule, and then

repeat the process. This means that the program is naturally

non-deterministic, and programs at this level are meant to

be correct for all possible traces of execution. At the second

level the compiler adds a scheduler which is responsible for

resolving the non-determinism so that we may synthesize

the program into a high-quality FSM implementation. The

choice of scheduler is a purely performance-based concern and

should not affect the correctness. We exploit this separation

of concerns and focus on the equivalence of systems before

scheduling.

r1 r2

f1 f2

r1 r2

f1 f2
x zy

i ≥ 0

⎧⎪⎨
⎪⎩

yi = f1(xi, r1i);
r10 = 0; r1i+1 = yi;
zi = f2(yi, r2i);

r20 = 0; r2i+1 = zi;

Fig. 1. Initial FSM

Despite the guarded atomic action formalism’s deep relation

to term-rewriting systems and formal proofs, little work has

been done to verify rule-based programs at anything beyond

the implementation level. The main contribution of this paper
is to define a notion of program equivalence between rule-
based programs and describe an SMT-based algorithm that
automatically verifies the correctness of “rule splitting” re-
finements. Our notion of program equivalence is based on

the transitive closure of permitted transitions and not on

more standard trace-based characterizations. If needed, the

distinctions drawn by traced-based characterizations can be

expressed programmatically and verified using our notion of

equivalence.

A tool based on this algorithm is able to prove the correct-

ness of interesting refinements in a matter of minutes, well

within range to be useful as a debugging aid for the designer.

We use the tool to show the correctness of several examples

including the refinement of a four-stage processor pipeline into

a five-stage pipeline.

Paper Organization: In Section II, we discuss the kinds of

refinements we want to make and why their correctness

cannot be formulated at the FSM level. We also discuss the

challenge of verification at the level of rules and discuss how

nondeterministic specifications affect the verification task. In

Section III, we formalize a notion of equivalence in the context

of rule refinements. In Section IV, we discuss the algorithm

used by our tool to mechanically verify equivalence using an

SMT solver. In Section V, we discuss the verification of a

processor program. In the last two sections we discuss related

work and present our conclusion.

II. MOTIVATING REFINEMENT EXAMPLE

To understand the challenges of refinement in rule-based

systems we must first understand how such refinements differ

from refinements of FSMs, motivating our notion of behavior

and explaining where the new method and tool are needed.

A. Refining an FSM

Consider the hardware represented by the FSM system

shown in Figure 1. The system consists of two registers r1
and r2, both initially zero, and some combinational logic

implementing functions f1 and f2. The critical path in this

system goes from r1 to r2 via f1 and f2. In order to improve

performance, a designer may want to break this path by adding

a buffer (say, a one element FIFO) on the critical path as shown

in Figure 2. Though we have not shown the circuitry to do so,

we will assume that r2 does not change and the output z is

not defined when the FIFO is empty.

r1 r2

f1 f2

r1 r2

f1 f2
x zy y’

i ≥ 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yi = f1(xi, r1i); z0 = ⊥;
r10 = 0; r1i+1 = yi;
yp0 = ⊥; ypi+1 = ypi;
zi+1 = f2(yi+1, r2i+1);
r20 = 0; r21 = r20;

r2i+2 = zi+1;

Fig. 2. Refined FSM

In this refined system, the operation that was done in one

cycle is now done in two; f1 is evaluated in the first cycle,

and f2 in the second. The computation is fully pipelined so

that each stage is always productive (except the first cycle

of the second stage, when the FIFO buffer is empty) and we

have the same cycle-level computation rate. However the clock

period in the refined system can be much shorter, thereby

increasing system throughput. Though the cycle-by-cycle state

of the two FSMs do not match directly, a little bit of analysis

will show that the sequence of values assumed by r2 and z are

the same in both systems. In other words, the refined system

produces the same answer as the original system but one cycle

later. Therefore, in many situations such a refinement may be

considered correct even though the FSMs of the two systems

are not equivalent.

The problem here is that if we don’t rely on FSM equiv-

alence then how should we define equivalence? A solution

could be to introduce the notion of a message or valid input

and output and then define equivalence in terms of input-output

sequences of messages as opposed to cycle-by-cycle behavior

of input and output. Unless we carry this notion of validity

everywhere in the design it is difficult to reason in these terms

mechanically.

In the following section we discuss a rule-based description

of this example and show how refinements are expressed in

such systems.

B. Refinements at the Rule Level

When designers specify systems using rules, they often have

in their mind a particular datapath and FSM, although the exact

datapath and FSM is generated by the compiler. For example,

a designer may express the FSM design in Figure 1 using

a single rule as shown in Figure 3. In contrast to the FSM

interface, a rule-based system has no strict notion of clock

cycle to determine when data is passed. To deal with this we

have added two FIFOs inQ and outQ; when we “take input”

we dequeue a value from inQ and when we have a new value

to output we enqueue into outQ.

If we assume that a rule executes in one clock cycle then the

rule in Figure 3 specifies that every cycle r1 and r2 should

be updated, one value should be dequeued from inQ, and

one value should be enqueued in the outQ. (The approximate

logic generated by each rule is shown as a cloud in all the

figures; we have omitted the control logic to avoid clutter.)

The sequences of values for r1 and r2 match exactly with

those in Figure 1. Similarly, the values on the wires x and z

r1 r2

f1 f2

r1 r2

inQ outQ

produce/consume

f1 f2
x zy

register r1 = 0, r2 = 0
fifo inQ, outQ;
method input(x) = inQ.enq(x);
method output() = outQ.deq();
method outValue = outQ.first();
rule produce_consume when (!inQ.empty() && !outQ.full()):

let x = inQ.first(); inQ.deq();
let y = f1(x,r1); let z = f2(y,r2);
r1 := y; r2 := z; outQ.enq(z);

Fig. 3. A Rule-based Specification of the Initial Program

which serve as input and output in the original program match

the sequence of values in inQ and outQ (see Figure 4).

([x0, x1, x2, ...], r10, r20, []) −→
([x1, x2, ...], r11, r21, [z1]) −→
([x2, ...], r12, r22, [z1, z2]) −→
...

where: r10 = 0; r20 = 0;
r1i+1 = f1(xi, r1i);
r2i+1 = f2(r1i+1, r2i);
zi = r2i

Fig. 4. The behavior of the program in Figure 3. State is represented by
quadruples where the first and final member are the contents of inQ and
outQ, and the second and third members are the values of r1 and r2

The refined FSM in Figure 2 may be described by splitting

our single rule into two rules: produce and consume, which

communicate via the FIFO q as shown in Figure 5.

The first thing to understand about this two-rule program

is that it represents a nondeterministic specification which

can be implemented by many different FSMs. For multiple

rule programs, the semantics only state that any enabled rule

(i.e., a rule in a state where its guard is true) can be executed;

it does not determine which rule to choose if more than

one is enabled. The following are possible schedules for this

program:

Schedule 1 Schedule 2 Schedule 3
produce produce produce
consume produce produce
produce consume consume
consume consume produce

... ... consume

...

In the first schedule the program repeatedly enters a token

into the FIFO and then immediately takes it out. This emulates

the execution of the rule in the unrefined program (Figure 3)

and leaves the FIFO q empty after each consume rule

execution. This schedule also does the same set of updates

to registers r1 and r2 as the original program. The second

schedule repeatedly queues up two tokens before removing

them. Note that this schedule will be valid only if q has space

for two tokens. In the third schedule, except when the program

r1 r2

f1 f2

r1 r2

inQ outQ

produce consume

f1 f2
x zy y’

register r1 = 0, r2 = 0
fifo q, inQ, outQ
rule produce when (!q.full() && !inQ.empty()):
let x = inQ.first(); inQ.deq();
let y = f1(r1,x);
q.enq(y); r1 := y

rule consume when (!q.empty() && !outQ.full()):
let y = q.first; q.deq();
let z = f2(y,r2);
outQ.enq(z); r2 := z;

Fig. 5. A Refinement of the Program in Figure 3

starts, there will always be at least one token in q.

In case of multiple-rule programs, the behavior of the

program must be thought of in terms of the set of permitted
executions or more precisely, the set of the sequences of

values assumed by various state elements. A scheduler picks

a specific execution from this set. A schedule is chosen by the

compiler (with voluntary inputs from the designer) based on

some goodness criteria. The current Bluespec compiler [11]

schedules as many enabled rules as possible every cycle as

long as the rules do not conflict with each other. The behavior

produced by a parallel scheduler must be consistent with

some one-rule-at-time schedule. For the example at hand the

Bluespec compiler will schedule only the producer in the

first cycle and then repeatedly schedule consumer followed

by producer in each subsequent cycle.

C. Observability

In what sense are the modules in Figure 3 and Fig-
ure 5 equivalent? Notice that given any sequence of inputs

x0, x1, x2, x3, ... both programs produce the same sequence of

outputs z1, z2, z3, However, the interleavings of permissi-

ble “observations” are different. Assuming all FIFOs are of

size 1, both systems can observe the following sequences:

x0, z1, x1, z2, x2, z3... and x0, x1, z1, z2, x2, x3, z3, How-

ever, the sequence x0, x1, x2, z1, z2, z3, ... can only be ob-

served for the refined system, as the refined system has more

buffering. Bluespec is expressive enough that one can write

a program to distinguish between these two modules by only

taking output from the module after a fixed number of inputs

have entered. In spite of this, we want a notion of equivalence

which permits this refinement.

The equality we will define applies only to full programs,

i.e., those which do not interact with the outside world. To

express equality between systems which interact with the

outside world, we need to construct a “generic” context which

represents all possible interactions with the outside world. This

can be done naturally by adding sufficiently large source and

r1 r2
obsQ

f3

f1 f2

inQ outQ

f3

produce/consume/observe

f1 f2
x zy

register r1 = 0, r2 = 0
fifo inQ, outQ, obsQ;
rule produce_consume_observe when (!inQ.empty()

&& !outQ.full() && !obsQ.full()):
let x = inQ.first(); inQ.deq();
let y = f1(x,r1); let z = f2(y,r2);
let a = f3(r1,r2);
r1 := y; r2 := z;
outQ.enq(z); obsQ.enq(a);

Fig. 6. Program of Figure 3 with an Observer

sink queues to drive interactions and store results. For instance,

in our example we can attach a FIFO initially containing N
elements as source to inQ and a output FIFO with M empty

slots to outQ. It is easy to see why, given sufficient sizes of N
and M , this closed system will model all possible interactions

of inQ and outQ with the outside world.

Under a weaker notion of equality, which relies on the

transitive closure of rule applications instead of trace equiv-

alence, the previously discussed refinement is correct. At

the same time this weaker notion of equality can lead to

errors if the module is used incorrectly (for instance if the

input to the module changes depending on the number of

values outstanding). We rely on the user to express desired

distinctions programmatically. For instance if the user believes

the relative order of inputs and outputs are necessary, he can

add an additional FIFO to which we enqueue witnesses of

both input and output events. We believe this is the right

tradeoff between greater flexibility of refinements, and user-

responsibility in expressing correctness [3].

As another example, consider refinements of a processor.

To show the correctness of a refinement, it is sufficient to

show that the refined processor generates the same sequence of

instruction addresses of committed instructions as the original.

As such we can add a single observation FIFO to the context to

observe differences and consider all possible initial instruction

and data memory configurations to verify correctness.

D. An Example to Illustrate Incorrect Refinements

While refinements are often easy to implement, it is not

uncommon for a designer to make subtle mistakes. Consider

the original one-rule produce-consume example augmented

with observation logic as shown in Figure 6. In addition

to doing the original computation, this program computes a

function of the state of r1 and r2, and at each iteration inserts

the result into a new FIFO queue(obsQ). A designer may want

to do the same rule splitting exercise he had done with the first

program, leading to the program in Figure 7.

r1 r2
obsQ

observeinQ outQ

f3

consumeproduce

f1 f2
x zy

register r1 = 0, r2 = 0
fifo q, q1, inQ, outQ, obsQ
rule produce when (!q.full() && !inQ.empty()):
let x = inQ.first(); inQ.deq();
let y = f1(r1,x);
q.enq(y); r1 := y

rule consume when (!q.empty() && outQ.full()):
let y = q.first(); q.deq();
let z = f2(y,r2);
outQ.enq(z); r2 := z;

rule observe when (!obsQ.full()):
let a = f3(r1, r2); obsQ.enq(a);

Fig. 7. An incorrect refinement of the program in Figure 6

r1 r2
obsQ

observeinQ outQ

f3

consumeproduce

f1 f2
x zy

register r1 = 0, r2 = 0
fifo inQ, outQ, obsQ, r1Q, r2Q, q;
rule produce when (!inQ.empty() && !r1Q.full()

&& !q.full()):
let x = inQ.first(); inQ.deq();
let y = f1(r1,x);
r1Q.enq(r1); q.enq(y); r1 := y;

rule consume when (!q.empty() && !r2Q.full()
&& !outQ.full()):

let y = q.first(); q.deq();
let z = f2(y,r2);
r2Q.enq(r2);
outQ.enq(z); r2 := z;

rule observe when (!obsQ.full() && !r1Q.empty()
&& !r2Q.empty()):

let x = f3(r1Q.first(),r2Q.first());
r1Q.deq(); r2Q.deq(); obsQ.enq(x);

Fig. 8. A correct refinement of the program in Figure 6

This refinement is clearly wrong; we can observe r1 and r2
out-of-sync via the new observer circuit. Thus, the sequence

produce observe consume has no correspondence in

the original program. For our tool to be useful to a designer,

it must be able to correctly determine that this refinement is

incorrect (or rather that it failed to find a matching behavior

in the original program). A correct refinement is shown in

Figure 8, where extra queues have been introduced to keep

relevant values in sync. The correct solution would be obvious

to an experienced hardware designer because all paths in a

pipeline have the same number of stages.

E. Refinements in Nondeterministic Programs

The examples that we have considered so far have started

with a single rule program. Such programs by definition

r1 r2
obsQ

f3

observe

f1 f2

inQ outQ

f3

produce/consume

f1 f2
x zy

register r1 = 0, r2 = 0
fifo inQ, outQ, obsQ;
rule produce_consume when (!inQ.empty() && !outQ.full()):

let x = inQ.first(); inQ.deq();
let y = f1(x,r1); let z = f2(y,r2);
r1 := y; r2 := z; outQ.enq(z);

rule observe when (!obsQ.full()):
let x = f3(r1,r2); obsQ.enq(x);

Fig. 9. A program with a nondeterministic observer

produce deterministic behaviors. Much of the value of rule-

based programs comes from the ability to specify programs

which can have multiple distinct behaviors. An example of

a useful nondeterministic specification is that of a speculative

processor whose correctness does not depend upon the number

of instructions which are executed on the incorrect path. What

does it mean to do a refinement in such a program?

Consider the example in Figure 9, which is a variation of

our producer-consumer example with an observer (Figure 6).

Unlike the lockstep version which did one observation for each

iteration, in this program we are allowed to not only miss some

updates of r1 and r2, but are permitted to repeatedly make

the same observations. An implementation, i.e., a particular

schedule, of this rule-based specification would pick some

deterministic sequence of observations from the allowed set.

By giving such a specification, the designer is saying, in effect,

that any schedule of observations is acceptable. In that sense,

the observations made in the program in Figure 6 are an

acceptable implementation of this nondeterministic program.

By the same reasoning we could argue that the refinement

shown in Figure 8 is a correct refinement of Figure 9.

But suppose we did not want to rule out any behaviors

prematurely in our refinements, then a correct refinement will

have to preserve all possible behaviors. We show a correct

refinement of the nondeterministic program in Figure 10,

where we introduce an extra register, r1p, to keep a relevant

copy of r1 in sync with r2 with which to make legal

observations.

It is nontrivial to show that all behaviors in the new

program can be modeled by the original nondeterministic

specification and vice versa. As we demonstrate later, our

tool can automatically verify this condition, though we do

require the programmer to specify a projection function, by

which state in the two different programs can be related. The

partial function relationship is both natural for designers to

come up with and easy to specify. Having manually defined

this function, the designer passes it to the tool which tells

him either that the refinement is correct, or if it is not, returns

r1 r2
obsQ

f3

r1p

observe

f1 f2

inQ outQ

f3

consumeproduce

f1 f2
x zy y’

register r1 = 0, r2 = 0, r1p = 0
fifo inQ, outQ, q, obsQ
rule produce when (!q.full() && !inQ.empty):
let x = inQ.first(); inQ.deq();
let y = f1(x,r1);
r1 := y; q.enq(y);

rule consume when (!q.empty() && !outQ.full()):
let x = q.first(); q.deq();
let z = f2(x,r2);
r1p := x; r2 := z; outQ.enq(z);

rule observe when (!obsQ.full())
let x = f3(r1p, r2); obsQ.enq(x);

Fig. 10. Correct refinement of Figure 9

an execution from one program which it believes cannot be

simulated by the other.

III. FORMALIZING BEHAVIORS AND CORRECTNESS OF

REFINEMENTS

We model the behavior of a program using a state transition

system. A program P has a collection of state elements and

a set of rules RP . The states in the transition system are

the values assumed by these state elements. Thus, the state

transition system of a program with two 32-bit registers would

have 264 states.

A. Equivalence of Programs

Definition 1 (State Transition System of Program P). Each

program P is modeled by a state transition system given by

a triple of the form:

(S, S0,−→)

where S is the set of states associated with program

P ; S0 ⊆ S is the set of states corresponding to initial

configurations of P ; and −→S⊆ S × S is the transition

relation, defined such that (s, s′) ∈−→S if and only if there

exists some rule R in P whose execution takes the state s to

s′. In addition, we write � to denote the reflexive transitive
closure of −→. �

It is sometimes useful to know which rule R caused the

transition from s to s′; we will denote this by writing:

s
R−−→ s′

Similarly we write the sequence of rule executions σ =
R1, R2, ...Rn where:

s0
R1−−−→ s1

R2−−−→ s2...
Rn−−−→ sn

as:

s0
σ� sn

Intuitively two programs P1 and P2 with the same set of

states are equivalent if every transition in one system can

be simulated by a sequence of transitions in the other. That

is, every finite execution s � s′ in P1 has a corresponding

execution s � s′ in P2 and vice versa.

Definition 2 (Equivalence of Programs). Let P be a program

modeled by the transition system S = (S, S0,−→S) and

let P ′ be a program modeled by the transition system

S ′ = (S′, S′
0,−→S′); P and P ′ are are equivalent if and

only if S = S′, S0 = S′
0, and �S=�S′ . �

This definition captures the fact that two program may have

a different set of rules but may still be equivalent in terms of

their transitive closure. This ability allows us to add “derived”

rules whose execution is always expressible in terms of the

other rules in the program without affecting the meaning of

the program, which is very important in implementing these

systems. Sometimes the consequences of this equality are non-

intuitive. For example, a modulo up-counter (0 to 1 to 2 back to

0) and a modulo down-counter (0 to 2 to 1 back to 0) will have

the same transitive closure and thus be considered equivalent.

Our notion of equality only says that you can get from 0 to 1,

and whether you did so directly or through another state, i.e., 2
does not matter. If we want to distinguish these two counters,

we can always add an observation queue to record the counter

value after each transition. Practically, this is not required in

a real system as the context in which such a counter is used

will implicitly either demand one of these orders or will work

equally well with either counter.

Modeling the behavior of a program in terms of the tran-

sitive closure of executions also allows us to define several

other notions precisely:

Definition 3 (Deterministic Programs). Let P be a program

modeled by the transition system S = (S, S0,−→S). P
is deterministic if and only if all pair-wise executions are

joinable, that is: when for all s0, s1, s2 ∈ S such that

s0 �S s1 and s0 �S s2, there exists an s3 ∈ S such

that s1 �S s3 and s2 �S s3. A program is called non-
deterministic if it is not a deterministic program. �

Examples of nondeterministic programs are shown in Fig-

ures 7, 9, and 10. All other examples given in Section II are

deterministic according to the above definition.

As we have shown, implementing a rule-based program

requires choosing a schedule. A scheduler by definition im-

plements a specific execution sequence. Thus, in the case of

non-deterministic programs the scheduler eliminates all non-

determinism and produces one specific behavior from among

the allowed set of behaviors. Even for deterministic programs

the scheduler is sometimes not able to produce a “complete”

behavior because the scheduling of rules may be unfair. In

such cases we say that an implementation is partially correct:

Definition 4 (Partially Correct Implementation). Let P be a

program modeled by the transition system S = (S, S0,−→S)
and let P ′ be a program modeled by the transition system

S ′ = (S′, S′
0,−→S′). P ′ is a partially correct implementation

of P if and only if S′ = S, S′
0 = S0, and �S′⊆�S . �

B. Correctness of Refinements

Correctness is slightly more complicated to define for

the refinements because the specification and implementation

programs have different state elements. In addition, the set of

rules in the implementation is formed by removing a rule from

the specification rule set, replacing it by several rules which

together simulate the removed rule. The new rules operate

on the new implementation state, and the remaining rules are

“lifted” to operate on the new implementation state. This is

clearly more complicated than the simple addition of a derived

rule described in the previous section.

Consider the refinement from the program in Figure 3

to the one Figure 5. Both programs have r1 and r2 but

they get updated at different times in the two programs and

may not match. Intuitively we know that if q contains an

element, then we are part way through at least one round

of an equivalent produce_consume atomic computation,

and r1 and r2 will appear out of sync in the two programs.

Conversely, whenever q is empty we should be able to draw a

correspondence between the executions of the two programs.

We can guarantee that the refined program does not add new

behaviors if we can show that for any execution in the refined

program, whenever it reaches a state where q is empty we can

find a corresponding execution in the original program which

has the same values for the matching state elements, i.e., r1
and r2. To guarantee that we haven’t lost behaviors we must

also show the converse: namely that any computation in the

original program can be mimicked by the refined program.

This is quite easy to show because produce followed by

consume behaves exactly as produce_consume.

We first offer an intuitive reason why the original program

can mimic the refined one. Consider those prefixes of a

schedule in the refined program which have equal number of

produce and consume rule executions. At the end of such

a prefix, q must be empty and we can meaningfully verify

that the specification and implementation match. Further, since

produce always adds a token and consume always removes

one, we must have a non-empty q when we have an unequal

number of produces and consumes. As such we there’s no

meaningful state match. However, by making an appropriate

number of consumes we can always empty q where upon

our previous line of reasoning would apply and we’d have a

match. Therefore, all we have to show is that 1) for all prefixes

where we end with an empty q the specification can mimic the

execution of the implementation, and 2) for all other sequences

the implementation can move to a state where q is empty.

To reason about the correctness of refinement formally,

we need a projection function p to relate implementation

state to specification state. This projection function is often

partial. The states which are in the domain of the projec-

tion function (e.g., Dom(p)) are called relatable. That is, if

S = (S, S0,−→S) is refined by T = (T, T0,−→T) by a

partial-function p : T ⇀ S, the set of relatable states in T
is, by definition, the set Dom(p) of states where p is defined.

All initial states should be in Dom(p), that is, T0 ⊆ Dom(p).
Furthermore, for any two states t1, t2 ∈ Dom(p) such that

t1 �T t2, we should have p(t1) �S p(t2).

This condition covers all finite executions in the implemen-

tation program which start and end in relatable states, but not

those which start in a relatable state but do not end in one.

To address those executions, we must verify that every finite

execution in the implementation beginning in a relatable state

which does not end in a relatable state, can eventually reach

one.

Definition 5 (Partially Correct Refinement). Let P be a

program modeled by the transition system S = (S, S0,−→S),
P ′ be a program modeled by the transition system T =
(T, T0,−→T), and p : T ⇀ S a partial function relating

states having the property that T0 ⊆ Dom(p). P ′ is a partially
correct refinement of P exactly when the following conditions

hold:

1) Correspondence of Initial State: {p(t)|t ∈ T0} = S0.

2) Soundness: For all t1, t2 ∈ Dom(p) such that t1 �T t2,

also p(t1) �S p(t2).

3) Limited Divergence: For all t0 ∈ T0 and t1 ∈ T such

that t0 �T t1, there exists t2 ∈ Dom(p) such that

t1 �T t2. �

The first clause states the initial states correspond to each

other. The second clause states that every possible execution

in the implementation whose starting and ending states have

corresponding states in the specification must have a corre-

sponding execution in the specification. The third clause states

that from any reachable state in the implementation we can

always get back to a state which corresponds to a state in the

specification. Note that these clauses alone do not guarantee

that the specification has been fully implemented. To guarantee

that a specification has been fully implemented, we need the

notion of total correctness.

Definition 6 (Totally Correct Refinement). A totally correct

refinement is a partially correct refinement that, in addition,

satisfies:

4) Completeness: For all s1, s2 ∈ S and t1 ∈ Dom(p)
such that s1 �S s2 and p(t1) = s1, there exists an

t2 ∈ Dom(p) such that t1 �T t2 with p(t2) = s2. �

This states that all executions in the specification program are

preserved in the implementation.

Of the conditions for total correctness, correspondence of

initial state the completeness are easy to verify in the context

of rule splitting. This leaves us only concerned with soundness

and limited divergence.

IV. CHECKING SIMULATION USING SMT SOLVERS

We can understand the execution of rule R as the application

of a pure function fR of type S −→ S to the current

state. When the guard of R fails, it causes no state change

(i.e., fR(s) = s). We can compose these functions to generate

a function fσ corresponding to a sequence of rules σ. To prove

the correctness of refinements, we pose queries about fσ to

an SMT solver.

SMT solvers are conceptually Boolean Satisfiability (SAT)

solvers extended to allow predicates relating to non-boolean

domains (characterized by the particular theories it imple-

ments). SMT solvers do not directly reason about computation,

but rather permit assertions about the input and output relation

of functions. They provide concrete counter-examples when

the assertion is false. For example, suppose we wish to verify

that some concrete function f behaves as the identity function.

We can formulate a universal quantification representing the

property: ∀x, y.(x = f(y))∧ (x = y). An SMT solver can be

used to solve this query, provided the domains of x and y are

finite, and f is expressed in terms of boolean variables. If the

SMT solver can find a counter-example, then the property is

false. If not, then we are assured that f must be the identity.

The speed of SMT solvers on large domains is due to their

ability to exploit symmetries in the search space [6].

When we reason about rule execution it is often useful to

discard all executions where a rule produces no state update

(a degenerate execution); it is clearly equivalent to the same

execution with that rule removed. As such, when posing

questions to the solver it is useful to add clauses which state

that sequential states of an execution are different. To represent

this assertion for the rule R, we define the predicate function

f̂R(s2, s1) which asserts that the guard of rule R evaluates to

true in s1 and that s2 is the updated state:

f̂R(s2, s1) = (s2 = fR(s1)) ∧ (s2 �= s1)
As with the functions, we can construct a larger predicate

f̂σ(s2, s1) which is true when a non-degenerate execution of

σ takes us from s1 to s2.

Now we explain how the propositions in Definition 5 can

be checked via a small set of easily answerable SMT queries.

A. Checking Correctness

For this discussion let us assume we have a specification

program P and a refinement P ′ and their respective transition

systems S = (S, S0,−→S ,�S) and T = (T, T0,−→T ,�T)
are related by the projection function p : T ⇀ S.

Now let us consider the soundness proposition from Defini-

tion 5: ∀t1, t2 ∈ Dom(p).(t1 �T t2) =⇒ (p(t1) �S p(t2)).
A naı̈ve approach to verifying this property entails explicitly

enumerating all pairs (t1, t2) in the relation �T and checking

the corresponding pair (p(t1), p(t2)) in the relation �S . As

the set of states in both systems are finite, both of these

relations are similarly finite (bounded by |T |2 and |S|2, respec-

tively) and thus we can mechanically check the implication.

We can substantially reduce this work by noticing two facts.

First, because of transitivity, if we have already checked the

correctness of t1
σ1�T t2 and t2

σ2�T t3, then there is no need

to check the correctness of execution σ = σ1σ2. Second, if we

have already found an execution σ such that t
σ�T t′ then we

can ignore all other executions σ′ �= σ which have the same

starting and ending states as they must also be correct. This

essentially reduces the task from checking the entire transitive

closure to checking only a covering of it. Unfortunately, the

size of this covering is still very large.

The insight on which our algorithm is built is that proving
this property for a small set of finite rule sequences is
tantamount to proving the property for any execution. We

explain this idea using the program in Figure 5.

• Let’s begin by considering all rule sequences of length

one: produce and consume.

• The sequence consume is never valid for execution

starting in a relatable state so we need not consider it

further.

• The sequence produce is valid to execute but does

not take us to a relatable state, so we construct more

sequences by extending it with each rule in the implemen-

tation. These new sequences are produce produce
and produce consume.

• The sequence produce consume always takes a re-

latable state to another relatable state. We check that

all concrete executions of produce consume have

a corresponding execution in the specification. We do

this check over a finite set of sequences in S (in this

case: produce_consume), the selection of which we

will explain later. Since all executions of produce
consume end in a relatable state, we need not extend it.

• produce produce never takes us from relatable state

to relatable state, so again extend the sequence to

get new sequences produce produce produce and

produce produce consume.

• produce produce produce is degenerate if q is of

length 2 (q has to have some known finite length).

• Suppose we could prove that the sequence produce
produce consume always behaves like produce
consume produce. Then any execution prefixed by

produce produce consume is equal to an execu-

tion prefixed by produce consume produce. No-

tice that we need not consider any sequences prefixed by

produce consume produce because itself has the

prefix produce consume. Therefore we need not con-

sider further sequences prefixed by produce produce
consume.

• Because we have no new extension to consider, we have

proved the correctness of this refinement.

Each of these steps involved an invocation of the SMT

solver on queries which are much simpler than the general

query presented previously, though the solver still must con-

ceptually traverse the entire state space. The queries them-

selves are simple because they are always presented using rule

sequences of concrete length, which are much smaller than

the sequences in �T . The only problem with this procedure

is that in the worst case this algorithm will run for the

maximum number of states in S . If we give up before the

correctly terminating condition, this only means we have failed

to establish the correctness of the refinement. We think it is

unlikely that the type of refinements we consider in this paper

will enter this case. In fact most refinements can be shown to

be correct with very small number of considered sequences.

B. The Algorithm

The algorithm constructs three sets, each of whose elements

corresponds to a set of finite executions of T . For each

iteration, Rσ represents the set of finite sequences for which

we have explicitly found a corresponding member, and U
represents the set of finite executions we have yet to verify

(each element of U conceptually represents all finite sequences

starting with some concrete sequence of rule executions σ).

NU is the new value of U being constructed for the next

iteration of the execution.

The Verification Algorithm:
1) Initially: Rσ := ∅, U := {Ri|Ri ∈ RP ′}, NU := ∅
2) if U = ∅, we have verified all finite executions. Exit with

Success.

3) Check if we have reached our iteration limit. If so, give

up, citing the current U set as the cause of the uncertainty.

4) For each σ ∈ U :

a) Check if the execution of σ from a relatable state is

ever non-degenerate:

∃t1 ∈ T, t2 ∈ Dom(p).(t1
σ�T t2)

If no execution exists we can stop considering σ
immediately.

b) Check if σ should be added to Rσ . That is, if some

execution of σ should have a correspondence in S:

∃t, t′ ∈ Dom(p).(t
σ�T t′)

If so Rσ := Rσ ∪ {σ}.

c) Check if all finite executions of σ that should have a

correspondence in S have such a correspondence:

∀t, t′ ∈ Dom(p).(t
σ�T t′) =⇒ ∃σ′.(p(t)

σ′
�S p(t′))

If this fails due to some concrete execution of σ,

exit with Failure providing the counter example as

justification.

d) For every execution where σ does not put us in a

relatable state, we must show that extensions of the

form σσ′ have an equivalent execution σ1σ2σ
′, where

σ1 is a member of Rσ and |σ1σ2| ≤ |σ|. Thus, the

correctness of σσ′ is reduced to the correctness of the

shorter sequence σ2σ
′.

∀t ∈ Dom(p), t′ ∈ T.(t
σ�T) =⇒

∃σ1 ∈ Rσ, σ2.
(|σ1σ2| ≤ |σ|) ∧ (σ1(t) ∈ Dom(p))

∧ (σ2(σ1(t)) = t′).
If this succeeds, we need not consider executions for

which σ is a prefix. If not, partition all the extensions

into the |RP ′ | sets of rules by extending σ by one rule

execution. NU := NU ∪ {σ.Ri|Ri ∈ RP′}.

5) U := NU , NU := ∅, Go to Step 2. �

C. Formulating the SMT Queries

The four conditions in the inner-most loop of the algorithm

can be formulated as the following SMT queries using the f̂σ
predicate and the computational version of projection function

p, p̂ : T −→ S and rel : T −→ {0, 1} where p and p̂ are the

same if p is defined and rel(t) returns true exactly when p(t)
is defined.

1) Existence of valid execution of σ starting from a relatable
state:
∃t1, t2 ∈ T.f̂σ(t2, t1) ∧ rel(t1)

2) Verifying that each execution of σ in the implementation
starting and ending in a relatable state has a correspond-
ing execution in the specification:
∀t1, t2 ∈ T.
(rel(t1) ∧ rel(t2) ∧ f̂σ(t2, t1)) =⇒∨

σ′∈EC(σ)(f̂σ′(p̂(t2), p̂(t1)))

where EC is the “expected correspondences” function

which takes a sequences of rules σ in T and returns

a finite set of sequences in S to which σ is likely

to correspond. This function can be easily generated

by the tool or the user, since the refinements are rule

splitting, it is easy to predict the candidates in the

specification that could possibly mimic σ. For instance,

consider the refinement of the program in Figure 3 to

the one in Figure 5. Each occurrence of produce
in the implementation should correspond to an oc-

currence of produce_consume in the specification.

Thus, the sequence produce produce consume
produce, if it has a correspondence at all, could

only correspond to the sequence produce_consume
produce_consume produce_consume.

3) Checking that every valid execution of σ in the imple-
mentation has an equivalent sequence which is correct
by concatenation of smaller sequences:

∀t1, t2, tm ∈ T.
rel(t1) ∧ f̂σ(t2, t1) =⇒ rel(tm) ∧∨

σ1∈Rσ
(
∨

σ2∈EA(σ,σ1)
(f̂σ1

(tm, t1) ∧ f̂σ2
(t2, tm)))

Our algorithm requires us to find, given σ and σ1 in T ,

a σ2 such that the execution of σ is the same as the

execution of σ1σ2, and |σ1σ2| ≤ |σ|. We will assume the

existence of a “expected alternatives” function EA which

enumerates all possible σ2 given σ and σ1.

D. Step-By-Step Demonstration

For the sake of clarity, we provide an additional example

of the algorithm’s execution. Figure 11 gives the trace of

reasoning through which our algorithm progresses in order to

verify the refinement of the program in Figure 6 to the one in

Figure 7. Each node represents an element in the algorithm’s

set U , and the path from the root to any node in the graph

corresponds to the concrete value σ for that node. At each

node, we verify the correctness of all corresponding finite

executions of σ: nodes displayed as ⊥ are vacuously true by

Step 4a, while other leaf nodes are either true by Step 4d or

incorrect by Step 4c. The program is ultimately rejected as the

refinement being checked is incorrect:
• We begin by considering all rule sequences of length

one executed in a relatable state: produce, consume,

and observe. The rule observe always ends in a

relatable state, and corresponds directly to the observe
rule in the specification program. consume is never valid

to execute, so the only sequence which we extend is

produce since it never ends in a relatable state.

• We now extend produce, giving us three new

sequences to consider: produce produce, produce
consume, and produce observe. produce
consume always ends in a relatable state and

corresponds to the execution of produce_consume
in the specification. Neither produce produce, nor

produce observe ever end in a relatable state, and

since we are unable to prove their equivalence to an

execution we have already verified, we extend both.

• In the third iteration, we consider the sequence produce
observe consume, which always ends in a relatable

state. This exposes an error in the refinement since there

is no possible sequence of rule in the specification which

produces this final state (in this case, the implementation

enqueues a value to obsQ which the specification is

unable to replicate.

o p

p

c

p
o

o

c c

P2 P3P0

P1

P6

P7

P4

P5

P8

⊥

...

...

...

Fig. 11. Tree visualization of the algorithmic steps to check the refinement
of the program in Figure 6 to the one in Figure 7

V. THE DEBUGGING TOOL AND EVALUATION

Our tool works with Bluespec SystemVerilog (BSV) [4]

which is a commercial rule-based language aimed at hardware

design. It takes as input an intermediate output of the BSV

compiler where all data types are represented as bit vectors.

The rules are expressed using bit vector expressions and

primitive modules (e.g., registers, FIFOs, and memories). The

algorithm in Section IV works more efficiently when rule sizes

are small, therefore the first phase of the tool is to reduce

the size of actions by action sequentialization, conditional

merging, and “when lifting” [7]. Next, the tool generates the

function fR for each rule R. We use typed λ-calculus with

let blocks to represent these functions and apply many small

transformations to simplify them.

The tool is essentially an embodiment of the algorithm

shown in Section IV in Haskell. As we have discussed, this

algorithm makes many queries to an SMT solver; we use the

STP SMT solver [10] for this purpose. By static analysis

Exec Mem

rf

pc
Write-
back

Fetch/
Decode

iMem dMem

(a) 4 stage SMIPS Processor

Exec Mem

rfpc

Write-
backFetch Decode

iMem dMem

(b) 5 stage SMIPS Processor

Fig. 12. SMIPS processor refinement

(e.g., rule commutativity and sequence degeneracy) of the

programs, we remove unneeded sequences from consideration

in the sets EA and EC. This has substantial impact on the

size of SMT queries.

To demonstrate our tool, we consider a refinement of a

Simplified MIPS (SMIPS) processor, whose ISA contains

a representative subset of 35 instructions from the MIPS

ISA. While the ISA semantics are specified one instruction

at a time, our program is pipelined with five stages in the

style of the DLX processor [17], and resembles soft-cores

used in many FPGA designs. The execution of the final

implementation is split into the following five separate stages

(see Figure 12(b)):

1) Fetch requests the next instruction from the instruction

memory (imem) based on the pc register which it then

updates speculatively to the next consecutive pc.

2) Decode takes the data from the instruction memory and

the fetch stage, decodes the instruction, and passes it

along to the execute stage. It also reads the appropriate

locations in the register file rf, stalling to avoid data

hazards (stall logic is not shown).

3) Execute gets decoded instructions from the execute

queue, performs ALU operations and translates addresses

for memory operations. To handle branch operations, it

kills mispredicted instructions and sets the pc.

4) Memory performs reads and writes to the data mem-

ory, passing the data to the writeback state. (A further

refinement might introduce a more realistic split-phase

memory, which would move some of this functionality

into the writeback stage).

5) Writeback gets instructions in the form of register des-

tination and value pairs, performing the update on the

register file.

The implementation program contains one rule per stage,

and stages communicate via FIFO connections. If we were

to executes the rules for each stage in reverse order (starting

from writeback and finishing with fetch), the result is a fully

pipelined system. If each FIFO is implemented as a single reg-

ister with a valid bit, this is indistinguishable from the standard

processor complete with pipeline stalls. If instead we execute

the rules in pipeline order, we end up with a system where the

instructions fly through the processor one-at-a-time. For code

simplicity, our final implementation actually decomposes the

execute stage into three mutually exclusive cases, implement-

ing each with a separate rule(exec, exec_branch, and
exec_branch_mispredict). Since the rule guards are

mutually exclusive, this does not modify the pipeline structure,

nor does it change the analysis.

Our implementation is relatively complicated and we would

like to know if it matches the ISA. One way to achieve this is

to start with a single-rule description of the behavior (translit-

erated directly from the documentation, which we consider to

be correct), and incrementally refine the program towards the

final five-stage implementation. After each refinement, our tool

can be used to verify correctness with regards to the previous

iteration. For the sake of brevity, we examine only the final

refinement, which takes a four-stage processor (Figure 12(a))

and splits the fetch-decode stage. Though the transformation

is straightforward, the tool must be able to correctly resolve

the effect of speculative execution from branch prediction.

The tool is able to establish the correctness of this refine-

ment step in under 7 minutes. To do so it needed to check

21 executions in the refined program of maximum length 3,

finding correspondences in the four-stage program for the 5
corresponding rules, fetch_decode for fetch decode,

and exec_branch_mispredict for the mispeculating se-

quences fetch exec_branch_mispredict and fetch
fetch exec_branch_mispredict.

VI. RELATED WORK

There is a rich body of literature for verifying pipelined

processors (see,e.g., [2], [5], [12], [15], [20]). Most of this

work is motivated by proving the correctness of a pipelined or

our-of-order microarchitectural implementation of a processor.

Usually the specification is an unpipelined model of the

processor. The work generally relies on mechanical theorem

proving, and the technique of pipeline draining to match the

specification and implementation states is well established in

this context. Our lifting and projection functions effectively do

the same thing, and at some level, all these papers are about

the ability of the systems to simulate each other. The literature

on bisimulation (see, e.g., [16]) and stuttering simulation (see,

e.g., [14]) is also very rich and relevant.

Our tool is totally automatic and is intended as a debugging

aid as opposed to establishing total correctness of the design.

The problem we address is one of local transformation, i.e.,
an atomic rule which has been split into multiple atomic sub-

rules with the same functionality. We want to show that this

local transformation has no “bad” consequences on the whole

design. In this scenario almost every aspect of the design

has been specified and it becomes amenable to automated

verification. The proof of the refinements we discussed relied

on a concrete size for the inserted FIFOs; in contrast, the proof

of Arvind and Shen [2] works for FIFOs of any size.

Singh et. al. [19] translate a restricted subset of Bluespec to

PROMELA as a means for querying the SPIN model checker

about refinements. Conceptually one could translate both the

specification and implementation programs into PROMELA

and verify that the PROMELA systems represent a valid

PROMELA refinement. The subset of Bluespec they consider

is interesting from a semantic point of view, but not large

enough to deal with realistic programs. Richards et. al. [18]

proposed a more complete translation of Bluespec to PVS

leveraging a monadic representation. Both of these focused on

the task of getting the Bluespec design translated for the model

checker faithfully. Expressing our formulation as correctness

of refinements via the transitive closure of rules as an LTL or

CTL property is not straightforward; in fact it is not clear to

us if this is even possible.

VII. DISCUSSION

In this paper we have presented both a notion of refinement

and a tool for verifying the correctness of such refinements.

The exact notion of correctness is aimed at being easily and

naturally expressible by a designer. The tool quickly finds the

correspondence by searching for a minimum cover of the paths

in the system starting from all possible relatable states.

The notion of equality we implement is that of a closed

system. We have shown intuitively how to rephrase the verifi-

cation of open system, i.e., modules, by encoding the notion

of equivalence programmatically. This is highly practical as it

is both easy to do and lends itself to the way that designers

understand equivalences, allowing them to express their con-

cerns more precisely. It is possible to automatically generate

the necessary contexts to express some standard equivalences,

e.g., trace equivalence.

The current tool can be improved in three orthogonal

dimensions. First, we currently only leverage the theory of bit

vectors. By adding additional theories of FIFOs, arrays, and

uninterpreted functions [13] we can dramatically reduce the

complexity of our SMT queries. Secondly, our interface with

the SMT solver is inefficient, requiring file-level IO. More

than half of the compute time comes from marshaling and

unmarshaling the query representation. This clearly can be

eliminated by directly integrating an SMT solver with our tool.

Finally, our algorithm allows us to reason about each element

of U in parallel. This is quite straightforward to exploit in

a multithreaded implementation of our program. With a fast

enough tool, we are confident that this can help shape how

designers approach their work and will encourage further use

of formal reasoning in design.

ACKNOWLEDGMENTS

We are thankful to the anonymous referee who helped

us clarify the difference between our transitive closure-based

equivalence and the more standard trace-based techniques.

We are thankful to Armando Solar-Lezama for helping us

understand the difficulty of expressing our problem in model

checking. This work has been supported by the National

Science Foundation (#CCF-0541164).

REFERENCES

[1] Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband, and Nirav Dave. High-
level Synthesis: An Essential Ingredient for Designing Complex ASICs.
In Proceedings of ICCAD’04, San Jose, CA, 2004.

[2] Arvind and Xiaowei Shen. Using Term Rewriting Systems to Design
and Verify Processors. IEEE Micro, 19(3):36–46, May 1999.

[3] Arvind and Nirav Dave and Michael Katelman. Getting formal ver-
ification into design flow. In Proceedings of the 15th international
symposium on Formal Methods, FM ’08, pages 12–32, 2008.

[4] Bluespec, Inc., Waltham, MA. Bluespec SystemVerilog Version 3.8
Reference Guide, November 2004.

[5] Jerry R. Burch and David L. Dill. Automatic verification of pipelined
microprocessor control. In Computer Aided Verification, pages 68–80,
1994.

[6] Stephen A. Cook. The complexity of theorem-proving procedures.
In Proceedings of the third annual ACM symposium on Theory of
computing, STOC ’71, pages 151–158, New York, NY, 1971.

[7] Nirav Dave, Arvind, and Michael Pellauer. Scheduling as Rule Com-
position. In Proceedings of Formal Methods and Models for Codesign
(MEMOCODE), Nice, France, 2007.

[8] Nirav Dave, Man Cheuk Ng, Michael Pellauer, and Arvind. A design
flow based on modular refinement. In Formal Methods and Models
for Co-Design, 2010. MEMOCODE ’10. 8th IEEE/ACM International
Conference on, June 2010.

[9] Kermin Fleming, Chun-Chieh Lin, Nirav Dave, Gopal Raghavan, Jamey
Hicks, and Arvind. H.264 decoder: A case study in multiple design
points. In In Proceedings of Formal Methods and Models for Codesign
(MEMOCODE 2008), Anaheim, CA, 2008.

[10] Vijay Ganesh and David L. Dill. A Decision Procedure for Bit-Vectors
and Arrays. In 19th International Conference on Computer Aided
Verification (CAV-07), pages 519–531, 2007.

[11] James C. Hoe and Arvind. Operation-Centric Hardware Description
and Synthesis. IEEE TRANSACTIONS on Computer-Aided Design of
Integrated Circuits and Systems, 23(9), September 2004.

[12] Sava Krstić, Robert B. Jones, and John O’Leary. Mothers of pipelines.
Electron. Notes Theor. Comput. Sci., 174:7–22, June 2007.

[13] S. Lahiri, S. Seshia, and R. Bryant. Modeling and verification of out-
of-order microprocessors in UCLID. In FMCAD ’02, volume 2517 of
LNCS, pages 142–159. Springer-Verlag, November 2002.

[14] P. Manolios. A compositional theory of refinement for branching time.
In CHARME 2003, volume 2860 of Lecture Notes in Computer Science,
pages 304–318. Springer, 2003.

[15] Kenneth L. McMillan. Verification of an implementation of tomasulo’s
algorithm by compositional model checking. In Proceedings of the
10th International Conference on Computer Aided Verification, CAV
’98, pages 110–121, London, UK, 1998.

[16] K. S. Namjoshi. A simple characterization of stuttering bisimulation. In
FSTTCS’97, volume 1346 of Lecture Notes in Computer Science, pages
284–296. Springer, 1997.

[17] David A. Patterson and John L. Hennessy. Computer Organization
& Design: The Hardware/Software Interface, Second Edition. Morgan
Kaufmann, 1997.

[18] Dominic Richards and David Lester. A monadic approach to automated
reasoning for bluespec systemverilog. Innovations in Systems and
Software Engineering, pages 1–11, 2011.

[19] Gaurav Singh and Sandeep Shukla. Verifying compiler based refinement
of bluespec specifications using the spin model checker. In Model
Checking Software, volume 5156 of Lecture Notes in Computer Science,
pages 250–269. Springer Berlin / Heidelberg, 2008.

[20] P.J. Windley. Formal modeling and verification of microprocessors.
Computers, IEEE Transactions on, 44(1):54 –72, jan 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

