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Ectopic expression of the four transcription factors Oct4, Klf4, Sox2 and c-Myc reprograms
adult somatic cells to induced pluripotent stem (iPS) cells.[1 Although iPS cells hold
considerable promise as tools in research and drug discovery, the clinical application of iPS
cellsis hindered by the use of viruses that deliver the exogenous factors and modify the host
genome. It istherefore of great interest to replace virally transduced factors with either
proteins or small molecules. To date a number of compounds have been identified that
facilitate reprogramming of somatic cells. Among these are kenpaullonel?, valproic acidl3l
and inhibitors of TGFB-signaling.l4l Here we have exploited a reporter based screen(? to
identify anew class of compounds that functionally replace Sox2: inhibitors of the Src
family of kinases. These molecules provide novel tools to study the molecular mechanism of
Sox2 in reprogramming.

To screen for small molecule replacements of Sox2, mouse embryonic fibroblasts (MEFs)
harboring the firefly luciferase (Fluc) gene in the Nanoglocusi? (NL-MEFs) were
transduced with Oct4, KIf4 and c-Myc (OKM), seeded into 1536-well platesin standard
growth media and assayed against alarge chemical library[® (750,000 compounds; 2.2 LM).
Compounds that reproducibly and dose-dependently activated the NL reporter >2.5-fold
over vehicle-treated controls (Figure 1a) were then counter-screened in a cell based SV 40-
driven Fluc assay to rule out false positives that directly and non-specifically induce
luciferase signal .[2 €]

To confirm that filtered hit compounds which activate Nanog gene expression also replace
Sox2, iPS cell colony formation was used as a secondary assay. Specificaly, KIf4 and c-
Myc were delivered retrovirally to O4NR-MEFg P! (cells harboring a Doxycycline (Dox)-
inducible Oct4 cDNA in the col/agernlocus and the neomycin-resistance gene in the Oct4
locus), and Oct4 expression was induced by addition of Dox to the culture media (day 0).
Two days later, positive screen hits (1-10 M) were added to OKM-expressing MEFs in
place of Sox2. After 10 days of compound treatment, growth media was supplemented with
neomycin to select for colonies that reactivated the endogenous Oct4locus. The reactivation
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of epigenetically silenced pluripotency-associated genesis required for somatic cellsto
transition to the iPS cell state.l”]

Dox-independent, neomycin resistant colonies were not observed in DM SO-treated (0.1%,
v/v) controls, indicating that vehicle-treated cells had not removed the epigenetic silencing
marks from the Oct4 promoter (which drives NeoR) and were thus not pluripotent. Among
the compounds tested, one compound, iPY razine (iPY; 10 wM), promoted the formation of
neomycin-resistant iPS cell colonies (Figure 1b, blue bars) that survived and could be
cultured in the absence of Dox. Transgenic Oct4 independent (minus Dox) growth of the
iPY -treated i PS cells demonstrated that they had reactivated and relied on endogenous Oct4
to maintain the pluripotent state. In addition, OKM transduction combined with iPY
treatment of MEFs carrying a GFP reporter under control of the endogenous Oct4 |ocug8l
also gaverise to stable, GFP-positive iPS cell lines (Figure S1, Supporting Information).

iPS cells derived from O4ANR-MEFs with iPY, Dox and KM-transduction grew as
pluripotent stem cell colonies in the absence of Dox and iPY. Moreover, these cells were
indistinguishable from ES cells by morphological criteria and expressed the pluripotency-
associated markers Oct4 and SSEA 1 (Figure 1c). We next tested the differentiation potential
of the iPY -derived iPS cellsin ateratoma assay by injecting 10° cells subcutaneously into
NOD-SCID mice. Tumors were isolated 3 weeks later and histological analyses
demonstrated that cell types of al three germ layers were present; these included neural
tissues, bone, cartilage and ciliated epithelium (Figure 1d). Furthermore, iPY -derived iPS
cells contributed to live chimeras, as shown in Figure 1d. The results from this series of
analyses indicate that the iPY -derived, Sox2-free iPS cells are pluripotent.

In order to identify the biological target of iPY, we profiled the compound against a
biochemical panel of tyrosine kinases (51 kinases; Table S1). From this analysis, we found
that iPY potently inhibited a number of tyrosine kinases at 5 wM. Commercially available
inhibitors (Figures 2a-b and Table S2) of these candidate kinase targets were then assayed
for their ability to replace Sox2 in the iPS cell colony formation assay. As shown in Figure
2b, the pan-Src family kinase (SFK) inhibitors Dasatinibl® and PP1119! (Figure 2b) were
able to recapitul ate the activity of iPY . Interestingly, both Dasatinib and PP1 were >2-fold
more active than iPY and efficiently replaced Sox2 (Figure 2b). Moreover, the pan-SFK
inhibitors gave rise to colonies with a similar efficiency to TGFB inhibitors (SB-431542 and
LY-364947). The latter have been reported to replace Sox2 and served as a positive control
in this study.[4l In addition to TGF@ inhibitors, Ichida et a/. have also reported that the SFK
inhibitor PP1 is able to replace Sox2.48l Together with our work, these results indicate that
iPY islikely playing arolein reprogramming by inhibiting Src kinases, although additional
mechanisms cannot be excluded.

SFKs are a class of proto-oncogene tyrosine kinases that include nine mammalian members
(i.e., c-Src, Yes, Fyn, Fgr, Lck, Hek, Blk, Lyn and Frk).[11] Several members of the SFK
family have been reported to influence embryonic stem (ES) cell self-renewal and
differentiation.[*2l For example, activation of c-Src signaling promotes ES cell
differentiation.[*] Consistent with this observation we find that the activation of Src
signaling in MEFs with JK 23914 potently inhibits 4-factor reprogramming (Figure 2c).
Together, our results suggest that SFK signaling is an important mediator of somatic cell
reprogramming, where activation of the SFK pathway prevents reprogramming and
inhibition allows for reprogramming in the absence of exogenous Sox2.

Previously, Ichida ef &. demonstrated that small molecule mediated inhibition of TGFp-
signaling with LY -364947 or E-616452 can replace Sox2 through the activation of Nanog
expression.l4d The results from our screen, which rely on Nanog activation as a surrogate
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for the replacement of Sox2, suggest that the inhibition of SFK- and TGFg-signaling may
converge on asimilar mechanism; that is, the function of Sox2 can be replaced during direct
reprogramming by activating Nanog expression. Another potential scenario comes from the
observation that both Nanog!1®! and SFK inhibitionl13 are capable of maintaining the self-
renewing pluripotent state in ES cells. Thus, TGFp inhibitor-mediated Nanog activation and
pan-SFK inhibition may instead converge on a common mechanism in which the
differentiation of newly formed iPS cellsis prevented, thereby assisting in the transition to
an undifferentiated state. In either case, it isinteresting to note that inhibition of distinct
signaling responses converge on a common end point.

In summary, we applied a cell-based, high-throughput chemical screen to identify small
molecules that replace Sox2 during somatic cell reprogramming. The identification of novel
SFK inhibitors provides new chemical toolsto study the mechanisms underlying direct
reprogramming and may ultimately help to bring iPS cell technology one step closer to
clinical application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chemical complementation of Sox2

(a) OKM-transduced NL-MEFs were treated for 7 days with Dasatinib (0.5 uM), iPYrazine
(10 M), LY -364947 (apositive control; 1 M) or vehicle (0.1% DM SO, v/v). The Nanog
signal from treated cellsis compared to that of non-transduced NL-MEFs, NL-ES cells and
NL-iPS cells. Nanog activity is reported in relative light units (RLU). Error bars, standard
deviation (n = 3). (b) O4ANR-MEFs were transduced with KIf4 and c-Myc and grown in Dox
(blue bars); transduced with OKM (no Dox; green bars); or transduced with OKM (no Dox)
and grown in 1 mM VPA (red bars). Oct4-transduced O4NR-MEFs were used in order to
take advantage of the stringent pluripotency marker, the Oct4-NeoR selection cassette. The
OKM-expressing MEFs were treated with iPY (10 wM), DM SO (0.1%), or transduced with
Sox2. At day 12, resultant colonies were selected upon supplementation of growth media
with neomycin. Colonies that survived were stained for AP and counted 3 days later. Error
bars, standard deviation (n = 3). (c) iPS cells derived from KM-transduced, Dox and iPY -
treated OANR-MEFs stain positive for the pluripotency-associated markers Oct4 and
SSEA-1. (d) iPY -derived i PS cells form teratomas consisting of al three germ layers and
contribute to live chimeras.
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Figure 2. Src family kinase and T GFg-inhibitorsrecapitulate the Sox2 replacement activity of
iPY

(8) Chemical structures of selected kinase inhibitors used in this study. (b) Inhibition of Src-
kinase signaling by dasatinib (0.5 uM) or PP1 (10 M) replaces Sox2 during
reprogramming. O4NR-M EFs were transduced with Klf4 and c-Myc and grown in Dox
(blue bars); transduced with OKM (no Dox; green bars); or transduced with OKM (no Dox)
and grown in 1 mM VPA (red bars). OKM-expressing MEFs were transduced with Sox2 or
treated with kinase inhibitors or vehicle (0.1% DM SO, v/v) for 10 days. At day 12, resultant
colonies were selected upon supplementation of growth media with neomycin. Colonies that
survived were stained for AP and counted 3 days later. Error bars, standard deviation (n =

Angew Chem Int Ed Engl. Author manuscript; availablein PMC 2012 August 01.



1duosnuey Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Staerk et al.

Page 8

3). Complete names, descriptions and concentrations of the kinase inhibitors used in this
assay are provided in Table S2. (c) Activation of ¢-Src signaling by JK239 (10 uM) or
TGFB signaling with TGFB1 ligand (10 ng/mL) inhibits 4-factor reprogramming. O4NR-
M EFs were transduced with Sox2, c-Myc, KIf4 and treated with Dox to initiate Oct4
expression. 12 days later, resultant colonies were selected upon supplementation of growth
media with neomycin. Colonies that survived were AP stained and counted 3 days later.
Error bars, standard deviation (n = 3).
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