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Quasi light fields:

extending the light field to coherent radiation

Anthony Accardi and Gregory Wornell
Massachusetts Institute of Technology

July 30, 2009

Imaging technologies such as dynamic viewpoint generation are engineered for
incoherent radiation using the traditional light field, and for coherent radiation
using electromagnetic field theory. We present a model of coherent image
formation that strikes a balance between the utility of the light field and
the comprehensive predictive power of Maxwell’s equations. We synthesize
research in optics and signal processing to formulate, capture, and form images
from quasi light fields, which extend the light field from incoherent to coherent
radiation. Our coherent cameras generalize the classic beamforming algorithm
in sensor array processing, and invite further research on alternative notions
of image formation.

1 Introduction

The light field represents radiance as a function of position and direction, thereby decom-
posing optical power flow along rays. The light field is an important tool used in many
imaging applications in different disciplines, but is traditionally limited to incoherent light.
In computer graphics, a rendering pipeline can compute new views at arbitrary camera po-
sitions from the light field [1]. In computational photography, a camera can measure the
light field and later generate images focused at different depths, after the picture is taken
[2]. In electronic displays, an array of projectors can present multiple viewpoints encoded in
the light field, enabling 3D television [3]. Many recent incoherent imaging innovations have
been made possible by expressing image pixel values as appropriate integrals over light field
rays.

For coherent imaging applications, the value of decomposing power by position and di-
rection has long been recognized without the aid of a light field, since the complex-valued
scalar field encodes direction in its phase. A hologram encodes multiple viewpoints, but in
a different way than the light field [4]. An ultrasound machine generates images focused
at different depths, but from air pressure instead of light field measurements [5]. A Wigner
distribution function models the operation of optical systems in simple ways, by conveniently
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inferring direction from the scalar field instead of computing non-negative light field values
[6]. Comparing these applications, coherent imaging uses the scalar field to achieve results
similar to those that incoherent imaging obtains with the light field.

Our goal is to provide a model of coherent image formation that combines the utility of
the light field with the comprehensive predictive power of the scalar field. The similarities
between coherent and incoherent imaging motivate exploring how the scalar field and light
field are related, which we address by synthesizing research across three different communi-
ties. Each community is concerned with a particular Fourier transform pair and has its own
name for the light field. In optics, the pair is position and direction, and Walther discovered
the first generalized radiance function by matching power predictions made with radiometry
and scalar field theory [7]. In quantum physics, the pair is position and momentum, and
Wigner discovered the first quasi-probability distribution, or phase-space distribution, as an
aid to computing the expectation value of a quantum operator [8]. In signal processing,
the pair is time and frequency, and while instantaneous spectra were used as early as 1890
by Sommerfeld, Ville is generally credited with discovering the first nontrivial quadratic
time-frequency distribution by considering how to distribute the energy of a signal over time
and frequency [9]. Walther, Wigner, and Ville independently arrived at essentially the same
function, which is one of the ways to express a light field for coherent radiation in terms of
the scalar field.

The light field has its roots in radiometry, a phenomenological theory of radiative power
transport that began with Herschel’s observations of the sun [10], developed through the
work of astrophysicists such as Chandrasekhar [11], and culminated with its grounding in
electromagnetic field theory by Friberg et al. [12]. The light field represents radiance,
which is the fundamental quantity in radiometry, defined as power per unit projected area
per unit solid angle. Illuminating engineers would integrate radiance to compute power
quantities, although no one could validate these calculations with the electromagnetic field
theory formulated by Maxwell. Gershun was one of many physicists who attempted to
physically justify radiometry, and who introduced the phrase light field to represent a three-
dimensional vector field analogous to the electric and magnetic fields [13]. Gershun’s light
field is a degenerate version of the one we discuss, and more closely resembles the time-
averaged Poynting vector that appears in a rigorous derivation of geometric optics [14].
Subsequently, Walther generalized radiometry to coherent radiation in two different ways[7,
15], and Wolf connected Walther’s work to quantum physics [16], ultimately leading to
the discovery of many more generalized radiance functions [17] and a firm foundation for
radiometry [12].

Meanwhile, machine vision researchers desired a representation for all the possible pic-
tures a pinhole camera might take in space-time, which led to the current formulation of the
light field. Inspired by Leonardo da Vinci, Adelson and Bergen defined a plenoptic function
to describe “everything that can be seen” as the intensity recorded by a pinhole camera,
parametrized by position, direction, time, and wavelength [18]. Levoy and Hanrahan tied
the plenoptic function more firmly to radiometry, by redefining Gershun’s phrase light field
to mean radiance parametrized by position and direction [1]. Gortler et al. introduced the
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same construct, but instead called it the lumigraph [19]. The light field is now the dominant
terminology used in incoherent imaging contexts.

Our contribution is to describe and characterize all the ways to extend the light field to
coherent radiation, and to interpret coherent image formation using the resulting extended
light fields. We call our extended light fields quasi light fields, which are analogous to the
generalized radiance functions of optics, the quasi-probability and phase-space distributions
of quantum physics, and the quadratic class of time-frequency distributions of signal pro-
cessing. Agarwal et al. have already extended the light field to coherent radiation [17], and
the signal processing community has already classified all of the ways to distribute power
over time and frequency [20]. Both have traced their roots to quantum physics. But to our
knowledge, no one has connected the research to show 1) that the quasi light fields represent
all the ways to extend the light field to coherent radiation, and 2) that the signal processing
classification informs which quasi light field to use for a specific application. We further
contextualize the references, making any unfamiliar literature more accessible to specialists
in other areas.

Our paper is organized as follows. We describe the traditional light field in Section 2. We
formulate the quasi light fields in Section 3, by reviewing and relating the relevant research
in optics, quantum physics, and signal processing. In Section 4, we describe how to capture
quasi light fields, discuss practical sampling issues, and illustrate the impact of light field
choice on energy localization. In Section 5, we describe how to form images with quasi light
fields. We derive a light field camera, demonstrate and compensate for diffraction limitations
in the near zone, and generalize the classic beamforming algorithm in sensor array processing.
We conclude the paper in Section 6, where we remark on the utility of quasi light fields and
future perspectives on image formation.

2 The Traditional Light Field

The light field is a useful tool for incoherent imaging because it acts as an intermediary
between the camera and the picture, decoupling information capture and image production:
the camera measures the light field, from which many different traditional pictures can be
computed. We define a pixel in the image of a scene by a surface patch σ and a virtual
aperture (Figure 1). Specifically, we define the pixel value as the power P radiated by
σ towards the aperture, just as an ideal single-lens camera would measure. According to
radiometry, P is an integral over a bundle of light field rays [21]:

P =

∫

σ

∫

Ωr

L(r, s) cosψ d2s d2r, (1)

where L(r, s) is the radiance at position r and in unit direction s, ψ is the angle that s makes
with the surface normal at r, and Ω

r
is the solid angle subtended by the virtual aperture at

r. The images produced by many different conventional cameras can be computed from the
light field using (1) [22].
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Figure 1: We can compute the value of each pixel in an image produced by an arbitrary virtual
camera, defined as the power emitted from a scene surface patch towards a virtual aperture, by
integrating an appropriate bundle of light field rays that have been previously captured with remote
hardware.

The light field has an important property that allows us to measure it remotely: the
light field is constant along rays in a lossless medium [21]. To measure the light field on
the surface of a scene, we follow the rays for the images we are interested in, and intercept
those rays with our camera hardware (Figure 1). However, our hardware must be capable
of measuring the radiance at a point and in a specific direction; a conventional camera that
simply measures the irradiance at a point is insufficient. We can discern directional power
flow using a lens array, as is done in a plenoptic camera [2].

In order to generate coherent images using the same framework described above, we must
overcome three challenges. First, we must determine how to measure power flow by position
and direction to formulate a coherent light field. Second, we must capture the coherent light
field remotely and be able to infer behavior at the scene surface. Third, we must be able to
use (1) to produce correct power values, so that we can form images by integrating over the
coherent light field. We address each challenge in a subsequent section.

3 Formulating Quasi Light Fields

We motivate, systematically generate, and characterize the quasi light fields by relating
existing research. We begin in Section 3.1 with research in optics that frames the challenge
of extending the light field to coherent radiation in terms of satisfying a power constraint
required for radiometry to make power predictions consistent with scalar field theory. While
useful in developing an intuition for quasi light fields, the power constraint does not allow
us to easily determine the quasi light fields. We therefore proceed in Section 3.2 to describe
research in quantum physics that systematically generates quasi light fields satisfying the
power constraint, and that shows how the quasi light fields are true extensions that reduce
to the traditional light field under certain conditions. While useful for generating the quasi
light fields, the quantum physics approach does not allow us to easily characterize them.
Therefore, in Section 3.3 we map the generated quasi light fields to the quadratic class of
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time-frequency distributions, which has been extensively characterized and classified by the
signal processing community. By relating research in optics, quantum physics, and signal
processing, we express all the ways to extend the light field to coherent radiation, and provide
insight on how to select an appropriate quasi light field for a particular application.

We assume a perfectly coherent complex scalar field U(r) at a fixed frequency ν for
simplicity, although we comment in Section 6 on how to extend the results to broadband,
partially coherent radiation. The radiometric theory we discuss assumes a planar source at
z = 0. Consequently, although the light field is defined in three-dimensional space, much of
our analysis is confined to planes z = z0 parallel to the source. Therefore, for convenience,
we use r = (x, y, z) and s = (sx, sy, sz) to indicate three-dimensional vectors and r⊥ = (x, y)
and s⊥ = (sx, sy) to indicate two-dimensional, projected versions.

3.1 Intuition from Optics

An extended light field must produce accurate power transport predictions consistent with
rigorous theory; thus the power computed from the scalar field using wave optics determines
the allowable light fields via the laws of radiometry. One way to find extended light fields
is to guess a light field equation that satisfies this power constraint, which is how Walther
identified the first extended light field [7]. The scenario involves a planar source at z = 0
described by U(r), and a sphere of large radius ρ centered at the origin. We use scalar
field theory to compute the flux through part of the sphere, and then use the definition of
radiance to determine the light field from the flux.

According to scalar field theory, the differential flux dΦ through a portion of the sphere
subtending differential solid angle dΩ is given by integrating the radial component of the
energy flux density vector F. From diffraction theory, the scalar field in the far zone is

U∞(ρs) = −
2πi

k
sz

exp(ikρ)

ρ
a(s) (2)

where k = 2π/λ is the wave number, λ is the wavelength, and

a(s) =

(

k

2π

)2 ∫

U(r) exp(−iks · r) d2r (3)

is the plane wave component in direction s [23]. Now

F∞(ρs) =

(

2π

k

)2

a(s)a∗(s)
s2

z

ρ2
s, (4)

so that

dΦ =

(

2π

k

)2

s2

za(s)a
∗(s) dΩ. (5)

According to radiometry, radiant intensity is flux per unit solid angle

I(s) =
dΦ

dΩ
=

(

2π

k

)2

s2

za(s)a
∗(s). (6)
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Radiance is I(s) per unit projected area [21], and this is where the guessing happens: there
are many ways to distribute (6) over projected area by factoring out sz and an outer integral
over the source plane, but none yield light fields that satisfy all the traditional properties of
radiance [24]. One way to factor (6) is to substitute the expression for a(s) from (3) into (6)
and change variables:

I(s) = sz

∫

[

(

k

2π

)2

sz

∫

U

(

r +
1

2
r′

)

U∗

(

r −
1

2
r′

)

exp (−iks⊥ · r′⊥) d2r′

]

d2r. (7)

The bracketed expression is Walther’s first extended light field

LW(r, s) =

(

k

2π

)2

szW(r, s⊥/λ), (8)

where

W(r, s⊥) =

∫

U

(

r +
1

2
r′

)

U∗

(

r −
1

2
r′

)

exp (−i2πs⊥ · r′⊥) d2r′ (9)

is the Wigner distribution [25]. We may manually factor (6) differently to obtain other
extended light fields in an ad hoc manner, but it is hard to find and verify the properties of
all extended light fields this way, and we would have to individually analyze each light field
that we do manage to find. So instead, we pursue a systematic approach to exhaustively
identify and characterize the extended light fields that guarantee the correct radiant intensity
in (6).

3.2 Generating Explicit Extensions from Quantum Physics

The mathematics of quantum physics provides us with a systematic extended light field
generator that factors the radiant intensity in (6) in a structured way. Walther’s extended
light field in (8) provides the hint for this connection between radiometry and quantum
physics. Specifically, Wolf recognized the similarity between Walther’s light field and the
Wigner phase-space distribution [8] from quantum physics [16]. Subsequently, Agarwal,
Foley, and Wolf repurposed the mathematics behind phase-space representation theory to
generate new light fields instead of distributions [17]. We summarize their approach, define
the class of quasi light fields, describe how quasi light fields extend traditional radiometry,
and show how quasi light fields can be conveniently expressed as filtered Wigner distributions.

Agarwal et al.’s key insight was to introduce a position operator r̂⊥ and a direction
operator ŝ⊥ that obey the commutation relations [26]

[x̂, ŝx] = iλ/2π, [ŷ, ŝy] = iλ/2π, (10)

and to map the different ways of ordering the operators to different extended light fields. This
formulation is valuable for two reasons. First, (10) is analogous to the quantum-mechanical
relations for position and momentum, allowing us to exploit the phase-space distribution
generator from quantum physics for our own purposes, thereby providing an explicit formula
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for extended light fields. Second, in the geometric optics limit as λ → 0, the operators
commute per (10), so that all of the extended light fields collapse to the same function that
can be related to the traditional light field. Therefore, Agarwal et al.’s formulation not only
provides us with different ways of expressing the light field for coherent radiation, but also
explains how these differences arise as the wavelength becomes non-negligible.

We now summarize the phase-space representation calculus that Agarwal and Wolf in-
vented [27] to map operator orderings to functions, which Agarwal et al. later applied to
radiometry [17], culminating in a formula for extended light fields. The phase-space repre-
sentation theory generates a function L̃Ω from any operator L̂ for each distinct way Ω of
ordering collections of r̂⊥ and ŝ⊥. So by choosing a specific L̂ defined by its matrix elements
using the Dirac notation [26]

〈

rR

⊥

∣

∣L̂
∣

∣rC

⊥

〉

= U
(

rR
)

U∗
(

rC
)

, (11)

and supplying L̂ as input, we obtain the extended light fields

LΩ(r, s) =

(

k

2π

)2

szL̃
Ω (r⊥, s⊥) (12)

as outputs. The power constraint from Section 3.1 translates to a minor constraint on the
allowed orderings Ω, so that LΩ can be factored from (6). Finally, there is an explicit formula
for LΩ [27], which in Friberg et al.’s form [12] reads

LΩ(r, s) =
k2

(2π)4
sz

∫∫∫

Ω̃ (u, kr′′⊥) exp [−iu · (r⊥ − r′⊥)] exp (−iks⊥ · r′′⊥)

×U

(

r′ +
1

2
r′′

)

U∗

(

r′ −
1

2
r′′

)

d2u d2r′ d2r′′, (13)

where Ω̃ is a functional representation of the ordering Ω.
Previous research has related the extended light fields LΩ to the traditional light field,

by examining how the LΩ behave for globally incoherent light of a small wavelength, an
environment technically modeled by a quasi-homogeneous source in the geometric optics
limit where λ → 0. As λ → 0, r̂⊥ and ŝ⊥ commute per (10), so that all orderings Ω are
equivalent and all of the extended light fields LΩ collapse to the same function. Since, in the
source plane, Foley and Wolf showed that one of those light fields behaves like traditional
radiance [28] for globally incoherent light of a small wavelength, all of the LΩ behave like
traditional radiance for globally incoherent light of a small wavelength. Furthermore, Friberg
et al. showed that many of the LΩ are constant along rays, for globally incoherent light of
a small wavelength [12]. The LΩ thereby subsume the traditional light field, and globally
incoherent light of a small wavelength is the environment in which traditional radiometry
holds.

To more easily relate LΩ to the signal processing literature, we conveniently express LΩ

as a filtered Wigner distribution. We introduce a function Π and substitute

Ω̃(u,v) =

∫∫

Π(−a,−b) exp [−i(a · u + b · v)] d2a d2b (14)
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into (13), integrate first over u, then over a, and finally substitute b = s′⊥ − s⊥:

LΩ(r, s) =

(

k

2π

)2

sz

∫∫

Π(r⊥ − r′⊥, s⊥ − s′⊥)W(r′, s′⊥/λ) d2r′ d2s′

=

(

k

2π

)2

sz Π(r⊥, s⊥) ⊗ W(r, s⊥/λ). (15)

The symbol ⊗ in (15) denotes convolution in both r⊥ and s⊥. Each filter kernel Π yields a
different light field. There are only minor restrictions on Π, or equivalently on Ω̃. Specifically,
Agarwal and Wolf’s calculus requires that [27]

1/Ω̃ is an entire analytic function with no zeros on the real component axes. (16)

Agarwal et al.’s derivation additionally requires that

Ω̃(0,v) = 1 for all v, (17)

so that LΩ satisfies the laws of radiometry and is consistent with (6) [17].
We call the functions LΩ, the restricted class of extended light fields that we have system-

atically generated, quasi light fields, in recognition of their connection with quasi-probability
distributions in quantum physics.

3.3 Characterization from Signal Processing

Although we have identified the quasi light fields and justified how they extend the traditional
light field, we must still show that we have found all possible ways to extend the light field
to coherent radiation, and we must indicate how to select a quasi light field for a specific
application. We address both concerns by relating quasi light fields to bilinear forms of
U and U∗ that are parameterized by position and direction. First, such bilinear forms
reflect all the different ways to represent the energy distribution of a complex signal in signal
processing, and therefore contain all possible extended light fields, allowing us to identify any
unaccounted for by quasi light fields. Second, we may use the signal processing classification
of bilinear forms to characterize quasi light fields and guide the selection of one for an
application.

To relate quasi light fields to bilinear forms, we must express the filtered Wigner distri-
bution in (15) as a bilinear form. Towards this end, we first express the filter kernel Π in
terms of another function K:

Π(a,b) =

∫

K

(

−a +
λ

2
v,−a −

λ

2
v

)

exp(−i2πb · v) d2v. (18)

We substitute (18) into (15), integrate first over s′⊥, then over v, and finally substitute

rR = r′ +
1

2
r′′, rC = r′ −

1

2
r′′ (19)
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to express the quasi light field as

L(r, s) =

(

k

2π

)2

sz

∫∫

U
(

rR
)

{

K
(

rR

⊥ − r⊥, r
C

⊥ − r⊥
)

× exp
[

−iks⊥ ·
(

rR

⊥ − rC

⊥

)]

}

U∗
(

rC
)

d2rR d2rC. (20)

We recognize that (20) is a bilinear form of U and U∗, with kernel indicated by the braces.
The structure of the kernel of the bilinear form in (20) limits L to a shift-invariant

energy distribution. Specifically, translating the scalar field in (20) in position and direction
orthogonal to the z-axis according to

U(r) → U
(

r − r0
)

exp
(

iks0

⊥ · r⊥
)

(21)

results in a corresponding translation in position and direction in the light field, after rear-
ranging terms:

L(r, s) → L
(

r − r0, s− s0
)

. (22)

Such shift-invariant bilinear forms comprise the quadratic class of time-frequency distribu-
tions, which is sometimes misleadingly referred to as Cohen’s class [20].

The quasi light fields represent all possible ways of extending the light field to coherent
radiation. This is because any reasonably defined extended light field must be shift-invariant
in position and direction, as translating and rotating coordinates should modify the scalar
field and light field representations in corresponding ways. Thus, on the one hand, an
extended light field must be a quadratic time-frequency distribution. On the other hand, (20)
implies that quasi light fields span the entire class of quadratic time-frequency distributions,
apart from the constraints on Π described at the end of Section 3.2. The constraint in
(17) is necessary to satisfy the power constraint in (6), which any extended light field must
satisfy. The remaining constraints in (16) are technical details concerning analyticity and
the location of zeros; extended light fields strictly need not satisfy these mild constraints,
but the light fields that are ruled out are well-approximated by light fields that satisfy them.

We obtain a concrete sensor array processing interpretation of quasi light fields by group-
ing the exponentials in (20) with U instead of K:

L(r, s) =

(

k

2π

)2

sz

∫∫

{

U
(

rR
)

exp
[

iks ·
(

r − rR
)]

}

K
(

rR

⊥ − r⊥, r
C

⊥ − r⊥
)

×
{

U
(

rC
)

exp
[

iks ·
(

r − rC
)]

}∗

d2rR d2rC. (23)

The integral in (23) is the expected value of the energy of the output of a spatial filter
with impulse response exp(iks · r) applied to the scalar field, when using K to estimate the
correlation E[U(rR)U∗(rC)] by

U
(

rR
)

K
(

rR

⊥ − r⊥, r
C

⊥ − r⊥
)

U∗
(

rC
)

. (24)

That is, the choice of quasi light field corresponds to a choice of how to infer coherence
structure from scalar field measurements. In adaptive beamforming, the spatial filter exp(iks·
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r) focuses a sensor array on a particular plane wave component, and K serves a similar role
as the covariance matrix taper that gives rise to design features such as diagonal loading [29].
But for our purposes, the sensor array processing interpretation in (23) allows us to cleanly
separate the choice of quasi light field in K from the plane wave focusing in the exponentials.

Several signal processing books meticulously classify the quadratic class of time-frequency
distributions by their properties, and discuss distribution design and use for various applica-
tions [25, 20]. We can use these resources to design quasi light fields for specific applications.
For example, if we desire a light field with fine directional localization, we may first try the
Wigner quasi light field in (8), which is a popular starting choice. We may then discover
that we have too many artifacts from interfering spatial frequencies, called cross terms, and
therefore wish to consider a reduced interference quasi light field. We might try the modified
B-distribution, which is a particular reduced interference quasi light field that has a tunable
parameter to suppress interference. Or, we may decide to design our own quasi light field in
a transformed domain using ambiguity functions. The resulting tradeoffs can be tailoring to
specific application requirements.

4 Capturing Quasi Light Fields

To capture an arbitrary quasi light field, we sample and process the scalar field. In inco-
herent imaging, traditional light fields are typically captured by instead making intensity
measurements at a discrete set of positions and directions, as in done in the plenoptic cam-
era [2]. While it is possible to apply the same technique to coherent imaging, only a small
subset of quasi light fields that exhibit poor localization properties can be captured this way.
In comparison, all quasi light fields can be computed from the scalar field, as in (15). We
therefore sample the scalar field with a discrete set of sensors placed at different positions in
space, and subsequently process the scalar field measurements to compute the desired quasi
light field. We describe the capture process for three specific quasi light fields in Section 4.1,
and demonstrate the different localization properties of these quasi light fields via simulation
in Section 4.2.

4.1 Sampling the Scalar Field

To make the capture process concrete, we capture three different quasi light fields. For
simplicity, we consider a two-dimensional scene and sample the scalar field with a linear
array of sensors regularly spaced along the y-axis (Figure 2). With this geometry, the
scalar field U is parameterized by a single position variable y, and the discrete light field
ℓ is parameterized by y and the direction component sy. The sensor spacing is d/2, which
we assume is fine enough to ignore aliasing effects. This assumption is practical for long-
wavelength applications such as millimeter-wave radar. For other applications, aliasing can
be avoided by applying an appropriate pre-filter. From the sensor measurements, we compute
three different quasi light fields, including the spectrogram and the Wigner.

Although the spectrogram quasi light field is attractive because it can be captured like a
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Figure 2: We capture a discrete quasi light field ℓ by sampling the scalar field at regularly-spaced
sensors and processing the resulting measurements. We may optionally apply an aperture stop T

to mimic traditional light field capture, but this restricts us to capturing quasi light fields with
poor localization properties.

traditional light field by making intensity measurements, it exhibits poor localization prop-
erties. Zhang and Levoy explain [30] how to capture the spectrogram by placing an aperture
stop specified by a transmission function T over the desired position y before computing
a Fourier transform to extract the plane wave component in the desired direction sy, and
previously Ziegler et al. used the spectrogram as a coherent light field to represent a holo-
gram [4]. The spectrogram is an important quasi light field because it is the building block
for the quasi light fields that can be directly captured by making intensity measurements,
since all non-negative quadratic time-frequency distributions, and therefore all non-negative
quasi light fields, are sums of spectrograms [20]. Ignoring constants and sz, we compute the
discrete spectrogram from the scalar field samples by

ℓS(y, sy) =

∣

∣

∣

∣

∣

∑

n

T (nd)U(y + nd) exp (−ikndsy)

∣

∣

∣

∣

∣

2

. (25)

The Wigner quasi light field is a popular choice that exhibits good energy localization
in position and direction [20]. We already identified the Wigner quasi light field in (8); the
discrete version is

ℓW(y, sy) =
∑

n

U(y + nd/2)U∗(y − nd/2) exp (−ikndsy) . (26)

Evidently, the spectrogram and Wigner distribute energy over position and direction in very
different ways. Per (25), the spectrogram first uses a Fourier transform to extract directional
information and then computes a quadratic energy quantity, while the Wigner does the
reverse, per (26). On the one hand, this reversal allows the Wigner to better localize energy
in position and direction, since the Wigner is not bound by the classical Fourier uncertainty
principle as the spectrogram is. On the other hand, the Wigner’s nonlinearities introduce
cross-term artifacts by coupling energy in different directions, thereby replacing the simple
uncertainty principle with a more complicated set of tradeoffs [20].
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We now introduce a third quasi light field to capture, in order to help us understand the
implications of requiring quasi light fields to exhibit traditional light field properties. Specif-
ically, traditional light fields have real non-negative values that are zero where the scalar
field is zero, whereas no quasi light field behaves this way [24]. Although the spectrogram
has non-negative values, the support of both the spectrogram and Wigner spills over into
regions where the scalar field is zero. In contrast, the conjugate Rihaczek quasi light field,
which can be obtained by substituting (3) for a∗(s) in (6) and factoring, is identically zero
at all positions where the scalar field is zero and for all directions in which the plane wave
component is zero:

LR(r, s) = szU
∗(r) exp(iks · r)a(s). (27)

However, unlike the non-negative spectrogram and the real Wigner, the Rihaczek is complex-
valued, as each of its discoverers independently observed: Walther in optics [15], Kirkwood
in quantum physics [31], and Rihaczek in signal processing [32]. The discrete conjugate
Rihaczek quasi light field is

ℓR(y, sy) = U∗(y) exp (ikysy)
∑

n

U(nd) exp (−ikndsy) . (28)

4.2 Localization Tradeoffs

Different quasi light fields localize energy in position and direction in different ways, so
that the choice of quasi light field impacts the potential resolution achieved in an imaging
application. We illustrate the diversity of behavior by simulating a plane wave propagating
past a screen edge and computing the spectrogram, Wigner, and Rihaczek quasi light fields
from scalar field samples (Figure 3). This simple scenario stresses the main tension between
localization in position and direction: each quasi light field must encode the position of the
screen edge as well as the downward direction of the plane wave. The quasi light fields serve
as intermediate representations used to jointly estimate the position of the screen edge and
the orientation of the plane wave.

Our simulation accurately models diffraction using our implementation of the angular
spectrum propagation method, which is the same technique used in commercial optics soft-
ware to accurately simulate wave propagation [33]. We propagate a plane wave with wave-
length λ = 3 mm a distance R = 50 m past the screen edge, where we measure the scalar
field and compute the three discrete light fields using (25), (26), and (28). To compute
the light fields, we set d = λ/10, run the summations over |n| ≤ 10/λ, and use a rect-
angular window function of width 10 cm for T . We plot ℓS, |ℓW|, and |ℓR| in terms of
the two-plane parameterization of the light field [1], so that each ray is directed from a
point u in the plane of the screen towards a point y in the measurement plane, and so that

sy = (y − u)/ [R2 + (y − u)2]
1/2

.
We compare each light field’s ability to estimate the position of the screen edge and the

orientation of the plane wave (Figure 3). Geometric optics provides an ideal estimate: we
should ideally only see rays pointing straight down (u = y) past the screen edge, correspond-
ing to a diagonal line in the upper-right quadrant of the light field plots. Instead, we see
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Figure 3: The spectrogram does not resolve a plane wave propagating past the edge of an opaque
screen as well as other quasi light fields, such as the Wigner and Rihaczek. We capture all three quasi
light fields by sampling the scalar field with sensors and processing the measurements according to
(25), (26), and (28). The ringing and blurring in the light field plots indicate the diffraction fringes
and energy localization limitations.

blurred lines with ringing. The ringing is physically accurate and indicates the diffraction
fringes formed on the measurement plane. The blurring indicates localization limitations.
While the spectrogram’s window T can be chosen to narrowly localize energy in either po-
sition or direction, the Wigner narrowly localizes energy in both, depicting instantaneous
frequency without being limited by the classical Fourier uncertainty principle [20].

It may seem that the Wigner light field is preferable to the others and the clear choice for
all applications. While the Wigner light field possesses excellent localization properties, it
exhibits cross-term artifacts due to interference from different plane wave components. An
alternative quasi light field such as the Rihaczek can strike a balance between localization
and cross-term artifacts, and therefore may be a more appropriate choice, as discussed at
the end of Section 3.3. If our goal were to only estimate the position of the screen edge, we
might prefer the spectrogram; to jointly estimate both position and plane wave orientation,
we prefer the Wigner; and if there were two plane waves instead of one, we might prefer
the Rihaczek. One thing is certain, however: we must abandon non-negative quasi light
fields to achieve better localization tradeoffs, as all non-negative quadratic time-frequency
distributions are sums of spectrograms and hence exhibit poor localization tradeoffs [20].
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5 Image Formation

We wish to form images from quasi light fields for coherent applications similarly to how we
form images from traditional light fields for incoherent applications, by using (1) to integrate
bundles of light field rays to compute pixel values (Figure 1). However, simply selecting a
particular captured quasi light field L and evaluating (1) raises three questions about the
validity of the resulting image. First, is it meaningful to distribute coherent energy over
surface area by factoring radiant intensity in (6)? Second, does the far-zone assumption
implicit in radiometry and formalized in (2) limit the applicability of quasi field fields? And
third, how do we capture quasi light field rays remotely if, unlike the traditional light field,
quasi light fields need not be constant along rays?

The first question is a semantic one. For incoherent light of a small wavelength, we
define an image in terms of the power radiating from a scene surface towards an aperture,
and physics tells us that this uniquely specifies the image (Section 3), which may be expressed
in terms of the traditional light field. If we attempt to generalize the same definition of an
image to partially coherent, broadband light, and specifically to coherent light at a non-
zero wavelength, we must ask how to isolate the power from a surface patch towards the
aperture, according to classical wave optics. But there is no unique answer; different isolation
techniques correspond to different quasi light fields. Therefore, to be well-defined, we must
extend the definition of an image for coherent light to include a particular choice of quasi
light field, which corresponds to a particular factorization of radiant intensity.

The second and third questions speak of assumptions in the formulation of quasi light
fields and in the image formation from quasi light fields, which can lead to coherent imaging
inaccuracies when these assumptions are not valid. Specifically, unless the scene surface and
aperture are far apart, the far-zone assumption in (2) does not hold, so that quasi light fields
are incapable of modeling near-zone behavior. Also, unless we choose a quasi light field that
is constant along rays, such as an angle-impact Wigner function [34], remote measurements
might not accurately reflect the light field at the scene surface [35], resulting in imaging
inaccuracies. Therefore, in general, integrating bundles of remotely captured quasi light field
rays produces an approximation of the image we have defined. We assess this approximation
by building an accurate near-zone model in Section 5.1, simulating imaging performance of
several coherent cameras in Section 5.2, and showing how our image formation procedure
generalizes the classic beamforming algorithm in Section 5.3.

5.1 Near-Zone Radiometry

We take a new approach to formulating light fields for coherent radiation that avoids making
the assumptions that 1) the measurement plane is far from the scene surface and 2) light
fields are constant along rays. The resulting light fields are accurate in the near zone, and
may be compared with quasi light fields to understand quasi light field limitations. The key
idea is to express a near-zone light field L(r, s) on the measurement plane in terms of the
infinitesimal flux at the point where the line containing the ray (r, s) intersects the scene
surface (Figure 4). First we compute the scalar field at the scene surface, next we compute
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the infinitesimal flux, and then we identify a light field that predicts the same flux using the
laws of radiometry. In contrast with Walther’s approach (Section 3.1), 1) we do not make
the far-zone approximation as in (2), and 2) we formulate the light field in the measurement
plane instead of in the source plane at the scene surface. Therefore, in forming an image
from a near-zone light field, we are not limited to the far zone and we need not relate the
light field at the measurement plane to the light field at the scene surface.

s

y

z

dΩ

r = 0

dΦ

virtual 

aperture

scene 

surface 

patch

remote

measurement 

plane

r
P = −ρs

r
M

Figure 4: To ensure that integrating bundles of remote light field rays in the near zone results in
an accurate image, we derive a light field LR

ρ (r, s) in the measurement plane from the infinitesimal

flux dΦ at the point r
P where the ray originates from the scene surface patch. We thereby avoid

making the assumptions that the measurement plane is far from the scene and that the light field
is constant along rays.

The first step in deriving a near-zone light field L for the ray (r, s) is to use the scalar
field on the measurement plane to compute the scalar field at the point rP where the line
containing the ray intersects the scene surface. We choose coordinates so that the measure-
ment plane is the xy-plane, the scene lies many wavelengths away in the negative z < 0
half-space, and r is at the origin. We denote the distance between the source rP on the scene
surface and the point of observation r by ρ. Under a reasonable bandwidth assumption, the
inverse diffraction formula expresses the scalar field at rP in terms of the scalar field on the
measurement plane [36]:

U(rP) =
ik

2π

∫

U(rM)
−zP

|rP − rM|

exp(−ik|rP − rM|)

|rP − rM|
d2rM. (29)

Next, we compute the differential flux dΦ through a portion of a sphere at rP subtending
differential solid angle dΩ. We obtain dΦ by integrating the radial component of the energy
flux density vector

F(rP) = −
1

4πkν

[

∂U∗

∂t
∇U +

∂U

∂t
∇U∗

]

. (30)

To keep the calculation simple, we ignore amplitude decay across the measurement plane,
approximating

|rP − rM| ≈ |rP| (31)
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outside the exponential in (29), and

∂

∂|rP|
|rP − rM| ≈ 1, (32)

when evaluating (30), resulting in

F(−ρs) =

(

2π

k

)2

ã(−ρs)ã∗(−ρs)
s2

z

ρ2
s, (33)

where

ã(−ρs) =

(

k

2π

)2 ∫

U(rM) exp(−ik| − ρs − rM|) d2rM. (34)

Thus,

dΦ =

(

2π

k

)2

s2

zã(−ρs)ã
∗(−ρs) dΩ. (35)

Finally, we factor out sz and an outer integral over surface area from dΦ/dΩ to determine
a near-zone light field. Unlike in Section 3.1, the nonlinear exponential argument in ã
complicates the factoring. Nonetheless, we obtain a near-zone light field that generalizes the
Rihaczek by substituting (34) for ã∗ in (35). After factoring and freeing r from the origin
by substituting r− ρs for −ρs, we obtain

LR

ρ (r, s) = szU
∗(r) exp(ikρ)ã(r− ρs)

=

(

k

2π

)2

szU
∗(r) exp(ikρ)

∫

U
(

rM
)

exp
(

−ik|r − ρs− rM|
)

d2rM, (36)

where the subscript ρ reminds us of this near-zone light field’s dependence on distance.
LR

ρ is evidently neither the traditional light field nor a quasi light field, as it depends
directly on the scene geometry through an additional distance parameter. This distance
parameter ρ is a function of r, s, and the geometry of the scene; it is the distance along s

between the scene surface and r. We may integrate LR

ρ over a bundle of rays to compute the
image pixel values just like any other light field, as long as we supply the right value of ρ
for each ray. In contrast, quasi light fields are incapable of modeling optical propagation in
the near zone, as it is insufficient to specify power flow along rays. We must also know the
distance between the source and point of measurement along each ray.

We can obtain near-zone generalizations of all quasi light fields through the sensor array
processing interpretation in Section 3.3. Recall that each quasi light field corresponds to a
particular choice of the function K in (23). For example, setting K(a,b) = δ(b), where δ
is the Dirac delta function, yields the Rihaczek quasi light field LR in (27). To generalize
quasi light fields to the near zone, we focus at a point instead of a plane wave component by
using a spatial filter with impulse response exp (−ik |r − ρs|) instead of exp(iks · r) in (23).
Then, choosing K(a,b) = δ(b) yields LR

ρ , the near-zone generalization of the Rihaczek in
(36), and choosing other functions K yield near-zone generalizations of the other quasi light
fields.
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5.2 Near-Zone Diffraction Limitations

We compute and compare image pixel values using the Rihaczek quasi light field LR and
its near-zone generalization LR

ρ , demonstrating how all quasi light fields implicitly make the
Fraunhofer diffraction approximation that limits accurate imaging to the far zone. First, we
construct coherent cameras from LR and LR

ρ . For simplicity, we consider a two-dimensional
scene and sample the light fields, approximating the integral over a bundle of rays (Figure
1) by the summation of discrete rays directed from the center rP of the scene surface patch
to each sensor on a virtual aperture of diameter A, equally spaced every distance d in the
measurement plane (Figure 5a). Ignoring constants and sz, we compute the pixel values for
a far-zone camera from the Rihaczek quasi light field in (27),

PR =
∑

|nd|<A/2

[

U(nd) exp
(

−ikndsn
y

)]∗

[

∑

m

U(md) exp
(

−ikmdsn
y

)

]

, (37)

and for a near-zone camera from the near-zone generalization of the Rihaczek in (36),

PR

ρ =





∑

|nd|<A/2

U(nd) exp (−ik∆n)





∗
[

∑

m

U(md) exp (−ik∆m)

]

. (38)

In (37), sn denotes the unit direction from rP to the nth sensor, and in (38), ∆n denotes the
distance between rP and the nth sensor.

By comparing the exponentials in (37) with those in (38), we see that the near-zone
camera aligns the sensor measurements along spherical wavefronts diverging from the point
of focus rP, while the far-zone camera aligns measurements along plane wavefront approxi-
mations (Figure 5b). Spherical wavefront alignment makes physical sense in accordance with
the Huygens-Fresnel principle of diffraction, while approximating spherical wavefronts with
plane wavefronts is reminiscent of Fraunhofer diffraction. In fact, the far-zone approxima-
tion in (2) used to derive quasi light fields follows directly from the Rayleigh-Sommerfeld
diffraction integral by linearizing the exponentials, which is precisely Fraunhofer diffraction.
Therefore, all quasi light fields are only valid for small Fresnel numbers, when the source
and point of measurement are sufficiently far away from each other.

We expect the near-zone camera to outperform the far-zone camera in near-zone imaging
applications, which we demonstrate by comparing their ability to resolve small targets mov-
ing past their field of view. As a baseline, we introduce a third camera with non-negative
pixel values PB

ρ by restricting the summation over m in (38) to |md| < A/2, which results
in the beamformer camera used in sensor array processing [5, 37]. Alternatively, we could
extend the summation over n in (38) to the entire array, but this would average anisotropic
responses over a wider aperture diameter, resulting in a different image. We simulate an
opaque screen containing a pinhole that is backlit with a coherent plane wave (Figure 6).
The sensor array is D = 2 m wide and just R = 1 m away from the screen. The virtual
aperture is A = 10 cm wide and the camera is focused on a fixed 1 mm pixel straight ahead
on the screen. The pinhole has width 1 mm, which is smaller than the wavelength λ = 3
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Figure 5: The near-zone light field results in a camera that aligns spherical wavefronts diverging
from the point of focus r

P, in accordance with the Huygens-Fresnel principle of diffraction, while
quasi light fields result in cameras that align plane wavefront approximations, in accordance with
Fraunhofer diffraction. Quasi light fields are therefore only accurate in the far zone. We derive both
cameras by approximating the integral over a bundle of rays by the summation of discrete light field
rays (a), and we interpret the operation of each camera by how they align sensor measurements
along wavefronts from r

P (b).

mm, so the plane wavefronts bend into slightly spherical shapes via diffraction. We move
the pinhole to the right, recording pixel values |PR|, |PR

ρ |, and PB

ρ for each camera at each
pinhole position. Due to the nature of the coherent combination of the sensor measurements
that produces the pixel values, each camera records a multi-lobed response. The width of
the main lobe indicates the near-zone resolution of the camera.

The near-zone camera is able to resolve the pinhole down to its actual size of 1 mm, greatly
outperforming the far-zone camera which records a blur 66 cm wide, and even outperforming
the beamformer camera. Neither comparison is surprising. First, with a Fresnel number of
D2/Rλ ≈ 1333, the Fraunhofer approximation implicitly made by quasi light fields does not
hold for this scenario, so we expect the far-zone camera to exhibit poor resolution. Second,
the near-zone camera uses the entire D = 2 m array instead of just the sensors on the virtual
aperture that the beamformer camera is restricted to, and the extra sensors lead to improved
resolution.
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Figure 6: Images of nearby objects formed from pure quasi light fields are blurry. In the scene, a
small backlit pinhole moves across the field of view of a sensor array that implements three cameras,
each computing one pixel value for each pinhole position, corresponding to a fixed surface patch.
As the pinhole crosses the fixed scene surface patch, the near-zone camera resolves the pinhole
down to its actual size of 1 mm, while the far-zone camera records a blur 66 cm wide.

5.3 Generalized Beamforming

We compare image formation from light fields with traditional perspectives on coherent
image formation, by relating quasi light fields and our coherent cameras with the classic
beamforming algorithm used in many coherent imaging applications, including ultrasound
[5] and radar [37]. The beamforming algorithm estimates a spherical wave diverging from
a point of focus rP by delaying and averaging sensor measurements. When the radiation is
narrowband, the delays are approximated by phase shifts. With the sensor array geometry
from Section 5.2, the beamformer output is

g =
∑

m

T (md)U(md) exp(−ik∆m), (39)

where the T (md) are amplitude weights used to adjust the beamformer’s performance. As
rP moves into the far zone,

∆m − ∆0 → mdsm
y → mds0

y, (40)
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so that apart from a constant phase offset, (39) becomes a short-time Fourier transform

g∞ =
∑

m

T (md)U(md) exp(−ikmds0

y). (41)

Evidently, |g∞|2 is a spectrogram quasi light field, and we may select T to be a narrow
window about a point r to capture LS(r, s0). We have already seen how quasi light fields
generalize the spectrogram.

Beamformer applications instead typically select T to be a wide window to match the
desired virtual aperture, and assign the corresponding pixel value to the output power |g|2.
We can decompose the three cameras in Section 5.2 into such beamformers. First, we write
PR

ρ in (38) in terms of two different beamformers,

PR

ρ = g∗
1
g2, (42)

where
g1 =

∑

|nd|<A/2

U(nd) exp (−ik∆n) (43)

and
g2 =

∑

m

U(md) exp (−ik∆m) , (44)

so that the windows for g1 and g2 are rectangular with widths matching the aperture A and
sensor array D, respectively. Next, by construction

PB

ρ = |g1|
2. (45)

Finally, in the far zone, sn → s0 in (37) so that

PR → (g∞
1

)∗ g∞
2
, (46)

where g∞
1

and g∞
2

are given by (41) with the windows T used in (43) and (44). In other
words, the near-zone camera is the Hermitian product of two different beamformers, and is
equivalent to the far-zone camera in the far zone.

We interpret the role of each component beamformer from the derivation of (38). Beam-
former g∗

1
aggregates power contributions across the aperture using measurements of the

conjugate field U∗ on the aperture, while beamformer g2 isolates power from the point of
focus using all available measurements of the field U . In this manner, the tasks of aggre-
gating and isolating power contributions are cleanly divided between the two beamformers,
and each beamformer uses the measurements from those sensors appropriate to its task. In
contrast, the beamformer camera uses the same set of sensors for both the power aggregation
and isolation tasks, thereby limiting its ability to optimize over both tasks.

The near-zone camera achieves a new tradeoff between resolution and anisotropic sensi-
tivity. We noted that the near-zone camera exhibits better resolution than the beamformer,
for the same virtual aperture (Figure 6). This is not an entirely fair comparison because the

20



near-zone camera is using sensor measurements outside the aperture, and indeed, a beam-
former using the entire array would achieve comparable resolution. However, extending the
aperture to the entire array results in a different image, as anisotropic responses are averaged
over a wider aperture diameter. We interpret the near-zone camera’s behavior by computing
the magnitude

∣

∣PR

ρ

∣

∣ =
√

|g1|2|g2|2. (47)

Evidently, the pixel magnitude of the near-zone camera is the geometric mean of the two
traditional beamformer output powers. |PR

ρ | has better resolution than |g1|
2 and better

anisotropic sensitivity than |g2|
2.

Image formation with alternative light fields uses the conjugate field and field measure-
ments to aggregate and isolate power in different ways. In general, image pixel values do not
neatly factor into the product of beamformers, as they do with the Rihaczek.

6 Concluding Remarks

We enable the use of existing incoherent imaging tools for coherent imaging applications, by
extending the light field to coherent radiation. We explain how to formulate, capture, and
form images from quasi light fields. By synthesizing existing research in optics, quantum
physics, and signal processing, we motivate quasi light fields, show how quasi light fields ex-
tend the traditional light field, and characterize the properties of different quasi light fields.
We explain why capturing quasi light fields directly with intensity measurements is inher-
ently limiting, and demonstrate via simulation how processing scalar field measurements in
different ways leads to a rich set of energy localization tradeoffs. We show how coherent
image formation using quasi light fields is complicated by an implicit far-zone (Fraunhofer)
assumption and the fact that not all quasi light fields are constant along rays. We demon-
strate via simulation that a pure light field representation is incapable of modeling near-zone
diffraction effects, but that quasi light fields can be augmented with a distance parameter
for greater near-zone imaging accuracy. We show how image formation using light fields
generalizes the classic beamforming algorithm, allowing for new tradeoffs between resolution
and anisotropic sensitivity.

Although we have assumed perfectly coherent radiation, tools from partial coherence
theory 1) allow us to generalize our results, and 2) provide an alternative perspective on
image formation. First, our results extend to broadband radiation of any state of partial
coherence by replacing U(rR)U∗(rC) with the cross-spectral densityW (rR, rC, ν). W provides
a statistical description of the radiation, indicating how light at two different positions, rR

and rC, is correlated at each frequency ν [38]. Second, W itself may be propagated along rays
in an approximate asymptotic sense [39, 40], which forms the basis of an entirely different
framework for using rays for image formation, using the cross-spectral density instead of the
light field as the core representation.

We present a model of coherent image formation that strikes a balance between utility
and comprehensive predictive power. On the one hand, quasi light fields offer more options
and tradeoffs than their traditional, incoherent counterpart. In this manner, the connection
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between quasi light fields and quasi-probability distributions in quantum physics reminds us
of the potential benefits of forgoing a single familiar tool in favor of a multitude of useful yet
less familiar ones. On the other hand, compared with Maxwell’s equations, quasi light fields
are less versatile. Therefore, quasi light fields are attractive to researchers who desire more
versatility than traditional energy-based methods, yet a more specialized model of image
formation than Maxwell’s equations.

Quasi light fields illustrate the limitations of the simple definition of image formation
ubiquitous in incoherent imaging. An image is the visualization of some underlying physical
reality, and the energy emitted from a portion of a scene surface towards a virtual aperture
is not a physically precise quantity when the radiation is coherent, according to classical
electromagnetic wave theory. Perhaps a different image definition may prove more funda-
mental for coherent imaging, or perhaps a quantum optics viewpoint is required for precision.
Although we have borrowed the mathematics from quantum physics, our entire discussion
has been classical. Yet if we introduce quantum optics and the particle nature of light, we
may unambiguously speak of the probability that a photon emitted from a portion of a scene
surface is intercepted by a virtual aperture.
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