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We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The
operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both
in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo
simulations even at a relatively small momentum k/kF � 1.5 indicates that our large-momentum expansions are
valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into
atomic gases. Because the number density and current density of the target atomic gas contribute to the forward
scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the
backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides
a new local probe of strongly interacting atomic gases.
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I. INTRODUCTION

Strongly interacting many-body systems appear in var-
ious subfields of physics ranging from atomic physics to
condensed matter physics to nuclear and particle physics.
An understanding of their properties is always important
and challenging. Among others, ultracold atoms offer ideal
grounds to develop our understanding of many-body physics
because we can control their interaction strength, dimension-
ality of space, and quantum statistics at will [1–3]. Many-
body properties of strongly interacting atomic gases have
been probed by a number of experimental methods including
hydrodynamic expansions [4–8], Bragg spectroscopies [9–12],
radio-frequency spectroscopies [13–15], precise thermody-
namic measurements [16–22], and collisions of two atomic
clouds [23–25]. In particular, the photoemission spectroscopy
employed in Refs. [26,27] is a direct analog of that known to
be powerful in condensed matter physics [28].

On the other hand, often in nuclear and particle physics,
high-energy particles play important roles to reveal the nature
of target systems. For example, neutron-deuteron or proton-
deuteron scatterings at intermediate or higher energies are im-
portant to reveal the existence of three-nucleon forces in nuclei
[29–31]. Also, two-nucleon knockout reactions by high-energy
protons or electrons have been employed to reveal short-range
pair correlations in nuclei [32,33]. Furthermore, the discovery
of “jet quenching” (i.e., significant energy loss of high-energy
quarks and gluons) at Relativistic Heavy Ion Collider (RHIC)
[34,35] and Large Hadron Collider (LHC) [36,37] is one of
the most striking pieces of evidence that the matter created
there is a strongly interacting quark-gluon plasma [38]. Such
high-energy degrees of freedom to probe the nature of a
quark-gluon plasma are generally referred to as “hard probes”
[39]. In condensed matter physics, the use of high-energy
neutrons to probe the momentum distribution of helium atoms
in liquid helium was first suggested in Refs. [40,41] and has
been widely employed in experiments [42–44].

Now in ultracold-atom experiments, analogs of the hard
probe naturally exist because a recombination of three atoms
into a two-body bound state (dimer) produces an atom-dimer
“dijet” propagating through the medium. Such three-body

recombinations rarely occur in spin-1/2 Fermi gases because
of the Pauli exclusion principle [45] but frequently occur in
spinless Bose gases and have been used as a probe of the
Efimov effect [46–50]. While atom-dimer “dijets” are nor-
mally considered to simply escape from the system, multiple
collisions of the produced energetic dimer with atoms in the
atomic gas were argued in Ref. [47] to account for the observed
enhancement in atom loss. A well-founded understanding of
collisional properties of an energetic atom or dimer in the
medium is clearly desired here (see early works [51,52] and
also recent one [53]). In addition to these naturally produced
energetic atoms, it is also possible to externally shoot energetic
atoms into an atomic gas in a controlled way and measure the
momentum distribution of scattered atoms. Indeed, closely
related experiments to collide two atomic clouds have been
performed successfully for Bose gases [54–61] and strongly
interacting Fermi gases [23–25], which have been analyzed
theoretically [62–65].

In this paper, we investigate various properties of an en-
ergetic atom propagating through strongly interacting atomic
gases. Such properties include a quasiparticle energy and a
rate at which the atom is scattered in the medium. Both
the quantities reflect many-body properties of the atomic
gas and, in particular, the scattering rate may be useful
to better understand multiple-atom loss mechanisms due to
atom-dimer “dijets” produced by three-body recombination
events [47,53]. Also we propose a scattering experiment in
which we shoot a probe atom into the atomic gas with a
large momentum and measure its differential scattering rate
(see Fig. 1). Resulting scattering data must bring out some
information about the target atomic gas. What can we learn
about the strongly interacting atomic gas from these scattering
data? This question will be addressed in this paper.

Seemingly, these problems are difficult to tackle because of
the nature of strong interactions. Quite remarkably, however,
these problems can be addressed in a systematic way. This
is because the atom with a large momentum probes a short
distance at which it finds only a few atoms. Therefore, apart
from probabilities of finding such few atoms in the medium,
our problem reduces to few-body scattering problems. At the
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FIG. 1. Schematic of a proposed scattering experiment in which we shoot a probe atom χ into an atomic gas with a large momentum k and
measure its differential scattering rate. Three leading contributions come from two-body scatterings proportional to the number density n and
current density j of the target atomic gas and from a three-body scattering proportional to its contact density C (measure of short-range pair
correlation). We will find that the number and current densities contribute to the forward scattering (θ < 90◦) only and therefore the contact
density gives the dominant contribution to the backward scattering (θ > 90◦).

end, we will find that such an energetic atom can be useful
to locally probe many-body aspects of strongly interacting
atomic gases.

Atomic gases created in laboratories at ultralow temper-
atures and quark-gluon plasmas created at RHIC and LHC
at ultrahigh temperatures are both strongly interacting many-
body systems. In spite of the fact that they are at two extremes,
various analogies have been discussed in the literature such as
hydrodynamic behaviors and small shear viscosity to entropy
density ratios [66]. This work intends to build a new bridge
between them from the perspective of “hard probes.”

Since this paper turns out to be long, we first summarize
our main results in Sec. II, discuss their consequences, and
compare them with recent quantum Monte Carlo simulations.
Our main results consist of the quasiparticle energy and
scattering rate of an energetic atom in a spin-1/2 Fermi gas
(Sec. III), those in a spinless Bose gas (Sec. IV), and the
differential scattering rate of a different spin state of atoms
shot into a spin-1/2 Fermi gas or a spinless Bose gas (Sec. V).
Furthermore, a connection of our hard-probe formula derived
in Sec. V with dynamic structure factors in the weak-probe
limit is elucidated in Sec. VI. Finally, Sec. VII is devoted to
conclusions of this paper and some details of calculations are
presented in Appendices A–C.

Throughout this paper, we set h̄ = 1, kB = 1, and use short-
hand notations (k) ≡ (k0,k), (x) ≡ (t,x), kx ≡ k0t − k · x,

and ψ† ↔
∂ ψ ≡ [ψ†(∂ψ) − (∂ψ†)ψ]/2. Also, note that im-

plicit sums over repeated spin indices σ =↑ , ↓ are not
assumed in this paper.

II. SUMMARY OF RESULTS AND DISCUSSIONS

We suppose that atoms interact with each other by a
short-range potential and its potential range r0 is much smaller
than other length scales in the atomic gas such as an s-wave
scattering length a, a mean interparticle distance n−1/3, and a
thermal de Broglie wavelength λT ∼ 1/

√
mT . Furthermore,

we suppose that a wavelength of the energetic atom |k|−1 is
much smaller than the latter length scales but still much larger
than the potential range. Therefore, the following hierarchy is
assumed in the length scales:

r0 	 |k|−1 	 |a|,n−1/3,λT . (2.1)

Since the potential range is much smaller than all other length
scales, we can take the zero-range limit r0 → 0. Then physical

observables of our interest are expanded in terms of small
quantities 1/(a|k|), n1/3/|k|, 1/(λT |k|) 	 1, which are col-
lectively denoted by O(k−1), and various contributions are or-
ganized systematically according to their inverse powers of |k|.

A. Quasiparticle energy and scattering rate

In the case of a spin-1/2 Fermi gas with equal masses
m = m↑ = m↓, the quasiparticle energy and scattering rate of
spin-up fermions have the following systematic expansions in
the large-momentum limit (see Sec. III for details):1

E↑(k) =
[

1 + 32π
n↓

af |k|4 − 7.54
Cf

|k|4 + O(k−6)

]
k2

2m
(2.2)

and

	↑(k) =
[

32π

(
1 − 4

a2
f |k|2

)
n↓
|k|3

+ 44.2
Cf

af |k|5 + O(k−6)

]
k2

2m
. (2.3)

Here, af is an s-wave scattering length between spin-up and -
down fermions, n↓ is a number density of spin-down fermions,
and Cf is a contact density which measures the probability
of finding spin-up and -down fermions close to each other
[67–69]. The results for spin-down fermions are obtained
simply by exchanging spin indices ↑↔↓.

On the other hand, in the case of a spinless Bose gas, the
quasiparticle energy and scattering rate of bosons have the
following systematic expansions in the large-momentum limit
(see Sec. IV for details):1

Eb(k) =
[

1 + 64π
nb

ab|k|4 − 2Ref

( |k|
κ∗

) Cb

|k|4 + O(k−5)

]
k2

2m

(2.4)

and

	b(k) =
[

64π
nb

|k|3 + 4Imf

( |k|
κ∗

) Cb

|k|4 + O(k−5)

]
k2

2m
.

(2.5)

1The energy is often measured with respect to a chemical potential.
In this case, the quasiparticle energies in Eq. (2.2) and (2.4) should
be replaced with E↑(k) − μ↑ and Eb(k) − μb, respectively.
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Here, ab is an s-wave scattering length between two identical
bosons, nb is a number density of bosons, and Cb is a
contact density which measures the probability of finding
two bosons close to each other [70]. f (|k|/κ∗) with κ∗ being
the Efimov parameter is a universal log-periodic function
determined in Sec. IV [see Fig. 7 and Eq. (4.31)]. Note that
the coefficient of the contact density in the scattering rate is
always negative because Imf ranges from −13.3 to −11.2.
This rather counterintuitively means that the energetic boson
can escape from the medium easier than we naively estimate
from a binary collision.

Each term has a simple physical meaning. Besides the free
particle kinetic energy in Eq. (2.2) or (2.4), the leading term
represents a contribution from a two-body scattering in which
the energetic atom collides with one atom coming from the
atomic gas. The probability of finding such an atom in the
atomic gas is quantified by the number density nσ,b. Similarly,
the subleading term represents a contribution from a three-
body scattering in which the energetic atom collides with a
small pair of two atoms coming from the atomic gas. The
probability of finding such a small pair in the atomic gas is
quantified by the contact density Cf,b.

These results are valid for an arbitrary many-body state
with translational and rotational symmetries (i.e., for any
scattering length, density, and temperature) as long as Eq. (2.1)
is satisfied. All nontrivial information about the many-body
state is encoded into the various densities nσ,b and Cf,b.

B. Differential scattering rate

We then consider the proposed scattering experiment in
which we shoot a probe atom into the atomic gas and measure
its differential scattering rate (see Fig. 1). We assume that the
probe atom denoted by χ is distinguishable from the rest of
the atoms constituting the target atomic gas but has the same
mass m, which is possible by using a different atomic spin
state. When the χ atom is shot into a spin-1/2 Fermi gas,
its differential scattering rate has the following systematic
expansion in the large-momentum limit (see Sec. V for
details):

d	χ (k)

d�
=

[
32 cos θ�(cos θ )

n↑(x) + n↓(x)

|k|3
+ 32{2 cos θ�(cos θ )k̂ − δ(cos θ )k̂ + �(cos θ ) p̂}
· j↑(x) + j↓(x)

|k|4

+ 2g

(
cos θ,

|k|
κ ′∗

)Cf (x)

|k|4 + O(k−5)

]
k2

2m
. (2.6)

Here, �(·) is the Heaviside step function and θ is a polar angle
of the measured momentum p with respect to the incident
momentum chosen to be k = |k| ẑ. Accordingly, when a bunch
of independent χ atoms with a total number Nχ is shot into
the atomic gas, the number of scattered χ atoms measured at
an angle (θ,ϕ) is predicted to be

Nsc(θ,ϕ) = Nχ

m

|k|
∫

dl
d	χ (k)

d�
, (2.7)

where the line integral is taken along a classical trajectory of
the χ atom.

The differential scattering rate of the χ atom shot into a
spinless Bose gas is obtained from Eq. (2.6) by replacing
the number density n↑ + n↓, the current density j↑ + j↓,
and the contact density Cf of a spin-1/2 Fermi gas with
those of a spinless Bose gas, nb, jb, and Cb/2, respectively
[see Eq. (5.45)]. These parameters are the same as those in
Eqs. (2.2)–(2.5), while translational or rotational symmetries
are not assumed here and thus the current density jσ,b can
be nonzero. On the other hand, κ ′

∗ in Eq. (2.6) is the Efimov
parameter associated with a three-body system of the χ atom
with spin-up and -down fermions (the χ atom with two
identical bosons) and thus different from κ∗ in Eqs. (2.4) and
(2.5) associated with three identical bosons. We note that the
dependence on scattering lengths between the χ atom and
an atom constituting the target atomic gas appears only from
O(k−5) in the brackets. The corresponding formula in the
weak-probe limit can be found in Eq. (6.17).

The first two terms in Eq. (2.6) come from two-body
scatterings and are proportional to the number density and
current density of the target atomic gas. An important
observation is that, because of kinematic constraints in the
two-body scattering, they contribute to the forward scattering
(cos θ > 0) only. On the other hand, the last term comes from a
three-body scattering and is proportional to the contact density.
Its angle distribution is determined by a universal function
g(cos θ,|k|/κ ′

∗), which is mostly negative on the forward-
scattering side (see Fig. 9 in Sec. V). This is no cause for alarm,
of course, because it is the subleading correction suppressed
by a power of 1/|k| to the leading positive contribution of the
number density.

In contrast, g(cos θ,|k|/κ ′
∗) is positive everywhere on

the backward-scattering side (cos θ < 0) because it is now
kinematically allowed in the three-body scattering. Therefore,
the backward scattering is dominated by the contact density of
the target atomic gas and its measurement can be used to extract
the contact density integrated along a classical trajectory of
the probe atom [see Eq. (2.7)]. Since the contact density
is an important quantity to characterize strongly interacting
atomic gases, a number of ultracold-atom experiments have
been performed so far to measure its value but integrated over
the whole volume [10,11,18,71,72]. Our proposed experiment
provides a new way to locally probe the many-body aspect of
strongly interacting atomic gases.

Also we find from Eq. (2.6) that the differential scattering
rate can depend on the azimuthal angle ϕ only by the current
density of the target atomic gas. Therefore, the azimuthal
anisotropy in the differential scattering rate may be useful
to reveal many-body phases accompanied by currents.

C. Comparison with Monte Carlo simulations

All the above results are valid for an arbitrary many-body
state at a sufficiently large momentum |k| satisfying Eq. (2.1).
But how large should it be? One can gain insight into this
question by comparing our results with other reliable results;
for example, from Monte Carlo simulations. Currently the only
available Monte Carlo result comparable with ours is about the
quasiparticle energy in a spin-1/2 Fermi gas [73,74]. Quite
surprisingly, we will find reasonable agreement of our result
(2.2) with the recent quantum Monte Carlo simulation even at
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FIG. 2. (Color online) Quasiparticle energies E(k)/εF as functions of (|k|/kF)2 for (akF)−1 = 0 at T/εF = 0.15 (left panel) and for
(akF)−1 = 0.2 at T/εF = 0.19 (right panel). Points are results extracted from the quantum Monte Carlo simulation [74] and dotted curves
behind them are fits by a BCS-type formula (2.13). Solid curves are our results from the large-momentum expansion (2.8) with the use of the
contact densities obtained in Refs. [75,76]. Narrow shaded regions behind them correspond to the contact densities varied by ±20% and broad
ones indicate quasiparticle widths 	(k)/εF from the large-momentum expansion (2.12) with the same inputs. For comparison, free particle
dispersion relations, Efree(k) = k2/(2m) − μ, are shown by dashed lines.

a relatively small momentum |k|/kF � 1.5. This indicates that
our large-momentum expansions in Eqs. (2.2)–(2.6) are valid
in a momentum range wider than we naively expect.

In Ref. [74], P. Magierski et al. extracted the quasiparticle
energy E(k) from quantum Monte Carlo data in a balanced
Fermi gas n↑ = n↓ at finite temperature. Their results are
shown by points in Fig. 2 for (akF)−1 = 0 at T/εF = 0.15
(left panel) and for (akF)−1 = 0.2 at T/εF = 0.19 (right panel)
in units of the Fermi energy εF = k2

F/(2m) as functions of
(|k|/kF)2.

Our large-momentum expansion of the quasiparticle energy
(2.2) in the same units becomes

E(k)

εF
=

( |k|
kF

)2

− μ

εF
+

(
16

3π

1

akF
− 7.54

C
k4

F

)(
kF

|k|
)2

+O(k−4). (2.8)

Here we used the definition of the Fermi momentum nσ =
k3

F/(6π2) and introduced the chemical potential μ because the
quasiparticle energies in Ref. [74] are measured with respect
to μ. The values of chemical potential obtained in Ref. [74]
are

μ

εF
≈ 0.471 and 0.319 (2.9)

for (akF)−1 = 0 at T/εF = 0.15 and for (akF)−1 = 0.2 at
T/εF = 0.19, respectively, with estimated errors of about 10%.
Note that the self-energy correction at O[(kF/|k|)2] receives
two contributions: One is from the two-body scattering which
can be attractive or repulsive depending on the sign of
(akF)−1. The other is from the three-body scattering which
is proportional to C/k4

F > 0 and thus always attractive.
In order to make a comparison between our result and

the Monte Carlo simulation, an input into the dimensionless
contact density C/k4

F is needed ideally at the same scattering
length and temperature as in Ref. [74]. The contact density at
infinite scattering length (akF)−1 = 0 has been measured by a
number of Monte Carlo simulations [75–79] and ultracold-
atom experiments [10,11,18,71,72], which are summarized
in Table I. At zero temperature, they fall within the range

of C/k4
F = 0.10 ∼ 0.12. The temperature dependence of the

contact density was reported in Refs. [11,79], although the
situation is somewhat controversial: The simulation observed
that the contact density increases with T/εF up to T/εF ≈ 0.4
[79], while the experiment observed that the contact density
monotonically decreases over the temperature range T/εF =
0.1 ∼ 1 [11]. Since the precise value of the contact density at
T/εF = 0.15 is not yet available, we choose to use the value of
Ref. [75] at T/εF = 0.173(6); C/k4

F = 0.1102(11). This input
fixes the self-energy correction to be

(
16

3π

1

akF
− 7.54

C
k4

F

)(
kF

|k|
)2

= −0.831

(
kF

|k|
)2

, (2.10)

and our result from the large-momentum expansion (2.8) is
shown by the solid curve in Fig. 2 (left panel). In order to
incorporate uncertainties of the contact density, its value is
varied by ±20% which is represented by the narrow shaded
region in the same plot. This variation of ±20% is a very
conservative estimate of the uncertainties because the contact
density increases only by 15% even from T/εF ≈ 0 to 0.4
according to Ref. [79].

On the other hand, the contact density away from the infinite
scattering length is less understood, in particular, at finite
temperature. Therefore, in order to facilitate a comparison be-
tween our result and the Monte Carlo result for (akF)−1 = 0.2
at T/εF = 0.19, we choose to use the contact density of
Ref. [76] for the same scattering length but at zero temperature;
C/k4

F = 0.156(2). This input fixes the self-energy correction
to be(

16

3π

1

akF
− 7.54

C
k4

F

)(
kF

|k|
)2

= −0.839

(
kF

|k|
)2

, (2.11)

and our result from the large-momentum expansion (2.8) is
shown by the solid curve in Fig. 2 (right panel). Note that
the self-energy correction at (akF)−1 = 0.2 is close to that
at (akF)−1 = 0 because opposite changes in the contributions
from two-body and three-body scatterings happen to cancel
each other. Again uncertainties of the contact density are
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TABLE I. Dimensionless contact density C/k4
F at infinite scattering length (akF)−1 = 0 from Monte Carlo simulations and ultracold-atom

experiments at low and finite temperatures.

Simulations Experiments

Ref. C/k4
F T/εF Ref. C/k4

F T/εF

[77,78] 0.115 0 [18] 0.118(6) 0.03(3)
[76] 0.1147(3) 0 [10] 0.101(4) 0.10(2)
[79] 0.0996(34) 0 [11] 0.105(8) 0.09(3)
[75] 0.1102(11) 0.173(6)
[79] 0.1040(17) 0.178

incorporated by varying its value by ±20% which is repre-
sented by the narrow shaded region in the same plot.

In both cases of (akF)−1 = 0 and 0.2, one can see from
Fig. 2 that our results are not very sensitive to the variations of
the contact densities and, furthermore, they are in reasonable
agreement with the quantum Monte Carlo simulation even at a
relatively small momentum; (|k|/kF)2 � 2. This indicates that
our large-momentum expansions in Eqs. (2.2)–(2.6) are valid
in a wide range of momentum.

Having our large-momentum expansions tested on the
quasiparticle energy, we now present the quasiparticle width
in the balanced spin-1/2 Fermi gas. Its large-momentum
expansion (2.3) in units of the Fermi energy becomes

	(k)

εF
= 16

3π

kF

|k| − 1

akF

(
64

3π

1

akF
− 44.2

C
k4

F

)(
kF

|k|
)3

+ O(k−4),

(2.12)

which is shown by the broad shaded region in Fig. 2 by using
the same input into the contact density. Note that the correction
at O[(kF/|k|)3] vanishes for (akF)−1 = 0 (left panel), while it
is given by +1.11(kF/|k|)3 for (akF)−1 = 0.2 (right panel). In
both cases, the quasiparticle widths gradually increase with
decreasing momentum and eventually become comparable to
the quasiparticle energies. This takes place at (|k|/kF)2 ≈ 2.1
and 2.2, respectively, which roughly correspond to the point
where our large-momentum expansions break down.

P. Magierski et al. also extracted the pairing gap or
pseudogap �, self-energy U , and effective mass m∗ parameters
by fitting a BCS-type formula

EBCS(k) =
√(

k2

2m∗ − μ + U

)2

+ �2 (2.13)

to their quasiparticle energies [74]. However, the fitted results
(dotted curves in Fig. 2) do not capture the correct asymptotic
behaviors at (|k|/kF)2 � 3. This is because EBCS(k) has the
asymptotic expansion

EBCS(k)

εF
= m

m∗

( |k|
kF

)2

− μ

εF
+ U

εF
+ O(k−4), (2.14)

in which the self-energy U < 0 is taken to be a constant, while
according to Eq. (2.8), U should be momentum dependent and
decay as

U

εF
→

(
16

3π

1

akF
− 7.54

C
k4

F

)(
kF

|k|
)2

(2.15)

at |k|/kF � 1. Further analysis of their quantum Monte Carlo
data incorporating our exact large-momentum expansions may
allow us better access to the intriguing pseudogap physics.

III. SPIN-1/2 FERMI GAS

Here we study properties of an energetic atom in a spin-1/2
Fermi gas and derive its quasiparticle energy and scattering
rate presented in Eqs. (2.2) and (2.3).

A. Formulation

The Lagrangian density describing spin-1/2 fermions with
a zero-range interaction is

LF =
∑

σ=↑,↓
ψ†

σ

(
i∂t + ∇2

2mσ

)
ψσ + cψ

†
↑ψ

†
↓ψ↓ψ↑. (3.1)

It is more convenient to introduce an auxiliary dimer field
φ = cψ↓ψ↑ to decouple the interaction term:

LF =
∑

σ=↑,↓
ψ†

σ

(
i∂t + ∇2

2mσ

)
ψσ − 1

c
φ†φ + φ†ψ↓ψ↑ + ψ

†
↑ψ

†
↓φ.

(3.2)

For simplicity, we shall mainly consider the case of equal
masses m = m↑ = m↓. Some results in the case of unequal
masses are presented in Appendices A and B. The propagator
of fermion field ψσ in the vacuum is given by

G(k) = 1

k0 − εk + i0+

(
εk ≡ k2

2m

)
. (3.3)

Also by using the standard regularization procedure to relate
the bare coupling c to the scattering length a,

1

c
=

∫
|k|<�

dk
(2π )3

m

k2 − m

4πa
, (3.4)

the propagator of dimer field φ in the vacuum is found to be

D(k) = −4π

m

1√
k2

4 − mk0 − i0+ − 1/a

. (3.5)

D(k) coincides with the two-body scattering amplitude A(k)
between spin-up and -down fermions up to a minus sign;
A(k) = −D(k) (see Fig. 3).
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iA =

FIG. 3. Two-body scattering amplitude iA(k) between spin-up
and -down fermions. Solid (dashed) lines represent the fermion
(dimer) propagator iG(k) [iD(k)]. Each fermion-dimer vertex (dot)
carries i, and thus, iA(k) = −iD(k).

Our task here is to understand the behavior of the single-
particle Green’s function of spin-σ fermions∫

dyeiky

〈
T

[
ψσ

(
x + y

2

)
ψ†

σ

(
x − y

2

)]〉
(3.6)

in the large–energy-momentum limit k → ∞ for an arbitrary
few-body or many-body state. Without losing generality, we
can consider that of spin-up (σ =↑) fermions. The result for
spin-down (σ =↓) fermions is obtained simply by exchanging
spin indices ↑↔↓.

B. Operator product expansion

According to the operator product expansion
[68–70,80–86], the product of operators in Eq. (3.6)
can be expressed in terms of a series of local operators O:∫

dyeikyT

[
ψ↑

(
x + y

2

)
ψ

†
↑

(
x − y

2

)]
=

∑
i

WOi
(k)Oi(x).

(3.7)

Wilson coefficients WO depend on k = (k0,k) and the scatter-
ing length a. When the scaling dimension of a local operator
is �O, dimensional analysis implies that its Wilson coefficient
should have a form

WO(k) = 1

|k|�O+2
wO

(√
2mk0

|k| ,
1

a|k|
)

. (3.8)

Therefore, the large–energy-momentum limit of the single-
particle Green’s function is determined by Wilson coefficients
of local operators with low scaling dimensions and their
expectation values with respect to the given state.

The local operators appearing in the right-hand side of
Eq. (3.7) must have a particle number NO = 0. By recalling
�ψσ

= 3/2 and �φ = 2 [87], we can find twelve types of local
operators with NO = 0 up to scaling dimensions �O = 5:

1 (identity) (3.9)

for �O = 0,

ψ†
σψσ (3.10)

for �O = 3,

−iψ†
σ

↔
∂ i ψσ , − i∂i(ψ

†
σψσ ), φ†φ (3.11)

for �O = 4,

−ψ†
σ

↔
∂ i

↔
∂ j ψσ , − ∂i(ψ

†
σ

↔
∂ j ψσ ), − ∂i∂j (ψ†

σψσ ),

(3.12a)

iψ†
σ

↔
∂ t ψσ , i∂t (ψ

†
σψσ ), − iφ† ↔

∂ i φ, − i∂i(φ
†φ)

(3.12b)

for �O = 5. Time-space arguments of operators (x) = (t,x)
are suppressed here and below. Operators accompanied by
more spatial or temporal derivatives have higher scaling
dimensions.

Here we comment on scaling dimensions of operators
involving more ψ or φ ∼ ψ↓ψ↑ fields. Scaling dimensions
of operators with three ψ fields can be computed exactly
by solving three-body problems [87,88]. For example, the
lowest two operators are O = 2φ(∂iψσ ) − (∂iφ)ψσ and φψσ

and the products O†O have scaling dimensions � = 8.54545
and 9.33244, respectively. If more ψ fields are involved, it
is in general difficult to compute their scaling dimensions.
However, with the help of the operator-state correspondence
[87,89,90], they can be inferred from numerical calculations
of energies of particles in a harmonic potential at infinite
scattering length [91–100]. For example, the ground-state
energy of four fermions, E = 5.01h̄ω [96], implies that the
operator (φφ)†(φφ), which involves the lowest four-body
operator φφ, has the scaling dimension � = 10.02. Because
adding more derivatives or fields generally increases scaling
dimensions, we conclude that the operators in Eqs. (3.9)–(3.12)
are the complete set of local operators with NO = 0 and
�O � 5 in the case of equal masses.

In the case of unequal masses, however, this is not
always the case due to the Efimov effect [101,102]. The
scaling dimension of the lowest three-body operator O3 =
(m↑ + m↓)φ(∂iψ↑) − m↑(∂iφ)ψ↑ decreases with increasing
mass ratio m↑/m↓ and eventually reaches �O3 = 5/2 at
m↑/m↓ = 13.607 so that �O†

3O3
= 5 (see Fig. 4). Furthermore,

�O3 develops an imaginary part for m↑/m↓ > 13.607, which
indicates the Efimov effect [88]. In general, the Efimov effect
for N particles implies that the corresponding N -body operator
ON has the scaling dimension �ON

= 5/2 + is� and thus
�O†

NON
= 5 with s� being a real number. The recent finding

of the four-body Efimov effect for m↑/m↓ > 13.384 [102]
indicates the existence of a four-body operator O4 whose
scaling dimension becomes �O†

4O4
= 5 for m↑/m↓ > 13.384.

Therefore, only when the mass ratio is below the lowest critical
value for the Efimov effect, the operators in Eqs. (3.9)–(3.12)

Re Im 2.5

5 10 15 20 25

m

m
2.5

3.0

3.5

4.0

4.5

l 1

FIG. 4. (Color online) Scaling dimension of the lowest three-body
operator O3 = (m↑ + m↓)φ(∂iψ↑) − m↑(∂iφ)ψ↑ as a function of the
mass ratio m↑/m↓ taken from Ref. [88]. The solid curve is its real
part and the dashed curve is its imaginary part shifted by +2.5. The
scaling dimension of O†

3O3 is given by 2Re[�O3 ].
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are supposed to be the complete set of local operators with
NO = 0 and �O � 5.

C. Wilson coefficients

The Wilson coefficients of local operators can be obtained
by matching the matrix elements of both sides of Eq. (3.7) with
respect to appropriate few-body states [68–70,80–86]. Details
of such calculations are presented in Appendix A. In short,
we use states 〈ψσ (p′)| and |ψσ (p)〉 to determine the Wilson
coefficients of operators of type ψ†

σψσ . The results are

W1(k) = iG(k), (3.13)

W
ψ

†
↓ψ↓

(k) = −iG(k)2A(k), (3.14)

W−iψ
†
↓

↔
∂ iψ↓

(k) = −iG(k)2 ∂

∂ki

A(k), (3.15)

W−ψ
†
↓

↔
∂ i

↔
∂ j ψ↓

(k) = −iG(k)2 1

2

∂2

∂ki∂kj

A(k), (3.16)

W
iψ

†
↓

↔
∂ tψ↓

(k) = −iG(k)2 ∂

∂k0
A(k), (3.17)

W−∂i∂j (ψ†
↓ψ↓)(k) = −iA(k)

G(k)3

4m

[
δij + kikj

G(k)

m

]
, (3.18)

W−i∂i (ψ
†
↓ψ↓)(k) = W−∂i (ψ

†
↓

↔
∂ j ψ↓)

(k) = W
i∂t (ψ

†
↓ψ↓)(k) = 0,

(3.19)

and all WO(k) = 0 for σ =↑, where A(k) is the two-body
scattering amplitude between spin-up and -down fermions
[see Eq. (3.5)].

On the other hand, states 〈φ(p′)| and |φ(p)〉 are used to
determine the Wilson coefficients of operators of type φ†φ.
The results are

Wφ†φ(k) = −iG(k)2T↑(k,0; k,0)

−W
ψ

†
↓ψ↓

(k)
∫

dq
(2π )3

(
m

q2

)2

−W−ψ
†
↓

↔
∂ i

↔
∂ j ψ↓

(k)
δij

3

∫
dq

(2π )3

(
m

q

)2

−W
iψ

†
↓

↔
∂ tψ↓

(k)
−1

2m

∫
dq

(2π )3

(
m

q

)2

, (3.20)

W−iφ†↔
∂ iφ

(k) = −iG(k)2 ∂

∂pi

T↑(k,p; k,p)

∣∣∣∣
p→0

−W−iψ
†
↓

↔
∂ iψ↓

(k)
1

2

∫
dq

(2π )3

(
m

q2

)2

, (3.21)

W−i∂i (φ†φ)(k)

= −iG(k)2 ∂

∂pi

T↑

(
k − p

2
,
p

2
; k + p

2
, − p

2

)∣∣∣∣
p→0

. (3.22)

Here, T↑(k,p; k′,p′) is the three-body scattering amplitude be-
tween a spin-up fermion and a dimer with (k,p) [(k′,p′)] being
their initial (final) energy-momentum (see Fig. 5). As we will
show in Sec. III F, T↑(k,0; k,0) and ∂T↑(k,p; k,p)/∂pi |p→0

contain infrared divergences that are canceled exactly by the
second terms in Eqs. (3.20) and (3.21), respectively. Therefore,

k

p

p

k

iT

FIG. 5. Three-body scattering amplitude iT↑(k,p; k′,p′) between
a spin-up fermion (solid line) and a dimer (dashed line).

it is convenient to combine them and define finite quantities
by

T
reg
↑ (k,0; k,0) ≡ T↑(k,0; k,0) − A(k)

∫
dq

(2π )3

(
m

q2

)2

(3.23)

and

∂

∂pi

T
reg
↑ (k,p; k,p)

∣∣∣∣
p→0

≡ ∂

∂pi

T↑(k,p; k,p)

∣∣∣∣
p→0

− 1

2

∂

∂ki

A(k)
∫

dq
(2π )3

(
m

q2

)2

.

(3.24)

The regularized three-body scattering amplitude T
reg
↑ (k,0; k,0)

will be computed in Sec. III F. On the other hand, the ultraviolet
divergences in the last two terms of Eq. (3.20) are canceled
by those from expectation values of local operators as we will
see below.

D. Expectation values of local operators

Now the single-particle Green’s function of spin-up
fermions for an arbitrary few-body or many-body state is
obtained by taking the expectation value of Eq. (3.7):∫

dyeiky

〈
T

[
ψ↑

(
x + y

2

)
ψ

†
↑

(
x − y

2

)]〉

=
∑

i

WOi
(k)〈Oi(x)〉. (3.25)

The expectation values of local operators in Eqs. (3.9)–(3.12)
have simple physical meanings. For example,

〈ψ†
σ ψσ 〉 = nσ (x) (3.26)

and

〈−iψ†
σ

↔∇ ψσ 〉 = jσ (x) (3.27)

are the number density and current density of spin-σ fermions
and 〈∂i(ψ†

σψσ )〉 = ∂inσ (x), 〈∂i∂j (ψ†
σψσ )〉 = ∂i∂jnσ (x),

〈∂t (ψ†
σψσ )〉 = ∂tnσ (x), 〈∂i(−iψ†

σ

↔∇ ψσ )〉 = ∂i jσ (x) are
their spatial or temporal derivatives. Furthermore, it is well
known [68–70,80–86] that the expectation value of φ†φ is
related to the contact density C(x) by

〈φ†φ〉 = C(x)

m2
, (3.28)

and 〈∂i(φ†φ)〉 = ∂iC(x)/m2 is its spatial derivative. The
contact density measures the probability of finding spin-up
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and -down fermions close to each other [67–69]. jφ(x) ≡
m2〈−iφ†

↔∇ φ〉 is an analog of the current density for dimer
field φ and shall be called a contact current density.

If the given state is translationally invariant, the expectation

values of −ψ†
σ

↔
∂ i

↔
∂ j ψσ and iψ†

σ

↔
∂ t ψσ can be expressed

in terms of the momentum distribution function of spin-σ
fermions:

ρσ (q) =
∫

d ye−iq· y
〈
ψ†

σ

(
t,x − y

2

)
ψσ

(
t,x + y

2

)〉
. (3.29)

By using this definition, the expectation value of

−ψ†
σ

↔
∂ i

↔
∂ j ψσ is found to be

〈−ψ†
σ

↔
∂ i

↔
∂ j ψσ 〉 =

∫
dq

(2π )3
qiqjρσ (q). (3.30)

Similarly, the expectation value of iψ†
σ

↔
∂ t ψσ can be evaluated

by using the equation of motion for fermion field ψσ :

〈iψ†
σ

↔
∂ t ψσ 〉 = 1

2

〈
− ψ†

σ

(∇2

2m
ψσ

)
− ψ

†
↑ψ

†
↓φ

〉

+ 1

2

〈
−

(∇2

2m
ψ†

σ

)
ψσ − φ†ψ↓ψ↑

〉

=
∫

dq
(2π )3

q2

2m
ρσ (q) − 1

c
〈φ†φ〉. (3.31)

Both 〈−ψ†
σ

↔
∂ i

↔
∂ j ψσ 〉 and 〈iψ†

σ

↔
∂ t ψσ 〉 contain ultraviolet

divergences, which cancel those that already appeared in the
last two terms of Eq. (3.20).

E. Single-particle Green’s function

Since the derivatives of nσ , jσ , and C vanish for the trans-
lationally invariant state, the single-particle Green’s function
of spin-up fermions (3.25) is now written as

iG↑(k) ≡
∫

dyeiky

〈
T

[
ψ↑

(
x + y

2

)
ψ

†
↑

(
x − y

2

)]〉
= W1(k) + W

ψ
†
↓ψ↓

(k)n↓ + W−iψ
†
↓

↔∇ψ↓
(k) · j↓

+W−ψ
†
↓

↔
∂ i

↔
∂ j ψ↓

(k)
∫

dq
(2π )3

qiqjρ↓(q)

+W
iψ

†
↓

↔
∂ tψ↓

(k)

[ ∫
dq

(2π )3

q2

2m
ρ↓(q) − 1

c

C
m2

]

+Wφ†φ(k)
C
m2

+ W−iφ†
↔∇φ

(k) · jφ

m2
+ · · · . (3.32)

By using the expressions of WO(k) obtained in Eqs. (3.13)–
(3.22), we find that G↑(k) can be brought into the usual
form

G↑(k) = 1

k0 − εk − �↑(k) + i0+ , (3.33)

where �↑(k) is the self-energy of spin-up fermions given by

�↑(k) = −A(k)n↓ − ∂

∂k
A(k) · j↓

− 1

2

∂2

∂ki∂kj

A(k)
∫

dq
(2π )3

(
qiqj − δij

3
q2

)
ρ↓(q)

− 1

2

∂2

∂ki∂kj

A(k)
δij

3

∫
dq

(2π )3
q2

(
ρ↓(q) − C

q4

)

− ∂

∂k0
A(k)

[ ∫
dq

(2π )3

q2

2m

(
ρ↓(q) − C

q4

)
+ C

4πma

]

− T
reg
↑ (k,0; k,0)

C
m2

− ∂

∂ p
T

reg
↑ (k,p; k,p)

∣∣∣∣
p→0

· jφ

m2
− · · · . (3.34)

Here we eliminated the bare coupling c by using its relationship
with the scattering length a [see Eq. (3.4)]. By recalling the
large-momentum tail of the momentum distribution function
[67–69]

lim
|q|→∞

ρσ (q) = C
q4

+ O(q−6), (3.35)

one can see that the ultraviolet divergences in Eq. (3.20)
and Eqs. (3.30) and (3.31) canceled out so that �↑(k) is
now manifestly finite. Corrections to the above expression
of �↑(k) denoted by “· · ·” start with ∼ 〈O〉/k�O−2, where O
are all possible operators with the lowest scaling dimension at
�O > 5. In the case of equal masses, �O = 6.

So far we only assumed that the given state is translationally
invariant. In addition, if the given state is rotationally in-
variant, jσ , jφ , and

∫
dq/(2π )3(qiqj − δij q2/3)ρσ (q) vanish.

Therefore, in this case, the self-energy of spin-up fermions is
simplified to

�↑(k) = −A(k)n↓ − ∂

∂k0
A(k)

C
4πma

− T
reg
↑ (k,0; k,0)

C
m2

−
[

m

3

3∑
i=1

∂2

∂k2
i

A(k) + ∂

∂k0
A(k)

]

×
∫

dq
(2π )3

q2

2m

(
ρ↓(q) − C

q4

)
− · · · . (3.36)

Note that if the given state has the spin symmetry ρ↑ = ρ↓,
the integral of the momentum distribution function in the last
line of Eq. (3.36) can be obtained from the energy density E
by using the energy relationship [67–69]:∑

σ=↑,↓

∫
dq

(2π )3

q2

2m

(
ρσ (q) − C

q4

)
= E − C

4πma
. (3.37)

The pole of the single-particle Green’s function (3.33)
determines the quasiparticle energy and scattering rate of
spin-up fermions in a many-body system [103,104]:

k0 − εk − �↑(k0,k) = 0. (3.38)

Because �↑ is as small as ∼1/k, we can set k0 = εk in �↑(k)
within the accuracy of O(k−4). Then the real part of the
solution to Eq. (3.38) gives the quasiparticle energy

E↑(k) = εk + Re[�↑(εk,k)] + O(k−4), (3.39)
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while its imaginary part gives the scattering rate2

	↑(k) = −2Im[�↑(εk,k)] + O(k−4). (3.40)

Because[
m

3

3∑
i=1

∂2

∂k2
i

A(k) + ∂

∂k0
A(k)

]
k0→εk

= O(k−4) (3.41)

can be found by using the expression of A(k), we arrive
at the following form of the on-shell self-energy of spin-up
fermions for an arbitrary many-body state with translational
and rotational symmetries:3

�↑(εk,k) = 4π
i
2 + 1

a|k|

n↓
m|k| − i(

i
2 + 1

a|k|
)2

C
ma|k|3

− t
reg
↑ (k; k)

C
m2

+ O(k−4). (3.42)

Here we denoted the regularized on-shell three-body scattering
amplitude by t

reg
↑ (k; p) ≡ T

reg
↑ (k,0; p,k − p)|k0=εk,p0=ε p .

The first term in the on-shell self-energy (3.42) is pro-
portional to the two-body scattering amplitude A(εk,k) and
the number density of spin-down fermions n↓. Its physical
meaning is obvious: It is the contribution from the two-body
scattering of the large-momentum spin-up fermion with a spin-
down fermion in the medium. Similarly, the last term originates
from the three-body scattering of the large-momentum spin-up
fermion with a pair of spin-up and -down fermions close
to each other, which is described by the dimer field φ. The
probability of finding such a small pair in the medium is
given by the contact density C = m2〈φ†φ〉 [67–69]. We note
that the spin-down fermion and the small pair of spin-up and

2The quasiparticle residue Z↑(k) is given by

Z−1
↑ (k) = 1 − ∂

∂k0
Re[�↑(k)]k0→E↑(k)

= 1 + 4π[
1
4 + 1

(a|k|)2

]2

n↓
a|k|4 + O(C/k4).

Since Z↑(k) = 1 + O(k−4), the single-particle spectral density func-
tion of spin-up fermions becomes

A↑(k) = − 1

π
Im[G↑(k)] = 1

2π

	↑(k)

[k0 − E↑(k)]2 + [
1
2 	↑(k)

]2

within the accuracy we are currently working. Note that A↑(k) at
a large momentum |k| � kF but below the Fermi sea k0 � −εk (as
opposed to k0 � εk in this paper) was studied in Ref. [105]. The
single-particle spectral density function was also computed in a self-
consistent T -matrix approximation [106] and in a quantum cluster
expansion at high temperature [107].

3In the case of unequal masses m↑ �= m↓, this result is modified to

�↑(εk↑,k) = 4π

i
m↓
M

+ 1
a|k|

n↓
2μ|k| − i(

i
m↓
M

+ 1
a|k|

)2

m↑C
(2μ)2a|k|3

− T
reg
↑ (k,0; k,0)

∣∣
k0=εk↑

C
(2μ)2

+ O(k−4),

where εkσ = k2/(2mσ ), a total mass M = m↑ + m↓, and a reduced
mass μ = m↑m↓/(m↑ + m↓).

-down fermions coming from the medium are treated as being
at rest because their characteristic momentum ∼kF,λ

−1
T are

much smaller than |k| in the large-momentum expansion [see
Eq. (2.1)].

Our remaining task is thus to determine the regularized
on-shell three-body scattering amplitude t

reg
↑ (k; k) in Eq. (3.42)

up to O(k−4), which requires solving a three-body problem.
Since it has a form of t

reg
↑ (k; k) = (m/k2)t̃ reg

↑ [(a|k|)−1], we
need to determine the first two terms in its expansion in terms
of (a|k|)−1.

F. Three-body problem

We now compute the three-body scattering amplitude
T↑(k,0; k,0). Because T↑(k,0; k,0) does not solve a closed
integral equation, we need to first consider T↑(k,0; p,k − p),
which is a solution to the integral equation depicted in Fig. 6,
and then take p = k. By denoting T↑(k,0; p,k − p) simply by
T↑(k; p), its integral equation is written as

T↑(k; p) = G(−p) − i

∫
dq0dq
(2π )4

T↑(k; q)G(q)D(k − p)

×G(k − p − q). (3.43)

Because T↑(k; q) is regular in the lower half plane of q0, the
integration over q0 can be easily performed to lead to

T↑(k; p) = G(−p) −
∫

dq
(2π )3

T↑(k; q)D(k − q)

×G(k − p − q)

∣∣∣∣
q0=εq

. (3.44)

Then by setting k0 = εk, p0 = ε p and defining t↑(k; p) ≡
T↑(εk,k; ε p, p), we obtain an integral equation solved by the
on-shell three-body scattering amplitude

t↑(k; p) = − m

p2
−

∫
dq

(2π )3
Ka(k; p,q)t↑(k; q), (3.45)

where the integral kernel Ka(k; p,q) is defined by

Ka(k; p,q) ≡ 4π

1
2

√
3q2 − k2 − 2k · q − i0+ − 1/a

× 1

p2 + q2 + p · q − k · p − k · q − i0+ .

(3.46)

This integral equation has to be solved numerically to
determine t↑(k; p). We have computed t↑(k; p) at (a|k|)−1 = 0
and its first derivative with respect to (a|k|)−1. More details
of solving the integral equation (3.45) are presented in
Appendix B.

As we mentioned after Eq. (3.22), t↑(k; k) =
T↑(k,0; k,0)|k0=εk contains an infrared divergence. This
can be seen by rewriting (3.45) at p = k as

t↑(k; k) = − m

k2 +
∫

dq
(2π )3

Ka(k; k,q)
m

q2

−
∫

dq
(2π )3

Ka(k; k,q)

[
t↑(k; q) + m

q2

]
, (3.47)

in which the second term is infrared divergent because

Ka(k; k,q) → 4π

−i
|k|
2 − 1/a

1

q2
(3.48)
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FIG. 6. Integral equation for the three-body scattering amplitude T↑(k; p) ≡ T↑(k,0; p,k − p) between a spin-up fermion and a dimer.

at |q| → 0. However, this infrared divergence is canceled
exactly by the second term in Eq. (3.23). Therefore, the
regularized three-body scattering amplitude defined there is
free of divergences and its on-shell version is given by

t
reg
↑ (k; k) = T

reg
↑ (k,0; k,0)|k0=εk

= − m

k2 +
∫

dq
(2π )3

[
Ka(k; k,q) − 4π

−i
|k|
2 − 1

a

1

q2

]
m

q2

−
∫

dq
(2π )3

Ka(k; k,q)

[
t↑(k; q) + m

q2

]
. (3.49)

By using the numerical solutions of t↑(k; q) at (a|k|)−1 = 0
and its first derivative, the expansion of t

reg
↑ (k; k) in terms of

(a|k|)−1 is found to be

t
reg
↑ (k; k) =

[
3.771 + 15.05

a|k| i + O(k−2)

]
m

k2 . (3.50)

These numbers are universal (i.e., independent of short-range
physics). We note that the Born approximation [the first term in
Eq. (3.49)] gives t

reg
↑ (k; k)|Born = (−1) m/k2, which is wrong

even in its sign.
The necessity of the above subtraction procedure is

physically understood in the following way: The “bare” three-
body scattering amplitude t↑(k; k) describes the three-body
scattering of the large-momentum spin-up fermion with a pair
of spin-up and -down fermions at rest. t↑(k; k) is obtained from
the integral equation depicted in Fig. 6, which actually includes
a process in which the large-momentum spin-up fermion
collides only with the spin-down fermion coming from the
pair and the other spin-up fermion remains a spectator staying
away from the scattering event. This is seen by recalling that
the momentum q in the second term of Eq. (3.47) is the relative
momentum between spin-up and -down fermions constituting
the pair and thus small |q| corresponds to the large interparticle
separation. This process is essentially the two-body scattering
which is already included in the first term of Eq. (3.42).
Therefore, to avoid the double counting, the contribution of
this two-body scattering process has to be subtracted from
the bare three-body scattering amplitude. This leads to the
regularized three-body scattering amplitude t

reg
↑ (k; k) in

Eq. (3.49), which appears in front of the contact density in
the last term of Eq. (3.42).

Finally, by substituting the numerical solution of the three-
body problem (3.50) into Eq. (3.42), we find that the on-shell
self-energy of spin-up fermions has the following systematic

expansion in the large-momentum limit:

�↑(εk,k) =
[

16π

(
−i + 2

a|k| + 4

a2|k|2 i

)
n↓
|k|3

−
(

7.54 + 22.1

a|k| i
) C

|k|4 + O(k−6)

]
εk. (3.51)

This result combined with Eqs. (3.39) and (3.40) leads to the
quasiparticle energy and scattering rate of spin-up fermions
presented previously in Eqs. (2.2) and (2.3).

IV. SPINLESS BOSE GAS

Here we study properties of an energetic atom in a spinless
Bose gas and derive its quasiparticle energy and scattering rate
presented in Eqs. (2.4) and (2.5). The analysis is similar to the
previous case of a spin-1/2 Fermi gas.

A. Formulation

The Lagrangian density describing spinless bosons with a
zero-range interaction is

LB = ψ†
(

i∂t + ∇2

2m

)
ψ + c

2
ψ†ψ†ψψ

= ψ†
(

i∂t + ∇2

2m

)
ψ − 1

2c
φ†φ + 1

2
φ†ψψ + 1

2
ψ†ψ†φ,

(4.1)

where an auxiliary dimer field φ = cψψ is introduced to
decouple the interaction term. The propagator of boson field
ψ in the vacuum is given by

G(k) = 1

k0 − εk + i0+

(
εk ≡ k2

2m

)
. (4.2)

Also by using the standard regularization procedure to relate
the bare coupling c to the scattering length a,

1

c
=

∫
|k|<�

dk
(2π )3

m

k2 − m

4πa
, (4.3)

the propagator of dimer field φ in the vacuum is found to be

D(k) = −8π

m

1√
k2

4 − mk0 − i0+ − 1/a

. (4.4)

D(k) coincides with the two-body scattering amplitude
A(k) between two identical bosons up to a minus sign;
A(k) = −D(k) (see Fig. 3). Note that D(k) and A(k) in the
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case of bosons are twice as large as those for fermions [see
Eq. (3.5)].

Our task here is to understand the behavior of the single-
particle Green’s function of bosons∫

dyeiky

〈
T

[
ψ

(
x + y

2

)
ψ†

(
x − y

2

)]〉
(4.5)

in the large–energy-momentum limit k → ∞ for an arbitrary
few-body or many-body state.

B. Operator product expansion

According to the operator product expansion
[68–70,80–86], the product of operators in Eq. (4.5)
can be expressed in terms of a series of local operators O:∫

dyeikyT

[
ψ

(
x + y

2

)
ψ†

(
x − y

2

)]
=

∑
i

WOi
(k)Oi(x).

(4.6)

The local operators O appearing in the right-hand side must
have a particle number NO = 0. By recalling �ψ = 3/2 and
�φ = 2 [87], we can find thirteen types of local operators with
NO = 0 up to scaling dimensions �O = 5:

1 (identity) (4.7)

for �O = 0,

ψ†ψ (4.8)

for �O = 3,

−iψ† ↔
∂ i ψ, − i∂i(ψ

†ψ), φ†φ (4.9)

for �O = 4,

−ψ† ↔
∂ i

↔
∂ j ψ, − ∂i(ψ

† ↔
∂ j ψ), − ∂i∂j (ψ†ψ), (4.10a)

iψ† ↔
∂ t ψ, i∂t (ψ

†ψ), − iφ† ↔
∂ i φ, − i∂i(φ

†φ),

(4.10b)

(φψ)†(φψ) (4.10c)

for �O = 5.
The striking difference between the cases of fermions and

bosons is the presence of the Efimov effect in a system of three
identical bosons [108]. As we discussed at the end of Sec. III B,
the Efimov effect implies that the corresponding three-body
operator φψ has the scaling dimension � = 5/2 + is0 so
that (φψ)†(φψ) in Eq. (4.10c) has � = 5 [70,88]. The
determination of its Wilson coefficient requires solving a
four-body problem, which is beyond the scope of this paper.
Therefore, in this section, we only consider the local operators
with NO = 0 and �O � 4 in Eqs. (4.7)–(4.9). As before, their
expectation values have simple physical meanings such as the
number density of bosons,

〈ψ†ψ〉 = n(x), (4.11)

and its spatial derivative 〈∂i(ψ†ψ)〉 = ∂in(x), the current
density of bosons,

〈−iψ† ↔∇ ψ〉 = j (x), (4.12)

and the contact density

〈φ†φ〉 = C(x)

m2
, (4.13)

which measures the probability of finding two bosons close
to each other. This definition of the contact density coincides
with that used in Ref. [70] and thus the large-momentum tail
of the momentum distribution function of bosons is given by
lim|q|→∞ ρ(q) = C/q4 + O(q−5).

C. Wilson coefficients

The Wilson coefficients of local operators can be obtained
by matching the matrix elements of both sides of Eq. (4.6)
with respect to appropriate few-body states [68–70,80–86].
Details of such calculations are presented in Appendix A. The
results are formally equivalent to those in the case of fermions
as long as A(k) in Eqs. (3.13)–(3.22) is understood as the
two-body scattering amplitude between two identical bosons
[see Eq. (4.4)]:

W1(k) = iG(k), (4.14)

Wψ†ψ (k) = −iG(k)2A(k), (4.15)

W−iψ†↔
∂ iψ

(k) = −iG(k)2 ∂

∂ki

A(k), (4.16)

W−i∂i (ψ†ψ)(k) = 0, (4.17)

Wφ†φ(k) = − iG(k)2T (k,0; k,0) − Wψ†ψ (k)
∫

dq
(2π )3

(
m

q2

)2

.

(4.18)

Here, T (k,p; k′,p′) is the three-body scattering amplitude
between a boson and a dimer with (k,p) [(k′,p′)] being
their initial (final) energy-momentum (see Fig. 5). Because
T (k,0; k,0) contains an infrared divergence that is canceled
exactly by the second term in Eq. (4.18), it is convenient to
combine them and define a finite quantity by

T reg(k,0; k,0) ≡ T (k,0; k,0) − A(k)
∫

dq
(2π )3

(
m

q2

)2

.

(4.19)

This regularized three-body scattering amplitude will be
computed in Sec. IV E.

D. Single-particle Green’s function

Now the single-particle Green’s function of bosons for an
arbitrary few-body or many-body state is obtained by taking
the expectation value of Eq. (4.6). By using the expressions of
WO(k) obtained in Eqs. (4.14)–(4.18), we find that it can be
brought into the usual form

iG(k) ≡
∫

dyeiky

〈
T

[
ψ

(
x + y

2

)
ψ†

(
x − y

2

)]〉

= i

k0 − εk − �(k) + i0+ , (4.20)
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where �(k) is the self-energy of bosons given by

�(k) = −A(k)n − ∂

∂k
A(k) · j − T reg(k,0; k,0)

C
m2

− · · · .
(4.21)

Corrections to this expression denoted by “· · ·” start with ∼
〈O〉/k�O−2, where O are all operators in Eq. (4.10) with the
scaling dimension �O = 5.

As in Eq. (3.38), the pole of the single-particle Green’s func-
tion (4.20) determines the quasiparticle energy and scattering
rate of bosons in a many-body system. Within the accuracy of
O(k−4), the real part of �(εk,k) gives the quasiparticle energy

E(k) = εk + Re[�(εk,k)] + O(k−4), (4.22)

while its imaginary part gives the scattering rate

	(k) = −2Im[�(εk,k)] + O(k−4). (4.23)

By setting k0 = εk in Eq. (4.21), the on-shell self-energy of
bosons for an arbitrary state is found to be

�(εk,k) = 8π
i
2 + 1

a|k|

n

m|k| + 4πi(
i
2 + 1

a|k|
)2

k̂ · j
m|k|2

−t reg(k; k)
C
m2

+ O(k−3), (4.24)

where we denoted the regularized on-shell three-body scatter-
ing amplitude by t reg(k; p) ≡ T reg(k,0; p,k − p)|k0=εk,p0=ε p .
The second term in Eq. (4.24), which is proportional to
∂A(k0,k)/∂k|k0→εk and the current density j , represents the
contribution from the two-body scattering in which the large-
momentum boson collides with a boson moving with a small
momentum. The physical meanings of the other two terms
were discussed at the end of Sec. III E.

Our remaining task is thus to determine the regularized
on-shell three-body scattering amplitude t reg(k; k) in Eq. (4.24)
up to O(k−3), which requires solving a three-body problem.
Because three identical bosons suffer from the Efimov effect,
(k2/m)t reg(k; k) = t̃ reg[(a|k|)−1, |k|/κ∗] depends not only on
(a|k|)−1 but also on |k|/κ∗, where κ∗ is the Efimov parameter.
As long as we are interested in t reg(k; k) ∼ m/k2 within the
accuracy of O(k−3), we can set the scattering length infinite
(a|k|)−1 = 0, because the dependence on it appears only from
O(k−3). Then the resulting quantity t̃ reg[0,|k|/κ∗] needs to be
determined, which is a log-periodic function of |k|/κ∗ as we
will see below.

E. Three-body problem

We now compute the three-body scattering amplitude
T (k,0; k,0). Because T (k,0; k,0) does not solve a closed
integral equation, we need to first consider T (k,0; p,k − p),
which is a solution to the integral equation depicted in Fig. 6,
and then take p = k. By denoting T (k,0; p,k − p) simply by
T (k; p), its integral equation is written as

T (k; p) = −G(−p) + i

∫
dq0dq
(2π )4

T (k; q)

×G(q)D(k − p)G(k − p − q). (4.25)

Then by performing the integration over q0 and defining
t(k; p) ≡ T (εk,k; ε p, p), we obtain an integral equation solved

by the on-shell three-body scattering amplitude

t(k; p) = m

p2
+ 2

∫
dq

(2π )3
Ka(k; p,q)t(k; q), (4.26)

where the integral kernel Ka(k; p,q) is defined in Eq. (3.46).
This integral equation has to be solved numerically to
determine t(k; p) at (a|k|)−1 = 0.

Compared to the case of fermions in Eq. (3.45), both signs
in the right-hand side of Eq. (4.26) are opposite due to different
statistics and the second term has the factor 2 originating from
the fact that the two-body scattering amplitude between two
identical bosons is twice larger. The former difference leads
to the striking consequence: As is known [109,110], the three-
boson problem described by the integral equation (4.26) is ill
defined without introducing an ultraviolet momentum cutoff
� in the zero orbital angular momentum channel. � can be
related to the Efimov parameter κ∗ which is defined so that
three identical bosons at infinite scattering length have the
following infinite tower of binding energies:

En → −e−2πn/s0
κ2

∗
m

(n → ∞), (4.27)

with s0 = 1.006 24 [110,111]. Because κ∗ is defined up to
multiplicative factors of λ ≡ eπ/s0 = 22.6944, the solution to
the integral equation (4.26) at (a|k|)−1 = 0 has to be a log-
periodic function of |k|/κ∗. We have computed such t(k; p) in
a range 1 � |k|/κ∗ � λ2 corresponding to two periods. More
details of solving the integral equation (4.26) are presented in
Appendix B.

As we mentioned after Eq. (4.18), t(k; k) =
T (k,0; k,0)|k0=εk contains an infrared divergence. This
can be seen by rewriting (4.26) at p = k as

t(k; k) = m

k2 + 2
∫

dq
(2π )3

Ka(k; k,q)
m

q2

+ 2
∫

dq
(2π )3

Ka(k; k,q)

[
t(k; q) − m

q2

]
, (4.28)

in which the second term is infrared divergent at |q| → 0
[see Eq. (3.48)]. However, this infrared divergence is canceled
exactly by the second term in Eq. (4.19). Therefore, the
regularized three-body scattering amplitude defined there is
free of divergences and its on-shell version is given by

t reg(k; k)

= T reg(k,0; k,0)|k0=εk

= m

k2 + 2
∫

dq
(2π )3

[
Ka(k; k,q) − 4π

−i
|k|
2 − 1/a

1

q2

]
m

q2

+ 2
∫

dq
(2π )3

Ka(k; k,q)

[
t(k; q) − m

q2

]
. (4.29)

The physical meaning of this subtraction procedure was
discussed at the end of Sec. III F.

By using the numerical solutions of t(k; q) at (a|k|)−1 = 0,
t reg(k; k) is computed in the range 1 � |k|/κ∗ � λ2 and the
resulting universal function

f

( |k|
κ∗

)
≡ k2

m
t reg(k; k)|(a|k|)−1=0 (4.30)
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FIG. 7. (Color online) Universal log-periodic function f (|k|/κ∗)
defined in Eq. (4.30) as a function of (s0/π ) ln(|k|/κ∗). Circles
(squares) with steps 1/16 correspond to its real part (imaginary part
shifted by +12) and solid curves are fits by the approximate formula
(4.31). Two periods in the range 1 � |k|/κ∗ � e2π/s0 are shown here.

is shown by points in Fig. 7. The logarithmic periodicity
is clearly seen and we find that our numerical results are
excellently reproduced by

f (z) ≈ X + Y1 cos(2s0 ln z + δ1) + iY2 sin(2s0 ln z + δ1)

1 + Z sin(2s0 ln z + δ2)
,

(4.31)

with fitting parameters X ≈ −0.096 56 − 12.20i, Y1 ≈ 1.036,
Y2 ≈ −1.032, Z ≈ −0.084 60, and δ1 ≈ δ2 ≈ 0.4653. The
approximate formula (4.31) is plotted by solid curves in Fig. 7
and differs from the numerical points only by the amount
�4 × 10−6. Whether Eq. (4.31) is the true analytic expression
of f (|k|/κ∗) or not needs to be investigated further.

Finally, by substituting the numerical solution of the three-
body problem (4.30) into Eq. (4.24), we find that the on-shell
self-energy of bosons has the following systematic expansion
in the large-momentum limit:

�(εk,k) =
[

32π

(
−i + 2

a|k|
)

n

|k|3 − 32πi
k̂ · j
|k|4

− 2f

( |k|
κ∗

) C
|k|4 + O(k−5)

]
εk. (4.32)

This result combined with Eqs. (4.22) and (4.23) leads to the
quasiparticle energy and scattering rate of bosons presented
previously in Eqs. (2.4) and (2.5), where the contribution of
the current density is dropped by assuming translational and
rotational symmetries.

V. DIFFERENTIAL SCATTERING RATE

So far we have studied a quasiparticle energy and a “total”
scattering rate of an energetic atom both in a spin-1/2 Fermi
gas (Sec. III) and in a spinless Bose gas (Sec. IV). Often
in physics, differential scattering rates or cross sections also
reveal many important phenomena. For example, differen-
tial cross sections in neutron-deuteron or proton-deuteron
scatterings at intermediate or higher energies are important
to reveal the existence of three-nucleon forces in nuclei
[29–31]. Also, momentum and angular resolutions have been
essential to reveal short-range pair correlations in nuclei from
two-nucleon knockout reactions by high-energy protons or

electrons [32,33]. Furthermore, differential cross sections of
high-energy neutrons scattered by liquid helium have been
employed to extract the momentum distribution of helium
atoms [40–44].

Now in ultracold-atom experiments, one can in principle
imagine shooting an energetic spin-up fermion (boson) into
a Fermi (Bose) gas trapped with a finite depth and measure
the angle distribution of spin-up fermions (bosons) coming
out of the trap. Here one needs to be cautious, however,
because the incident atom cannot be distinguished from
atoms constituting the atomic gas. For example, there is a
process in which the energetic spin-up fermion collides with
a spin-down fermion in the medium and they escape from the
trap. However, such a spin-down fermion may be accompanied
by another spin-up fermion nearby so that they form a small
pair described by the contact density. What happens to this
spin-up fermion when its partner is kicked out by the incident
atom? Whether it escapes from the trap to be measured
or not has to be imposed consistently on all calculations,
which appears intractable in our systematic large-momentum
expansion without introducing phenomenological procedures.

In order to avoid this problem and unambiguously deter-
mine the differential scattering rate, it is therefore favorable to
consider an incident atom that is distinguishable from the rest
of the atoms constituting the atomic gas. In this section, we
imagine shooting a different spin state of atoms into a spin-1/2
Fermi gas or a spinless Bose gas with a large momentum and
measure its angle distribution. The differential scattering rate
presented in Eq. (2.6) will be derived from the total scattering
rate by using the optical theorem, while it coincides with
the one expected on physical grounds. Here translational or
rotational symmetries are not assumed and thus the densities
depend on a time-space coordinate (x) = (t,x).

A. Spin-1/2 Fermi gas

We first consider the case of a spin-1/2 Fermi gas. Here
a probe atom is denoted by χ and assumed to interact with
spin-up and -down fermions by scattering lengths a↑ and
a↓, respectively. The Lagrangian density describing such a
problem is

L = χ †
(

i∂t + ∇2

2mχ

)
χ +

∑
σ=↑,↓

cσ χ †ψ†
σψσχ + LF , (5.1)

where LF defined in Eq. (3.1) describes spin-1/2 fermions
interacting with each other by a scattering length a. For
simplicity, we shall assume that all particles have the same
mass m = mχ = m↑ = m↓. In analogy with Eq. (3.5), the
two-body scattering amplitude between the χ atom and a
spin-σ fermion is given by

Aσ (k) = 4π

m

1√
k2

4 − mk0 − i0+ − 1/aσ

. (5.2)

The behavior of the single-particle Green’s function of the
χ atom,

iGχ (x; k) ≡
∫

dyeiky

〈
T

[
χ

(
x + y

2

)
χ †

(
x − y

2

)]〉
, (5.3)
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in the large–energy-momentum limit k → ∞ can be under-
stood by using the operator product expansion as in Secs. III
and IV. Since three distinguishable particles (χ, ↑ , ↓)
with zero-range interactions suffer from the Efimov effect
[110,111], we only consider local operators with NO = 0 up
to scaling dimensions �O = 4 (see discussions in Sec. IV B).
Then in analogy with Eqs. (4.20) and (4.21), Gχ (x; k) can be
written in the usual form

Gχ (x; k) = 1

k0 − εk − �χ (x; k) + i0+ , (5.4)

where �χ (x; k) is the self-energy of the χ atom given by

�χ (x; k) = −
∑

σ=↑,↓

[
Aσ (k)nσ (x) + ∂

∂k
Aσ (k) · jσ (x)

]

− T reg
χ (k,0; k,0)

C(x)

m2
− · · · . (5.5)

Here, nσ (x) = 〈ψ†
σ ψσ 〉 and jσ (x) = 〈−iψ†

σ

↔∇ ψσ 〉 are the
number density and current density of spin-σ fermions and
C(x) = m2〈φ†φ〉 is the contact density of a spin-1/2 Fermi
gas. Note that these parameters only refer to many-body
properties of the given spin-1/2 Fermi gas and do not involve
the information related to the χ atom. On the other hand,
T

reg
χ (k,0; k,0) is a finite quantity defined by

T reg
χ (k,0; k,0) ≡ Tχ (k,0; k,0) − [A↑(k) + A↓(k)]

×
∫

dq
(2π )3

(
m

q2

)2

, (5.6)

where Tχ (k,p; k′,p′) is the three-body scattering amplitude
between the χ atom and a dimer composed of spin-up
and -down fermions with (k,p) [(k′,p′)] being their initial
(final) energy-momentum (see Fig. 5). Corrections to the
above expression of �χ (x; k) denoted by “· · ·” start with
∼ 〈O〉/k�O−2, where O are all possible operators with the
scaling dimension �O = 5.

Then by setting k0 = εk in Eq. (5.5), the on-shell self-energy
of the χ atom for an arbitrary state is found to be

�χ (x; εk,k)

=
∑

σ=↑,↓

[
4π

i
2 + 1

aσ |k|

nσ (x)

m|k| + 2πi(
i
2 + 1

aσ |k|
)2

k̂ · jσ (x)

m|k|2
]

−t reg
χ (k; k)

C(x)

m2
+ O(k−3). (5.7)

The quasiparticle energy and scattering rate of the χ atom in a
spin-1/2 Fermi gas are given by the real and imaginary parts
of �χ (x; εk,k) according to

Eχ (x; k) = εk + Re[�χ (x; εk,k)] + O(k−4) (5.8)

and

	χ (x; k) = −2Im[�χ (x; εk,k)] + O(k−4), (5.9)

respectively. Our next task is to determine the regular-
ized on-shell three-body scattering amplitude t

reg
χ (k; p) ≡

T
reg
χ (k,0; p,k − p)|k0=εk,p0=ε p in Eq. (5.7), which requires

solving a three-body problem.

B. Three-body problem

We now compute the three-body scattering amplitude
Tχ (k,0; k,0). Unlike the previous cases in Secs. III F and
IV E, Tχ (k; p) ≡ Tχ (k,0; p,k − p) by itself does not solve
a closed integral equation. To find a closed set of integral
equations, we need to introduce other three-body scattering
amplitudes Tσ (k; p) with σ =↑ , ↓, which describe processes
where the χ atom and a dimer composed of spin-up and -down
fermions with their energy-momentum (k,0) are scattered
into a spin-σ fermion and a dimer composed of the χ

atom and the other fermion with their energy-momentum
(p,k − p). These three scattering amplitudes are solutions to
a closed set of integral equations depicted in Fig. 8. Then by
following the same procedures as in Eqs. (3.43)–(3.45), the
integral equations solved by the on-shell three-body scattering
amplitudes tχ,↑,↓(k; p) ≡ Tχ,↑,↓(εk,k; ε p, p) can be written as

tχ (k; p) =
∫

dq
(2π )3

Ka↓ (k; p,q)t↑(k; q)

+
∫

dq
(2π )3

Ka↑ (k; p,q)t↓(k; q), (5.10a)

t↑(k; p) = m

p2
+

∫
dq

(2π )3
Ka(k; p,q)tχ (k; q)

+
∫

dq
(2π )3

Ka↑ (k; p,q)t↓(k; q), (5.10b)

t↓(k; p) = m

p2
+

∫
dq

(2π )3
Ka(k; p,q)tχ (k; q)

+
∫

dq
(2π )3

Ka↓ (k; p,q)t↑(k; q), (5.10c)

where the integral kernel Ka(k; p,q) is defined in Eq. (3.46).
As long as we are interested in t

reg
χ (k; k) ∼ m/k2 up

to O(k−3) [see Eq. (5.7)], we can set all three scattering
lengths infinite (a↑|k|)−1, (a↓|k|)−1, (a|k|)−1 = 0, because the
dependence on them appears only from O(k−3). In this case,
by defining

tF (k; p) ≡ 2tχ (k; p) − t↑(k; p) − t↓(k; p)

2
(5.11)

and

tB(k; p) ≡ tχ (k; p) + t↑(k; p) + t↓(k; p)

2
, (5.12)

the three coupled integral equations (5.10) can be brought into
two independent integral equations:

tF (k; p) = − m

p2
−

∫
dq

(2π )3
K∞(k; p,q)tF (k; q) (5.13a)

and

tB(k; p) = m

p2
+ 2

∫
dq

(2π )3
K∞(k; p,q)tB(k; q). (5.13b)

Because these two integral equations are equivalent to
Eqs. (3.45) and (4.26) at (a|k|)−1 = 0, their solutions are
already obtained.
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FIG. 8. Set of integral equations for three-body scattering amplitudes Tχ (k; p), T↑(k; p), and T↓(k; p) involving three distinguishable
particles χ and spin-↑ and -↓ fermions. Momentum labels are the same as those in Fig. 6.

By using the numerical solutions obtained previously in
Eqs. (3.50) and (4.30), t reg

χ (k; k) within the accuracy of O(k−3)
is found to be

t reg
χ (k; k) = 2

3

[
t

reg
F (k; k) + t

reg
B (k; k)

] + O(k−3)

= 2

3

[
3.771 + f

( |k|
κ ′∗

)]
m

k2 + O(k−3). (5.14)

Here, f (|k|/κ ′
∗) is the universal log-periodic function plotted in

Fig. 7 and approximately given by Eq. (4.31) with κ ′
∗ being the

Efimov parameter associated with a three-body system of the
χ atom with spin-up and -down fermions. By substituting this
numerical solution of the three-body problem into the on-shell
self-energy in Eq. (5.7), the large-momentum expansions of
the quasiparticle energy and scattering rate of the χ atom in a
spin-1/2 Fermi gas are obtained from Eqs. (5.8) and (5.9):

Eχ (x; k) =
[

1 + 32π
∑

σ=↑,↓

nσ (x)

aσ |k|4

−4

3

{
3.771 + Ref

( |k|
κ ′∗

)} C(x)

|k|4 + O(k−5)

]
εk

(5.15)

and

	χ (x; k) =
[

32π
∑

σ=↑,↓

{
nσ (x)

|k|3 + k̂ · jσ (x)

|k|4
}

+8

3
Imf

( |k|
κ ′∗

) C(x)

|k|4 + O(k−5)

]
εk, (5.16)

respectively.

C. Differential scattering rate

Our final task is to determine the differential scattering rate
d	χ (k)/d p; that is, the rate at which the χ atom shot into a
spin-1/2 Fermi gas with the initial momentum k is measured at
the final momentum p (see Fig. 1). We start with the following
expression for the total scattering rate obtained from Eqs. (5.7)

and (5.9):

	χ (x; k)

=
∑

σ=↑,↓

[
4π

1
4 + 1

(aσ |k|)2

nσ (x)

m|k| +
π − 4π

(aσ |k|)2[
1
4 + 1

(aσ |k|)2

]2

k̂ · jσ (x)

m|k|2
]

+ 2Imt reg
χ (k; k)

C(x)

m2
+ O(k−3)

≡
∑

σ=↑,↓

[
	(nσ )

χ (k) + 	( jσ )
χ (k)

] + 	(C)
χ (k) + O(k−3). (5.17)

Here the contributions of the number density nσ , current
density jσ , and contact density C are denoted by 	(nσ )

χ , 	
( jσ )
χ ,

and 	(C)
χ , respectively.

1. Contribution of number density

In order to extract the differential scattering rate, it is
instructive to rewrite the first term in Eq. (5.17) so that its
physical meaning becomes transparent:

	(nσ )
χ (k) = nσ (x)

∫
d pdq
(2π )6

|Aσ (εk,k)|2

× (2π )4δ( p + q − k)δ(ε p + εq − εk). (5.18)

Here, Aσ (k) introduced in Eq. (5.2) is the two-body scattering
amplitude between the χ atom and a spin-σ fermion. It is
now obvious that 	(nσ )

χ (k) represents the contribution from
the two-body scattering in which the χ atom with the initial
momentum k and a spin-σ fermion at rest are scattered
into those with their final momenta p and q, respectively.
Therefore, the contribution of the number density of spin-σ
fermions to the differential scattering rate of the χ atom can
be read off as

d	(nσ )
χ (k)

d p
= nσ (x)

∫
dq

(2π )6
|Aσ (εk,k)|2

×(2π )4δ( p + q − k)δ(ε p + εq − εk). (5.19)

Then by performing the integration over the magnitude of
momentum | p|2d| p|, the angle distribution of the scattered χ
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atom is found to be

d	(nσ )
χ (k)

d�
= 4 cos θ�(cos θ )

1
4 + 1

(aσ |k|)2

nσ (x)

m|k| , (5.20)

where �(·) is the Heaviside step function and θ is a polar
angle of the final momentum p with respect to the initial
momentum chosen to be k = |k| ẑ. Because of kinematic
constraints (energy and momentum conservations) in the
two-body scattering, the number density contributes to the
forward scattering (cos θ > 0) only.4

2. Contribution of current density

Similarly, the second term in Eq. (5.17) can be rewritten as

	( jσ )
χ (k) = jσ (x) · ∂

∂k

∫
d pdq
(2π )6

|Aσ (k0,k)|2

×(2π )4δ( p + q − k)δ(ε p + εq − k0)
∣∣
k0→εk

,

(5.21)

which represents the contribution from the two-body scattering
in which the χ atom is scattered by a spin-σ fermion moving
with a small momentum. Accordingly, the contribution of the
current density of spin-σ fermions to the differential scattering
rate of the χ atom can be read off as

d	
( jσ )
χ (k)

d p
= jσ (x) · ∂

∂k

∫
dq

(2π )6
|Aσ (k0,k)|2

× (2π )4δ( p + q − k)δ(ε p + εq − k0)|k0→εk .

(5.22)

Then by performing the integration over the magnitude of
momentum | p|2d| p|, the angle distribution of the scattered χ

atom is found to be

d	
( jσ )
χ (k)

d�
= 2 cos θ�(cos θ )[

1
4 + 1

(aσ |k|)2

]2

k̂ · jσ (x)

m|k|2

−δ(cos θ )k̂ − �(cos θ ) p̂
1
4 + 1

(aσ |k|)2

· 4 jσ (x)

m|k|2 . (5.23)

Note that this differential scattering rate can be nonzero only on
the forward-scattering side again and depends on the azimuthal
angle ϕ because of the p̂ · jσ term. It is easy to check that the
integration of the differential scattering rate in Eq. (5.20) or
(5.23) over the solid angle d� = d cos θdϕ reproduces the
total scattering rate in Eq. (5.17).

4The situation is different if the χ atom has a mass different from
that of spin-σ fermions; mχ �= mσ . By considering the two-body
scattering in which the χ atom with the initial momentum k
collides with a spin-σ fermion at rest, the energy and momentum
conservations constrain the final momentum p to be on a sphere
defined by | p − mχ/(mχ + mσ )k| = |mσ /(mχ + mσ )k|. Therefore,
when mχ > mσ , the χ atom can be scattered into an angle range
cos θ � [1 − (mσ /mχ )2]1/2 only, while when mχ < mσ , it can be
scattered into any angles.

3. Contribution of contact density

The contribution of the contact density of a spin-1/2 Fermi
gas to the differential scattering rate of the χ atom can be
extracted in a similar way. As we discussed at the end of
Sec. III E, the last term in Eq. (5.17) represents the contribution
from the three-body scattering of the χ atom with the initial
momentum k with a small pair of spin-up and -down fermions
at rest. By using the optical theorem, the imaginary part of
the forward three-body scattering amplitude tχ (k; k) can be
written as a form of the total scattering rate:

2Imtχ (k; k) =
∫

d pdq↑dq↓
(2π )9

|tχ (k; p)A(εk − ε p,k − p)

+ t↑(k; q↑)A↓(εk − εq↑ ,k − q↑)

+ t↓(k; q↓)A↑(εk − εq↓ ,k − q↓)|2(2π )4

× δ( p + q↑ + q↓ − k)δ(ε p + εq↑ + εq↓ − εk).

(5.24)

Here, p and qσ are momenta of the χ atom and the spin-σ
fermion in the final state, respectively. This equality can be
checked by a direct calculation starting with the set of integral
equations (5.10) (see Appendix C).

The right-hand side of Eq. (5.24) is infrared divergent at
|qσ | → 0 because of tσ (k; qσ ) → m/q2

σ for both σ =↑ , ↓
[see Eq. (5.10)]. These infrared divergences are canceled
exactly by the second term in Eq. (5.6) because its imaginary
part also contains the same form of infrared divergences which
can be seen from

2ImA↑(εk,k)
∫

dq
(2π )3

(
m

q2

)2

=
∫

d pdq↑dq↓
(2π )9

(
m

q2
↓

)2

|A↑(εk,k)|2

×(2π )4δ( p + q↑ − k)δ(ε p + εq↑ − εk), (5.25)

and the same for ↑↔↓. Therefore, the imaginary part of the
regularized on-shell three-body scattering amplitude

2Imt reg
χ (k; k) = 2Imtχ (k; k) − 2Im[A↑(εk,k) + A↓(εk,k)]

×
∫

dq
(2π )3

(
m

q2

)2

(5.26)

appearing in 	(C)
χ (k) is free of divergences. By recalling that

p in Eqs. (5.24) and (5.25) corresponds to the momentum of
the χ atom in the final state, the contribution of the contact
density to the differential scattering rate of the χ atom can be
identified as

d	(C)
χ (k)

d p

=
∫

dq↑dq↓
(2π )9

[
|tχ (k; p)A(εk − ε p,k − p) + t↑(k; q↑)

×A↓(εk − εq↑ ,k−q↑)+t↓(k; q↓)A↑(εk−εq↓ ,k−q↓)|2
× (2π )4δ( p + q↑ + q↓ − k)δ(ε p + εq↑ + εq↓ − εk)

−
(

m

q2
↑

)2

|A↓(εk,k)|2(2π )4δ( p + q↓ − k)
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FIG. 9. (Color online) Universal function g(cos θ,|k|/κ ′
∗) to determine the contribution of the contact density to the differential scattering

rate (5.28). g(cos θ,|k|/κ ′
∗) is periodic in terms of 0 � (s0/π ) ln(|k|/κ ′

∗) � 1 and here its dependence on cos θ is shown at four values
of (s0/π ) ln(|k|/κ ′

∗) = 3/16, 7/16, 11/16, 15/16. These four values roughly correspond to the minimum, inflection point, maximum, and
inflection point of the total scattering rate, respectively [see Eq. (5.29) and Fig. 7].

× δ(ε p + εq↓ − εk) −
(

m

q2
↓

)2

|A↑(εk,k)|2(2π )4

× δ( p + q↑ − k)δ(ε p + εq↑ − εk)

]C(x)

m2
. (5.27)

This differential scattering rate can be evaluated by using
the on-shell three-body scattering amplitudes tχ,↑,↓(k; p) at
infinite scattering lengths (a↑|k|)−1, (a↓|k|)−1, (a|k|)−1 = 0
obtained from the numerical solutions of tF,B(k; p) in
Eqs. (5.11)–(5.13) [note that t↑(k; p) = t↓(k; p) when
a↑ = a↓]. The physical meaning of the subtracted terms was
discussed at the end of Sec. III F.

Finally, by performing the integration over the magnitude
of p, the angle distribution of the scattered χ atom is given by

d	(C)
χ (k)

d�
=

∫ ∞

0
d| p|| p|2 d	(C)

χ (k)

d p
≡ g

(
cos θ,

|k|
κ ′∗

) C(x)

mk2 .

(5.28)

The resulting universal function g(cos θ,|k|/κ ′
∗) depends on

the polar angle θ and the momentum to Efimov parameter ratio
|k|/κ ′

∗ in a log-periodic way. g(cos θ,|k|/κ ′
∗) as a function of

cos θ is shown in Fig. 9 at four values of (s0/π ) ln(|k|/κ ′
∗) =

3/16, 7/16, 11/16, 15/16. Note that g(cos θ,|k|/κ ′
∗)

is mostly negative on the forward-scattering side
(cos θ > 0), while it is positive everywhere on the backward-
scattering side (cos θ < 0). The divergences of g(cos θ,|k|/κ ′

∗)
at cos θ = 0 and 1 signal poor convergences of the large-

momentum expansion around these angles. Higher order
corrections would be important as well and ideally need to be
resummed. However, away from these two singularities, we
expect our large-momentum expansion to be valid in a wide
range of momentum based on the observation in Sec. II C.

The integration of the differential scattering rate (5.28) over
the solid angle d� = d cos θdϕ reproduces the total scattering
rate in Eq. (5.16):5

	(C)
χ (k) = 2π

∫ 1

−1
d cos θg

(
cos θ,

|k|
κ ′∗

) C(x)

mk2

= 4

3
Imf

( |k|
κ ′∗

) C(x)

mk2 , (5.29)

which relates the integral of g(cos θ,|k|/κ ′
∗) to the imagi-

nary part of f (|k|/κ ′
∗). Note that the above four values of

(s0/π ) ln(|k|/κ ′
∗) = 3/16, 7/16, 11/16, 15/16 are chosen so

that they roughly correspond to the minimum, inflection point,
maximum, and inflection point of Imf (|k|/κ ′

∗), respectively
(see Fig. 7). Therefore, although differences are difficult to see
in the differential scattering rate from Fig. 9, the contribution
of the contact density to the total scattering rate varies by up
to 17% for a different momentum to Efimov parameter ratio

5Since d	(C)
χ (k)/d� has a pole at cos θ = 0 due to g(cos θ,|k|/κ ′

∗) ∼
−4/(π 2 cos θ ), the integral over cos θ is understood as the Cauchy
principal value.
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|k|/κ ′
∗. By combining the results in Eqs. (5.20), (5.23), and

(5.28), we obtain the differential scattering rate of the χ atom
shot into a spin-1/2 Fermi gas up to O(k−3):

d	χ (k)

d�
=

∑
σ=↑,↓

[
d	(nσ )

χ (k)

d�
+ d	

( jσ )
χ (k)

d�

]

+d	(C)
χ (k)

d�
+ O(k−3). (5.30)

This result was presented previously in Eq. (2.6), where the
time dependence of the densities is suppressed by assuming a
stationary state.

D. Spinless Bose gas

The analysis in the case of a spinless Bose gas is similar.
Again a probe atom is denoted by χ and assumed to interact
with a boson by a scattering length aχ . The Lagrangian density
describing such a problem is

L = χ †
(

i∂t + ∇2

2mχ

)
χ + cχχ †ψ†ψχ + LB, (5.31)

where LB defined in Eq. (4.1) describes spinless bosons
interacting with each other by a scattering length a. For
simplicity, we shall assume that the χ atom and bosons have the
same mass m = mχ . In analogy with Eq. (3.5), the two-body
scattering amplitude between the χ atom and a boson is given
by

Aχ (k) = 4π

m

1√
k2

4 − mk0 − i0+ − 1/aχ

. (5.32)

The behavior of the single-particle Green’s function of the
χ atom,

iGχ (x; k) ≡
∫

dyeiky

〈
T

[
χ

(
x + y

2

)
χ †

(
x − y

2

)]〉
, (5.33)

in the large–energy-momentum limit k → ∞ can be under-
stood by using the operator product expansion as in Secs. III
and IV. Since the χ atom and two identical bosons with zero-
range interactions suffer from the Efimov effect [110,111],
we only consider local operators with NO = 0 up to scaling
dimensions �O = 4 (see discussions in Sec. IV B). Then in
analogy with Eqs. (4.20) and (4.21), Gχ (x; k) can be written in
the usual form

Gχ (x; k) = 1

k0 − εk − �χ (x; k) + i0+ , (5.34)

where �χ (x; k) is the self-energy of the χ atom given by

�χ (x; k) = −Aχ (k)n(x) + ∂

∂k
Aχ (k) · j (x)

−T reg
χ (k,0; k,0)

C(x)

m2
− · · · . (5.35)

Here, n(x) = 〈ψ†ψ〉 and j (x) = 〈−iψ†
↔∇ ψ〉 are the number

density and current density of bosons and C(x) = m2〈φ†φ〉
is the contact density of a spinless Bose gas. Note that these
parameters only refer to many-body properties of the given
spinless Bose gas and do not involve the information related

to the χ atom. On the other hand, T
reg
χ (k,0; k,0) is a finite

quantity defined by

T reg
χ (k,0; k,0) ≡ Tχ (k,0; k,0) − Aχ (k)

∫
dq

(2π )3

(
m

q2

)2

,

(5.36)

where Tχ (k,p; k′,p′) is the three-body scattering amplitude
between the χ atom and a dimer composed of two identical
bosons with (k,p) [(k′,p′)] being their initial (final) energy-
momentum (see Fig. 5). Corrections to the above expression of
�χ (x; k) denoted by “· · ·” start with ∼ 〈O〉/k�O−2, where O
are all possible operators with the scaling dimension �O = 5.

Then by setting k0 = εk in Eq. (5.35), the on-shell self-
energy of the χ atom for an arbitrary state is found to be

�χ (x; εk,k) = 4π
i
2 + 1

aχ |k|

n(x)

m|k| + 2πi(
i
2 + 1

aχ |k|
)2

k̂ · j (x)

m|k|2

−t reg
χ (k; k)

C(x)

m2
+ O(k−3). (5.37)

The quasiparticle energy and scattering rate of the χ atom
in a spinless Bose gas are given by the real and imaginary
parts of �χ (x; εk,k) according to Eqs. (5.8) and (5.9), respec-
tively. Our next task is to determine the regularized on-shell
three-body scattering amplitude t

reg
χ (k; p) ≡ T

reg
χ (k,0; p,k −

p)|k0=εk,p0=ε p in Eq. (5.37), which requires solving a three-
body problem.

E. Three-body problem

We now compute the three-body scattering amplitude
Tχ (k,0; k,0). Unlike the previous cases in Secs. III F and IV E,
Tχ (k; p) ≡ Tχ (k,0; p,k − p) by itself does not solve a closed
integral equation. To find a closed set of integral equations,
we need to introduce another three-body scattering amplitude
Tψ (k; p), which describes a process where the χ atom and a
dimer composed of two identical bosons with their energy-
momentum (k,0) are scattered into a boson and a dimer
composed of the χ atom and the other boson with their energy-
momentum (p,k − p). These two scattering amplitudes are
solutions to a closed set of integral equations depicted in
Fig. 8 with the identification of T↑, T↓ with Tψ . Then by
following the same procedures as in Eqs. (3.43)–(3.45), the
integral equations solved by the on-shell three-body scattering
amplitudes tχ,ψ (k; p) ≡ Tχ,ψ (εk,k; ε p, p) can be written as

tχ (k; p) =
∫

dq
(2π )3

Kaχ
(k; p,q)tψ (k; q) (5.38a)

and

tψ (k; p) = m

p2
+ 2

∫
dq

(2π )3
Ka(k; p,q)tχ (k; q)

+
∫

dq
(2π )3

Kaχ
(k; p,q)tψ (k; q), (5.38b)

where the integral kernel Ka(k; p,q) is defined in Eq. (3.46).
Note that the factor 2 in front of Ka originates from the fact
that the two-body scattering amplitude between two identical
bosons is twice as large as that between two distinguishable
particles [compare Eqs. (3.5) and (4.4)].
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As long as we are interested in t
reg
χ (k; k) ∼ m/k2 up to

O(k−3) [see Eq. (5.37)], we can set the two scattering lengths
infinite (aχ |k|)−1, (a|k|)−1 = 0, because the dependence on
them appears only from O(k−3). In this case, by defining

tF (k; p) ≡ 2tχ (k; p) − tψ (k; p) (5.39)

and

tB(k; p) ≡ tχ (k; p) + tψ (k; p), (5.40)

the two coupled integral equations (5.38) can be brought into
two independent integral equations:

tF (k; p) = − m

p2
−

∫
dq

(2π )3
K∞(k; p,q)tF (k; q) (5.41a)

and

tB(k; p) = m

p2
+ 2

∫
dq

(2π )3
K∞(k; p,q)tB(k; q). (5.41b)

Because these two integral equations are equivalent to
Eqs. (3.45) and (4.26) at (a|k|)−1 = 0, their solutions are
already obtained.

By using the numerical solutions obtained previously in
Eqs. (3.50) and (4.30), t reg

χ (k; k) within the accuracy of O(k−3)
is found to be

t reg
χ (k; k) = 1

3

[
t

reg
F (k; k) + t

reg
B (k; k)

] + O(k−3)

= 1

3

[
3.771 + f

( |k|
κ ′∗

)]
m

k2 + O(k−3). (5.42)

Here, f (|k|/κ ′
∗) is the universal log-periodic function plotted

in Fig. 7 and approximately given by Eq. (4.31) with κ ′
∗ being

the Efimov parameter associated with a three-body system of
the χ atom with two identical bosons. By substituting this
numerical solution of the three-body problem into the on-shell
self-energy in Eq. (5.37), the large-momentum expansions of
the quasiparticle energy and scattering rate of the χ atom in a
spinless Bose gas are obtained from Eqs. (5.8) and (5.9):

Eχ (x; k) =
[

1+32π
n(x)

aχ |k|4 − 2

3

{
3.771 + Ref

( |k|
κ ′∗

)}C(x)

|k|4

+O(k−5)

]
εk (5.43)

and

	χ (x; k) =
[

32π

{
n(x)

|k|3 + k̂ · j (x)

|k|4
}

+ 4

3
Imf

( |k|
κ ′∗

) C(x)

|k|4 + O(k−5)

]
εk, (5.44)

respectively.
Furthermore, by comparing Eqs. (5.39)–(5.41) with

Eqs. (5.11)–(5.13), we find tψ (k; p) = t↑,↓(k; p) and tχ (k; p)
in a spinless Bose gas is a half of that in a spin-1/2 Fermi
gas. Therefore, the contribution of the contact density to the
differential scattering rate of the χ atom in a spinless Bose
gas is also a half of that in a spin-1/2 Fermi gas (see also
Appendix C). All discussions given in Sec. V C for a spin-1/2
Fermi gas apply equally to a spinless Bose gas with minor

modifications. In particular, the differential scattering rate of
the χ atom shot into a spinless Bose gas is given by

d	χ (k)

d�
=

[
32 cos θ�(cos θ )

n(x)

|k|3 + 32{2 cos θ�(cos θ )k̂

− δ(cos θ )k̂ + �(cos θ ) p̂} · j (x)

|k|4

+ g

(
cos θ,

|k|
κ ′∗

) C(x)

|k|4 + O(k−5)

]
k2

2m
. (5.45)

Compare this result with that for a spin-1/2 Fermi gas in
Eq. (2.6).

VI. WEAK-PROBE LIMIT

A. Spin-1/2 Fermi gas

In the previous section, the differential scattering rate of
a different spin state of atoms shot into an atomic gas was
derived in the systematic large-momentum expansion. For a
spin-1/2 Fermi gas, it is given by

d	χ (k)

d p
=

∑
σ=↑,↓

[
d	(nσ )

χ (k)

d p
+ d	

( jσ )
χ (k)

d p

]

+d	(C)
χ (k)

d p
+ O(k−6), (6.1)

where the three leading terms were obtained in Eqs. (5.19),
(5.22), and (5.27), respectively. On the other hand, there is
another limit in which a different systematic expansion is
possible; that is, the limit of aσ → 0 where the probe atom
interacts weakly with atoms constituting the target atomic gas.
In this “weak-probe” limit, the self-energy of the χ atom in a
spin-1/2 Fermi gas can be expanded perturbatively in terms
of aσ :

�χ (k) = −
∑

σ=↑,↓
cσnσ +

∑
σ,σ ′

cσ cσ ′

∫
dp

(2π )3

Sσσ ′(k − p)

p0 − ε p + i0+

+O
(
a3

σ

)
. (6.2)

Here, cσ = −4πaσ /m + O(a2
σ ) is the coupling strength be-

tween the χ atom and a spin-σ fermion and

Sσσ ′(k) = 1

2π

∫
dxeikx 〈n̂σ (x)n̂σ ′(0)〉 (6.3)

is a dynamic structure factor of the spin-1/2 Fermi gas
with translational symmetries assumed again. As before, the
imaginary part of the self-energy gives the scattering rate of
the χ atom as

	χ (k) = −2Im[�χ (εk,k)]

=
∑
σ,σ ′

cσ cσ ′

∫
d p

(2π )2
Sσσ ′(εk − ε p,k − p) + O

(
a3

σ

)
.

(6.4)

Because p corresponds to the momentum of the χ atom in the
final state, its differential scattering rate can be identified as

d	χ (k)

d p
=

∑
σ,σ ′

cσ cσ ′

(2π )2
Sσσ ′(εk − ε p,k − p) + O

(
a3

σ

)
, (6.5)
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FIG. 10. Schematic of valid regions of our hard-probe formula
(6.1) and the known weak-probe formula (6.5) in the plane of
the incident momentum k and the scattering length aχ ∼ a↑ ∼ a↓
between the probe atom and an atom constituting the target atomic
gas.

which is well known in the context of inelastic neutron
scattering in condensed matter physics [112,113].

This formula (6.5) for the differential scattering rate is valid
in the weak-probe limit aσ → 0 but for an arbitrary incident
momentum k, while our formula (6.1) derived in Sec. V is valid
in the hard-probe limit |k| → ∞ but for an arbitrary scattering
length aσ . Therefore, they cover different regions in the plane
of aσ and |k|, while both the results become valid in the double
limit of aσ → 0 and |k| → ∞ (see Fig. 10). In this section, we
show that the weak-probe limit of Eq. (6.1) is indeed equivalent
to the hard-probe limit of Eq. (6.5). This serves as a nontrivial
check of our results presented in the previous section as well
as a new derivation of the large–energy-momentum expansion
of the dynamic structure factor Sσσ ′ .

B. Dynamic structure factor

For simplicity, we shall consider a spin-1/2 Fermi gas at
infinite scattering length a → ∞ only. In the weak-probe limit
aσ → 0, we can make the following expansions in each term
for the differential scattering rate in Eq. (6.1):

Aσ (k) = cσ + O
(
a2

σ

)
, (6.6)

tσ (k; p) = m

p2
+ O(aσ ), (6.7)

tχ (k; p) =
∫

dq
(2π )3

m

q2

c↑ + c↓
ε p + εq + εk− p−q − εk − i0+

+O
(
a2

σ

)
. (6.8)

Accordingly, the contributions of the number density (5.19)
and the current density (5.22) become

d	(nσ )
χ (k)

d p
= c2

σ nσ

(2π )2
δ(ω − εK ) + O

(
a3

σ

)
(6.9)

and

d	
( jσ )
χ (k)

d p
= c2

σ jσ

(2π )2
· ∂

∂ K
δ(ω − εK ) + O

(
a3

σ

)
, (6.10)

respectively, where we denoted the energy-momentum transfer
to the medium by (ω,K ) ≡ (εk − ε p,k − p). Similarly, after
lengthy but straightforward calculations, the contribution of

the contact density (5.27) becomes

d	(C)
χ (k)

d p
=

[
c2
↑ + c2

↓
(2π )2

S (SE)(ω,K ) + (c↑ + c↓)2

(2π )2
S (AL)(ω,K )

+ c↑c↓ + c↓c↑
(2π )2

S (MT)(ω,K ) + O
(
a3

σ

) ]
mC,

(6.11)

where we defined6

S (SE)(ω,K ) ≡ �
(
ω − εK

2

)
(2π )2

[ √
mω − K 2

4(
mω − K 2

2

)2

−
∫ ∞

0
dq

2q2

m
(
q2 − K 2

4

)2 δ(ω − εK )

]
, (6.12)

S (AL)(ω,K ) ≡ �
(
ω − εK

2

)
(2π )2|K |2

√
mω − K 2

4

[
π2�(εK − ω)

− ln2

(
mω + |K |

√
mω − K 2

4∣∣mω − K 2

2

∣∣
)]

, (6.13)

S (MT)(ω,K ) ≡ �
(
ω − εK

2

)
(2π )2mω|K | ln

⎛
⎝mω + |K |

√
mω − K 2

4∣∣mω − K 2

2

∣∣
⎞
⎠ .

(6.14)

These three functions correspond to self-energy–, Aslamazov-
Larkin–, and Maki-Thompson–type contributions, respec-
tively, in a direct diagrammatic calculation [82,114].

Then by comparing Eqs. (6.9), (6.10), and (6.11) with
Eq. (6.5), we find that each spin component of the dynamic
structure factor should have the following systematic expan-
sion in the hard-probe limit K → ∞:

Sσσ (ω,K ) = nσ δ(ω − εK ) + jσ · ∂

∂ K
δ(ω − εK )

+ [S (SE)(ω,K ) + S (AL)(ω,K )]mC + O(K−4)

(6.15)

for both σ =↑ , ↓ and

S↑↓(ω,K ) = S↓↑(ω,K )

= [S (AL)(ω,K ) + S (MT)(ω,K )]mC + O(K−4).

(6.16)

6The second term in S (SE)(ω,K ) originates from the subtracted
terms in Eq. (5.27). While it does not contribute away from the
single-particle peak at ω = εK [82], this term is essential to compute
the differential scattering rate in Eq. (6.17) below. This is because its
nonintegrable singularity at q = |K |/2 cancels that of the first term
in S (SE)(ω,K ) which becomes apparent by rewriting Eq. (6.12) as

S (SE)(ω,K ) = 1

(2π )2

∫ ∞

0
dq

2q2

m(q2 − K 2

4 )2

×
[
δ

(
ω − εK

2
− 2εq

)
− δ(ω − εK )

]
.
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The sum of all four components S(ω,K ) ≡ ∑
σ,σ ′ Sσσ ′(ω,K )

coincides with the large–energy-momentum expansion of
the total dynamic structure factor found previously in
Refs. [82,83,85,114,115]. This establishes the equivalence
between our hard-probe formula in Eq. (6.1) and the known
weak-probe formula in Eq. (6.5) in the limit aσ → 0 followed
by |k| → ∞ where both the results become valid. However,
we emphasize again that, away from this double limit, the two
results are independent and cover different regions in the plane
of aσ and |k| (see Fig. 10).

C. Differential scattering rate

Finally, we present the angle distribution of the large-
momentum χ atom scattered by a spin-1/2 Fermi gas at infinite
scattering length a → ∞ but in the weak-probe limit aσ → 0.
The integration of Eq. (6.5) with the dynamic structure factor
obtained in Eqs. (6.15) and (6.16) over the magnitude of
momentum | p|2d| p| yields

d	χ (k)

d�
= 4

∑
σ=↑,↓

[cos θ�(cos θ )|k|nσ

−{δ(cos θ )k̂ − �(cos θ ) p̂} · jσ ]
a2

σ

m

+ [h‖(cos θ )C + O(k−1)]
a2

↑ + a2
↓

2m

+ [h↑↓(cos θ )C + O(k−1)]
a↑a↓
m

+ O
(
a3

σ

)
.

(6.17)

Here, h‖(cos θ ) and h↑↓(cos θ ) are universal functions plotted
in Fig. 11 and defined by

h‖(cos θ ) ≡ 8
∫ ∞

0
d| p|| p|2[S (SE)(εk − ε p,k − p)

+S (AL)(εk − ε p,k − p)] (6.18)

and

h↑↓(cos θ ) ≡ 8
∫ ∞

0
d| p|| p|2[S (AL)(εk − ε p,k − p)

+S (MT)(εk − ε p,k − p)]. (6.19)
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FIG. 11. (Color online) Universal functions h‖(cos θ ) (solid
curve) and h↑↓(cos θ ) (dashed curve) to determine the contribution
of the contact density to the differential scattering rate (6.17) in the
weak-probe limit a↑,a↓ → 0.

These two functions correspond to the weak-coupling limit of
the function g introduced in Eq. (5.28):

lim
a↑,a↓→0

g

(
cos θ,

|k|
κ ′∗

)∣∣∣∣
aσ |k|

= h‖(cos θ )
a2

↑ + a2
↓

2
k2

+h↑↓(cos θ )a↑a↓k2, (6.20)

while g was evaluated in the strong-coupling limit a↑,a↓ → ∞
in the previous section. Note that the Efimov effect does
not appear in perturbative expansions. Again, one can see
from Eq. (6.17) that the number density and current density
contribute to the forward scattering only, while Fig. 11
shows h‖(cos θ ) > h↑↓(cos θ ) > 0 at cos θ < 0 so that the
contact density gives the leading contribution to the backward
scattering.

The integration of the differential scattering rate (6.17) over
the solid angle d� = d cos θdϕ yields the total scattering rate
in the weak-probe limit aσ → 0:

	χ (k) = 4π
∑

σ=↑,↓
[|k|nσ − k̂ · jσ ]

a2
σ

m

+ [1.60098C + O(k−1)]
a2

↑ + a2
↓

2m

+ [9.25387C + O(k−1)]
a↑a↓
m

+ O
(
a3

σ

)
. (6.21)

Note that, since d	χ (k)/d� has a pole at cos θ = 0 due to
h‖(cos θ ) ∼ −1/(π2 cos θ ), the integral over cos θ is under-
stood as the Cauchy principal value.

D. Spinless Bose gas

Similarly, in the case of a spinless Bose gas at infinite
scattering length a → ∞, the differential scattering rate of the
χ atom in the weak-probe limit aχ → 0 is given by

d	χ (k)

d p
= c2

χ

(2π )2
S(εk − ε p,k − p) + O

(
a3

χ

)
. (6.22)

Here, S(ω,K ) is a dynamic structure factor of the spinless
Bose gas and has the following systematic expansion in the
hard-probe limit K → ∞:

S(ω,K ) = nδ(ω − εK ) + j · ∂

∂ K
δ(ω − εK )

+ [S (SE)(ω,K ) + 2S (AL)(ω,K ) + S (MT)(ω,K )]mC
+O(K−4). (6.23)

Therefore, the contribution of the contact density to the
dynamic structure factor in a spinless Bose gas is a half
of that to the total dynamic structure factor in a spin-1/2
Fermi gas [83]. Accordingly, Eqs. (6.17) and (6.21) remain
valid by setting a↑ = a↓ → aχ , replacing n↑ + n↓ ( j↑ + j↓)
with n ( j ), and dividing the coefficients of C by two.

VII. CONCLUSIONS

In this paper, we investigated various properties of an en-
ergetic atom propagating through strongly interacting atomic
gases by using systematic large-momentum expansions. Our
main results are summarized in Sec. II and consist of the
quasiparticle energy and scattering rate of an energetic atom
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in a spin-1/2 Fermi gas (Sec. III), those in a spinless Bose gas
(Sec. IV), and the differential scattering rate of a different spin
state of atoms shot into a spin-1/2 Fermi gas or a spinless Bose
gas (Sec. V). Furthermore, a connection of our hard-probe
formula derived in Sec. V with dynamic structure factors in
the weak-probe limit was elucidated in Sec. VI.

Our result on the quasiparticle energy in a spin-1/2 Fermi
gas reasonably agrees with the recent quantum Monte Carlo
simulation [74] even at a relatively small momentum |k|/kF �
1.5. This indicates that our large-momentum expansions are
valid in a wide range of momentum. Further analysis of
quantum Monte Carlo data incorporating our exact large-
momentum expansions may allow us better access to the
intriguing pseudogap physics. Also our result on the rate at
which the atom is scattered in the medium may be useful
to better understand multiple-atom loss mechanisms due to
atom-dimer “dijets” produced by three-body recombination
events [47,53]. We found that the contact density has a negative
contribution to the scattering rate in a spinless Bose gas. This
rather counterintuitively means that the energetic boson can
escape from the medium easier than we naively estimate from
a binary collision.

We also proposed a scattering experiment in which we
shoot a different spin state of atoms into an atomic gas with a
large momentum and measure its differential scattering rate
(Fig. 1). Here a nice interplay between few-body physics
and many-body physics can be seen: The angle distribution
of the scattered atom is determined by few-body physics
and its overall magnitude is set by many-body physics. We
elucidated that, because the number density and current density
of the target atomic gas contribute to the forward scattering
only, its contact density gives the leading contribution to
the backward scattering. Therefore, such an experiment can
be used to measure the contact density (integrated along a
classical trajectory of the probe atom) and thus provides a new
local probe of strongly interacting atomic gases. Its intriguing
analogy to nuclear physics experiments on short-range pair
correlations in nuclei [32,33] should be explored further. Also
we found that the differential scattering rate can depend on the
azimuthal angle only by the current density of the target atomic
gas. Therefore, the azimuthal anisotropy in the differential
scattering rate may be useful to reveal many-body phases
accompanied by currents. We hope this work serves as a
promising starting point for future ultracold-atom experiments
and builds a new bridge between ultracold atoms and nuclear
and particle physics from the perspective of “hard probes.”
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APPENDIX A: DERIVATION OF WILSON COEFFICIENTS

Here we show how the Wilson coefficients in Eqs. (3.13)–
(3.22) and Eqs. (4.14)–(4.18) are derived. For generality, we
consider spin-1/2 fermions with unequal masses m↑ �= m↓.
The propagator of fermion field ψσ in the vacuum is given by

Gσ (k) = 1

k0 − εkσ + i0+

(
εkσ ≡ k2

2mσ

)
, (A1)

and the two-body scattering amplitude between spin-up and
-down fermions is

A(k) = 2π

μ

1√
μ

M
k2 − 2μk0 − i0+ − 1/a

. (A2)

Here, M = m↑ +m↓ is a total mass and μ= m↑m↓/(m↑ + m↓)
is a reduced mass. Results in the case of spinless bosons are
obtained by removing spin indices and replacing the two-body
scattering amplitude A(k) with that between two identical
bosons [see Eq. (4.4)]:

A(k) = 8π

m

1√
k2

4 − mk0 − i0+ − 1/a

. (A3)

1. One-body and two-body sectors

The Wilson coefficients of local operators of type ψ†
σψσ

in Eqs. (3.9)–(3.12) are determined by matching the matrix
elements of both sides of∫

dyeikyT

[
ψ↑

(
x + y

2

)
ψ

†
↑

(
x − y

2

)]

=
∑

i

WOi
(k)Oi(x) (A4)

with respect to one-body states 〈ψσ (p′)| and |ψσ (p)〉. The
matrix element of the left-hand side is given by∫

dyeiky〈ψσ (p′)|T
[
ψ↑

(
x + y

2

)
ψ

†
↑

(
x − y

2

)]
|ψσ (p)〉

= iG↑(k)iGσ (p)(2π )4δ(p − p′) + (1 − δ↑σ )

× iG↑

(
k − p − p′

2

)
iGσ (p)iA

(
k + p + p′

2

)

× iGσ (p′)iG↑

(
k + p − p′

2

)
e−i(p−p′)x. (A5)

On the other hand, the matrix elements of local operators of
type ψ†

σψσ are

〈ψσ (p′)|1|ψσ (p)〉 = iGσ (p)(2π )4δ(p − p′), (A6)

〈ψσ (p′)|ψ†
σψσ (x)|ψσ (p)〉= iGσ (p)iGσ (p′)e−i(p −p′)x, (A7)

〈ψσ (p′)| − iψ†
σ

↔
∂ i ψσ (x)|ψσ (p)〉

= pi + p′
i

2
iGσ (p)iGσ (p′)e−i(p−p′)x, (A8)

〈ψσ (p′)| − i∂i(ψ
†
σψσ )(x)|ψσ (p)〉

= (pi − p′
i) iGσ (p)iGσ (p′)e−i(p−p′)x, (A9)
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〈ψσ (p′)| − ψ†
σ

↔
∂ i

↔
∂ j ψσ (x)|ψσ (p)〉

= pi + p′
i

2

pj + p′
j

2
iGσ (p)iGσ (p′)e−i(p−p′)x, (A10)

〈ψσ (p′)| − ∂i(ψ
†
σ

↔
∂ j ψσ )(x)|ψσ (p)〉

= (pi − p′
i)

pj + p′
j

2
iGσ (p)iGσ (p′)e−i(p−p′)x, (A11)

〈ψσ (p′)| − ∂i∂j (ψ†
σψσ )(x)|ψσ (p)〉

= (pi − p′
i) (pj − p′

j ) iGσ (p)iGσ (p′)e−i(p−p′)x, (A12)

〈ψσ (p′)|iψ†
σ

↔
∂ t ψσ (x)|ψσ (p)〉

= p0 + p′
0

2
iGσ (p)iGσ (p′)e−i(p−p′)x, (A13)

〈ψσ (p′)|i∂t (ψ
†
σψσ )(x)|ψσ (p)〉

= (p0 − p′
0) iGσ (p)iGσ (p′)e−i(p−p′)x. (A14)

Therefore, the expansion of Eq. (A5) up to O(p3) is reproduced
by choosing their Wilson coefficients as

W1(k) = iG↑(k), (A15)

W
ψ

†
↓ψ↓

(k) = −iG↑(k)2A(k), (A16)

W−iψ
†
↓

↔
∂ iψ↓

(k) = −iG↑(k)2 ∂

∂ki

A(k), (A17)

W−ψ
†
↓

↔
∂ i

↔
∂ j ψ↓

(k) = −iG(k)2 1

2

∂2

∂ki∂kj

A(k), (A18)

W
iψ

†
↓

↔
∂ tψ↓

(k) = −iG↑(k)2 ∂

∂k0
A(k), (A19)

W−∂i∂j (ψ†
↓ψ↓)(k) = −iA(k)

G↑(k)3

4m↑

[
δij + kikj

G↑(k)

m↑

]
, (A20)

W−i∂i (ψ
†
↓ψ↓)(k) = W−∂i (ψ

†
↓

↔
∂ j ψ↓)

(k) = W
i∂t (ψ

†
↓ψ↓)(k) = 0,

(A21)

and all WO(k) = 0 for σ =↑.

2. Three-body sector

The Wilson coefficients of local operators of type φ†φ
in Eqs. (3.9)–(3.12) are determined by matching the matrix
elements of both sides of Eq. (A4) with respect to two-body
states 〈φ(p′)| and |φ(p)〉. The matrix element of the left-hand
side is given by

∫
dyeiky〈φ(p′)|T

[
ψ↑

(
x + y

2

)
ψ

†
↑

(
x − y

2

)]
|φ(p)〉

= iG↑(k)iD(p)(2π )4δ(p − p′) + iG↑

(
k − p − p′

2

)
iD(p)

× iT↑

(
k − p − p′

2
,
p + p′

2
+ p − p′

2
; k + p − p′

2
,
p + p′

2
− p − p′

2

)
iD(p′)iG↑

(
k + p − p′

2

)
e−i(p−p′)x. (A22)

Here, D(k) = −A(k) is the dimer propagator and T↑(k,p; k′,p′) is the three-body scattering amplitude between a spin-up fermion
and a dimer with (k,p) [(k′,p′)] being their initial (final) energy-momentum (see Fig. 5). On the other hand, the matrix elements
of local operators of type ψ

†
↓ψ↓ are

〈φ(p′)|1|φ(p)〉 = iD(p)(2π )4δ(p − p′), (A23)

〈φ(p′)|ψ†
↓ψ↓(x)|φ(p)〉 = iD(p)iD(p′)e−i(p−p′)xi

∫
dq

(2π )4
G↑

(
p + p′

2
− q

)
G↓

(
q + p + p′

2

)
G↓

(
q − p + p′

2

)

= iD(p)iD(p′)e−i(p−p′)x
∫

dq
(2π )3

(
2μ

q2

)2

+ O(p2), (A24)

〈φ(p′)| − iψ
†
↓

↔
∂ i ψ↓(x)|φ(p)〉 = iD(p)iD(p′)e−i(p−p′)xi

∫
dq

(2π )4
qiG↑

(
p + p′

2
− q

)
G↓

(
q + p + p′

2

)
G↓

(
q − p + p′

2

)

= iD(p)iD(p′)e−i(p−p′)x
(

m↓
M

pi + p′
i

2

) ∫
dq

(2π )3

(
2μ

q2

)2

+ O(p2), (A25)

〈φ(p′)| − i∂i(ψ
†
↓ψ↓)(x)|φ(p)〉

= iD(p)iD(p′)e−i(p−p′)xi

∫
dq

(2π )4
(pi − p′

i)G↑

(
p + p′

2
− q

)
G↓

(
q + p + p′

2

)
G↓

(
q − p + p′

2

)

= iD(p)iD(p′)e−i(p−p′)x(pi − p′
i)

∫
dq

(2π )3

(
2μ

q2

)2

+ O(p2), (A26)
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〈φ(p′)| − ψ
†
↓

↔
∂ i

↔
∂ j ψ↓(x)|φ(p)〉

= iD(p)iD(p′)e−i(p−p′)xi

∫
dq

(2π )4
qiqjG↑

(
p + p′

2
− q

)
G↓

(
q + p + p′

2

)
G↓

(
q − p + p′

2

)

= iD(p)iD(p′)e−i(p−p′)x δij

3

∫
dq

(2π )3
q2

(
2μ

q2

)2

+ O(p2), (A27)

〈φ(p′)| − ∂i(ψ
†
↓

↔
∂ j ψ↓)(x)|φ(p)〉

= iD(p)iD(p′)e−i(p−p′)xi

∫
dq

(2π )4
(pi − p′

i)qjG↑

(
p + p′

2
− q

)
G↓

(
q + p + p′

2

)
G↓

(
q − p + p′

2

)
= O(p2), (A28)

〈φ(p′)| − ∂i∂j (ψ†
↓ψ↓)(x)|φ(p)〉

= iD(p)iD(p′)e−i(p−p′)xi

∫
dq

(2π )4
(pi − p′

i)(pj − p′
j )G↑

(
p + p′

2
− q

)
G↓

(
q + p + p′

2

)
G↓

(
q − p + p′

2

)
= O(p2),

(A29)

〈φ(p′)|iψ†
↓

↔
∂ t ψ↓(x)|φ(p)〉 = iD(p)iD(p′)e−i(p−p′)xi

∫
dq

(2π )4
q0G↑

(
p + p′

2
− q

)
G↓

(
q + p + p′

2

)
G↓

(
q − p + p′

2

)

= iD(p)iD(p′)e−i(p−p′)x
∫

dq
(2π )3

(
− q2

2m↑

)(
2μ

q2

)2

+ O(p2). (A30)

〈φ(p′)|i∂t (ψ
†
↓ψ↓)(x)|φ(p)〉

= iD(p)iD(p′)e−i(p−p′)xi

∫
dq

(2π )4
(p0 − p′

0)G↑

(
p + p′

2
− q

)
G↓

(
q + p + p′

2

)
G↓

(
q − p + p′

2

)
= O(p2). (A31)

Because the matrix elements of local operators of type φ†φ are given by

〈φ(p′)|φ†φ(x)|φ(p)〉 = iD(p)iD(p′)e−i(p−p′)x, (A32)

〈φ(p′)| − iφ† ↔
∂ i φ(x)|φ(p)〉 = pi + p′

i

2
iD(p)iD(p′)e−i(p−p′)x, (A33)

〈φ(p′)| − i∂i(φ
†φ)(x)|φ(p)〉 = (pi − p′

i)iD(p)iD(p′)e−i(p−p′)x, (A34)

the expansion of Eq. (A22) up to O(p2) is reproduced by choosing their Wilson coefficients as

Wφ†φ(k) = −iG(k)2T↑(k,0; k,0) − W
ψ

†
↓ψ↓

(k)
∫

dq
(2π )3

(
2μ

q2

)2

− W−ψ
†
↓

↔
∂ i

↔
∂ j ψ↓

(k)
δij

3

∫
dq

(2π )3

(
2μ

q

)2

−W
iψ

†
↓

↔
∂ tψ↓

(k)
−1

2m↑

∫
dq

(2π )3

(
2μ

q

)2

, (A35)

W−iφ†↔
∂ iφ

(k) = −iG↑(k)2 ∂

∂pi

T↑(k,p; k,p)

∣∣∣∣
p→0

− W−iψ
†
↓

↔
∂ iψ↓

(k)
m↓
M

∫
dq

(2π )3

(
2μ

q2

)2

, (A36)

W−i∂i (φ†φ)(k) = −iG↑(k)2 ∂

∂pi

T↑

(
k − p

2
,
p

2
; k + p

2
, − p

2

)∣∣∣∣
p→0

. (A37)

These results are presented in Eqs. (3.13)–(3.22) for a spin-1/2 Fermi gas and in Eqs. (4.14)–(4.18) for a spinless Bose gas.

APPENDIX B: DETAILS OF SOLVING
INTEGRAL EQUATIONS

Here we discuss details of solving the integral equations
in Eq. (3.45) for a spin-1/2 Fermi gas and in Eq. (4.26) for a
spinless Bose gas.

1. Spin-1/2 Fermi gas

For generality, we consider spin-1/2 fermions with unequal
masses m↑ �= m↓, in which the integral equation (3.45) is

modified to

t↑(k; p) = −2μ

p2
−

∫
dq

(2π )3
Ka(k; p,q)t↑(k; q), (B1)

where the integral kernel Ka(k; p,q) is given by

Ka(k; p,q) = 2π

μ

1√
μ

M
(k−q)2−2μ(εk↑ − εq↑) − i0+ − 1/a

× 1

εk− p−q↓ + ε p↑ + εq↑ − εk↑ − i0+ . (B2)
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For unequal masses, the quantity we would like to compute
(3.49) becomes

t
reg
↑ (k; k) = −2μ

k2 +
∫

dq
(2π )3

[
Ka(k; k,q)

− 4π

−i
m↓
M

|k| − 1
a

1

q2

]
2μ

q2

−
∫

dq
(2π )3

Ka(k; k,q)

[
t↑(k; q) + 2μ

q2

]
. (B3)

The second term is a simple integral and has the following
analytic expression for its expansion in terms of (a|k|)−1:∫

dq
(2π )3

[
Ka(k; k,q) − 4π

−i
m↓
M

|k| − 1/a

1

q2

]
2μ

q2

=
[

(u + 1)
√

2u + 1 + (u+1)3

u
arcsin

(
u

u+1

)
π

+ (u + 1)3

a|k| i + · · ·
]

u= m↑
m↓

2μ

k2 . (B4)

Therefore, the nontrivial task is the calculation of the last term
in Eq. (B3) at (a|k|)−1 = 0 and its first derivative with respect
to (a|k|)−1, which requires solving the two-dimensional
integral equation (B1) numerically.

For numerical purposes, it is more convenient to shift
momentum variables as p(q) → p(q) + m↑

M+m↑
k to move

to the center-of-mass frame and introduce a dimensionless
function

s↑( p) ≡ k2

2μ
t↑

(
k; p + m↑

M + m↑
k
)

. (B5)

This function solves a simpler integral equation

s↑( p) = −I( p) −
∫

dq
(2π )3

Ja( p,q)s↑(q), (B6)

where the new inhomogeneous term I( p) and integral kernel
Ja( p,q) are defined by

I( p) ≡ k2(
p + m↑

M+m↑
k
)2 (B7)

and

Ja( p,q) ≡ Ka

(
k; p + m↑

M + m↑
k,q + m↑

M + m↑
k
)

= 4π√
m↓

M+m↑
M2 q2 − m↓

M+m↑
k2 − i0+ − 1/a

× 1

p2 + q2 + 2m↑
M

p · q − m↓
M+m↑

k2 − i0+ . (B8)

Since Ja( p,q) now depends on the angle only between p and
q, each component of the partial-wave expansion

s↑( p) =
∞∑

�=0

s
(�)
↑ (p)P�(cos θ ) (cos θ ≡ k̂ · p̂) (B9)

solves an independent one-dimensional integral equation

s
(�)
↑ (p) = −I (�)(p) −

∫ ∞

0
dqJ (�)

a (p,q)s(�)
↑ (q), (B10)

where the partial-wave projections of the inhomogeneous term
and integral kernel are given by

I (�)(p) = 2� + 1

2

∫ 1

−1
d cos θP�(cos θ )I( p)

= 2� + 1

2

∫ 1

−1
d cos θ

P�(cos θ )

p2 + (
u

2u+1

)2 + 2u
2u+1p cos θ

(B11)

and

J (�)
a (p,q) = 2πq2

(2π )3

∫ 1

−1
d cos θP�(cos θ )Ja( p,q)

= q2

π

1√
2u+1

(u+1)2 q2 − 1
2u+1 − i0+ − 1

ak

∫ 1

−1
d cos θ

× P�(cos θ )

p2 + q2 + 2u
u+1pq cos θ − 1

2u+1 − i0+ .

(B12)

Here, p = | p|/|k|, q = |q|/|k| are dimensionless momenta
and the mass ratio is denoted by u = m↑/m↓. Note that the
integrations over cos θ can be done analytically by using
Gauss’s hypergeometric function:∫ 1

−1
d cos θ

P�(cos θ )

x + y cos θ
= 2�!

x(2� + 1)!!

(
− y

x

)�

× 2F1

[
� + 1

2
,
� + 2

2
; � + 3

2
;

(
y

x

)2]
.

(B13)

In terms of s
(�)
↑ (p), the last term in Eq. (B3) is written as

−
∫

dq
(2π )3

Ka(k; k,q)

[
t↑(k; q) + 2μ

q2

]

= −
∫

dq
(2π )3

Ja

(
M

M + m↑
k,q

)
[s↑(q) + I(q)]

2μ

k2

= −
∞∑

�=0

∫ ∞

0
dqJ (�)

a

(
u + 1

2u + 1
,q

)
[s(�)

↑ (q) + I (�)(q)]
2μ

k2

=
∞∑

�=0

[
s

(�)
↑

(
u + 1

2u + 1

)
+ I (�)

(
u + 1

2u + 1

)

−
∫ ∞

0
dqJ (�)

a

(
u + 1

2u + 1
,q

)
I (�)(q)

]
2μ

k2 . (B14)

In the last line, we used the integral equation for s
(�)
↑ (p) in

Eq. (B10). Because s
(�)
↑ (p) is singular at p = | u2−(2u+1)

(u+1)(2u+1) | and
u+1

2u+1 , it is better to work on the following function:

δs
(�)
↑ (p) ≡ s

(�)
↑ (p) + I (�)(p) −

∫ ∞

0
dqJ (�)

a (p,q)I (�)(q),

(B15)
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in which the singularity at p = | u2−(2u+1)
(u+1)(2u+1) | is eliminated and

the singularity at p = u+1
2u+1 is weaker. This new function solves

an integral equation

δs
(�)
↑ (p) = −

∫ ∞

0
dq

∫ ∞

0
dq ′J (�)

a (p,q)J (�)
a (q,q ′)I (�)(q ′)

−
∫ ∞

0
dqJ (�)

a (p,q)δs(�)
↑ (q), (B16)

and the last term in Eq. (B3) is given by its value at p = u+1
2u+1 :

−
∫

dq
(2π )3

Ka(k; k,q)

[
t↑(k; q) + 2μ

q2

]

=
[ ∞∑

�=0

δs
(�)
↑

(
u + 1

2u + 1

)]
2μ

k2 . (B17)

In the case of equal masses u = 1, we numerically solved the
integral equation (B16) at (ak)−1 � 0 for 0 � � � �max up to
�max = 20. By extrapolating the result to �max → ∞, we obtain

∞∑
�=0

δs
(�)
↑

(
2

3

)
� 2.335 + 7.047

a|k| i + O(k−2). (B18)

Since we find that the imaginary part of O(k0) term is as small
as ∼2 × 10−6 and the real part of O(k−1) term is as small
as ∼4 × 10−5, we assume that their actual values are zero.
This result combined with Eqs. (B3) and (B4) is presented in
Eq. (3.50).

2. Spinless Bose gas

In the case of spinless bosons, the quantity we would like
to compute is Eq. (4.29):

t reg(k; k)

= m

k2 + 2
∫

dq
(2π )3

[
Ka(k; k,q) − 4π

−i
|k|
2 − 1/a

1

q2

]
m

q2

+ 2
∫

dq
(2π )3

Ka(k; k,q)

[
t(k; q) − m

q2

]
, (B19)

in which t(k; p) solves the integral equation in Eq. (4.26):

t(k; p) = m

p2
+ 2

∫
dq

(2π )3
Ka(k; p,q)t(k; q). (B20)

Since the second term in Eq. (B19) is twice as large as that in
Eq. (B3), its expansion in terms of (a|k|)−1 is obtained from

Eq. (B4) with u = 1 by multiplying it by two. In analogy with
the case of spin-1/2 fermions, we shift momentum variables
as p(q) → p(q) + k/3 to move to the center-of-mass frame
and introduce a dimensionless function

s( p) ≡ k2

m
t

(
k; p + k

3

)
. (B21)

Each component of its partial-wave expansion

s( p) =
∞∑

�=0

s(�)(p)P�(cos θ ) (cos θ ≡ k̂ · p̂) (B22)

solves an independent one-dimensional integral equation

s(�)(p) = I (�)(p) + 2
∫ ∞

0
dqJ (�)

a (p,q)s(�)(q). (B23)

Here the inhomogeneous term I (�)(p) and integral kernel
J (�)

a (p,q) are obtained from Eqs. (B11) and (B12), respec-
tively, by setting u = 1.

Then by defining the better behaving function

δs(�)(p) ≡ s(�)(p) − I (�)(p) − 2
∫ ∞

0
dqJ (�)

a (p,q)I (�)(q),

(B24)

with its integral equation

δs(�)(p) = 4
∫ ∞

0
dq

∫ ∞

0
dq ′J (�)

a (p,q)J (�)
a (q,q ′)I (�)(q ′)

+ 2
∫ ∞

0
dqJ (�)

a (p,q)δs(�)(q), (B25)

the last term in Eq. (B19) is given by its value at p = 2/3:

2
∫

dq
(2π )3

Ka(k; k,q)

[
t(k; q) − m

q2

]
=

[ ∞∑
�=0

δs(�)

(
2

3

)]
m

k2 .

(B26)

We numerically solved the integral equation (B25) at (ak)−1 =
0 for 1 � � � �max up to �max = 20. By extrapolating the result
to �max → ∞, we obtain

∞∑
�=1

δs(�)

(
2

3

)
� −2.044 + O(k−1). (B27)

Since we find that the imaginary part of O(k0) term is as small
as ∼4 × 10−6, we assume that its actual value is zero. On the
other hand, the � = 0 channel has to be treated specially due
to the Efimov effect.

As is known [109,110], the integral equation (B25) in the � = 0 channel is ill defined without introducing an ultraviolet
momentum cutoff �:

δs(0)(p) = 4
∫ ∞

0
dq

∫ ∞

0
dq ′J (0)

a (p,q)J (0)
a (q,q ′)I (0)(q ′) + 2

∫ �/|k|

0
dqJ (0)

a (p,q)δs(0)(q). (B28)

First we find that δs(0)(2/3) obtained by solving this integral equation is a log-periodic function of |k|/� in the limit �/|k| → ∞,
which is approximated by

δs(0)

(
2

3

)
≈ −3.9246 − i12.20 + 1.036 cos(2s0 ln |k|/� + 3.9604) − i1.032 sin(2s0 ln |k|/� + 3.9604)

1 − 0.08460 sin(2s0 ln |k|/� + 3.9604)
, (B29)
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with s0 = 1.006 24 being the solution to the transcendental
equation

8√
3s0

sinh
(

π
6 s0

)
cosh

(
π
2 s0

) = 1. (B30)

Then this artificial cutoff � has to be related to the physical
Efimov parameter κ∗ defined in Eq. (4.27). To this end, we
observe that Eq. (B28) without the inhomogeneous term

δs(0)(p) = 2

π

∫ �

0
dq

q2√
3
4q2 − k2

3 − i0+ − 1/a

×
∫ 1

−1
d cos θ

δs(0)(q)

p2 + q2 + pq cos θ − k2

3 − i0+

(B31)

is the Skorniakov–Ter-Martirosian equation to determine the
binding energy of three identical bosons by identifying k2/3 as
the collision energy mE [110]. By solving this homogeneous
integral equation at infinite scattering length a → ∞, we find
an infinite tower of binding energies given by

mEn → −e−2πn/s0

(
�

5.67865

)2

(n → ∞), (B32)

from which we can read off the relationship between � and κ∗
as

� = 5.678 65 × κ∗. (B33)

This result combined with Eqs. (B4), (B19), (B27), and (B29)
is presented in Eq. (4.31), which determines the universal log-
periodic function f (|k|/κ∗) introduced in Eq. (4.30).

APPENDIX C: DERIVATION OF OPTICAL
THEOREM IN EQ. (5.24)

Here we derive the optical theorem used in Eq. (5.24) by a
direct calculation starting with the set of integral equations in

Eq. (5.10). We only consider the case in which a−1
↑ = a−1

↓ =
a−1 = 0 and thus tψ (k; p) ≡ t↑(k; p) = t↓(k; p) because this
case is sufficient for the analysis presented in the text. By using
the definitions of tF,B(k; p) in Eqs. (5.11) and (5.12), the three
coupled integral equations in Eq. (5.10) can be brought into
the two independent integral equations in Eq. (5.13):

tF (k; p) = − m

p2
−

∫
dq

(2π )3
tF (k; q)A(εk − εq,k − q)

× 1

ε p + εq + εk− p−q − εk − i0+ (C1a)

and

tB(k; p) = m

p2
+ 2

∫
dq

(2π )3
tB(k; q)A(εk − εq,k − q)

× 1

ε p + εq + εk− p−q − εk − i0+ . (C1b)

Here we used the expression of Ka(k; p,q) in Eq. (3.46)
and A(k) = −D(k) is the two-body scattering amplitude in
Eq. (3.5) at infinite scattering length. Their complex conjugates
are

t∗F (k; p) = − m

p2
−

∫
dq

(2π )3
t∗F (k; q)A∗(εk − εq,k − q)

× 1

ε p + εq + εk− p−q − εk + i0+ (C2a)

and

t∗B(k; p) = m

p2
+ 2

∫
dq

(2π )3
t∗B(k; q)A∗(εk − εq,k − q)

× 1

ε p + εq + εk− p−q − εk + i0+ . (C2b)

By using these complex conjugates, tF,B(k; p) at p = k can
be written as

tF (k; k) = − m

p2
−

∫
d p

(2π )3
tF (k; p)A(εk − ε p,k − p)

m

p2

= − m

p2
+

∫
d p

(2π )3
|tF (k; p)|2A(εk − ε p,k − p)

+
∫

d pdq
(2π )6

tF (k; p)A(εk − ε p,k − p)t∗F (k; q)A∗(εk − εq,k − q)
1

ε p + εq + εk− p−q − εk + i0+ (C3a)

and

tB(k; k) = m

p2
+ 2

∫
d p

(2π )3
tB(k; p)A(εk − ε p,k − p)

m

p2

= m

p2
+ 2

∫
d p

(2π )3
|tB(k; p)|2A(εk − ε p,k − p)

− 4
∫

d pdq
(2π )6

tB(k; p)A(εk − ε p,k − p)t∗B(k; q)A∗(εk − εq,k − q)
1

ε p + εq + εk− p−q − εk + i0+ . (C3b)

Then by using the identity

2ImA(εk − ε p,k − p) =
∫

dq↑dq↓
(2π )6

|A(εk − ε p,k − p)|2(2π )4δ( p + q↑ + q↓ − k)δ(ε p + εq↑ + εq↓ − εk), (C4)
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the imaginary parts of tF,B(k; k) become

2ImtF (k; k) = 1

2

∫
d pdq↑dq↓

(2π )9
|tF (k; p)A(εk − ε p,k − p) − tF (k; q↑)A(εk − εq↑ ,k − q↑)|2

× (2π )4δ( p + q↑ + q↓ − k)δ(ε p + εq↑ + εq↓ − εk) (C5a)

and

2ImtB(k; k) = 2

3

∫
d pdq↑dq↓

(2π )9
|tB(k; p)A(εk − ε p,k − p) + tB(k; q↑)A(εk − εq↑ ,k − q↑)

+ tB(k; q↓)A(εk − εq↓ ,k − q↓)|2(2π )4δ( p + q↑ + q↓ − k)δ(ε p + εq↑ + εq↓ − εk). (C5b)

Finally, by using the definitions of tF,B(k; p) in Eqs. (5.11) and (5.12) again, the imaginary part of the forward three-body
scattering amplitude tχ (k; k) is found to be

2Imtχ (k; k) = 4

3
Im [tF (k; k) + tB(k; k)]

=
∫

d pdq↑dq↓
(2π )9

|tχ (k; p)A(εk − ε p,k − p) + tψ (k; q↑)A(εk − εq↑ ,k − q↑)

+ tψ (k; q↓)A(εk − εq↓ ,k − q↓)|2(2π )4δ( p + q↑ + q↓ − k)δ(ε p + εq↑ + εq↓ − εk), (C6)

which is equivalent to Eq. (5.24) when a−1
↑ = a−1

↓ = a−1 = 0.
On the other hand, in the case of spinless bosons, the definitions of tF,B(k; p) in Eqs. (5.39) and (5.40) lead to

2Imtχ (k; k) = 2

3
Im [tF (k; k) + tB(k; k)]

=
∫

d pdq↑dq↓
(2π )9

1

2
|2tχ (k; p)A(εk − ε p,k − p) + tψ (k; q↑)A(εk − εq↑ ,k − q↑)

+ tψ (k; q↓)A(εk − εq↓ ,k − q↓)|2(2π )4δ( p + q↑ + q↓ − k)δ(ε p + εq↑ + εq↓ − εk). (C7)

Since tχ (k; p) in Eq. (C7) is a half of that in Eq. (C6), the integrand in Eq. (C7) is also a half of that in Eq. (C6). This establishes
that the contribution of the contact density to the differential scattering rate of the χ atom in a spinless Bose gas is a half of that
in a spin-1/2 Fermi gas.
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and R. Grimm, Few-Body Syst. 51, 113 (2011), and references
therein.

[51] H. C. W. Beijerinck, Phys. Rev. A 62, 063614
(2000).

[52] J. Schuster, A. Marte, S. Amtage, B. Sang, G. Rempe, and
H. C. W. Beijerinck, Phys. Rev. Lett. 87, 170404
(2001).

[53] O. Machtey, D. A. Kessler, and L. Khaykovich, Phys. Rev.
Lett. 108, 130403 (2012).

[54] N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson,
Phys. Rev. Lett. 93, 173201 (2004).
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