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Error Exponents for Composite Hypothesis Testing
of Markov Forest Distributions

Vincent Y. F. Tan, Animashree Anandkumar and Alan S. Willsky

Stochastic Systems Group, LIDS, MIT, Cambridge, MA 02139. Email: {vtan,animakum,willsky}@mit.edu

Abstract—The problem of composite binary hypothesis testing
of Markov forest (or tree) distributions is considered. The worst-
case type-II error exponent is derived under the Neyman-Pearson
formulation. Under simple null hypothesis, the error exponent
is derived in closed-form and is characterized in terms of the
so-called bottleneck edge of the forest distribution. The least
favorable distribution for detection is shown to be Markov on the
second-best max-weight spanning tree with mutual information
edge weights. A necessary and sufficient condition to have positive
error exponent is derived.

Index Terms—Worst-case error exponent, Markov forests,
Least favorable distribution, Neyman-Pearson formulation.

I. INTRODUCTION

Binary composite hypothesis testing is a classical problem

where one is required to decide if a set of samples is drawn

from a distribution in the set Λ0 or the set Λ1, corresponding

to the null and alternative hypotheses respectively [1]. Under

the Neyman-Pearson formulation, the goal is to minimize the

type-II (misdetection) error probability, where the alternative

hypothesis is mistaken as the null, under the constraint that

the type-I (false alarm) error probability is below a fixed size.

As the number of samples available for detection increases,

the type-II error probability typically decays exponentially

and the rate of decay is known as the error exponent. For

composite hypothesis testing, the worst-case error exponent
is the slowest decay rate of the type-II error probability for

any distribution in Λ1. It serves as a performance benchmark

for detection in the large-sample regime. The distribution

that achieves the worst-case exponent is said to be the least
favorable for detection.

In this paper, we derive the worst-case error exponent as

well as the least favorable distribution when Λ0 and Λ1 are

sets of multivariate distributions (called graphical models)

which are Markov on trees1 and, more generally, forests. We

consider both discrete and Gaussian graphical models. We also

simplify the generalized likelihood ratio test (GLRT), which

is commonly used in composite hypothesis testing.

We first consider the special case when the null hypothesis

is simple, i.e., Λ0 = {p}, for a fixed distribution p Markov on

a tree T0, and Λ1 is a set of distributions Markov on all other

trees except T0. A brute force computation of the worst-case

This work is supported by a AFOSR funded through Grant FA9559-08-1-1080, a
MURI funded through ARO Grant W911NF-06-1-0076 and a MURI funded through
AFOSR Grant FA9550-06-1-0324. V. Tan is also funded by A*STAR, Singapore.

Due to space constraints, the proofs of the results are not included here. The reader
is encouraged to view all the proofs at http://web.mit.edu/vtan/www/isit10b.

1A tree is a connected acyclic graph, a forest is any acyclic graph and a
strict forest is an acyclic graph which is not a tree, i.e., disconnected.

error exponent requires a search over all the trees and is thus

computationally prohibitive. We derive the worst-case error

exponent which is characterized by the mutual information on

the so-called bottleneck edge of T0. Moreover, we prove that

the least favorable distribution is Markov on the second-best

max-weight spanning tree (MWST) with mutual information

edge weights (based on p). We generalize these results to

forest distributions and composite null hypotheses, and provide

conditions on Λ0 and Λ1 to ensure that the error exponent is

positive.

We now describe some related work in the areas of com-

posite hypothesis testing [1] and learning graphical models.

Hoeffding first proposed an asymptotically optimal test for

composite hypothesis testing assuming that null hypothesis is

simple [2]. The test was subsequently generalized to the case

when the null hypothesis is also composite [3]. The GLRT [1]

is another test for composite hypothesis testing, which is only

optimal under certain conditions [4]. The error exponent is

easily characterized when the source is i.i.d. [2]–[4] and in

this case, it is usually available in closed-form.

In [5], [6], we derived the error exponent for maximum-

likelihood (ML) learning of the structure of tree-structured

graphical models using the Chow-Liu algorithm [7]. In [8], a

learning algorithm for tree distributions was proposed for a the

specific purpose of hypothesis testing. In contrast, composite

hypothesis testing of forest distributions is considered in this

paper. In [9], the authors derived the error exponent for

binary hypothesis testing of Markov forest distributions on

randomly placed nodes where number of nodes (and hence,

the number of variables) goes to infinity and each node has one

independent sample from the forest distribution. In contrast,

in this paper, we fix the number of nodes in the forest and

draw large number of samples from the graphical model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Notations and Mathematical Preliminaries

Let G = (V,E) be an undirected graph with vertex set

V := {1, . . . , d} and edge set E ⊂
(
V
2

)
and let nbd(i) :=

{j ∈ V : (i, j) ∈ E} be the set of neighbors of vertex i. Let

Fd denote the set of forests, i.e., undirected acyclic graphs

with d nodes and let T d ⊂ Fd denote the set of spanning trees

(also called trees) with d nodes. For a fixed forest F ∈ Fd, let

the set of supergraphs of F (with d nodes) be S(F ) ⊂ Fd,

i.e., F is a subgraph of any element of S(F ) and by definition

F ∈ S(F ). The type or empirical distribution of a sequence

xn = {x1, . . . ,xn} is denoted as μ̂n := μ̂n(xn).
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B. Graphical Models: Markov Tree/Forest Distributions

An undirected graphical model [10] is a probability dis-

tribution that factorizes according to the structure of a given

undirected graph G = (V,E), where each random variable is

associated to a vertex (or node) in G. More precisely, for an

alphabet X , a random vector X = (X1, . . . , Xd) distributed

according to p ∈ P(X d) is said to be Markov on a graph G if

p(xi|xV \{i}) = p(xi|xnbd(i)), ∀ i ∈ V. We also say that G is

the graph of p. In this paper, we assume that G is a minimal
representation for p, i.e., G has the smallest number of edges

for the conditional independence relations to hold.

The results in this paper apply to both discrete (X finite and

p is the probability mass function of X) and Gaussian graphi-

cal models (X = R and p is the probability density function).

In the Gaussian case, the random vector X ∼ p(x) = N (0,Σ)
is a zero-mean Gaussian with covariance matrix Σ. It is

known [10] that the inverse covariance matrix (or precision

matrix) K := Σ−1 encodes the structure of G = (V,E), i.e.,
K(i, j) = 0 if and only if (i, j) /∈ E.

In this paper, we focus on the class of positive2 distributions

Markov on some forest F = (V,E). Such a distribution admits

the following factorization into node and pairwise marginals:

p(x) =
∏
i∈V

pi(xi)
∏

(i,j)∈E

pi,j(xi, xj)

pi(xi)pj(xj)
. (1)

Denote the set of positive d-dimensional distributions Markov

on forests with alphabet X d as D(X d,Fd) and the set of

distributions Markov on a particular forest F as D(X d, F ). A

similar set of notation applies for the set of trees T d.

C. General Hypothesis Testing of Forest Distributions

Let xn be a set of i.i.d. samples drawn from a positive

distribution with support X d. Consider the following binary

composite hypothesis testing problem [1]:

H0 : xn ∼ {p : p ∈ Λ0 ⊂ D(X d,Fd)},
H1 : xn ∼ {q : q ∈ Λ1 ⊂ D(X d,Fd)}, (2)

where Λ0 ∩ Λ1 = ∅ for identifiability and Λ0 is closed. For

the error exponents to be positive, additional constraints on Λ0

and Λ1 need to be imposed and we discuss these constraints

for specific examples of (2) in the sequel.

D. Definition of Worst-Case Type-II Error Exponent

For a test φ, let An(φ) ⊂ (X d)n be an acceptance region
for H0, i.e., xn ∈ An(φ) represents a decision in favor of H0.

Then, for fixed p ∈ Λ0 and q ∈ Λ1, the type-I and type-II

error probabilities3 are given by pn(Ac
n(φ)) and qn(An(φ))

respectively. When the type-II error probability decays expo-

nentially with the sample size n under a distribution q ∈ Λ1,

the type-II error exponent under q is defined as

J(Λ0, q;φ) := lim inf
n→∞

− 1

n
log qn(An(φ)). (3)

2We say a distribution p is positive if p(x) > 0 for all x ∈ X d.
3For a Borel measurable set B ⊂ (X d)n, pn(B) :=

∫
B pn dν (ν is either

the Lebesgue or counting measure) and pn(xn) =
∏n

k=1 p(xk).

The optimal type-II error exponent for composite hypothesis

testing is the supremum of J(Λ0, q;φ) over all tests subject

to the type-I error being below a fixed size α:

J∗(Λ0, q) := sup
φ
{J(Λ0, q;φ) :∀p∈Λ0, p

n(Ac
n(φ))≤α}. (4)

The corresponding (universal) detector φ∗ is said to be

asymptotically optimal. Also, if this universal detector has the

same type-II error exponent as the Neyman-Pearson detector

for the corresponding simple hypotheses, it is said to be

asymptotically uniformly most powerful.
The worst-case type-II error exponent is now defined as

J∗(Λ0,Λ1) := inf
q∈Λ1

J∗(Λ0, q). (5)

Furthermore, if there exists a distribution q∗ ∈ Λ1 that attains

the infimum4 above, then q∗ is known as the least favorable
distribution (LFD). The worst-case error exponent serves as a

performance benchmark for composite hypothesis testing.

In this paper, we focus on finding closed-form (i.e., simple)

solutions to the worst-case type-II error exponent J∗(Λ0,Λ1)
for the hypothesis testing problem in (2). Moreover, we

show that these error exponents can be computed efficiently.

Note that an exhaustive search for the optimization in (5)

is intractable since there are dd−2 undirected trees with d
nodes [11]. However, we are able to express the error exponent

as relatively elementary functions of the parameters of the

distribution p. We also provide intuitive interpretations of these

results.

III. TESTS FOR COMPOSITE HYPOTHESIS TESTING

A. The Hoeffding Test for Composite Hypothesis Testing

The Hoeffding test [2] produces acceptance regions

An(HT) :=

{
xn : inf

p∈Λ0

D(μ̂n || p) ≤ εn

}
, (6)

where εn = O( log n
n ) and D(·||·) is the KL-divergence.

Proposition 1 (Worst-Case Type-II Error Exponent [12]):
The worst-case type-II error exponent in (5) is

J∗(Λ0,Λ1) = inf
p∈Λ0,q∈Λ1

D(p || q). (7)

and is achieved by the Hoeffding test in (6). Furthermore, if

the null hypothesis H0 is simple, then the Hoeffding test is

asymptotically uniformly most powerful.

The type-II error exponent for the Hoeffding test in (6) is

infp∈Λ0 D(p||q) for every q ∈ Λ1. In addition, if Λ0 = {p},

the Hoeffding test is asymptotically uniformly most powerful.

For the proof of the above result, see [12, Thm. 2.3]. Hence,

the Hoeffding test is worst-case asymptotically optimal [2],

i.e., there does not exist a test with a better worst-case type-

II error exponent. This is because the Neyman-Pearson test,

which is the optimal (most powerful) test, for corresponding

simple hypotheses in the worst case has the same error

exponent as the Hoeffding test.

4The closedness of Λ1 ensures the existence of such a q∗.
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Λ1=D(X d,T d\{T0})

D(X d, T0)
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Fig. 1. The geometry of the hypothesis testing problem in (9). The simple
null hypothesis (in blue) involves p, which is Markov on T0. The alternative
hypothesis (in red) involves the set of distributions Markov on some other tree
not equal to T0. The worst-case type-II error exponent J∗(p) is the minimum
KL-divergence from p to Λ1. q∗, the LFD, is the projection of p onto Λ1.

However, it is not possible to simplify the Hoeffding test (6)

further for Markov forest distributions. Thus, we now turn our

attention to another test which is easier to implement for forest

distributions but does not have similar optimality guarantees.

B. The Generalized Likelihood Ratio Test (GLRT)

The GLRT [1] is a test that produces acceptance regions

An(GLRT):=

{
xn :

1

n
log

supq∈Λ1
qn(xn)

supp∈Λ0
pn(xn)

∈Rn(α)

}
, (8)

where the region Rn(α) ⊂ R is chosen to satisfy the false

alarm constraint in (3). That is, given observations xn, the

GLRT is the likelihood ratio test between the ML distributions

under H0 and H1. Note that the Hoeffding test is independent

of Λ1 but the GLRT depends on Λ1.

For simple null and alternative hypotheses, the GLRT re-

duces to the canonical likelihood ratio test, which is optimal

under the Neyman-Pearson formulation. However, for compos-

ite hypotheses, the GLRT is in general not guaranteed to be

uniformly optimal for all null and alternative hypotheses but

is nevertheless employed ubiquitously due to its simplicity. In

this paper, we simplify the GLRT for a few special cases of

the hypothesis test in (2).

IV. RESULTS UNDER SIMPLE NULL HYPOTHESIS

In this section, we consider a special case of (2), given as

H0 : xn ∼ {p},
H1 : xn ∼ {q : q ∈ D(X d, T d \ {T0})}, (9)

with a given distribution p ∈ D(X d, T0) Markov on a fixed

tree T0 = (V,E0). Hence, H0 is a simple hypothesis, i.e.,
Λ0 = {p}. The set in the alternative Λ1 = D(X d, T d \ {T0})
is the set of all distributions Markov on all trees other than T0.

See Fig. 1 for an geometric illustration of the problem in (9).

This problem is related to the classical universal hypothesis

testing problem, where one has to decide whether the sam-

ples are drawn from a fixed distribution [1]; the difference

here is that we limit the class of distributions under H1 to

tree-structured distributions. This problem is also known in

various contexts as anomaly detection where the (nominal)

null hypothesis is known while the (anomalous) alternative

hypothesis is unknown.

A. Simplification of the GLRT for Tree Distributions

We now simplify the GLRT for the problem in (9) given

samples xn. With an abuse of notation, we denote the mutual

�

�

�

� ��
�
�
�
�

�
�
�
�
�

i j

k

e′=(i, j)

e1=(i, k) e2=(k, j)
l

Fig. 2. Illustration of Thm. 3. The unique path associated to non-edge e′
is Path(e′;E0) = {(i, k), (k, j)}. The non-edge e′ = (i, j) (of length
L(i, j) = 2) replaces the edge e1 = (i, k) if I(pe1 ) ≥ I(pe2 ) and e1 is the
bottleneck edge. Otherwise e′ replaces e2 = (k, j).

information between random variables Xi and Xj under p as

I(pe) := I(Xi;Xj), where pe is the marginal on e = (i, j).
Proposition 2 (GLRT for Tree Distributions): The accep-

tance region for the GLRT in (8) is given as

An(GLRT)=

⎧⎨
⎩xn :

∑
(i,j)∈E∗

I(μ̂n
i,j)−

∑
(i,j)∈E0

I(μ̂n
i,j)∈Rn(α)

⎫⎬
⎭ ,

where E∗ is the edge set given by the optimization problem:

E∗ := argmax
E:T=(V,E)∈T d\{T0}

∑
(i,j)∈E

I(μ̂n
i,j). (10)

We observe from (10) that E∗ is the solution to a constrained

MWST problem where the edge weights given by the empir-

ical mutual information quantities {I(μ̂n
i,j)} and the resulting

tree is not allowed to be equal to T0. We propose the following

simple procedure to find the edge set E∗ for the GLRT.

1) Run a MWST algorithm (e.g., Kruskal’s [11]) to get the

edge set Ê := argmaxE:T=(V,E)∈T d

∑
(i,j)∈E I(μ̂n

i,j).

2) If Ê 	= E0, then E∗ = Ê and end.

3) Otherwise if Ê = E0, run the second-best MWST

algorithm [11] with the same set of edge weights and

set E∗ to be the output of the algorithm.

Thus, once the empirical mutual informations have been

computed, the tree structure E∗ of the ML distribution in Λ1

can be determined efficiently.5 Subsequently, the simplified

test as stated in Theorem 2 can be used to determine whether

the set of observations xn is drawn from p or some other

distribution q whose graph is a tree not equal to T0.

B. Worst-Case Type-II Error Exponent

We now derive the error exponent J∗(p) at which the

probability of misdetection decays for the hypothesis testing

problem in (9). Let L(i, j) denote the graph distance between

nodes i and j, i.e., L(i, j) is the number of edges between

nodes i and j in T0. We abbreviate J∗({p},D(X d, T d\{T0}))
in (5) as J∗(p). Let Path(e′;E0) be the unique path between

i and j in tree T0. See Fig. 2. We now state our main result.

Theorem 3 (Worst-Case Error Exponent for Trees): The

worst-case type-II error exponent J∗, defined in (5), for the

hypothesis testing problem in (9) is

J∗(p) = min
e′=(i,j)/∈E0

L(i,j)=2

min
e∈Path(e′;E0)

{I(pe)− I(pe′)}, (11)

5The MWST and second-best MWST have time complexity O(d2) [11].
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and can be found with d− 1 computations of I(pe)− I(pe′).
Moreover, the LFD for detection in (5) is attained by q∗ ∈
D(X d, T d\{T0}) which is Markov on the second-best MWST

Eq∗ = argmax
E:T=(V,E)∈T d\{T0}

∑
e∈E

I(pe), (12)

with parameters q∗i =pi, ∀ i ∈ V and q∗i,j=pi,j , ∀ (i, j) ∈ Eq∗ .

The closed-form expression in terms of mutual information

quantities implies that the computation of J∗(p) is simple

and there is no need to perform an exhaustive search over all

dd−2 trees for the LFD. Observe that the LFD q∗ in (12) that

achieves the worst-case type-II error exponent is the “closest”

tree distribution to p (in the KL-divergence sense) which is

not Markov on T0. Moreover, q∗ is Markov on the second-

best MWST with mutual information edge weights. Recall

that the MWST is achieved by T0, and hence, the second-

best MWST is the “closest” tree to T0. Moreover, the two

trees differ in exactly one edge, and we call the edge in T0

the bottleneck edge, since it is replaced by a non-edge such

that difference in mutual information quantities is minimized.

In addition, the constraint L(i, j) = 2 in (11) comes from

the the data-processing lemma which says that the mutual

information of pairs of variables farther apart are smaller than

pairs of variables that are closer. Thus, shorter non-edges are

more likely to replace a true edge than longer non-edges.

Consequently, to compute J∗(p), we only have to consider

those non-edges with distance 2.

As in other related results such as Thm. 8 in [5], observe that

as the difference between the mutual information quantities

I(pe) and I(pe′) increases, the worst-case type-II error expo-

nent also increases, resulting in better detection performance in

the large-sample regime. This is intuitive in light of the Chow-

Liu algorithm [7] for learning the ML tree structure from a

set of i.i.d. samples; if the true mutual information quantities

are far apart, then the true edges in T0 can be distinguished

more easily from the non-edges and it is less likely for the

ML estimator to mistake a non-edge as a true edge.

We now specialize Thm. 3 for Gaussians. Let the correlation

coefficient between Xi and Xj (under p) be denoted as ρi,j .

Corollary 4 (Error Exponent for Gaussian Trees): If X ∼
N (0,Σ) under both H0 and H1 in (9), then the error exponent

for the hypothesis test in (2) is

J∗(p) = min
e1,e2∈E0:e1∼e2

1

2
log

[
1− ρ2e1ρ

2
e2

1− ρ2e1

]
, (13)

where the notation e1 ∼ e2 means that the edges e1 and e2
share a common node.

C. Extension to Forest Distributions

We now generalize the results in Section IV-B to forest

distributions. In this case, the hypothesis testing problem is

H0 : xn ∼ {p},
H1 : xn ∼ {q : q ∈ D(X d,Fd \ S(F0))}, (14)

where p ∈ D(X d, F0) for a forest F0 ∈ Fd. Notice that the

uncertainty set in the alternative hypothesis D(X d,Fd\S(F0))

�

�

�

�

�

�

�
�
�
�
�

�
�
�
�
�

e′

e′

i

j

Fig. 3. Illustration of Thm. 5. In this 6-node forest, there are two possible
non-edges e′ that can replace a true edge along its path. The replacement
resulting in the minimum difference in mutual information quantities I(pe)−
I(pe′ ) gives the error exponent J∗(p).

excludes distributions which are Markov on supergraphs of F0.

If this were not so (i.e., Λ1 = D(X d,Fd \ F0)) and F0 is a

strict forest, then the error exponent J∗(p) will necessarily be

zero. This is because the infimum in (5) will be achieved by a

sequence of distributions, each Markov on a strict supergraph

of F0, but with arbitrarily weak potentials on an additional

edge that respects the tree constraint. For example, in Fig. 3,

the non-edge (i, j) with an arbitrarily weak potential will be

added in this scenario, resulting in J∗(p) = 0.

Theorem 5 (Worst-Case Error Exponent for Forests): The

error exponent for the (forest) hypothesis problem in (14) is

J∗(p) = min
e′=(i,j)/∈E0

L(i,j)=2

min
e∈Path(e′;E0)

{I(pe)− I(pe′)}. (15)

Furthermore, the LFD q∗ exists and its edge set and parameters

are the same as in Thm. 3. In particular, |Eq∗ | = |E0|.
The error exponent for the forest hypothesis test in (14)

mirrors that for trees. Also, the GLRT for the forests can be

implemented in exactly the same fashion as in Thm. 2 with

the caveat that E∗ in (10) is only allowed to have |E0| edges.

D. Comparison to ML Structure Learning

In this section, we compare and contrast the above results

(Thm. 3 and Thm. 5) to the line of research that concerns

learning of tree-structured graphical models from data [5], [6].

In [5], [6], the learner is given samples xn drawn from a fixed

tree distribution p and the error exponent for ML structure

learning using the Chow-Liu algorithm [7] was derived. How-

ever, in this paper, we instead consider the Neyman-Pearson

formulation where the probability of false alarm pn(Ac
n(φ))

is kept below a fixed size α and we quantify the worst-case

(smallest) exponential decay of the probability of misdetec-

tion. Furthermore, consistent learning (which implies positive

error exponent) of strict forest-structured distributions is not

possible because the ML estimate will always be a connected

tree. However, we do have a positive error exponent in Thm. 5

because we have explicitly excluded all distributions Markov

on supergraphs of the graph of p from the set Λ1 in (14).

V. GENERALIZATION TO COMPOSITE NULL HYPOTHESIS

A. Positivity of Error Exponent

We now analyze the conditions under which the probability

of misdetection qn(An(φ)) decays to zero exponentially fast

for every q in the uncertainty set Λ1. Since we assumed that

the graph of any distribution is a minimal representation, for
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the special case where the null hypothesis is simple, the worst-

case type-II error exponents J∗(p) in (11) and (15) are positive

as minimality implies that the mutual information quantities

I(pe)>0 for all e∈E0 and so the difference I(pe)−I(pe′)>0.

In this section, we derive a necessary and sufficient condi-

tion to ensure the positivity of the worst-case type-II error

exponent in the general hypothesis testing problem in (2).

In (2), both the null and alternative hypotheses are composite.

Let E0 and E1 be the set of edge sets of the distributions in Λ0

and Λ1 respectively, i.e., every distribution p ∈ Λ0 is Markov

on some tree with edge set E0 ∈ E0 and similiarly for Λ1.

Proposition 6 (Positivity of Error Exponent): Assume the

general composite hypothesis test for forest-structured distri-

butions in (2). Suppose there exists a δ > 0 such that

min
p∈Λ0

min
(E0,E1)∈E0×E1

min
e′∈E1

min
e∈Path(e′;E0)

I(pe) ≥ δ, (16)

then the worst-case type-II error exponent J∗(Λ0,Λ1) > 0.

This result says that the mutual information quantities on all

edges e ∈ E0 along the path of some non-edge e′ ∈ E1 has to

be bounded away from zero. We illustrate these results with

the following example.

B. A Specific Example: Gaussian Distributions

We now consider a special case of (2) in which the sets

Λ0 and Λ1 are defined parametrically. Note that this formu-

lation is in contrast to robust hypothesis testing [1, Ch. 11].

Specifically, to obtain a closed-form solution to J∗(p), we

consider the Gaussian random vector, X ∼ p(x) = N (0,Σ),
with Σ(i, i) = 1 for all i = 1, . . . , d. By the Markov property,

the specification of the correlations along the edges e ∈ E0

suffices for a complete characterization of a Gaussian tree

distribution [6]. For η1, η2 ∈ (0, 0.5), define the sets of

Gaussian tree models

Λ0 := {p ∈ D(X d, T0) :η1 ≤ |ρe| ≤ 1− η2, ∀e∈E0}, (17a)

Λ1 := {q : q ∈ D(X d, T d \ {T0})}. (17b)

That is, the (closed) uncertainty set Λ0 is parameterized by

(η1, η2) and comprises zero-mean, unit-variance Gaussians

Markov on T0 and for which the magnitude of the correlation

coefficients along the edges are between η1 and 1− η2.

Proposition 7 (Error Exponent for Bounded Correlations):
Assume that the uncertainty sets in the null and alternative

hypotheses for the problem in (2) are given in (17), for some

η1, η2 ∈ (0, 0.5). Then the worst-case type-II error exponent,

defined in (5), is given as

J∗(Λ0,Λ1) =
1

2
log

[
1− η21(1− η2)

2

1− η21

]
. (18)

Furthermore, if η1 = η2 = η, then limη↓0 J∗(Λ0,Λ1)/η
3 = 1.

This function J∗(Λ0,Λ1) is plotted in Fig. 4. We observe

that as either η1 or η2 tends to 0, the exponent J∗ → 0. This is

in line with intuition because if η1 ≈ 0, then Λ0 includes those

Gaussian distributions which have very weak correlations on

all edges, and hence small mutual information values. If η2 ≈
0, then Λ0 includes those Gaussian distributions which have
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Fig. 4. Plot of J∗(Λ0,Λ1) in (18) against (η1, η2).

almost perfectly correlated variables. Conversely, the exponent

is monotonically increasing in η1 and η2, indicating that as the

minimum distance between the sets Λ0 and Λ1 increases, the

exponent also increases. In fact, if η ≈ 0, J∗ behaves like η3.

VI. CONCLUSION

In this paper, we analyzed the worst-case type-II error

exponent for composite hypothesis testing of Markov for-

est distributions under the Neyman-Pearson formulation. We

characterized the error exponent in terms of the bottleneck

edge when the null hypothesis was assumed to be simple. We

also provided conditions for the error exponent to be positive,

which ensures that there the type-II error probability decays

exponentially fast. Given the nature of the results in this paper,

a natural question that arises is the following: Can we derive

similar closed-form (and thus interpretable) expressions for the

error exponents of hypothesis testing problems which involve

a more general class of graphical models, e.g., decomposable

models [10]?
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