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Necessary and Sufficient Conditions for
High-Dimensional Salient Feature Subset Recovery

Vincent Y. F. Tan, Matthew Johnson, and Alan S. Willsky

Stochastic Systems Group, LIDS, MIT, Cambridge, MA 02139, Email: {vtan,mattjj,willsky}@mit.edu

Abstract—We consider recovering the salient feature subset
for distinguishing between two probability models from i.i.d.
samples. Identifying the salient set improves discrimination
performance and reduces complexity. The focus in this work is on
the high-dimensional regime where the number of variables d,
the number of salient variables k and the number of samples
n all grow. The definition of saliency is motivated by error
exponents in a binary hypothesis test and is stated in terms
of relative entropies. It is shown that if n grows faster than
max{ck log((d−k)/k), exp(c′k)} for constants c, c′, then the er-
ror probability in selecting the salient set can be made arbitrarily
small. Thus, n can be much smaller than d. The exponential rate
of decay and converse theorems are also provided. An efficient
and consistent algorithm is proposed when the distributions are
graphical models which are Markov on trees.

Index Terms—Salient feature subset, High-dimensional, Error
exponents, Binary hypothesis testing, Tree distributions.

I. INTRODUCTION

Consider the following scenario: There are 1000 children

participating in a longitudinal study in childhood asthma of

which 500 of them are asthmatic and the other 500 are not. 106

measurements of possibly relevant features (e.g. genetic, envi-

ronmental, physiological) are taken from each child but only

a very small subset of these (say 30) is useful in predicting

whether the child has asthma. This example is, in fact, modeled

after a real-life large-scale experiment — the Manchester

Asthma and Allergy Study (http://www.maas.org.uk/). The

correct identification and subsequent interpretation of this

salient subset is important to clinicians for assessing the

susceptibility of other children to asthma. We expect that by

focusing only on the 30 salient features, we can improve

discrimination and reduce the computational cost in coming

up with a decision rule. Indeed, when the salient set is small

compared to the overall dimension (106), we also expect to be

able to estimate the salient set with a small number of samples.

This general problem is also known as feature subset
selection [1]. In this paper, we derive, from an information-

theoretic perspective, necessary and sufficient conditions so

that the salient set can be recovered with arbitrarily low error

probability in the high-dimensional regime, i.e., when the

number of samples n, the number of variables d and the

number of salient variables k grow. Intuitively, we expect that

if k and d do not grow too quickly with n, then consistent
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1080, a MURI funded through ARO Grant W911NF-06-1-0076 and a MURI
funded through AFOSR Grant FA9550-06-1-0324. V. Tan and M. Johnson are
supported by A*STAR, Singapore and the NSF fellowship respectively.

recovery is possible. However, in this paper, we focus on the

interesting case where d � n, k, which is most relevant to

problems such as the asthma example above.

Motivated by the Chernoff-Stein lemma [2, Ch. 11] for a

binary hypothesis test under the Neyman-Pearson framework,

we define the notion of saliency for distinguishing between

two probability distributions. We show that this definition

of saliency can also be motivated by the same hypothesis

testing problem under the Bayesian framework, in which the

overall error probability is minimized. For the asthma example,

intuitively, a feature is salient if it is useful in predicting

whether a child has asthma and we also expect the number

of salient features to be very small. Also, conditioned on the

salient features, the non-salient ones should not contribute to

the distinguishability of the classes. Our mathematical model

and definition of saliency in terms of the KL-divergence (or

Chernoff information) captures this intuition.

There are three main contributions in this work. Firstly,

we provide sufficient conditions on the scaling of the model

parameters (n, d, k) so the salient set is recoverable asymp-

totically. Secondly, by modeling the salient set as a uniform

random variable (over all sets of size k), we derive a necessary
condition that any decoder must satisfy in order to recover the

salient set. Thirdly, in light of the fact that the exhaustive

search decoder is computationally infeasible, we examine the

case in which the underlying distributions are Markov on

trees and derive efficient tree-based combinatorial optimization

algorithms to search for the salient set.

The literature on feature subset selection (or variable extrac-

tion) is vast. See [1] (and references therein) for a thorough

review of the field. The traditional methods include the so-

called wrapper (assessing different subsets for their usefulness

in predicting the class) and filter (ranking) methods. Our

definition of saliency is related to the minimum-redundancy,

maximum-relevancy model in [3] and the notion of Markov

blankets in [4] but is expressed using information-theoretic

quantities motivated by hypothesis testing. The algorithm

suggested in [5] shows that the generalization error remains

small even in the presence of a large number of irrelevant

features, but this paper focuses on exact recovery of the salient

set given scaling laws on (n, d, k). This work is also related

to [6] on sparsity pattern recovery (or compressed sensing) but

does not assume the linear observation model. Rather, samples

are drawn from two arbitrary discrete multivariate probability

distributions.
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II. NOTATION, SYSTEM MODEL AND DEFINITIONS

Let X be a finite set and let P(X d) denote the set of

discrete distributions supported on X d. Let {P (d), Q(d)}d∈N

be two sequences of distributions where P (d), Q(d) ∈ P(X d),
are the distributions of d-dimensional random vectors x,y
respectively. For a vector x ∈ X d, xA is the length-|A|
subvector that consists of the elements in A. Let Ac := Vd\A.

In addition, let Vd := {1, . . . , d} be the index set and for

a subset A ⊂ Vd, let P
(d)
A be the marginal of the subset

of random variables in A, i.e., the random vector xA. Each

index i ∈ Vd, associated to marginals (P
(d)
i , Q

(d)
i ), will be

generically called a feature.

We assume that for each pair (P (d), Q(d)), there exists a set

of n i.i.d. samples (xn,yn) := ({x(l)}nl=1, {y(l)}nl=1) drawn

from P (d)×Q(d). Each sample x(l) (and also y(l)) belongs to

X d. Our goal is to distinguish between P (d) and Q(d) using

the samples. Note that for each d, this setup is analogous to

binary classification where one does not have access to the

underlying distributions but only samples from the distribution.

We suppress the dependence of (xn,yn) on the dimensionality

d when the lengths of the vectors are clear from the context.

A. Definition of The Salient Set of Features

We now motivate the notion of saliency (and the salient

set) by considering the following binary hypothesis testing

problem. There are n i.i.d. d-dimensional samples zn :=
{z(1), . . . , z(n)} drawn from either P (d) or Q(d), i.e.,

H0 : zn ∼ P (d), H1 : zn ∼ Q(d). (1)

The Chernoff-Stein lemma [2, Theorem 11.8.3] says that the

error exponent for (1) under the Neyman-Pearson formulation

is

D(P (d) ||Q(d)) :=
∑
z

P (d)(z) log
P (d)(z)

Q(d)(z)
. (2)

More precisely, if the probability of false alarm PFA =
Pr(Ĥ1|H0) is kept below α, then the probability of mis-

detection PM = Pr(Ĥ0|H1) tends to zero exponentially fast

as n → ∞ with exponent given by D(P (d) ||Q(d)) in (2).

In the Bayesian formulation, we seek to minimize the over-

all probability of error Pr(err) = Pr(H0)PFA + Pr(H1)PM,

where Pr(H0) and Pr(H1) are the prior probabilities of

hypotheses H0 and H1 respectively. It is known [2, Theorem

11.9.1] that in this case, the error exponent governing the rate

of decay of Pr(err) with the sample size n is the Chernoff
information between P (d) and Q(d):

D∗(P (d), Q(d)) := − min
t∈[0,1]

log
∑
z

(P (d)(z))t(Q(d)(z))1−t. (3)

Similar to the KL-divergence, D∗(P (d), Q(d)) is a measure

of the separability of the distributions. It is a symmetric

quantity in the distributions but is still not a metric. Given

the form of the error exponents in (2) and (3), we would like

to identify a size-k subset of features Sd ⊂ Vd that “maximally

distinguishes” between P (d) and Q(d). This motivates the

following definitions:

Definition 1 (KL-divergence Salient Set): A subset Sd ⊂
Vd of size k is KL-divergence salient (or simply salient) if

D(P (d) ||Q(d)) = D(P
(d)
Sd

||Q(d)
Sd

), (4)

Thus, conditioned on the variables in the salient set Sd (with

|Sd| = k for some 1 ≤ k ≤ d), the variables in the

complement Sc
d do not contribute to the distinguishability (in

terms of the KL-divergence) of P (d) and Q(d).

Definition 2 (Chernoff information Salient Set): A subset

Sd ⊂ Vd of size k is Chernoff information salient if

D∗(P (d), Q(d)) = D∗(P (d)
Sd

, Q
(d)
Sd

), (5)

Thus, given the variables in Sd, the remaining variables in Sc
d

do not contribute to the Chernoff information defined in (3).

A natural question to ask is whether the two definitions above

are equivalent. We claim the following lemma.

Lemma 1 (Equivalence of Saliency Definitions): For a sub-

set Sd ⊂ Vd of size k, the following are equivalent:

S1: Sd is KL-divergence salient.

S2: Sd is Chernoff information salient.

S3: P (d) and Q(d) admit the following decompositions:

P (d) = P
(d)
Sd

·WSc
d|Sd

, Q(d) = Q
(d)
Sd

·WSc
d|Sd

. (6)

Lemma 1 is proved using Hölder’s inequality and Jensen’s

inequality.1

Observe from (6) that the conditionals WSc
d|Sd

of both

models are identical. Consequently, the likelihood ratio test
(LRT) [7, Sec. 3.4] between P (d) and Q(d) depends solely on

the marginals of the salient set Sd, i.e.,

1

n

n∑
l=1

log
P (d)(z(l))

Q(d)(z(l))
=

1

n

n∑
l=1

log
P

(d)
Sd

(z
(l)
Sd
)

Q
(d)
Sd

(z
(l)
Sd
)

Ĥ=H0

≷
Ĥ=H1

γn, (7)

is the most powerful test [2, Ch. 11] of fixed size α for

threshold γn.2 Also, the inclusion of any non-salient subset of

features B ⊂ Sc
d keeps the likelihood ratio in (7) exactly the

same, i.e., P (d)
Sd

/Q
(d)
Sd

= P
(d)
Sd∪B/Q

(d)
Sd∪B . Moreover, correctly

identifying Sd from the set of samples (xn,yn) results in

a reduction in the number of relevant features, which is

advantageous for the design of parsimonious and efficient

binary classifiers.

Because of this equivalence of definitions of saliency (in

terms of the Chernoff-Stein exponent in (2) and the Chernoff

information in (3)), if we have successfully identified the

salient set in (4), we have also found the subset that maximizes

the error exponent associated to the overall probability of error

Pr(err). In our results, we find that the characterization of

saliency in terms of (4) is more convenient than its equivalent

characterization in (5). Finally, we emphasize that the number

of variables and the number of salient variables k = |Sd|
can grow as functions of n, i.e., d = d(n), k = k(n). In the

1Due to space constraints, the proofs of the results are not included here
but can be found at http://web.mit.edu/vtan/www/isit10.

2We have implicitly assumed that the distributions P (d), Q(d) are nowhere
zero and consequently the conditional WSc

d
|Sd

is also nowhere zero.
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sequel, we provide necessary and sufficient conditions for the

asymptotic recovery of Sd as the model parameters scale, i.e.,
when (n, d, k) all grow.

B. Definition of Achievability

Let Sk,d :={A :A ⊂Vd, |A|=k} be the set of cardinality-k
subsets in Vd. A decoder is a set-valued function ψn : (X d)n×
(X d)n →Sk,d. Note in this paper that the decoder is given

k.3 In the following, we use the notation P̂ (d), Q̂(d) to denote

the empirical distributions (or types) of xn,yn respectively.

Definition 3 (Exhaustive Search Decoder): The exhaustive
search decoder (ESD) ψ∗

n : (X d)n×(X d)n→Sk,d is given as

ψ∗
n(x

n,yn) ∈ argmax
S′
d∈Sk,d

D(P̂
(d)
S′
d
|| Q̂(d)

S′
d
). (8)

If the argmax in (8) is not unique, output any set S′
d ∈ Sk,d

that maximizes the objective. The ESD is closely related to the

maximum-likelihood (ML) decoder, and can be viewed as an

approximation that is tractable for analysis. For a discussion,

please see the supplementary material.

We remark that, in practice, the ESD is computationally

infeasible for large d and k since it has to compute the

empirical KL-divergence D(P̂
(d)
S′
d
||Q̂(d)

S′
d
) for all sets in Sk,d. In

Section IV, we analyze how to reduce the complexity of (8) for

tree distributions. Nonetheless, the ESD is consistent for fixed

d and k. That is, as n → ∞, the probability that a non-salient

set is selected by ψ∗
n tends to zero. We provide the exponential

rate of decay in Section III-B. Let Pn :=(P (d)×Q(d))n denote

the n-fold product probability measure of P (d) ×Q(d).

Definition 4 (Achievability): We say that the sequence of

model parameters {(n, d, k)}n∈N is achievable for the se-

quence of distributions {P (d), Q(d) ∈ P(X d)}d∈N if there

exists a decoder ψn such that to every ε > 0, there exists

a Nε ∈ N for which the error probability

pn(ψn) := P
n(ψn(x

n,yn) 	= Sd) < ε, ∀n > Nε. (9)

Thus, if {(n, d, k)}n∈N is achievable, limn pn(ψn) = 0.

In the sequel, we provide achievability conditions for the ESD.

III. CONDITIONS FOR THE HIGH-DIMENSIONAL

RECOVERY OF SALIENT SUBSETS

In this section, we state three assumptions on the sequence

of distributions {P (d), Q(d)}d∈N such that under some spec-

ified scaling laws, the triple of model parameters (n, d, k)
is achievable with the ESD as defined in (9). We provide

both positive (achievability) and negative (converse) sample

complexity results under these assumptions. That is, we state

when (9) holds and also when the sequence pn(ψn) is uni-

formly bounded away from zero.

A. Assumptions on the Distributions

In order to state our results, we assume that the sequence of

probability distributions {P (d), Q(d)}d∈N satisfy the following

three conditions:

3We will discuss the recovery of Sd without knowledge of k in a longer
version of this paper.

A1: (Saliency) For each pair of distributions P (d), Q(d), there

exists a salient set Sd ⊂ Vd of cardinality k such that (4)

(or equivalently (5)) holds.

A2: (η-Distinguishability) There exists a constant η > 0,

independent of (n, d, k), such that for all d ∈ N and

for all non-salient subsets S′
d ∈ Sk,d \ {Sd}, we have

D(P
(d)
Sd

||Q(d)
Sd

)−D(P
(d)
S′
d
||Q(d)

S′
d
) ≥ η > 0. (10)

A3: (L-Boundedness of the Likelihood Ratio) There exists a

L ∈ (0,∞), independent of (n, d, k), such that for all

d ∈ N, we have log[P
(d)
Sd

(xSd
)/Q

(d)
Sd

(xSd
)] ∈ [−L,L]

for all xSd
∈ X k.

Assumption A1 pertains to the existence of a salient set.

Assumption A2 allows us to employ the large deviation

principle [7] to quantify error probabilities. This is because

all non-salient subsets S′
d ∈ Sk,d \ {Sd} are such that their

divergences are uniformly smaller than the divergences on Sd,

the salient set. Thus, for each d, the associated salient set Sd

is unique and the error probability of selecting any non-salient

set S′
d decays exponentially. A2 together with A3, a regularity

condition, allows us to prove that the exponents of all the

possible error events are uniformly bounded away from zero.

In the next subsection, we formally define the notion of an

error exponent for the recovery of salient subsets.

B. Fixed Number of Variables d and Salient Variables k

In this section, we consider the situation when d and

k are constant. This provides key insights for developing

achievability results when (n, d, k) scale. Under this scenario,

we have a large deviations principle for the error event in (9).

We define the error exponent for the ESD ψ∗
n as

C(P (d), Q(d)) := − lim
n→∞

n−1 logPn(ψ∗
n(x

n,yn) 	= Sd). (11)

Let JS′
d|Sd

be the error rate at which the non-salient set S′
d ∈

Sk,d \ {Sd} is selected by the ESD, i.e.,

JS′
d|Sd

:= − lim
n→∞

n−1 logPn (ψ∗
n(x

n,yn) = S′
d) . (12)

For each S′
d ∈ Sk,d \{Sd}, also define the set of distributions

ΓS′
d|Sd

:= {(P,Q) ∈ P(X 2|Sd∪S′
d|) :

D(PSd
||QSd

) = D(PS′
d
||QS′

d
)}. (13)

Proposition 2 (Error Exponent as Minimum Error Rate):
Assume that the ESD ψ∗

n is used. If d and k are constant,

then the error exponent (11) is given as

C(P (d), Q(d)) = min
S′
d∈Sk,d\{Sd}

JS′
d|Sd

, (14)

where the error rate JS′
d|Sd

, defined in (12), is

JS′
d|Sd

= min
ν∈ΓS′

d
|Sd

D(ν ||P (d)
Sd∪S′

d
×Q

(d)
Sd∪S′

d
). (15)

Furthermore if A2 holds, C(P (d), Q(d)) > 0 and hence the

error probability in (9) decays exponentially fast in n.
This result is proved using Sanov’s Theorem and the contrac-

tion principle [7, Ch. 4] in large deviations.
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C. An Achievability Result for the High-Dimensional Case

We now consider the high-dimensional scenario when

(n, d, k) all scale and we have a sequence of salient set

recovery problems indexed by n for the probability models

{P (d), Q(d)}d∈N. Thus, d = d(n) and k = k(n) and we are

searching for how such dependencies must behave (scale) such

that we have achievability. This is of interest since this regime

(typically d � n, k) is most applicable to many practical

problems and modern datasets such as the motivating example

in the introduction. Before stating our main theorem, we define

the greatest lower bound (g.l.b.) of the error exponents as

B := B({P (d), Q(d)}d∈N) := inf
d∈N

C(P (d), Q(d)), (16)

where C(P (d), Q(d)) is given in (14). Clearly, B ≥ 0 by the

non-negativity of the KL-divergence. In fact, we prove that

B > 0 under assumptions A1 – A3, i.e., the exponents in (14)

are uniformly bounded away from zero. For ε > 0, define

g1(k, ε) := exp

(
2k log |X |
1− ε

)
, (17)

g2(d, k) :=
k

B
log

(
d− k

k

)
. (18)

Theorem 3 (Main Result: Achievability): Assume that A1

– A3 hold for the sequence of distributions {P (d), Q(d)}d∈N.

If there exists an ε > 0 and an N ∈ N such that

n > max{g1(k, ε), g2(d, k)}, ∀n > N, (19)

then pn(ψ
∗
n) = O(exp(−nc)), where the exponent

c := B − lim sup
n→∞

k

n
log

d− k

k
> 0. (20)

In other words, the sequence {(n, d, k)}n∈N of parameters

is achievable if (19) holds. Furthermore, the exhaustive search

decoder in (8) achieves the scaling law in (19).

The key elements in proof include applications of large de-

viations bounds (e.g., Sanov’s theorem), asymptotic behavior

of binomial coefficients and most crucially demonstrating the

positivity of the g.l.b. of the error exponents B defined in (16).

We now discuss the ramifications of Theorem 3.

Firstly, n>g1(k, ε) means that k, the number of salient fea-

tures, is only allowed to grow logarithmically in n. Secondly,

n > g2(d, k) means that if k is a constant, the number of

redundant features |Sc
d|= d − k can grow exponentially with

n, and pn still tends to zero exponentially fast. This means

that recovery of Sd is asymptotically possible even if the data

dimension is extremely large (compared to n) but the number

of salient ones remain a small fraction of the total number d.

We state this observation formally as a corollary of Theorem 3.

Corollary 4 (Achievability for constant k): Assume A1 –

A3. Let k = k0 be a constant and fix R < R1 := B/k0. Then

if there exists a N ∈ N such that n > (log d)/R for all n > N ,

then the error probability obeys pn(ψ
∗
n) = O(exp(−nc′)),

where the exponent is c′ := B − k0R.

This result means that we can recover the salient set even

though the number of variables d is much larger (exponential)

in the number of samples n as in the asthma example.

D. A Converse Result for the High-Dimensional Case

In this section, we state a converse theorem (and several

useful corollaries) for the high-dimensional case. Specifically,

we establish a condition on the scaling of (n, d, k) so that

the probability of error is uniformly bounded away from zero

for any decoder. In order to apply standard proof techniques

(such as Fano’s inequality) for converses that apply to all

possible decoders ψn, we consider the following slightly

modified problem setup where Sd is random and not fixed

as was in Theorem 3. More precisely, let {P̃ (d), Q̃(d)}d∈N be

a fixed sequence of distributions, where P̃ (d), Q̃(d) ∈ P(X d).
We assume that this sequence of distributions satisfies A1 –

A3, namely there exists a salient set S̃d ∈ Sk,d such that

P̃ (d), Q̃(d) satisfies (4) for all d.

Let Π be a permutation of Vd chosen uniformly at random,

i.e., Pr(Π=π)=1/(d!) for any permutation operator π :Vd→
Vd. Define the sequence of distributions {P (d), Q(d)}d∈N as

π ∼ Π, P (d) := P̃ (d)
π , Q(d) := Q̃(d)

π . (21)

Put simply, we permute the indices in P̃ (d), Q̃(d) (according to

the realization of Π) to get P (d), Q(d), i.e., P (d)(x1 . . . xd) :=
P̃ (d)(xπ(1) . . . xπ(d)). Thus, once π has been drawn, the dis-

tributions P (d) and Q(d) of the random vectors x and y
are completely determined. Clearly the salient sets Sd are

drawn uniformly at random (u.a.r.) from Sk,d and we have

the Markov chain:

Sd
ϕn−→ (xn,yn)

ψn−→ Ŝd, (22)

where the length-d random vectors (x,y) ∼ P (d) ×Q(d) and

Ŝd is any estimate of Sd. Also, ϕn is the encoder given by

the random draw of π and (21). ψn is the decoder defined

in Section II-B. We denote the entropy of a random vector z
with pmf P as H(z) = H(P ) and the conditional entropy of

zA given zB as H(zA|zB) = H(PA|B).
Theorem 5 (Converse): Assume that the salient sets

{Sd}d∈N are drawn u.a.r. and encoded as in (21). If

n <
λk log( dk )

H(P (d)) +H(Q(d))
, for some λ ∈ (0, 1), (23)

then pn(ψn) ≥ 1− λ for any decoder ψn.

The converse is proven using Fano’s inequality [2, Ch.

1]. Note from (23) that if the non-salient set Sc
d consists

of uniform random variables independent of those in Sd

then H(P (d)) = O(d) and the bound is never satisfied.

However, the converse is interesting and useful if we consider

distributions with additional structure on their entropies. In

particular, we assume that most of the non-salient variables are

redundant (or processed) versions of the salient ones. Again

appealing to the asthma example in the introduction, there

could be two features in the dataset “body mass index” (in Sd)

and “is obese” (in Sc
d). These two features capture the same

basic information and are thus redundant, but the former may

be more informative to the asthma hypothesis.
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Corollary 6 (Converse with Bound on Conditional Entropy):
If there exists a M < ∞ such that

max{H(P
(d)
Sc
d|Sd

),H(Q
(d)
Sc
d|Sd

)} ≤ Mk (24)

for all d ∈ N, and

n <
λ log( dk )

2(M + log |X |) , for some λ ∈ (0, 1), (25)

then pn(ψn) ≥ 1− λ for any decoder ψn.

Corollary 7 (Converse for constant k): Assume the setup

in Corollary 6. Fix R > R2 := 2(M +log |X |). Then if k is a

constant and if there exists an N ∈ N such that n < (log d)/R
for all n > N , then there exist a δ > 0 such that error

probability pn(ψn) ≥ δ for all decoders ψn.

We previously showed (cf. Corollary 4) that there is a rate of

growth R1 so that achievability holds if R < R1. Corollary 7

says that, under the specified conditions, there is also another

rate R2 so that if R > R2, recovery of Sd is no longer possible.

IV. SPECIALIZATION TO TREE DISTRIBUTIONS

As mentioned previously, the ESD in (8) is computationally

prohibitive. In this section, we assume Markov structure on the

distributions (also called graphical models [8]) and devise an

efficient algorithm to reduce the computational complexity of

the decoder. To do so, for each d and k, assume the following:

A4: (Markov tree) The distributions P := P (d), Q := Q(d)

are undirected graphical models [8]. More specifically,

P,Q are Markov on a common tree T = (V (T ), E(T )),
where V (T ) = {1, . . . , d} is the vertex set and E(T ) ⊂(
V
2

)
is the edge set. That is, P,Q admit the factorization:

P (x) =
∏

i∈V (T )

Pi(xi)
∏

(i,j)∈E(T )

Pi,j(xi, xj)

Pi(xi)Pj(xj)
. (26)

A5: (Subtree) The salient set S := Sd is such that PS , QS

are Markov on a common (connected) subtree TS =
(V (TS), E(TS)) in T .

Note that TS ⊂ T has to be connected so that the marginals PS

and QS remain Markov on trees. Otherwise, additional edges

may be introduced when the variables in Sc are marginalized

out [8]. Under A4 and A5, the KL-divergence decomposes as:

D(P ||Q) =
∑

i∈V (T )

Di +
∑

(i,j)∈E(T )

Wi,j , (27)

where Di :=D(Pi ||Qi) is the KL-divergence of the marginals

and the weights Wi,j :=Di,j − Di − Dj . A similar decom-

position holds for D(PS ||QS) with V (TS), E(TS) in (27) in

place of V (T ), E(T ). Let Tk(T ) be the set of subtrees with

k < d vertices in T , a tree with d vertices. We now describe

an efficient algorithm to learn S when T is unknown.

Firstly, using the samples (xn,yn), learn a single Chow-

Liu [9] tree model TML using the sum of the empirical mutual

information quantities {I(P̂i,j)+I(Q̂i,j)} as the edge weights.

It is known that the Chow-Liu max-weight spanning tree

algorithm is consistent and large deviations rates have also

been studied [10]. Secondly, solve the following optimization:

T ∗
k = argmax

T ′
k∈Tk(TML)

∑
i∈V (T ′

k)

D̂i +
∑

(i,j)∈E(T ′
k)

Ŵi,j , (28)

where D̂i and Ŵi,j are the empirical versions of Di and Wi,j

respectively. In (28), the sum of the node and edge weights

over all size-k subtrees in TML is maximized. The problem

in (28) is known as the k-CARD TREE problem [11] and it

runs in time O(dk2) using a dynamic programming procedure

on trees. Thirdly, let the estimate of the salient set be the vertex

set of T ∗
k , i.e, ψn(x

n,yn) := V (T ∗
k ).

Proposition 8 (Complexity Reduction for Trees): Assume

that A4 and A5 hold. Then if k, d are constant, the algorithm

described above to estimate S is consistent. Moreover, the

time complexity is O(dk2 + nd2|X |2).
Hence, there are significant savings in computational com-

plexity if the probability models P and Q are trees (26).

V. CONCLUSION AND FURTHER WORK

In this paper, we defined the notion of saliency and provided

necessary and sufficient conditions for the asymptotic recovery

of salient subsets in the high-dimensional regime. In future

work, we seek to strengthen these results by reducing the gap

between the achievability and converse theorems. In addition,

we would like to derive similar types of results for the scenario

when k is unknown to the decoder. We have developed

thresholding rules for discovering the number of edges in the

context of learning Markov forests [12] and we believe that

similar techniques apply here. We also plan to analyze error

rates for the algorithm introduced in Section IV.

Acknowledgments: The authors acknowledge Prof. V.
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