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Abstract: Many nonlinear dynamical phenomena can be effectively modeled by a system
that switches among a set of conditionally linear dynamical modes. We consider two such
Markov jump linear systems: the switching linear dynamical system (SLDS) and the switching
vector autoregressive (S-VAR) process. In this paper, we present a nonparametric Bayesian
approach to identifying an unknown number of persistent, smooth dynamical modes by utilizing
a hierarchical Dirichlet process prior. We additionally employ automatic relevance determination
to infer a sparse set of dynamic dependencies. The utility and flexibility of our models are
demonstrated on synthetic data and a set of honey bee dances.

Keywords: Jump processes; Non-parametric identification; Stochastic realization; Machine
learning; Dynamic systems; Markov models; State-space models; Autoregressive processes.

1. INTRODUCTION

The switching linear dynamical system (SLDS) has been
used to describe a multitude of nonlinear dynamical phe-
nomena including human motion (Pavlović et al. [2000]),
financial time series (Carvalho and Lopes [2006]), maneu-
vering targets (Rong Li and Jilkov [2005]), and honey bee
dances (Oh et al. [2008]). The different dynamical modes
account for structural changes the phenomena exhibit: a
coasting ballistic missile makes an evasive maneuver; a
country experiences a recession; a honey bee changes from
a waggle to a turn right dance. Some of these changes ap-
pear frequently, while others are rarely observed, and there
is always the possibility of a previously unseen dynamical
behavior. These considerations motivate our nonparamet-
ric Bayesian approach, specifically employing hierarchical
extensions of the Dirichlet process (DP), leading to flexible
and computationally efficient learning of SLDS. While the
DP aims at inferring a small set of representative dynam-
ical modes, we also present a method of inducing sparsity
in the dependency structure among variables, providing
insight into the variable-order structure of the LDS.

One can view the SLDS, and a simpler switching vector
autoregressive (S-VAR) process, as an extension of hidden
Markov models (HMMs) in which each HMM state, or
mode, is associated with a linear dynamical process. While
the HMM makes a strong Markovian assumption that ob-
servations are conditionally independent given the mode,
the SLDS and S-VAR are able to capture more complex
temporal dependencies often present in real data. Most
existing methods for learning SLDS and S-VAR rely on ei-
ther fixing the number of HMM modes, such as in Oh et al.
[2008], or considering a change-point detection formulation
where each inferred change is to a new, previously unseen
dynamical mode, such as in Xuan and Murphy [2007]. In

⋆ This work was supported in part by MURIs funded through
AFOSR Grant FA9550-06-1-0324 and ARO Grant W911NF-06-1-
0076.

this paper we show how one can remain agnostic about the
number of dynamical modes while still allowing for returns
to previously exhibited dynamical behaviors.

Hierarchical Dirichlet processes (HDP) can be used as a
prior on the parameters of HMMs with unknown mode
space cardinality (Beal et al. [2002], Teh et al. [2006]).
In this paper we use a variant of the HDP-HMM—the
sticky HDP-HMM of Fox et al. [2008a]—that provides
improved control over the number of modes inferred;
such control is crucial for the problems we examine. An
extension of the sticky HDP-HMM formulation to learning
SLDS and S-VAR with an unknown number of modes
was presented in Fox et al. [2008b], however, relying on
knowledge of the model order. In this paper, we explore a
method for learning which components of the underlying
state vector contribute to the dynamics of each mode
by employing automatic relevance determination (ARD)
(Beal [2003]). The resulting model allows for learning
realizations of SLDS that switch between an unknown
number of dynamical modes with possibly varying state
dimensions, or S-VAR with varying autoregressive orders.

Paoletti et al. [2007] provides a survey of recent approaches
to identification of switching dynamical models. For noise-
less S-VAR, Vidal et al. [2003] presents an exact alge-
braic approach. However, the method relies on fixing the
maximal mode space cardinality and autoregressive order,
which is assumed shared between modes. Additionally,
extensions to the noisy case rely on heuristics. Psaradakis
and Spagnolo [2006] alternatively consider a penalized like-
lihood approach to identification of stochastic S-VAR. For
SLDS, identification is significantly more challenging, and
methods such as those in (Huang et al. [2004], Petreczky
and Vidal [2007]) rely on simplifying assumptions such as
deterministic dynamics or knowledge of the mode space.
Extensions to standard SLDS would be quite challenging;
our nonparametric framework further complicates these
issues. The approach we present herein aims to address



identification of mode space cardinality and model order
of SLDS and S-VAR within a fully Bayesian framework.

2. BACKGROUND: DIRICHLET PROCESSES AND
THE STICKY HDP-HMM

A Dirichlet process (DP), denoted by DP(γH), is a distri-
bution over random probability measures

G0 =

∞
∑

k=1

βkδθk
θk ∼ H (1)

on a parameter space Θ, with H a base measure on Θ. The
weights are sampled via a stick-breaking construction:

βk = β′
k

k−1
∏

ℓ=1

(1 − β′
ℓ) β′

k ∼ Beta(1, γ). (2)

We denote this distribution by β ∼ GEM(γ). The DP is
commonly used as a prior on the parameters of a mixture
model of unknown complexity, resulting in a DP mixture
model (see Fig.1(a)). To generate observations, we choose
zi ∼ β and yi ∼ F (θzi

).

The hierarchical Dirichlet process (HDP) (Teh et al.
[2006]) extends the DP to cases in which groups of data
are produced by related, yet distinct, generative processes.
Taking a hierarchical Bayesian approach, the HDP places
a global DP prior DP(αG0) on Θ, and then draws group
specific distributions Gj ∼ DP(αG0). Here, the base mea-
sure G0 acts as an “average” distribution (E[Gj |G0] = G0)
encoding the frequency of each shared, global parameter.
This layering of DPs produces group specific distributions:

Gj =
∞
∑

k=1

πjkδθk
πj ∼ DP(αβ) . (3)

To generate observation yji, the ith observation in group
j, we choose zji ∼ πj and yji ∼ F (θzji

). See Fig. 1(b).

It can be shown that the following finite, hierarchical
mixture model converges in distribution to the HDP as
L → ∞ (Ishwaran and Zarepour [2002], Teh et al. [2006]):

β ∼ Dir(γ/L, . . . , γ/L) πj ∼ Dir(αβ1, . . . , αβL). (4)

This weak limit approximation is used in Sec. 3.2.

The HDP can be used to develop an HMM with potentially
infinite mode space (Teh et al. [2006]). For this HDP-
HMM, each HDP group-specific distribution πj is a mode-
specific transition distribution. Here, however, observa-
tions are not pre-partitioned into groups. Let zt denote
the mode of the Markov chain at time t. The Markovian
structure dictates zt ∼ πzt−1

, implying that zt−1 indexes
the group to which yt is assigned (i.e., all observations
with zt−1 = j are assigned to group j). Due to the infinite
mode space, there are infinitely many possible groups. The
current HMM mode zt then indexes the parameter θzt

used
to generate observation yt. See Fig. 1(c), ignoring the edges
between the nodes representing the observations.

By sampling πj ∼ DP(αβ), the HDP prior encourages
modes to have similar transition distributions (E[πjk |β] =
βk). However, it does not differentiate self–transitions from
moves between modes. When modeling dynamical pro-
cesses with mode persistence, the flexible nature of the
HDP-HMM prior allows for mode sequences with unreal-
istically fast dynamics to have large posterior probability.
Recently, it has been shown (Fox et al. [2008a]) that one

may mitigate this problem by instead considering a sticky
HDP-HMM where πj is distributed as follows:

πj ∼ DP(αβ + κδj) (5)

Here, (αβ + κδj) indicates that an amount κ > 0 is added
to the jth component of αβ, thus increasing the expected
probability of self-transition. When κ = 0 the original
HDP-HMM is recovered. We place a vague prior on κ and
learn the self-transition bias from the data.

3. THE HDP-SLDS AND HDP-AR-HMM MODELS

We recount the nonparametric Bayesian extensions of the
SLDS and S-VAR developed in Fox et al. [2008b], first
assuming the model order is known, and then presenting a
new method for inferring this information from the data.
These models are referred to as the HDP-SLDS and HDP-
AR-HMM, respectively, with their generative processes
summarized as follows (see Fig. 1(c)-(d)):

HDP-AR-HMM HDP-SLDS
zt ∼ πzt−1

zt ∼ πzt−1

yt =

r
∑

i=1

A
(zt)
i yt−i + et(zt) xt = A(zt)xt−1 + et(zt)

yt = Cxt + vt

(6)

Here, πj is as defined in Sec. 2, r is a fixed autoregressive

order, et(zt) ∼ N (0, Σ(zt)) and vt ∼ N (0, R).

For these models, we place a prior on the dynamic param-
eters and compute their posterior from the data. For the
HDP-SLDS we do, however, fix the measurement matrix,
C, for reasons of identifiability. Let C̃ ∈ R

n×d, d ≥ n, be a
full rank measurement matrix associated with a dynamical
system defined by Ã. Then, without loss of generality, we
may consider C = [In 0] since there exists an invertible

transformation T such that the pair C = C̃T = [In 0] and

A = T−1ÃT defines an equivalent system. 1 Our choice of
the number of columns of zeros is, in essence, a choice of
model order and one which we will address in Sec. 3.1.

3.1 Posterior Inference of Parameters (A(k), Σ(k), R)

In this section we focus on developing a prior to regularize
the learning of different dynamical modes conditioned on
a fixed mode assignment z1:T . For the SLDS, we analyze
the posterior distribution of the dynamic parameters given
a fixed, known state sequence x1:T . Methods for learning
the number of modes and resampling the sequences x1:T

and z1:T are discussed in Sec. 3.2.

We may write the dynamic equation generically as:

ψt = A(k)ψ̄t−1 + et. (7)

For the S-VAR, we have A(k) = [A
(k)
1 . . . A

(k)
r ], ψt = yt,

and ψ̄t = [y′t−1 . . .y′t−r]
′. For the SLDS, A(k) = A(k),

ψt = xt, and ψ̄t = xt−1.

Conditioned on the mode sequence, one may partition
this dynamic sequence into K different linear regression
problems, where K = |{z1, . . . , zT }|. That is, for each
mode k, we may form a matrix Ψ(k) with Nk columns
consisting of the ψt with zt = k. Then,

Ψ(k) = A(k)Ψ̄(k) + E(k), (8)

1 For the SLDS of Eq. (6), T is identical for all modes as C is not
mode-specific. This implies that for every realization R1 of the SLDS
there exists an equivalent realization R2 with C = [In 0].



(a) (b) (c) (d)

Fig. 1. For all graphs, β ∼ GEM(γ) and θk ∼ H(λ). (a) DP mixture model in which zi ∼ β and yi ∼ f(y | θzi
). (b) HDP mixture model

with πj ∼ DP(α, β), zji ∼ πj , and yji ∼ f(y | θzji
). (c)-(d) Sticky HDP-HMM prior on switching VAR(2) and SLDS processes with

the mode evolving as zt+1 ∼ πzt for πk ∼ DP(α + κ, (αβ + κδk)/(α + κ)). The dynamical processes are as in Eq. (6).

where Ψ̄(k) is a matrix of the associated ψ̄t−1, and E(k)

the associated noise vectors.

Conjugate Prior The matrix-normal inverse-Wishart
(MNIW) prior is conjugate for the parameter set {A(k), Σ(k)}
(West and Harrison [1997]). A matrix A ∈ R

d×m has a
matrix-normal distribution MN (A;M ,V ,K) if

p(A) =
|K|

d
2

|2πV |
m
2

e−
1

2
tr((A−M )TV −1

(A−M )K), (9)

where M is the mean matrix and V and K−1 are the
covariances along the rows and columns, respectively.

Let D(k) = {Ψ(k), Ψ̄(k)}. The posterior distribution of the
dynamic parameters for the kth mode decomposes as

p(A(k), Σ(k) | D(k)) = p(A(k) | Σ(k),D(k))p(Σ(k) | D(k)).
(10)

The resulting posterior of A(k) is derived to be

p(A(k) | Σ(k),D(k)) = MN (A(k);S
(k)

ψψ̄
S
−(k)

ψ̄ψ̄
, Σ−(k),S

(k)

ψ̄ψ̄
),

(11)

with B−(k) denoting (B(k))−1 for a given matrix B, and

S
(k)

ψ̄ψ̄
= Ψ̄(k)Ψ̄(k)T

+K S
(k)

ψψ̄
= Ψ(k)Ψ̄(k)T

+MK

S
(k)
ψψ = Ψ(k)Ψ(k)T

+MKMT .

Assuming an inverse-Wishart prior IW(S0, n0) on Σ(k),

p(Σ(k) | D(k)) = IW(S
(k)

ψ|ψ̄
+ S0, Nk + n0), (12)

where S
(k)

ψ|ψ̄
= S

(k)
ψψ − S

(k)

ψψ̄
S
−(k)

ψ̄ψ̄
S

(k)T

ψψ̄
.

Automatic Relevance Determination The MNIW prior
leads to full A(k) matrices, which (i) becomes problematic
as the dimensionality of the underlying SLDS state, xt,
grows in the presence of limited data; and (ii) does not
provide a method for identifying irrelevant components of
the state vector. To jointly address these issues, we alterna-
tively consider automatic relevance determination (ARD)
(Beal [2003], MacKay [1994]), which places independent,
zero-mean, spherically symmetric Gaussian priors on the
columns of the matrix A(k):

p(A(k)|α(k)) =

d
∏

j=1

N (a
(k)
j ; 0, α

−(k)
j Id). (13)

Each precision parameter α
(k)
j is given a Gamma(a, b)

prior. The zero-mean Gaussian prior penalizes non-zero
columns of the dynamic matrix by an amount determined
by the precision parameters. Iterative estimation of the

precisions α
(k)
j and the dynamic matrix A(k) leads to α

(k)
j

becoming large, and thus a
(k)
j tending to 0, for columns

whose evidence in the data is insufficient for overcoming
the penalty induced by the prior. This implies that the jth

state component does not contribute to the dynamics of
the kth mode. Looking at the kth dynamical mode alone,

having a
(k)
j = 0 implies that the realization of that mode

is not minimal since a stochastic realization is minimal if
and only if the following Hankel matrix has full rank:

H =
[

C; CA; · · · ; CAd−1
] [

G AG · · · Ad−1G
]

, (14)

where G = APxC
T and Px is the steady-state covariance

satisfying (assuming A stable),

E[xtx
T
t ] , Px = APxA

T + Q. (15)

However, the overall SLDS realization may still be mini-
mal. In addition, each mode need not have stable dynamics
for the SLDS to be stable (Costa et al. [2005]).

In this paper we restrict ourselves to ARD modeling of
dynamical phenomena that satisfy the following criterion.

Criterion 1. If for some realization R a mode k has a
(k)
j =

0, then cj = 0, where cj is the jth column of C. Thus,
the set of observed state vector components is a subset of
those relevant to all modes. We assume that the states
are ordered such that C = [C0 0] (i.e., the observed
components are the first components of the state vector.)

For example, if we have a 3-mode SLDS realization R with

A(1) =
[

a
(1)
1 a

(1)
2 a

(1)
3 0 0

]

A(2) =
[

a
(2)
1 a

(2)
2 0 a

(2)
4 0

]

A(3) =
[

a
(3)
1 a

(3)
2 a

(3)
3 0 a

(3)
5

]

, (16)

then C = [c1 c2 0 0 0].

This criterion is sufficient, though not necessary, for main-
taining the sparsity within each A(k) while still fixing
C = [In 0]. That is, given there exists a realization R1

of our dynamical phenomena that satisfies Criterion 1,
the transformation T to an equivalent realization R2 with
C = [In 0] will maintain the sparsity structure seen in
R1, which we aim to infer with the ARD prior. The
above criterion is reasonable for many applications, as
we often have observations of some components of the
state vector that are essential to all modes, but some
modes may have additional unobserved components that
affect the dynamics. If there does not exist a realization
R satisfying Criterion 1, we may instead consider a more
general model where the measurement equation is mode-
specific and we place a prior on C(k) instead of fixing this
matrix. However, this model leads to identifiability issues
that are considerably less pronounced in the above case.



The ARD prior may also be used to learn variable-order
S-VAR processes. Instead of placing independent Gaussian
priors on each column of A(k), as we did in Eq. 13 for the

SLDS, we decompose the prior over the lag blocks A
(k)
i :

p(A(k)|α(k)) =

r
∏

i=1

N (vec(A
(k)
i ); 0, α

−(k)
i In2). (17)

That is, each block A
(k)
i shares the same precision α

(k)
i so

entire lag components of that mode can be “turned off”.

Our ARD prior on A(k) is equivalent to a N (0, Σ
(k)
0 ) prior

on vec(A(k)), where

Σ
(k)
0 = diag

(

α
(k)
1 , . . . , α

(k)
1 , . . . , α(k)

m , . . . , α(k)
m

)−1

. (18)

Here, m = d for the SLDS with d replicates of each α
(k)
i ,

and m = r for the S-VAR with n2 replicates of α
(k)
i . To

examine the posterior distribution of A(k), we note that
we may rewrite the state equation as,

ψt+1 =
[

ψ̄t,1Iℓ ψ̄t,2Iℓ · · · ψ̄t,ℓ∗rIℓ
]

vec(A(k)) + et+1(k)

, Ψ̃tvec(A(k)) + et+1(k) ∀ t|zt = k, (19)

where ℓ = d for the SLDS and ℓ = n for the S-VAR, from
which derive the posterior distribution as

p(vec(A(k)) | D(k), Σ(k),α(k)) = N−1

(

∑

t|zt=k

Ψ̃T
t−1Σ

−(k)ψt,

Σ
−(k)
0 +

∑

t|zt=k

Ψ̃T
t−1Σ

−(k)Ψ̃t−1

)

. (20)

Here, N−1(θ, Λ) represents a Gaussian N (µ, Σ) with infor-
mation parameters θ = Σ−1µ and Λ = Σ−1. The posterior

of each precision parameter α
(k)
ℓ is given by

p(α
(k)
ℓ | D(k),A(k)) = Gamma



a +
|Sℓ|

2
, b +

∑

(i,j)∈Sℓ

a
(k)2

ij

2



 .

(21)

Sℓ are the indices for which a
(k)
ij has prior precision α

(k)
ℓ .

We then place a separate inverse-Wishart prior IW(S0, n0)
on Σ(k) and look at the posterior given A(k):

p(Σ(k) | D(k),A(k)) = IW(S
(k)

ψ|ψ̄
+ S0, Nk + r0), (22)

where S
(k)

ψ|ψ̄
=

∑

t|zt=k
(ψt−A(k)ψ̄t−1)(ψt−A(k)ψ̄t−1)

T .

Posterior of Measurement Noise For the HDP-SLDS, we
additionally place an IW(R0, r0) prior on the measurement
noise covariance R, which is shared between modes. The
posterior distribution is given by

p(R | y1:T ,x1:T ) = IW(SR + R0, T + r0), (23)

where SR =
∑T

t=1(yt − Cxt)(yt − Cxt)
T .

3.2 Gibbs Sampler

For inference in the HDP-AR-HMM, we use a Gibbs sam-
pler that iterates between sampling the mode sequence,
z1:T , and the set of dynamic and sticky HDP-HMM pa-
rameters. See Fox et al. [2008a] for details of sampling
({πk}, β, α, κ, γ) given z1:T . The sampler for the HDP-
SLDS is identical with the additional step of sampling
the state sequence, x1:T , and conditioning on the state
sequence when resampling dynamic parameters.

Sampling (A(k), Σ(k), R) Conditioned on the mode se-
quence, z1:T , and ψ1:T (i.e., the observations, y1:T , or
sampled state sequence, x1:T ), we can sample the dynamic
parameters θ = {A(k), Σ(k)} from the posterior densities
of Sec. 3.1. For the ARD prior, we then sample α(k) given
A(k). For the HDP-SLDS, we additionally sample R.

Sampling z1:T As shown in Fox et al. [2008a], the mixing
rate of the Gibbs sampler for the HDP-HMM can be dra-
matically improved by using a truncated approximation
to the HDP, such as the weak limit approximation, and
jointly sampling the mode sequence using a variant of
the forward-backward algorithm. Specifically, we compute
backward messages mt+1,t(zt) ∝ p(ψt+1:T |zt, ψ̄t,π,θ) and
then recursively sample each zt conditioned on zt−1 from

p(zt | zt−1,ψ1:T ,π,θ) ∝ p(zt | πzt−1
)

p(ψt | ψ̄t−1,A
(zt), Σ(zt))mt+1,t(zt), (24)

Joint sampling of the mode sequence is especially impor-
tant when the observations are directly correlated via a
dynamical process since this correlation further slows the
mixing rate of the sampler of Teh et al. [2006]. Note that
the approximation of Eq. (4) retains the HDP’s nonpara-
metric nature by encouraging the use of fewer than L com-
ponents while allowing the generation of new components,
upper bounded by L, as new data are observed.

Sampling x1:T (HDP-SLDS only) Conditioned on the
mode sequence z1:T and the set of dynamic parameters θ,
our dynamical process simplifies to a time-varying linear
dynamical system. We can then block sample x1:T by
first running a backward filter to compute mt+1,t(xt) ∝
p(yt+1:T |xt, zt+1,θ) and then recursively sampling each
xt conditioned on xt−1 from

p(xt | xt−1,y1:T , z1:T ,θ) ∝ p(xt | xt−1, A
(zt), Σ(zt))

p(yt | xt, R)mt+1,t(xt). (25)

The messages are given in information form by mt,t−1(xt−1)
∝ N−1(xt−1; ϑt,t−1, Λt,t−1), where the information pa-
rameters are recursively defined as

ϑt,t−1 = A(zt)
T

Σ−(zt)Λ̃t(C
TR−1yt + ϑt+1,t) (26)

Λt,t−1 = A(zt)
T

Σ−(zt)A(zt) − A(zt)
T

Σ−(zt)Λ̃tΣ
−(zt)A(zt),

where Λ̃t = (Σ−(zt) + CTR−1C + Λt+1,t)
−1.

4. RESULTS

MNIW prior We begin by analyzing the relative mod-
eling power of the HDP-VAR(1)-HMM, 2 HDP-VAR(2)-
HMM, and HDP-SLDS using the MNIW prior on three
sets of test data (see Fig. 2.) We compare to a baseline
sticky HDP-HMM using first difference observations, im-
itating a HDP-VAR(1)-HMM with A(k) = I for all k.
The MNIW hyperparameters are set from statistics of the
data. Our Hamming distance error metric is calculated by
choosing the optimal mapping of indices maximizing over-
lap between the true and estimated mode sequences. For
the first scenario, the data were generated from a 5-mode
S-VAR(1) process. The three switching linear dynamical
models provide comparable performance since both the
HDP-VAR(2)-HMM and HDP-SLDS with C = I contain

2 Here we use the notation HDP-VAR(r)-HMM to refer to a HDP-
AR-HMM with autoregressive order r and vector observations.
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Fig. 2. (a) Observation sequence (blue, green, red) and associated mode sequence (magenta) for a 5-mode switching VAR(1) process

(top), 3-mode switching AR(2) process (middle), and 3-mode SLDS (bottom). The associated 10th, 50th, and 90th Hamming distance

quantiles over 100 trials are shown for the (b) HDP-VAR(1)-HMM, (c) HDP-VAR(2)-HMM, (d) HDP-SLDS with C = I (top and

bottom) and C = [1 0] (middle), and (e) sticky HDP-HMM using first difference observations.

the class of HDP-VAR(1)-HMMs. In the second scenario,
the data were generated from a 3-mode S-AR(2) process.
The HDP-AR(2)-HMM has significantly better perfor-
mance than the HDP-AR(1)-HMM while the performance
of the HDP-SLDS with C = [1 0] performs similarly, but
has greater posterior variability because the HDP-AR(2)-
HMM model family is smaller. Note that the HDP-SLDS
sampler is slower to mix since the hidden, continuous
state is also sampled. The data in the third scenario
were generated from a 3-mode SLDS model with C = I.
Here, we clearly see that neither the HDP-VAR(1)-HMM
nor HDP-VAR(2)-HMM is equivalent to the HDP-SLDS.
Note that all of the switching models yielded significant
improvements relative to the baseline sticky HDP-HMM.
Together, these results demonstrate both the differences
between our models as well as the models’ ability to learn
switching processes with varying numbers of modes.

ARD prior We now compare the utility of the ARD prior
to the MNIW prior using the HDP-SLDS model when the
true underlying dynamical modes have sparse dependen-
cies relative to the assumed model order. We generated
data from a two-mode SLDS with 0.98 probability of self-
transition and the following dynamical parameters:

A(1) =

[

0.8 −0.2 0
−0.2 0.8 0

0 0 0

]

A(2) =

[

−0.2 0 0.8
0.8 0 −0.2
0 0 0

]

, (27)

with C = [I2 0], Σ(1) = Σ(2) = I3, and R = I2. The first
dynamical process can be equivalently described by just
the first and second state components, while the second
process only relies on a single state component. 3 (The
third component is equivalent to additional process noise.)

In Fig. 3, we see that the ARD provides superior mode-
sequence estimates, as well as a mechanism for identify-

3 Since the true model has C = [I2 0] rather than arbitrary C =

[C0 0], we still hope to recover the a
(2)
2 = a

(2)
3 = 0 sparsity structure.

ing non-dynamical state components. The histograms of
Fig. 3(d)-(e) depict that we were able to correctly identify

dynamical systems with a
(1)
3 = 0 and a

(2)
2 = a

(2)
3 = 0

since the precisions α
(k)
j corresponding to these columns

are significantly larger than those for the other columns.

Dancing Honey Bees To analyze our ability to learn
variable order S-VAR processes, we tested the HDP-
VAR(2)-HMM model with the ARD prior on a set of
three dancing honey bee sequences, aiming to segment the
sequences into the waggle, turn right, and turn left dances
displayed in Fig. 4(a). The data consist of measurements
yt = [cos(θt) sin(θt) xt yt]

T , where (xt, yt) denotes the
2D coordinates of the bee’s body and θt its head angle.
Providing the data and ground truth labels, MATLAB’s
lpc implementation of Levinson’s algorithm indicates that
the turning dances are well approximated by an order
1 process, while the waggle dance relies on an order 2
model. 4 This same dataset was analyzed in Fox et al.
[2008b] using the MNIW prior with the HDP-VAR(1)-
HMM model, and compared against the 3-mode SLDS
model of Oh et al. [2008] and the change-point detection
formulation of Xuan and Murphy [2007].

The Hamming distance plots for the HDP-VAR(2)-HMM
with the ARD prior, shown in Fig. 4(b), are indistinguish-
able from those using the HDP-VAR(1)-HMM with the
MNIW prior. Thus, the information in the first lag compo-
nent is sufficient for the segmentation problem. However,
the ARD prior informs us of the variable-order nature
of this switching dynamical process and would likely im-
prove predictive performance of honey bee dances. From
Fig. 4(d)-(f), we see that the learned orders for the three
dances match what was indicated by running MATLAB’s
lpc function on ground-truth segmented data.
4 lpc computes AR coefficients for scalar data, so we analyzed each
component of the observation vector independently. The order was
consistent across these components.
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Fig. 3. (a) Observation sequence (green, blue) and mode sequence (magenta) of a 2-mode SLDS, where the first mode can be realized by the

first two state components and the second mode solely by the first. The associated 10th, 50th, and 90th Hamming distance quantiles

over 100 trials are shown for the (b) MNIW and (c) ARD prior. (d)-(e) Histograms of inferred ARD precisions associated with the first

and second dynamical modes, respectively, at the 5000th Gibbs iteration. Larger values correspond to non-dynamical components.
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Fig. 4. (a) Honey bee trajectories colored by waggle (red), turn right (blue), and turn left (green) dances. (b) 10th, 50th, and 90th Hamming

distance quantiles over 100 trials. (c) Estimated mode sequences, with errors in red, representing the median error at Gibbs iteration

200. (d)-(f) Histograms of inferred ARD precisions for the learned dance modes at Gibbs iteration 400 for the trials with Hamming

distance below the median. Larger values correspond to unnecessary lag components. Note the horizontal axis scale in column (f).

5. DISCUSSION

In this paper, we have addressed the problem of learn-
ing switching linear dynamical models with an unknown
number of modes for describing complex dynamical phe-
nomena. We further examined methods of inferring sparse
dependency structure in the dynamics of these modes,
leading to flexible and scalable dynamical models. The
utility of the developed HDP-SLDS and HDP-AR-HMM
was demonstrated on simulated data, as well as sequences
of honey bee dances in which we successfully inferred both
segmentations of the data into waggle, turn-right, and
turn-left dances as well as the VAR order of these dances.

REFERENCES

M. Beal. Variational Algorithms for Approximate Bayesian Infer-
ence. Ph.D. thesis, University College London, London, UK, 2003.

M. Beal, Z. Ghahramani, and C. Rasmussen. The infinite hidden
Markov model. In NIPS, 2002.

C. Carvalho and H. Lopes. Simulation-based sequential analysis of
Markov switching stochastic volatility models. Comp. Stat. &
Data Anal., 2006.

O. L. V. Costa, M. V. Fragoso, and R. P. Marques. Discrete-Time
Markov Jump Linear Systems. Springer, 2005.

E. Fox, E. Sudderth, M. Jordan, and A. Willsky. An HDP-HMM for
systems with state persistence. In ICML, 2008a.

E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Nonparametric
Bayesian learning of switching dynamical systems. In NIPS,
2008b.

K. Huang, A. Wagner, and Y. Ma. Identification of hybrid linear
time-invariant systems via SES. In CDC, 2004.

H. Ishwaran and M. Zarepour. Exact and approximate sum–
representations for the Dirichlet process. Can. J. Stat., 30:269–
283, 2002.

D.J.C. MacKay. Bayesian methods for backprop networks, chapter 6,
pages 211–254. Models of Neural Networks, III. Springer, 1994.

S. Oh, J. Rehg, T. Balch, and F. Dellaert. Learning and inferring
motion patterns using parametric segmental switching linear dy-
namic systems. Int. J. Comput. Vision, 77(1–3):103–124, 2008.

S. Paoletti, A. Juloski, G. Ferrari-Trecate, and R. Vidal. Identifica-
tion of hybrid systems: A tutorial. Eur. J. Control, 2–3:242–260,
2007.
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