Sustainability and Energy? E.M. Drake, February 3, 2005

- Is present society energy sustainable?
- What are the problems with present energy use?
- How can change be driven?
- Consequences of no action

World Population (thousands)

Are There Limits?

- Malthus 1798 Population grows exponentially; food production grows linearly. Population growth ceases when incremental person doesn't have resources to survive
- Hardin 1968 Tragedy of the Commons
- Ehrlichs 1968 Overpopulation is the problem, depleting soils and disrupting natural life support ecosystems
- Forrester 1972 Limits to Growth potential for disaster within 100 years
- Meadows 1992 Beyond the Limits overshoot but human ingenuity could prevent collapse
- Cohen 1995 How many people can Earth support? (maybe a trillion, more likely around 16 billion)

1999 Per Capita Average Energy Use for Selected Countries

Tons of Oil Equivalent per person per year

World Income Distribution (1993) and Human Concerns as a function of Income Level

Percentage shares of world population, world GDP, and world commercial energy consumption for selected countries.

Country	% of World Population 2001	% of World GDP 2002	% of World Energy Consumption 2002
United States	4.6%	32%	24%
Japan	2.0%	12%	5%
France	0.9%	4%	3%
Germany	1.4%	6%	4%
United Kingdom	1.0%	5%	2%
China	20%	4%	11%
India	17%	2%	4%

The Greenhouse Gamble [sample forecasts of future temperature change]

Carbon emission factors from energy use

- $CO_2 = Pop x (GDP/pop) x (Btu/GDP) x$ $(CO_2/Btu) - Seq$
 - GDP/pop represents standard of living
 - Btu/pop represents energy intensity
 - CO₂/pop represents carbon intensity
 - Seq accounts for sequestered CO₂

	Average Annual Percent Change 1980-1999				
Region	Population	Standard of Living	Energy Intensity	Carbon Intensity	Carbon Emissions
Africa	2.54%	- 0.58%	0.82%	- 0.01%	2.77%
Australia	1.36%	1.98%	- 0.37%	0.00%	2.98%
Brazil	1.61%	0.76%	1.83%	- 0.80%	3.43%
China	1.37%	8.54%	- 5.22%	- 0.26%	4.00%
East Asia	1.78%	5.00%	0.92%	- 0.70%	7.10%
E. Europe	0.44%	- 1.91%	- 0.14%	- 0.61%	- 2.21%
India	2.04%	3.54%	0.27%	0.03%	5.97%
Japan	0.41%	2.62%	- 0.57%	- 0.96%	1.47%
Middle East	2.98%	0.04%	2.45%	- 1.14%	4.34%
OECD	0.68%	1.73%	- 0.88%	- 0.58%	0.94%
OECD-Eur.	0.53%	1.74%	- 1.00%	- 1.06%	0.18%
United States	0.96%	2.15%	- 1.64%	- 0.21%	1.23%
World	1.60%	1.28%	- 1.12%	- 0.45%	1.30%

Long-term World Energy Balance

[P-R. Bauquis, Oil and Gas Journal, 17/2/03]

Energy	Energy 2000		2020		2050	
Source	ВТОЕ	%	ВТОЕ	%	ВТОЕ	%
Oil	3.7	40	5.0	40	3.5	20
Gas	2.1	22	4.0	27	4.5	25
Coal+lignite	2.2	24	3.0	20	4.5	25
Total fossil	8.0	86	12.0	87	12.5	70
Renewables	0.7	7.5	1.0	6.5	1.5	8
Nuclear	0.6	6.5	1.0	6.5	4.0	22
Total commercial energy	9.3	100.0	14.0	100.0	18.0	100

Source: Revue de l'Energie, No. 509. Sept. 1999.

World Commercial Primary Energy Use – Now and Projected (Edmonds, BAU)

BP data, 1999, 8.5 bTOE

Edmonds, 2095, 30+ bTOE?

What is Sustainability?

- The ability of humanity to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs.

 [Bruntland, 1987]
- Preservation of productive capacity for the foreseeable future. [Solow, 1992]
- Biophysical sustainability means maintaining or improving the integrity of the life support system of earth. [Fuwa, 1995]

Intergenerational Principles

- Trustee: Every generation has obligation to protect interests of future generations
- Chain of obligation: Primary obligation is to provide for the needs of the living and succeeding generations. Near term concrete hazards have priority over long term hypothetical hazards
- Precautionary Principle: Do not pursue actions that pose a realistic threat of irreversible harm or catastrophic consequences unless there is some compelling or countervailing need to benefit either current or future generations

Sustainability Issues

- Carrying capacity of earth?
- Sustainable economies, societal institutions, and the environment
- Ecological footprints for modest European lifestyle are
 2.6 hectares or about 6.5 acres per person
 - US average = 24 acres per person (8.8 hectares)
 - UK average = 5.3 hectares per person (13.3 acres)
- Above lifestyle applied to China suggests it could support a sustainable population of 333 million!
 [Optimum Population Trust, UK, 1993]

Some things we might want to sustain	Some trends hindering sustainable living
Our standard of living	Widespread poverty
Our health and well-being	Population growth
Our food and water supply	Unnecessary or excessive consumption
The environment (climate, water quality and availability, diversity of species, natural and recreational spaces, etc.)	Social inequity (including lack of health care, education, and jobs for the poorest, widening gaps between the rich and poor)
Personal freedom	Political self interests and short term focus
International stability	Terrorism, Irresponsible industrialization
A healthy economy	Loss of habitat and species
Opportunities to improve status (individually, as a community, or a nation)	Inadequate institutional systems to manage change
Global communications and mobility	Maldistribution of resources, depletion
Etc.	Etc.

The Three Dimensions of Sustainabilty

Derived from World Bank (1996)

Balancing Issues

Moving dirty production offshore

The Challenge

- If we have to change our energy technologies over a relatively short period of time, where are the best alternatives?
- How should we invest in developing better alternatives?
- What are the drivers that will encourage timely development and market penetration of these technologies?
- Do we also have to change behaviors?

Climate Change: How Far and How Fast?

- Gaming Wait for the "other guy:"
 - Developed countries go first
 - Each country wishes to preserve or improve economic status
 - US administration backs away from the Kyoto protocol and looks to a variety of voluntary initiatives
- Result INACTION!
- BUT: Evidence of climate change is increasing and public awareness is rising, even in the US

Poverty: How Far and How Fast?

- Selfishness and denial
 - Developed world view that poverty is self-inflicted, limited social services aimed at reacting to problems rather than to correcting them, unwillingness to share enough domestically, much less internationally
 - Developing countries graft and corruption, acceptance of large inequities, inadequate resources (human and financial) for much change, anger at the "haves" – who are more visible thanks to modern communications

Consequences of Inaction

- Poverty
 - Subhuman living conditions for many; ill-health, addiction, crime, terrorism, mass migration, wars, etc.
 - Loss of human capital and environmental degradation
- Climate change
 - Shifting regional weather patterns impacting agriculture, water, storms, floods, etc.
 - Most impact on the poor wealthy countries can better afford mitigation

Some considerations...

- There is no right or wrong it is a matter of balance
- Each one may contribute in a different way
- Selfishness and materialism are OK in moderation, but may block other rewarding human values like feeling part of a community, self respect, love, and compassion
- We can only control our behavior not other people's (Though it is possible to be an example)

Barriers to Change

- Money, health and intelligence
 - "Haves" we want even more, we want to be better than our peers, and to not see poverty
 - "Have-nots" we want all this, but it seems out of our realm of possibility – others have made the rules and we cannot win - we resent or hate them, though we may pity them as human beings – we would love to take what they have!

Rewards of Action

- Perhaps a better quality of life with enough to meet our needs not our wants!
- A different business paradigm not mass production, but life cycle service production with careful regard for externalities
- Greatly reduced social inequity and improved societal stability
- Appreciation and care for nature and diversity, both human and environmental

Thring's model

What can we do?

- In choosing careers?
- In our professional lives?
- As private citizens?
- As national citizens?
- As global citizens?

How much are we willing to do?