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RESOURCE EVALUATION AND
DEPLETION ANALYSES



WAYS OF ESTIMATING ENERGY
RESOURCES

 Monte Carlo

* “Hubbert” Method Extrapolation

* Expert Opinion (Delphi)



FACTORS AFECTING RESOURCE
RECOVERY

 Nature of Deposit
 Fuel Price

* Technological Innovation
—Deep drilling
—Sideways drilling
—QOi1l and gas field pressurization
—Hydrofracturing
—Large scale mechanization



URANIUM AREAS OF THE U.S.

Courtesy of U.S. Atomic Energy Commission.
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MAJOR SOURCES OF URANIUM

Class 1 — Sandstone Deposits
U308 Concentration

Share (Percent) Tons U308
New Mexico 49 0.25 Total
Wyoming .36 0.20 315,000
Utah .03 0.32 S $10/1b
Colorado .03 0.28
Texas .06 0.28
Other .03 0.28
Class 2 — Vein Deposits 7,100
Class 3 — Lignite Deposits 0.01-0.05 1,200
Class 4 — Phosphate Rock 0.015
Class 5 — Phosphate Rock Leached 0.010 54,600
Zone (Fla.)
Class 6 — Chattanooga Shale 0.006 2,557,300
Class 7 — Copper Leach Solution 0.0012 30,000
Operations
Class 8 — Conway Granite 0.0012-Uranium 1x106
0.0050-Thorium 4x106

Class 9 — Sea Water 0.33x10-6 4x109



ESTIMATES OF URANIUM AVAILABILITY FROM
GEOLOGICAL FORMATIONS AND OCEANS IN THE U.S.

A

4000 — -
YA
1800 —

iy ]
00
C‘J" 200
= ]
& < N %
o
= g |
o
5]
e
.2
= ¢

4

S 30
2 e
S 10 Figure by
0 i MIT OCW.
Conven tional Shale Shale Granite Shale Granite Seawater

60-80 ppm 25-60 ppm 10-20 ppm 10-25 ppm 4-10 ppm 0.003 ppm
# 700-2100 ppm pp pp pp pp pp pp




DECLINE IN GRADE OF MINED
COPPER ORES SINCE 1925

Figure removed for copyright reasons.



RECOVERY BY IN-SITU COMBUSTION

COMBUSTIBLE GASES
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MONTE CARLO ESTIMATION

Yield from
Reglorlll Y E
YzZ% s
=1
(Eq. 1)
Yield from Yield from Yield from
Zone 1,y Zone 2, y; Zonen,y,
Ln_:_' Ln_um Ln_u::E
Y1 V) Yn

Probability density functions are obtained subjectively, using information
about deposit characteristics, fuel price, and technology used.




MONTE CARLO SAMPLING
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Prob.(y; <Y; <y; +8yi)=fy,(yi)dy; (Eq.2)  Prob.(Y; <y;)=Fy.(y;) (Eq. 3)
g.

Yi

y1min

Consider Yj to be a random variable within [yimin > Vi }
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MONTE CARLO SAMPLING, Continued

.

Utilize a random number generator to select a value of F(y;)
within range [0, 1] = corresponding value of y; (Eq. 3).

. Repeat ste[p 1 for all values of 1 and utilize selected values
y

of Yil =W1,> Y2» s Yn; tO calculate a value of
Y, (Eq. 1) (note Y 1s also a random variable).

. Repeat step 2 many times and obtain a set of values of Y.

Their distribution will approximate that of the variable Y
as

(Y)

— fY
P(Y)) A B

or

K / P(Y,)

Ymin Y Yn:laX

N\
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KING HUBBERT ESTIMATION METHOD

CHARACTERISTICS OF MINERAL RESOURCE EXTRACTION

* As More Resource Is Extracted The Grade Of The Marginally
Most Attractive Resources Decreases, Causing

— Need for improved extraction technologies
— Search for alternative deposits, minerals
— Price increases (actually, rarely observed)
PHASES OF MINERAL RESOURCE EXTRACTION
* Early: Low Demand, Low Production Costs, Low Innovation

* Growing: Increasing Demand And Discovering Rate, Production
Growing With Demand, Start of Innovation

e Mature: Decreasing Demand And Discovery Rate, Production
Struggling To Meet Demand, Shift To Alternatives

e Late: Low Demand, Production Difficulties, Strong Shift To
Alternatives (rarely observed)
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Graph removed for copyright reasons.

Natural Gas reserves, 1947-1980, from American Gas Association.
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U.S. NATURAL GAS PRODUCTION

Courtesy of U.S. DOE.
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U.S. CRUDE OIL PRODUCTION

Courtesy of U.S. DOE.
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COMPLETE CYCLE OF WORLD
CRUDE-OIL PRODUCTION

Production Rate (109 barrels per year)
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Figure by MIT OCW.
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RESOURCE BEHAVIOR UNDER
“HUBBERT” ASSUMPTIONS

Cumulative “Ultimate Production
Discoveries, > Cumulative
2 Production,

Qq(®) T
Q Qp(t)
Known Reserves,
Q)
' ' ' time, t

ty t, t

Q,(t)

Timing: h 1 () time, t
ty Ty tp are tlm.es of Q.(t)
respective maxima of

Qda Qra Qp°
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EQUATIONS

Conservation of Resource:

Qg (t)=Q () +Qp(t)

Rate Conservation:
Qa(t) = (1) +Qp(1)

Approximate Results:

t(Qg =0)-t(Q; =0)=21
. z{(to_tp]

(td_to)
o “%(td“p)

qultimate ~2 Qd (td )

or

(Eq. 4)

(Eq. 5)

(Eq. 6)

(Eq. 7)

(Eq. 8)

(Eq. 9)
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EQUATIONS, Continued

If we assume Gaussian distributions for Q,(t), J4(t) and pr (1),

with each having the same standard deviation, G, obtain

1(t—t0j2
CXp| ——
p[ 2\ ©

Q.
N

, Qq,
Qa() = Nor

Q(t)=

on

Qf (t)_ ’\/_G

Then, when Q. 1s at a maximum t =t and er =0, or

Qy,

iyﬁ)—

cX
o
2
t—1t
exp| -1

|2 - Qrlto)
@ (to )

(Eq. 10)

(Eq. 11)

(Eq. 12)

(Eq. 13)
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EQUATIONS, Continued

When Qfd 1s at a maximum, t = t;, and

Ja(ta)=0=0Qr(ta)+ Qp(ta)

— T GZL%J —(/2)(x/o)’ (Eq. 14)
To
Example: US Petroleum Production
T ~ 6 years c ~ 12 years
Q. =35 billion bbl @), ~ 12 million bbl/day

tultimate =150 years
production
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SUBJECTIVE PROBABILITY

STUDY - STATE OF NEW MEXICO

Courtesy of U.S. Atomic Energy Commission.
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NEW MEXICO SUBJECTIVE
PROBABILITY STUDY (AFTER DELPHI)
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