Thermodynamics and Efficiency Analysis Toolbox 6 Sustainable Energy - Energy chains and overall versus individual efficiencies - Playing by the rules - First Law energy conservation - Second Law entropy generation- irreversibility, - Availability and exergy concepts -max/min work - Power generation via heat to work cycles - Rankine (steam and other prime movers) - Brayton - Combined cycles #### **ENERGY SOURCES AND CONVERSION PROCESSES** #### Performance Metrics for Energy Systems Heat Transfer Efficiency (1st Law) $$\eta_h = \frac{Q_{out}}{Q_{in}} \equiv 1 - \frac{Q_{loss}}{Q_{in}}$$ Cycle Efficiency (2nd Law) $$\eta_{c} \equiv \frac{Q_{H}}{Q_{H}}$$ Utilization Efficiency (2nd Law/Exergy or availability-based) $$\eta_u = \frac{W_{net}}{W_{max}} = \frac{\sum\limits_{i} W_i}{\Delta B}$$ Sustainability Efficiency (couples heat and work flows) $$\eta_s = \frac{\sum\limits_{i} W_i + \sum\limits_{k} \eta_{c,k}^* Q_{H,k}}{W_{max}}$$ ### **Energy chains and efficiencies** A linked or connected set of energy efficiencies from extraction to use: Overall efficiency = $$\eta_{overall} = \prod_{i=1}^{n} \eta_{i}$$ $$\eta_{overall} = \eta_{gas\,extraction} \eta_{gas\,proces\, sin\,g} \eta_{gas\,transmission} \eta_{power\,plant} \eta_{electricity\,transmission} \eta_{distribution} \eta_{motor}$$ for example for batteries: $$\eta_{battery} = \eta_{rev, max} \eta_{rx} \eta_{voltage losses}$$ $$\eta_{rev, max} = \Delta G_{rx} / \Delta H_{fuel} = -nF \varepsilon / \Delta H_{fuel}$$ $$\Delta G_{rx} = -n_e F \varepsilon = \varepsilon^o - \frac{RT}{n_e F} \ln \left[\prod_{i \text{ species}} (a_i)^{v_i} \right]$$ or for compressed air energy storage (CAES): $$\eta_{overall} \equiv \frac{Work \ output}{Work \ input} = \frac{W_{turbine}}{W_{compressor}} = \eta_{turbine} \eta_{compressor}$$ # Energy Conservation and the First Law of Thermodynamics - System and surroundings \Box Heat and work interactions – path dependent effects (δ) ■ Mass flow effects ☐ First Law -- conservation of energy $\Delta \underline{E} = Q + W + \blacksquare H_{in} m_{in} \nearrow \blacksquare H_{out} m_{out}$ Or $d\underline{E} = \delta Q + \delta W + \blacksquare H_{in} \delta m_{in} \nearrow \blacksquare H_{out} \delta m_{out}$ where $E = total \ energy \ of \ the \ system$ $Q = net\ heat\ effect\ at\ system\ boundary$ $W = net \ work \ effect \ at \ system \ boundary$ $H_{in. out} = enthalpy of incoming or outgoing stream$ $m_{in. out} = mass of the incoming or outgoing stream$ - \Box Steady state versus transient -- $d\underline{E}/dt = 0$ and dm/dt Figure removed for copyright reasons. Source: Figure 4.6 in Tester, J. W., and M. Modell. *Thermodynamics and its Applications*. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996. # **Energy and Enthalpy** - \square Energy E contains the internal energy \square of the system as well as other contributions eg. KE due to inertial velocity effects, PE due to body force effects such as gravity or electrostatic - ☐ For simple systems, that is those without inertial or body force effects — $$E = U$$ \Box Enthalpy H -- contains the energy content E and mass flow (PV) work of the stream and is usually defined as $$H \circ \mathcal{D} U + PV$$ ### Entropy and the Second Law - ☐ Provides directionality for natural processes - heat flows from a hot to a cold body - rivers flow down hill - ☐ Describes in mathematical terms the maximum amount of heat that can be converted into work - ☐ Introduces the concept of entropy and defines it as the ratio of a reversible heat interaction to its temperature $$dS = \delta Q/T$$ ### Entropy and the Second Law ☐ Describes the maximum efficiency of a reversible Carnot heat engine in terms of heat source and heat sink temperatures $\eta_{Carnot} = \eta_{thermal} = Max work produced / heat supplied$ $$\eta_c = (T(hot) - T(cold)) / T(hot)$$ - ☐ For all reversible processes the total entropy is conserved - ☐ For all real processes the total entropy increases and often is associated with increased levels of molecular disorder e.g. a mixture of two components versus two pure components or a gas versus a liquid or solid phase - ☐ Entropy is in practice tends toward a maximum --- its change provides a measure of the degradation of work producing potential Consider a fully reversible process with no dissipative effects – that is all work is transferred without loss and all heat is transferred using an ideal Carnot process to generate additional work, The resulting maximum work is given by #### Ideal maximum work – availability or exergy $$\Delta B \equiv H_{out} - H_{in} - T_o \left(S_{out} - S_{in} \right) = \Delta H - T_o \Delta S$$ Clearly, the availability *B* is a state function in the strictest mathematical sense so the maximum (or minimum) work associated with any steady state process is also independent of the path. ## **Availability or Exergy** ☐ Yields the maximum work producing potential or the minimum work requirement of a process ☐ Allows evaluation and quantitative comparison of options in a sustainability context $\Delta B = change in availability or exergy$ = maximum work output or minimum work input $$\Delta B \equiv \left[\Delta H - T_o \Delta S\right]_{Tout, Pout}^{Tin, Pin}$$ normally T_{out} , $P_{out} = ambient or dead state condition = <math>T_o$, P_o # Playing by the rules - ☐ The 1st and 2nd Laws of thermodynamics are relevant - 1st Law energy is conserved - 2nd Law all real processes are irreversible - ☐ Heat and electric power are not the same - □ Conversion efficiency does not have a single definition - □ All parts of the system must work fuel and energy converters, control and monitoring sub systems, and the interconnection #### **Consider three cases** Case 1 – Central station generator Case 2 – DER fuel cell system Case 3 – DER CHP microturbine + geothermal heat pump Define efficiency as willized output/input = (energy utilized) / (energy content of fuel used) Basis = 100 units of chemical energy in fuel ### Case 1 – Central station generator State of the art vs system average performance maxrappi = 52/100 or 52% -- state of the art technology or maxrappi = 29/100 or 29% -- system average #### Case 2 – DER fuel cell system $\approx = 36/100 \text{ or } 36\%$ DER = distributed energy resource or distributed generator # Case 3 – DER CHP microturbine + geothermal heat pump # With **Signal** (energy used) / (energy content of fuel) Case 2 – DER fuel cell system $$\approx 36 \%$$ Sustainable Energy Toolbox lecture #6 #### Thermodynamics and Efficiency Analysis Methods Supplementary notes to lecture materials and Chapter 3 - 1. Fundamental principles - energy conservation and the 1st Law of thermodynamics - entropy production and the 2nd Law of thermodynamics - reversible Carnot heat engines - maximum work / availability / exergy concepts -- $\Delta B = \Delta H$ $T_o \Delta S$ - 2. Efficiencies - mechanical device efficiency for turbines and pumps - heat exchange efficiency - Carnot efficiency - cycle efficiency - fuel efficiency - utilization efficiency - 3. Ideal cycles - Carnot with fixed TH and Tc - Carnot with variable TH and fixed Tc - Ideal Brayton with variable TH and Tc - 4. Practical power cycles - an approach to Carnotizing cycles - Rankine cycles with condensing steam or organic working fluids - sub and supercritical operation - feed water heating - with reheat - Brayton non-condensing gas turbine cycles - Combined gas turbine and steam Rankine cycles - Topping and bottoming and dual cycles - Otto and diesel cycles for internal combustion engines - 5. Examples of power conversion using a natural gas or methane energy source - sub-critical Rankine cycle - gas turbine open Brayton cycle - combined gas turbine steam Rankine cycle - electrochemical fuel cell - 6. Heat pumps # Let's look a little deeper into heat to work cycle analysis #### **ENERGY SOURCES AND CONVERSION PROCESSES** #### Performance Metrics for Energy Systems Heat Transfer Efficiency (1st Law) $$\eta_h = \frac{Q_{out}}{Q_{in}} \equiv 1 - \frac{Q_{loss}}{Q_{in}}$$ Cycle Efficiency (2nd Law) $$\eta_{\text{c}} \equiv \frac{W_{\text{net}}}{Q_{\text{H}}}$$ Utilization Efficiency (2nd Law/Exergy or availability-based) $$\eta_u = \frac{W_{net}}{W_{max}} = \frac{\sum_i W_i}{\Delta B}$$ Sustainability Efficiency (couples heat and work flows) $$\eta_s = \frac{\sum_{i} W_i + \sum_{k} \eta_{c,k}^* Q_{H,k}}{W_{max}}$$ #### Availability Diagram for Water Images removed for copyright reasons. Source: Tester, J. W., and M. Modell. *Thermodynamics and its Applications*. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996. Figures 14.2-14.12, 14.16.