# Thermodynamics and Efficiency Analysis Toolbox 6 Sustainable Energy

- Energy chains and overall versus individual efficiencies
- Playing by the rules
  - First Law energy conservation
  - Second Law entropy generation- irreversibility,
  - Availability and exergy concepts -max/min work
- Power generation via heat to work cycles
  - Rankine ( steam and other prime movers)
  - Brayton
  - Combined cycles

#### **ENERGY SOURCES AND CONVERSION PROCESSES**



#### Performance Metrics for Energy Systems

Heat Transfer Efficiency (1st Law)

$$\eta_h = \frac{Q_{out}}{Q_{in}} \equiv 1 - \frac{Q_{loss}}{Q_{in}}$$

Cycle Efficiency (2nd Law)

$$\eta_{c} \equiv \frac{Q_{H}}{Q_{H}}$$

Utilization Efficiency (2nd Law/Exergy or availability-based)

$$\eta_u = \frac{W_{net}}{W_{max}} = \frac{\sum\limits_{i} W_i}{\Delta B}$$

Sustainability Efficiency (couples heat and work flows)

$$\eta_s = \frac{\sum\limits_{i} W_i + \sum\limits_{k} \eta_{c,k}^* Q_{H,k}}{W_{max}}$$

### **Energy chains and efficiencies**

A linked or connected set of energy efficiencies from extraction to use:

Overall efficiency = 
$$\eta_{overall} = \prod_{i=1}^{n} \eta_{i}$$

$$\eta_{overall} = \eta_{gas\,extraction} \eta_{gas\,proces\, sin\,g} \eta_{gas\,transmission} \eta_{power\,plant} \eta_{electricity\,transmission} \eta_{distribution} \eta_{motor}$$

for example for batteries:

$$\eta_{battery} = \eta_{rev, max} \eta_{rx} \eta_{voltage losses}$$

$$\eta_{rev, max} = \Delta G_{rx} / \Delta H_{fuel} = -nF \varepsilon / \Delta H_{fuel}$$

$$\Delta G_{rx} = -n_e F \varepsilon = \varepsilon^o - \frac{RT}{n_e F} \ln \left[ \prod_{i \text{ species}} (a_i)^{v_i} \right]$$

or for compressed air energy storage (CAES):

$$\eta_{overall} \equiv \frac{Work \ output}{Work \ input} = \frac{W_{turbine}}{W_{compressor}} = \eta_{turbine} \eta_{compressor}$$

# Energy Conservation and the First Law of Thermodynamics

- System and surroundings  $\Box$  Heat and work interactions – path dependent effects ( $\delta$ ) ■ Mass flow effects ☐ First Law -- conservation of energy  $\Delta \underline{E} = Q + W + \blacksquare H_{in} m_{in} \nearrow \blacksquare H_{out} m_{out}$ Or $d\underline{E} = \delta Q + \delta W + \blacksquare H_{in} \delta m_{in} \nearrow \blacksquare H_{out} \delta m_{out}$ where  $E = total \ energy \ of \ the \ system$  $Q = net\ heat\ effect\ at\ system\ boundary$  $W = net \ work \ effect \ at \ system \ boundary$  $H_{in. out} = enthalpy of incoming or outgoing stream$  $m_{in. out} = mass of the incoming or outgoing stream$
- $\Box$  Steady state versus transient --  $d\underline{E}/dt = 0$  and dm/dt

Figure removed for copyright reasons.

Source: Figure 4.6 in Tester, J. W., and M. Modell. *Thermodynamics and its Applications*. 3rd ed. Englewood

Cliffs, NJ: Prentice Hall, 1996.

# **Energy and Enthalpy**

- $\square$  Energy E contains the internal energy  $\square$  of the system as well as other contributions eg. KE due to inertial velocity effects, PE due to body force effects such as gravity or electrostatic
- ☐ For simple systems, that is those without inertial or body force effects —

$$E = U$$

 $\Box$  Enthalpy H -- contains the energy content E and mass flow (PV) work of the stream and is usually defined as

$$H \circ \mathcal{D} U + PV$$

### Entropy and the Second Law

- ☐ Provides directionality for natural processes
  - heat flows from a hot to a cold body
  - rivers flow down hill
- ☐ Describes in mathematical terms the maximum amount of heat that can be converted into work
- ☐ Introduces the concept of entropy and defines it as the ratio of a reversible heat interaction to its temperature

$$dS = \delta Q/T$$

### Entropy and the Second Law

☐ Describes the maximum efficiency of a reversible Carnot heat engine in terms of heat source and heat sink temperatures

 $\eta_{Carnot} = \eta_{thermal} = Max work produced / heat supplied$ 

$$\eta_c = (T(hot) - T(cold)) / T(hot)$$

- ☐ For all reversible processes the total entropy is conserved
- ☐ For all real processes the total entropy increases and often is associated with increased levels of molecular disorder e.g. a mixture of two components versus two pure components or a gas versus a liquid or solid phase
- ☐ Entropy is in practice tends toward a maximum --- its change provides a measure of the degradation of work producing potential

Consider a fully reversible process with no dissipative effects – that is all work is transferred without loss and all heat is transferred using an ideal Carnot process to generate additional work, The resulting maximum work is given by

#### Ideal maximum work – availability or exergy



$$\Delta B \equiv H_{out} - H_{in} - T_o \left( S_{out} - S_{in} \right) = \Delta H - T_o \Delta S$$

Clearly, the availability *B* is a state function in the strictest mathematical sense so the maximum (or minimum) work associated with any steady state process is also independent of the path.

## **Availability or Exergy**

☐ Yields the maximum work producing potential
 or the minimum work requirement of a process
 ☐ Allows evaluation and quantitative comparison of options in a sustainability context

 $\Delta B = change in availability or exergy$ 

= maximum work output or minimum work input

$$\Delta B \equiv \left[\Delta H - T_o \Delta S\right]_{Tout, Pout}^{Tin, Pin}$$

normally  $T_{out}$ ,  $P_{out} = ambient or dead state condition = <math>T_o$ ,  $P_o$ 

# Playing by the rules

- ☐ The 1<sup>st</sup> and 2<sup>nd</sup> Laws of thermodynamics are relevant
  - 1st Law energy is conserved
  - 2<sup>nd</sup> Law all real processes are irreversible
- ☐ Heat and electric power are not the same
- □ Conversion efficiency does not have a single definition
- □ All parts of the system must work fuel and energy converters, control and monitoring sub systems, and the interconnection

#### **Consider three cases**

Case 1 – Central station generator

Case 2 – DER fuel cell system

Case 3 – DER CHP microturbine + geothermal heat pump

Define efficiency as willized output/input = (energy utilized) / (energy content of fuel used)

Basis = 100 units of chemical energy in fuel

### Case 1 – Central station generator

State of the art vs system average performance



maxrappi = 52/100 or 52% -- state of the art technology or maxrappi = 29/100 or 29% -- system average

#### Case 2 – DER fuel cell system



 $\approx = 36/100 \text{ or } 36\%$ 

DER = distributed energy resource or distributed generator

# Case 3 – DER CHP microturbine + geothermal heat pump



# With **Signal** (energy used) / (energy content of fuel)

Case 2 – DER fuel cell system 
$$\approx 36 \%$$

Sustainable Energy Toolbox lecture #6

#### Thermodynamics and Efficiency Analysis Methods Supplementary notes to lecture materials and Chapter 3

- 1. Fundamental principles
  - energy conservation and the 1st Law of thermodynamics
  - entropy production and the 2<sup>nd</sup> Law of thermodynamics
  - reversible Carnot heat engines
  - maximum work / availability / exergy concepts --  $\Delta B = \Delta H$   $T_o \Delta S$
- 2. Efficiencies
  - mechanical device efficiency for turbines and pumps
  - heat exchange efficiency
  - Carnot efficiency
  - cycle efficiency
  - fuel efficiency
  - utilization efficiency
- 3. Ideal cycles
  - Carnot with fixed TH and Tc
  - Carnot with variable TH and fixed Tc
  - Ideal Brayton with variable TH and Tc
- 4. Practical power cycles
  - an approach to Carnotizing cycles
  - Rankine cycles with condensing steam or organic working fluids
    - sub and supercritical operation
    - feed water heating
    - with reheat
  - Brayton non-condensing gas turbine cycles
  - Combined gas turbine and steam Rankine cycles
  - Topping and bottoming and dual cycles
  - Otto and diesel cycles for internal combustion engines
- 5. Examples of power conversion using a natural gas or methane energy source
  - sub-critical Rankine cycle
  - gas turbine open Brayton cycle
  - combined gas turbine steam Rankine cycle
  - electrochemical fuel cell
- 6. Heat pumps

# Let's look a little deeper into heat to work cycle analysis



#### **ENERGY SOURCES AND CONVERSION PROCESSES**



#### Performance Metrics for Energy Systems

Heat Transfer Efficiency (1st Law)

$$\eta_h = \frac{Q_{out}}{Q_{in}} \equiv 1 - \frac{Q_{loss}}{Q_{in}}$$

Cycle Efficiency (2nd Law)

$$\eta_{\text{c}} \equiv \frac{W_{\text{net}}}{Q_{\text{H}}}$$

Utilization Efficiency (2nd Law/Exergy or availability-based)

$$\eta_u = \frac{W_{net}}{W_{max}} = \frac{\sum_i W_i}{\Delta B}$$

Sustainability Efficiency (couples heat and work flows)

$$\eta_s = \frac{\sum_{i} W_i + \sum_{k} \eta_{c,k}^* Q_{H,k}}{W_{max}}$$

#### Availability Diagram for Water



Images removed for copyright reasons.

Source: Tester, J. W., and M. Modell. *Thermodynamics and its Applications*. 3rd ed. Englewood Cliffs,

NJ: Prentice Hall, 1996. Figures 14.2-14.12, 14.16.