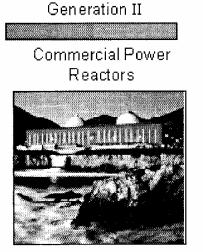


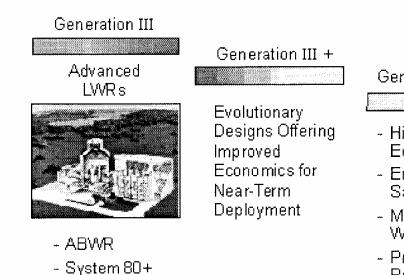
1.818J/2.65J/3.564J/10.391J/11.371J/22.811J/ESD166J SUSTAINABLE ENERGY

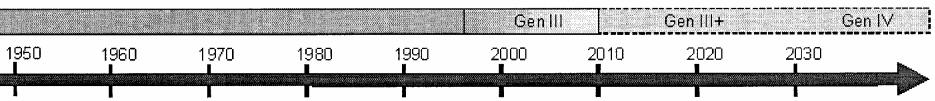
Prof. Michael W. Golay Nuclear Engineering Dept.

GENERATION-IV AND THE FUTURE OF NUCLEAR POWER


GENERATION IV TIMELINE

Generation I

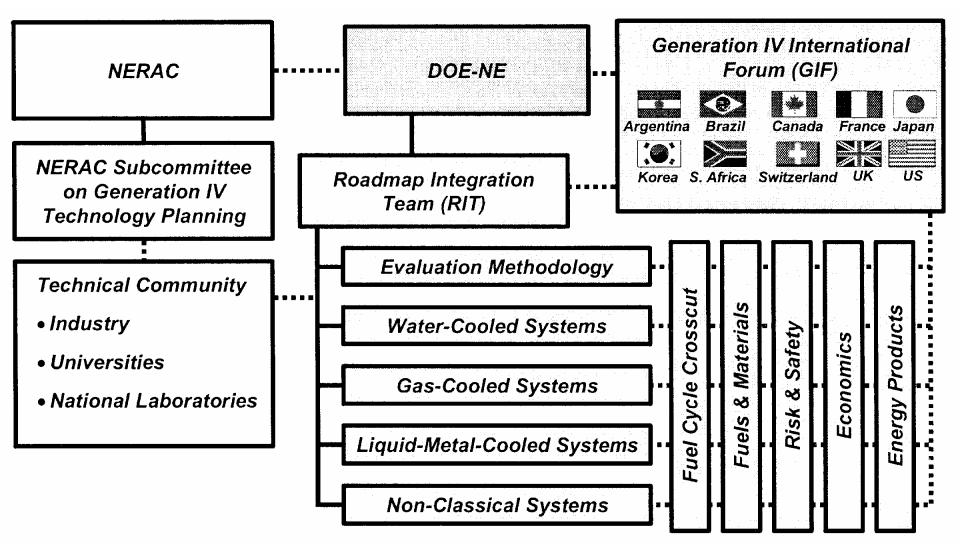

Early Prototype Reactors


- Shippingport
- Dresden, Fermil
- Magnox

- LWR-PWR, BWR
- CANDU
- WER/RBMK

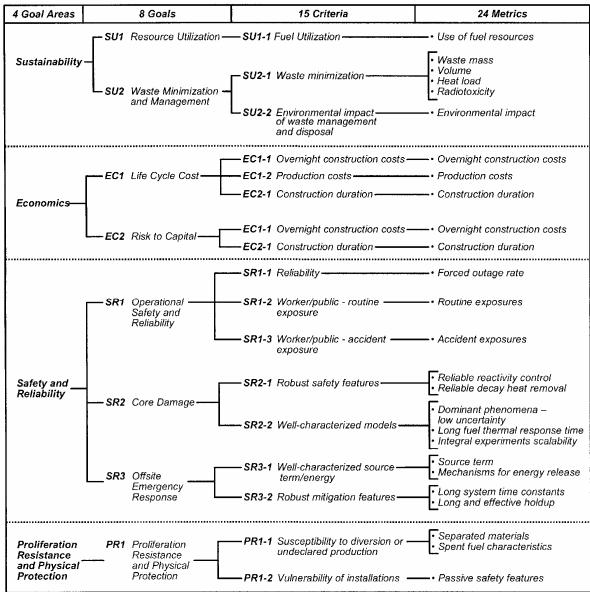
Generation IV Generation IV Conomical - Enhanced Safety - Minimal Waste - Proliferation Resistant

Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.


GOALS FOR GENERATION IV NUCLEAR ENERGY SYSTEMS

- **Sustainability-1** Generation IV nuclear energy systems will provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production.
- Sustainability-2 Generation IV nuclear energy systems will minimize and manage their nuclear waste and notably reduce the long-term stewardship burden, thereby improving protection for the public health and the environment.
- Economics-1 Generation IV nuclear energy systems will have a clear life-cycle cost advantage over other energy systems.
- Economics-2 Generation IV nuclear energy systems will have a level of financial risk comparable to other energy projects.

GOALS FOR GENERATION IV NUCLEAR ENERGY SYSTEMS, continued


- Safety and Reliability-1 Generation IV nuclear energy systems operations will excel in safety and reliability.
- Safety and Reliability-2 Generation IV nuclear energy systems will have a very low likelihood and degree of reactor core damage.
- Safety and Reliability-3 Generation IV nuclear energy systems will eliminate the need for offsite emergency response.
- **Proliferation Resistance and Physical Protection-1** Generation IV will increase the assurance that they are a very unattractive and the leave desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism.

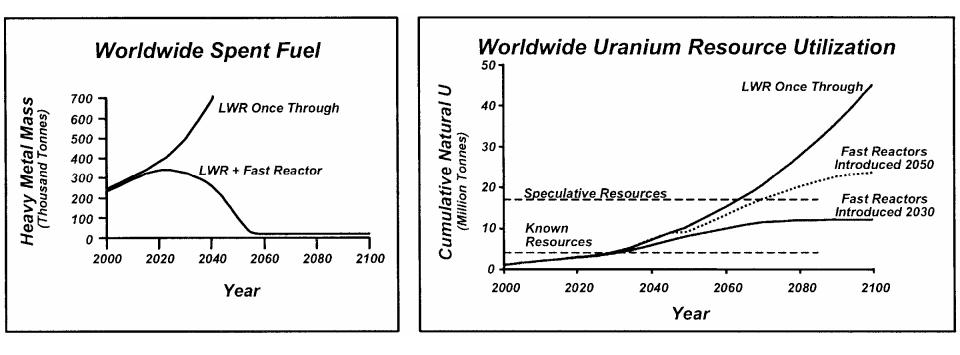
THE GENERATION IV ROADMAP PROJECT

Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

ROLLUP OF METRICS, CRITERIA, GOALS AND GOAL AREAS

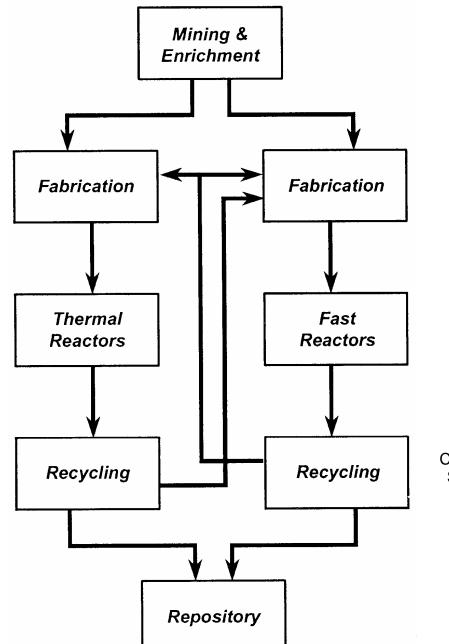
Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

GENERATION IV NUCLEAR ENERGY SYSTEMS

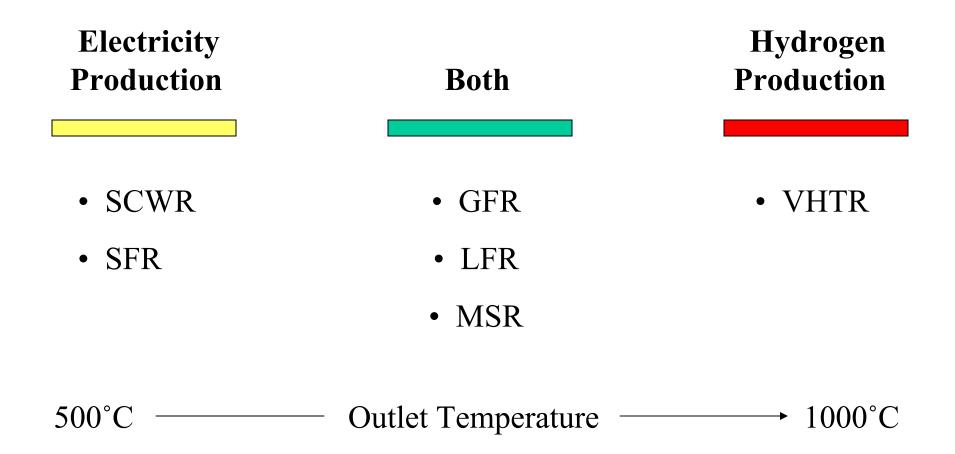

The Motivation for the Selection of Six Systems is to

- Identify systems that make significant advances toward the technology goals
- Ensure that the important missions of electricity generation, hydrogen and process heat production, and actinide management may be adequately addressed by Generation IV systems
- Provide some overlapping coverage of capabilities, because not all of the systems may ultimately be viable or attain their performance objectives and attract commercial deployment.
- Accommodate the range of national priorities and interest of the GIF countries.

SIX SYSTEMS SELECTED TO GENERATION IV BY THE GIF


GENERATION IV SYSTEM	ACRONYM
Gas-Cooled Fast Reactor System	GFR
Lead-Cooled Fast Reactor System	LFR
Molten Salt Reactor System	MSR
Sodium-Cooled Fast Reactor System	SFR
Supercritical Water-Cooled Reactor System	SCWR
Very-High-Temperature Reactor System	VHTR

FUEL CYCLES AND SUSTAINABILITY


Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

SYMBIOTIC FUEL CYCLES

Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

MISSIONS AND ECONOMICS FOR GENERATION IV



MISSIONS AND ECONOMICS FOR GENERATION IV, continued

• SFR

MISSIONS AND ECONOMICS FOR GENERATION IV, continued

• SCWR

* Range of options

U.S. NEAR-TERM DEPLOYMENT (NTD)

- ABWR (Advanced Boiling Water Reactor)
- AP1000 (Advanced Pressurized Water Reactor 1000 MWe)
- ESBWR (European Simplified Boiling Water Reactor)
- GT-MHR (Gas Turbine-Modular High Temperature Reactor)
- PBMR (Pebble Bed Modular Reactor)
- SWR-1000 (Siedewasser Reactor-1000)

U.S. Near-Term Deployment (by 2010)

> ABWR AP1000 ESBWR GT-MHR PBMR SWR-1000

INTERNATIONAL NEAR-TERM DEPLOYMENT

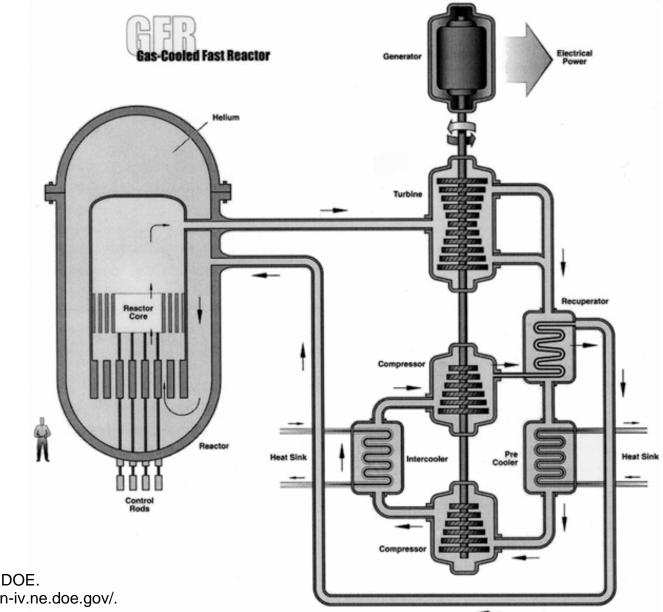
Advanced Boiling Water Reactors

- ABWR II (Advanced Boiling Water Reactor II)
- ESBWR (European Simplified Boiling Water Reactor)
- HC-BWR (High Conversion Boiling Water Reactor)
- SWR-1000 (Siedewasser Reactor-1000)
- **Advance Pressure Tube Reactor**
- ACR-700 (Advanced CANDU Reactor 700)
- **Advanced Pressurized Water Reactors**
- AP600 (Advanced Pressurized Water Reactor 600)
- AP1000 (Advanced Pressurized Water Reactor 1000)
- APR1400 (Advanced Power Reactor 1400)
- APWR+ (Advanced Pressurized Water Reactor Plus)
- EPR (European Pressurized Water Reactor)

International Near-Term Deployment (by 2015) **ABWR II ACR-700** AP600 AP1000 APR1400 APWR+ CAREM EPR **ESBWR GT-MHR** IMR IRIS **PBMR SMART SWR-1000**

Integral Primary Systems Reactors

- CAREM (Central Argentina de Elementos Modulares)
- IMR (International Modular Reactor)
- IRIS (International Reactor Innovative and Secure)
- SMART (System-Integrated Modular Advanced Reactor)

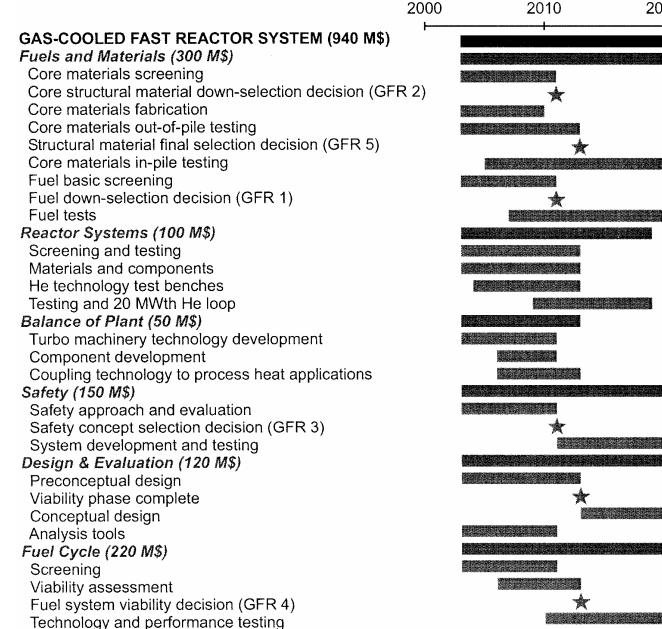

Modular High Temperature Gas-Cooled Reactors

- GT-MHR (Gas Turbine-Modular High Temperature Reactor)
- PBMR (Pebble Bed Modular Reactor)

GENERATION IV DEPLOYMENT

Generation IV System	Best Case Deployment Date
SFR	2020
VHTR	2020
GFR	2025
MSR	2025
SCWR	2025
LFR	2025

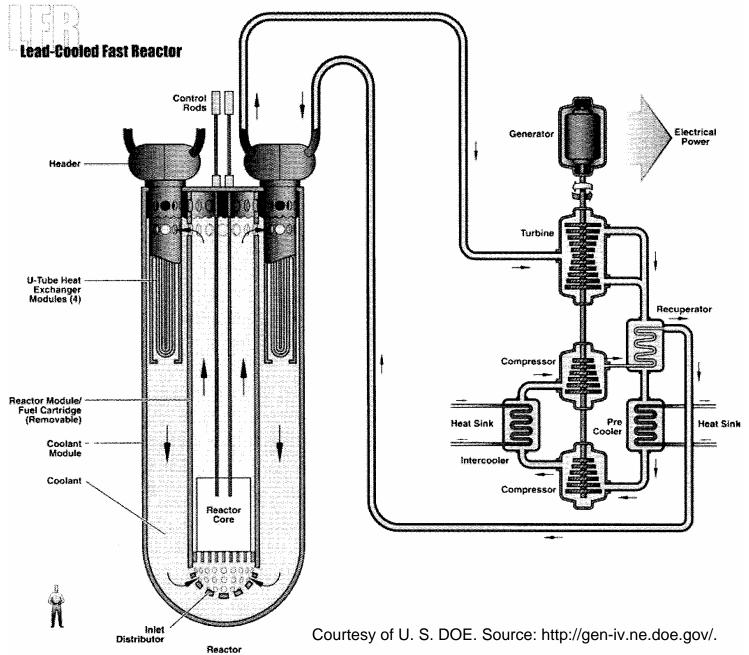
GAS-COOLED FAST REACTOR



Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

DESIGN PARAMETERS FOR THE GFR SYSTEM

Reactor Parameters	Reference Value		
Reactor power	600 MWth		
Net plant efficiency (direct cycle helium)	48%		
Coolant inlet/outlet temperature and pressure	490FC/850FC at 90 bar		
Average power density	100 MWth/m ³		
Reference fuel compound	UPuC/SiC (70/30%) with about 20% Pu content		
Volume fraction, Fuel/Gas/SiC	50/40/10%		
Conversion ratio	Self-sufficient		
Burnup, Damage	5% FIMA; 60 pda		

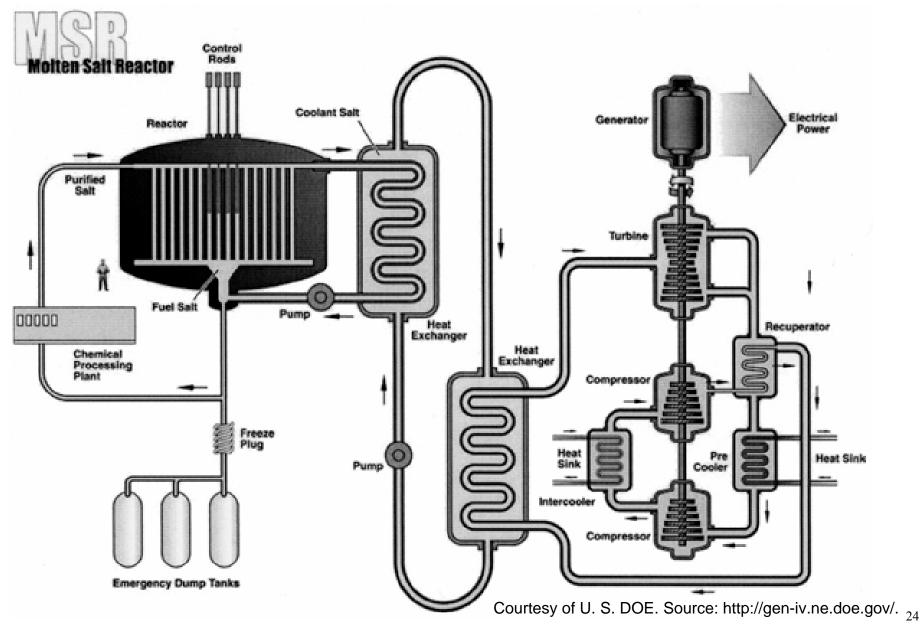

GFR R&D SCHEDULE AND COSTS

 \star = decision points

Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

LEAD-COOLED FAST REACTOR

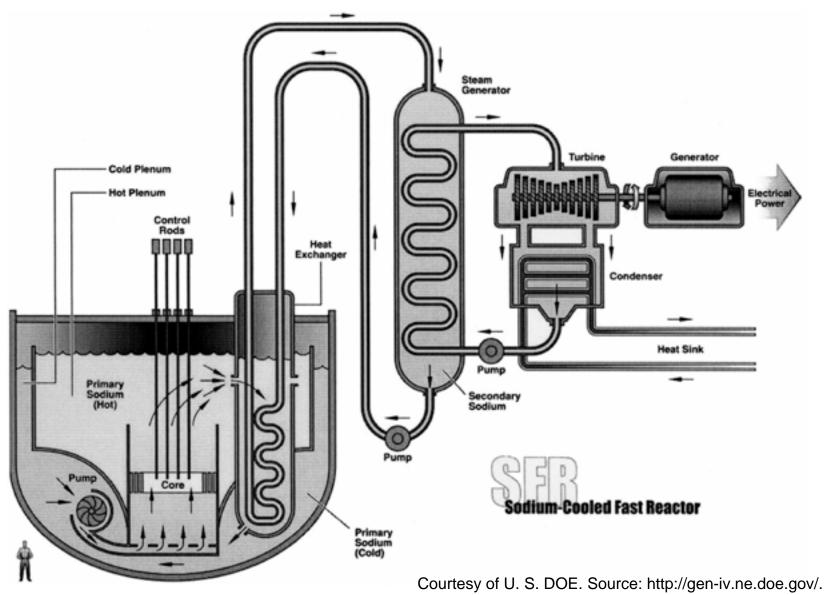
21


DESIGN PARAMETERS FOR THE LFR SYSTEM

	Reference Value				
	Pb-Bi Battery	Bi Battery Pb-Bi Module		Pb Battery	
Reactor Parameters	(nearer-term)	(nearer-term)	(nearer-term)	(far-term)	
Coolant	Pb-Bi	Pb-Bi	Pb	Pb	
Outlet Temperature (°C)	~550	~550	~550	750-800	
Pressure (Atmospheres)	1	1	1	1	
Rating (MWth)	125-400	~1000	3600	400	
Fuel	Metal Alloy or Nitride	Metal Alloy	Nitride	Nitride	
Cladding	Ferritic	Ferritic	Ferritic	Ceramic coatings or refractory alloys	
Average Burnup (GWD/MTHM)	~100	~100–150	100150	100	
Conversion Ratio	1.0	≤1.0	1.0-1.02	1.0	
Lattice	Open	Open	Mixed	Open	
Primary Flow	Natural	Forced	Forced	Natural	
Pin Linear Heat Rate	Derated	Nominal	Nominal	Derated	

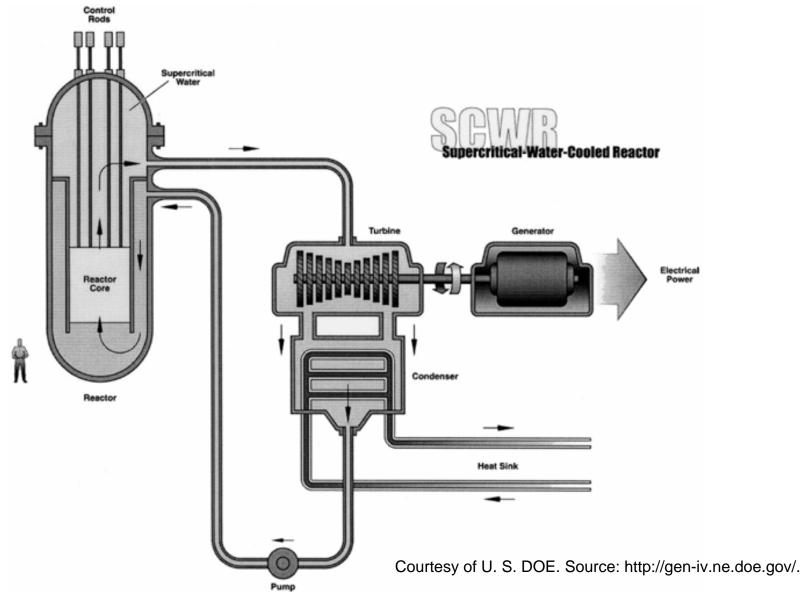
IMPORTANT R&D AREAS FOR EACH OPTION

Major R&D Areas	Pb-Bi Battery (nearer-term)	Pb-Bi Module (nearer-term)	Pb Large (nearer-term)	Pb Battery (far-term)
Metal Alloy or Nitride Fuel (esp. for higher temperature range)	x	х	x	X
High-Temperature Structural Materials				Х
Natural Circulation Heat Transport in Open Lattice	x	Х	Х	х
Forced Circulation Heat Transport in Open Lattice	x	x	Х	X
Coolant Chemistry Control	X	X	х	x
Innovative Heat Transport	х	X	Х	x
Internals Support and Refueling	x	x	х	x
Energy Conversion:				
Supercritical CO ₂ Brayton	X	x		x
Supercritical Water Rankine		x	х	
Ca-Br Water Cracking				x
Desalinization Bottoming	X	x	· ·	x
Economics:				
Factory Fabrication	X	х	х	x
Modularization & Site Assembly	X	x	х	x
Metal Fuel Recycle/Refabrication	X	x		
Nitride Fuel Recycle/Refabrication	x	x	х	x


MOLTEN SALT REACTOR

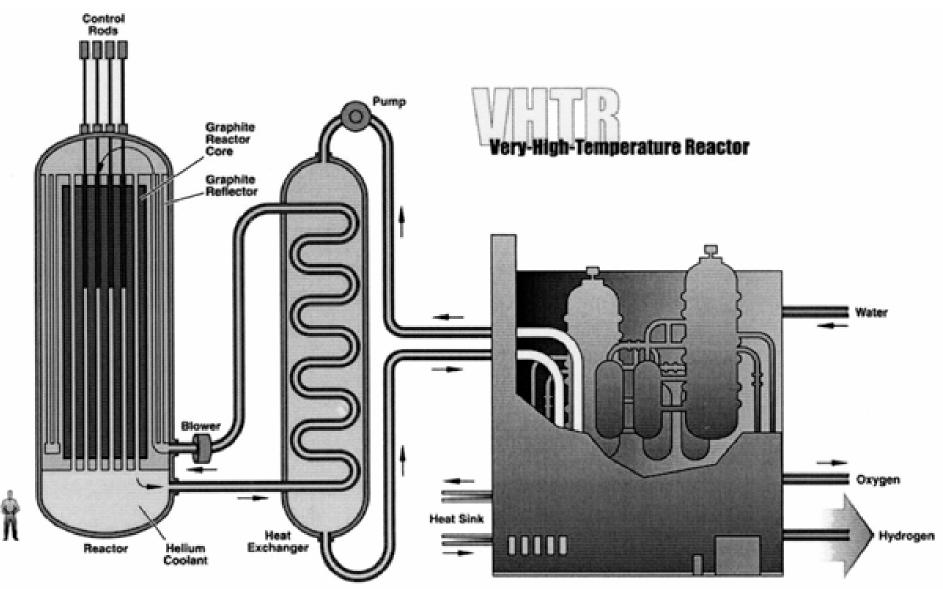
REFERENCE DESIGN PARAMETERS FOR THE MSR

Reactor Parameters	Reference Value		
Net power	1000 MWe		
Power density	22 MWth/m ³		
Net thermal efficiency	44 to 50%		
Fuel-salt – inlet temperature – outlet temperature – vapor pressure	565Ю 700Ю (850Ю for hydrogen production) <0.1 psi		
Moderator	Graphite		
Power cycle	Multi-reheat recuperative helium Brayton cycle		
Neutron spectrum	Thermal-actinide burner		


SODIUM-COOLED FAST REACTOR

DESIGN PARAMETERS FOR THE SFR SYSTEM

Reactor Parameters	Reference Value		
Outlet temperature	530-550FC		
Pressure	~1 Atmospheres		
Rating	1000-5000 MWth		
Fuel	Oxide or metal alloy		
Cladding	Ferritic or ODS ferritic		
Average burnup	~150-200 GWD/MTHM		
Conversion ratio	0.5-1.30		
Average power density	340 MWth/m ³		


SUPERCRITICAL-WATER-COOLED REACTOR

DESIGN PARAMETERS FOR THE SCWR SYSTEM

Reactor Parameters	Reference Value
Plant capital cost	\$900/kW
Unit power and neu tron spectrum	1700 MWe, thermal spectrum
Net efficiency	44%
Coolant inlet and outlet temperatures and pressure	280EC/510EC/25 MPa
Average power density	~100 MWth/m ³
Reference fuel	UO2 with austenitic or ferritic-martensitic stainless steel, or Ni-alloy cladding
Fuel structural materials cladding structural materials	Advanced high-strenght metal alloys are needed
Burnup/Damage	~45 GWD/MTHM; 10-30 dpa
Safety approach	Similar to ALWRs

VERY-HIGH-TEMPERATURE REACTOR

Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

Hydrogen Production Plant

DESIGN PARAMETERS CONSIDERED FOR THE VHTR

Reactor Parameters	Reference Value		
Reactor power	600 MWth		
Coolant inlet/outlet temperature	640/1000FC		
Core inlet/outlet pressure	Dependent on process		
Helium mass flow rate	320 kg/s		
Average power density	6-10 MWth/m ³		
Reference fuel compound	ZrC-coated particles in blocks, pins or pebbles		
Net plant efficiency	>50%		

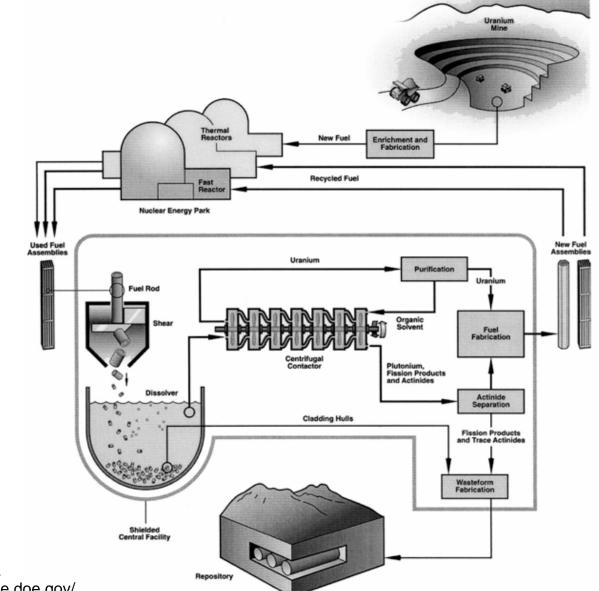
RECOMMENDED CROSSCUTTING R&D

- Fuel Cycle
- Fuels and Materials
- Energy Products
- Risk and Safety
- Economics
- Proliferation Resistance and Physical Protection

OPTIONS FOR FUEL AND RECYCLE TECHNOLOGY DEVELOPMENT

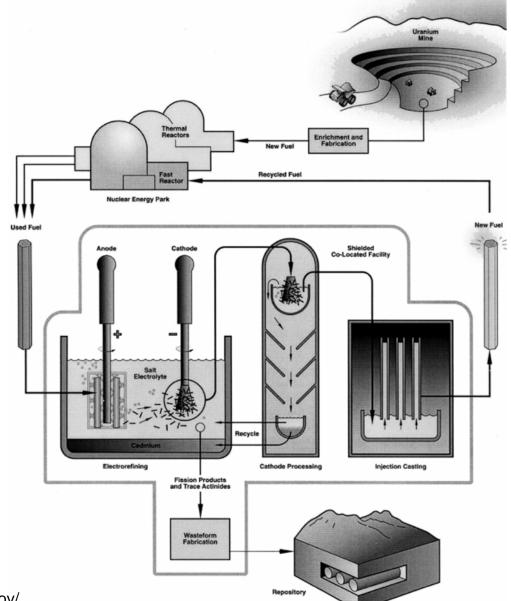
Generation IV System	Fuel				Recycle	
	Oxide	Metal	Nitride	Carbide	Advanced Aqueous	Pyroprocess
GFR ¹			S	Р	Р	Р
MSR ²						
SFR ³	Р	Р			Р	Р
LFR		S	Р		Р	Р
SCWR	Р				Р	
VHTR ⁴	Р				S	S

P: Primary option S: Secondary option


¹ The GFR proposes (U,Pu)C in ceramic-ceramic (cercer), coated particles or ceramic-metallic (cermet).

 2 The MSR employs a molten fluoride salt fuel and coolant, and a fluoride based pyroprocess for recycle.

 3 The SFR has two options: oxide fuel with advanced aqueous, and metal fuel with pyroprocess.


⁴ The VHTR uses a once-through fuel cycle with coated (UCO) fuel kernels, and no need for fuel treatment, as the primary option.

ADVANCED AQUEOUS PROCESS AND REMOTE CERAMIC FUEL FABRICATION

Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

PYROPROCESS AND REMOTE METAL FUEL FABRICATION

Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

R&D ENDPOINTS

Viability Phase Objective:

Basic concepts, technologies and processes are proven out under relevant conditions, with all potential technical *show-stoppers* identified and resolved.

Viability Phase Endpoints:

- 1. Preconceptual design of the entire system, with nominal interface requirements between subsystems and established pathways for disposal of all waste streams
- 2. Basic fuel cycle and energy conversion (if applicable) process flowsheets established through testing at appropriate scale
- 3. Cost analysis based on preconceptual design
- 4. Simplified PRA for the system
- 5. Definition of analytical tools
- 6. Preconceptual design and analysis of safety features
- 7. Simplified preliminary environmental impact statement for the system
- 8. Preliminary safeguards and physical protection strategy
- 9. Consultation(s) with regulatory agency on safety approach and framework issues

Performance Phase Objective:

Engineering-scale processes, phenomena, and materials capabilities are verified and optimized under prototypical conditions

Performance Phase Endpoints:

- 1. Conceptual design of the entire system, sufficient for procurement specifications for construction of a prototype or demonstration plant, and with validated acceptability of disposal of all waste streams
- 2. Processes validated at scale sufficient for demonstration plant
- 3. Detailed cost evaluation for the system
- 4. PRA for the system
- 5. Validation of analytical tools
- 6. Demonstration of safety features through testing, analysis, or relevant experience
- 7. Environmental impact statement for the system
- 8. Safeguards and physical protection strategy for system, including cost estimate for extrinsic features
- 9. Pre-application meeting(s) with regulatory agency

DECISION MILESTONES AND THEIR PROJECTED DATES

System	Viability Phase Decisions	Date
GFR	• Fuel down-selection (GFR 1)	2010
	Core structural materials down-selection (GFR 2)	2010
	Safety concept specification (GFR 3)	2010
	• Fuel recycle viability (GFR 4)	2012
	• Structural material final selection (GFR 5)	2012
LFR	• Structural material selection (550 C outlet temperature) (LFR 1)	2007
	Nitride fuel fabrication method (LFR 2)	2010
	• Feasibility of transportable reactor/core cartridge (LFR 3)	2010
	• Feasibility/selection of structural material for 800PC Pb (LFR 5)	2012
	• Nitride fuel recycle method (LFR 4)	2014
	• Adequacy of nitride fuel performance potential (LFR 6)	2014
	• Ca-Br hydrog en production process (LFR 7)	2014
	• Supercritical CO ₂ Brayton cycle (LFR 8)	2014
MSR	Core materials selection (MSR 1)	2006
	• Fuel salt selection (MSR 2)	2007
	• Power cycle (with tritium control) (MSR 3)	2009
	• Fuel treatment (fission product removal) approach (MSR 4)	2012
	• Noble metal management (MSR 5)	2012
	• Viability of materials (MSR 6)	2013

DECISION MILESTONES AND THEIR PROJECTED DATES, continued

System	Viability Phase Decisions	Date
SFR	• Oxide fuel remote fabrication technology selection (SFR 1)	2006
SCWR	Safety approach specification (SC 1)	2008
	Core structural material down-selection (SC 2)	2011
	• Core structural material final selection (SC 3)	2014
	• Advanced aqueous process application to recycle (SC 4)	2014
	• Fuel/cladding system viability (SC 5)	2014
VHTR	• Reactor/hydrogen production process coupling approach (VH 1)	2010
	• Identification of targeted operating temperature (VH 2)	2010
	• Fuel coating material and design concept VH 3)	2010
	• Adequacy of fuel performance potential (VH 5)	2010
	• Reactor structural material selection (VH 4)	2010

DECISION MILESTONES AND THEIR PROJECTED DATES, continued

Crosscut	Viability Phase Decisions	Date
Fuel Cycle	• Adequacy of actinide fraction (advanced aqueous) (FC 1)	2006
	• Pyroprocess recycle for LWR spent fuel (FC 2)	2006
	• Adequacy of actinide recovery fraction (pyroprocess) (FC 3)	2006
	• Recommendation on separate management of Cs, Sr (FC 4)	2007
	• Integrated management of once-through cycle (FC 5)	2007
	• Group extraction of actinides in aqueous process (FC 6)	2009
Fuels and Materials	• Requirements for irradiation and transient test facilities (FM 1)	2005
Energy Products	• Requirements for hydrogen production (EP 1)	2006
	Hydrogen thermochemical production demonstration (EP 2)	2011
Economics	• Viability of modular fabrication and installation technologies (EC 1)	2008

PRODUCTION PHASE R&D ACTIVITIES

System	Prioritized Performance Phase R&D Issues
GFR	Fuel and materials performance
	Safety performance
	Recycle performance
	Economics performance
	Balance-of-plant performance
LFR	Fuel and materials performance
	Recycle performance
	Economics performance
	Balance-of-plant performance
	Safety performance
	Inspection and maintenance methods
MSR	Fuel treatment performance
	Balance-of-plant performance
	Safety performance
	Materials performance
	Reliability performance
	Economics performance
	Inspection and maintenance methods
SFR	Economics performance
	Recycle performance at scale
	Passive safety confirmation
SCWR	Fuels and materials performance
	Safety performance
	Economics performance
	Recycle performance
VHTR	• Fuel and materials performance
	Economics performance
	Safety performance
	Balance-of-plant performance

A Window of Opportunity has Reopened

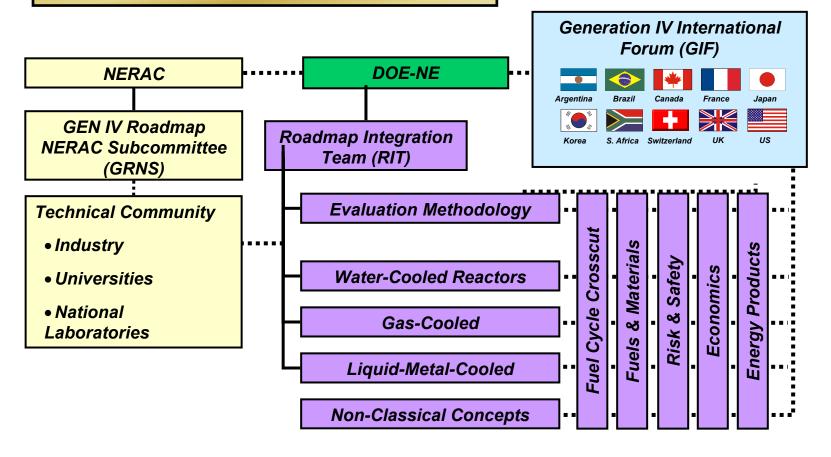
EXISTING U.S. NUCLEAR FLEET

- Enhanced Operations
- Power Uprates
- License Extension
- NRC Oversight & Risk Informed Regulation

ENERGY FUTURE

- Air Quality & Global Warming
- Economics Natural Gas Prices
- Energy Demand

NUCLEAR POWER 2010 PROGRAM


What is the GENIV Program?

Generation IV is a new generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that offer significant advances toward challenging Goals defined in the broad areas of sustainability, safety and reliability, and economics.

- **Systems** includes the entire fuel cycle.
- **2030 or earlier** how linked to deployment in next 10 years?
- Made available to market but will not necessarily be commercialized.
- **Goals** a major challenge which importantly involve fuel cycle options.

Organization of Working Groups

- Technical Working Groups (horizontal)
- Crosscut Groups (vertical)

Guiding Principles

- Technology goals for Generation IV systems must be challenging and stimulate the development of innovative systems.
- Generation IV systems must be responsive to energy needs worldwide.
- Generation IV concepts must define complete nuclear energy systems, not simply reactor technologies.
- All candidates should be evaluated against the goals on the basis of their benefits, costs, risks, and uncertainties, with no technologies excluded at the outset.

Generation IV System Technology Goals

SUSTAINABILITY

Sustainability is the ability to meet the needs of present generations while enhancing and not jeopardizing the ability of future generations to meet society's needs indefinitely into

the future.

Goals on: Fuel utilization, Waste stewardship

SAFETY AND RELIABILITY

Safety and reliability are essential priorities in the development and operation of nuclear energy systems.

Goals on: Reliability, low core damage frequency, eliminate need for offsite emergency response

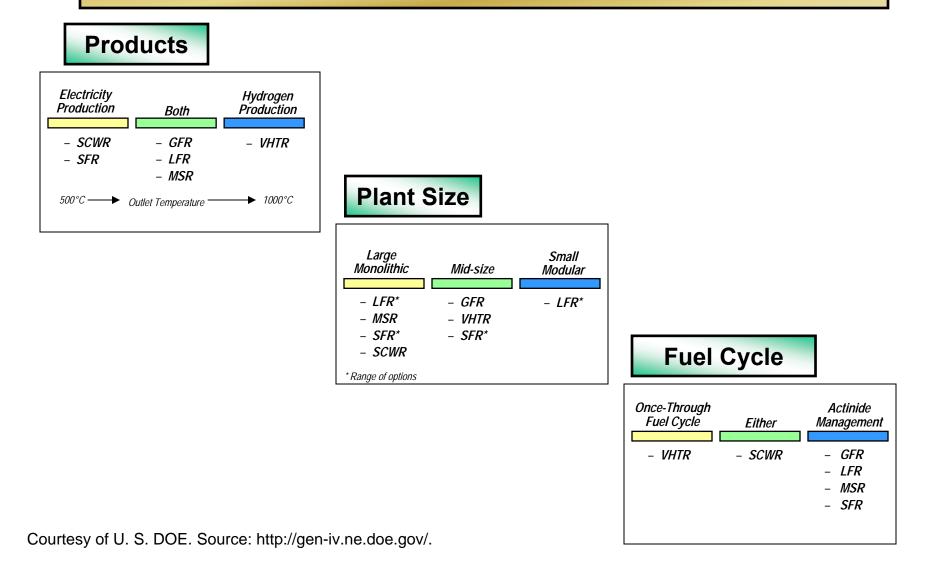
Generation IV System Technology Goals

ECONOMICS

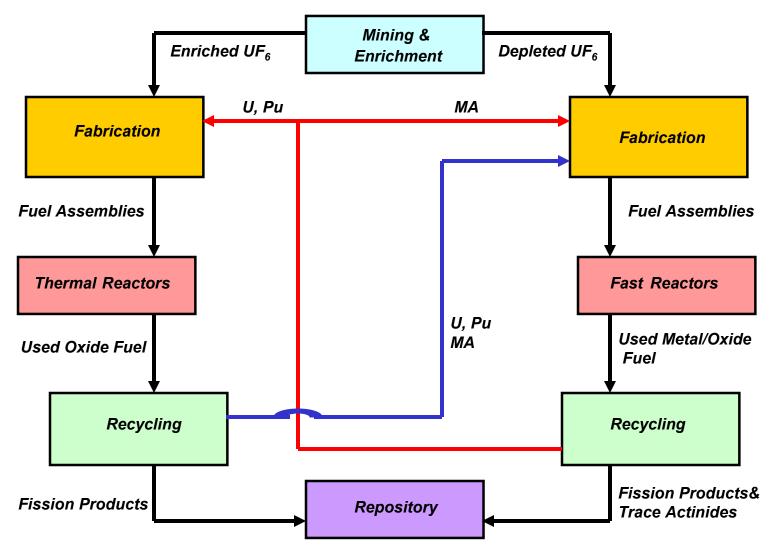
Economic competitiveness is a requirement of the marketplace and is essential for Generation IV nuclear energy systems.

Goals on: Life-cycle cost advantage, comparable level of financial risk

PROLIFERATION & PHYSICAL SECURITY


Proliferation resistance and physical protection are essential priorities in the expanding role of nuclear energy systems

Goals on: Unattractive and least desirable route for diversion/theft, increased physical protection against acts of terrorism


Six Generation IV Concepts Selected For Further Development

- Once-through or MOX fuel cycle:
 - Supercritical-water-cooled reactor SCWR T
 - Very-high-temperature gas-cooled reactor VHTR
- Full actinide recycle:
 - Sodium-cooled fast-spectrum reactor SFR
 - Lead/bismuth-cooled fast-spectrum reactor LFR
 - Gas-cooled fast-spectrum reactor GFR
 - Molten salt reactor MSR

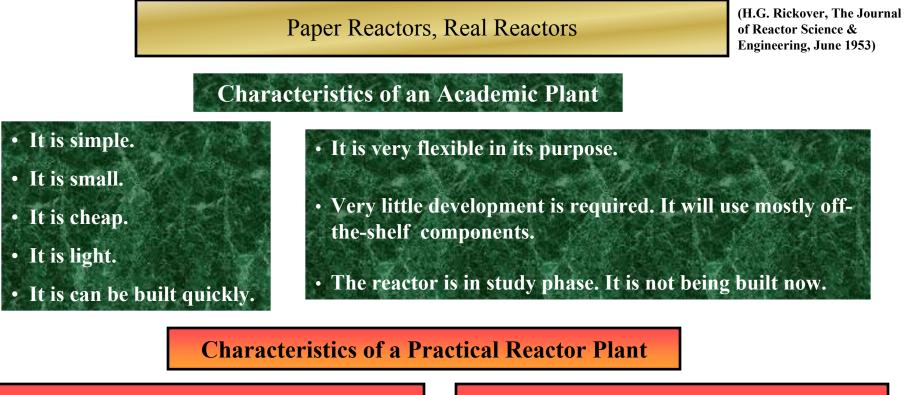
Generation IV System 'Portfolio'

The Portfolio Supports Symbiotic Fuel Cycles

Future Challenges

1. A Near Term Deployment program that leads to new construction.

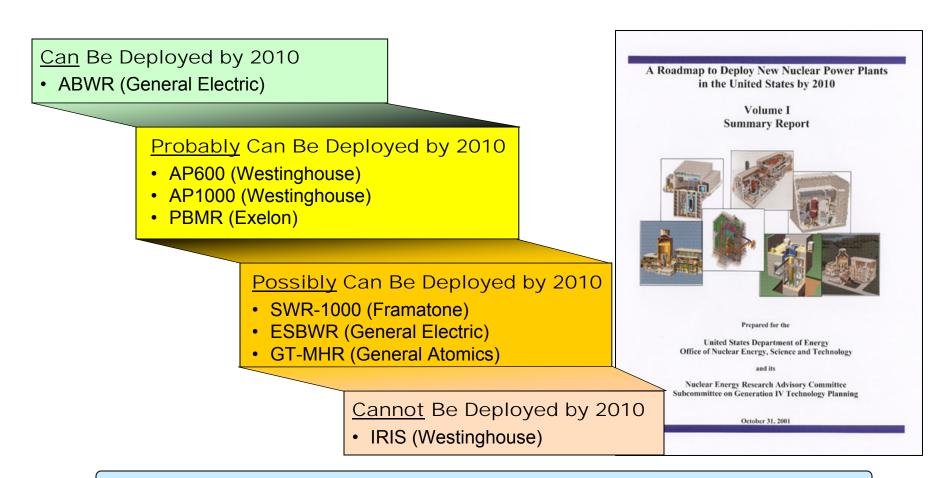
2. A LWR concept that can serve as a bridge to future Generation IV concepts.


3. An R&D program that emphasizes fuel cycle activity.

Prognosis

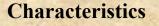
Factors that could significantly effect these Challenges

- Air Quality & Global Climate Change are emerging as overriding issues.
- Sustainability issue may become dominant.
- Fuel Utilization Scarcity related price escalation should be far in the future.
- Economics eventually prevails (or does it?).
- Radiation Standards may be altered Linear No Threshold Hypothesis.


The Devil is in the details - Paper Reactors

- It is being built now.
- It is behind schedule.
- It is very expensive.

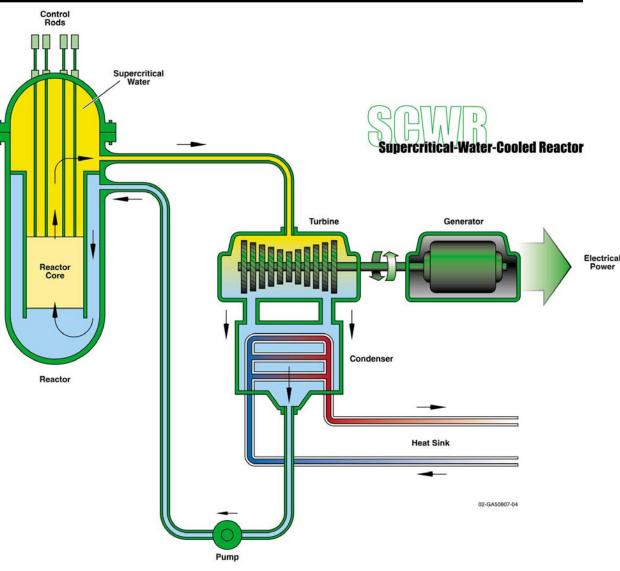
- It is large.
- It is heavy.
- It is complicated.
- It is requiring an immense amount of development on apparently trivial items. Corrosion, in particular, is a problem.
- It takes a long time to build because of the engineering development problems.


NTD Roadmap Conclusions

Conclusions of the Expert Study:

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010

Supercritical Water Reactor (SCWR)

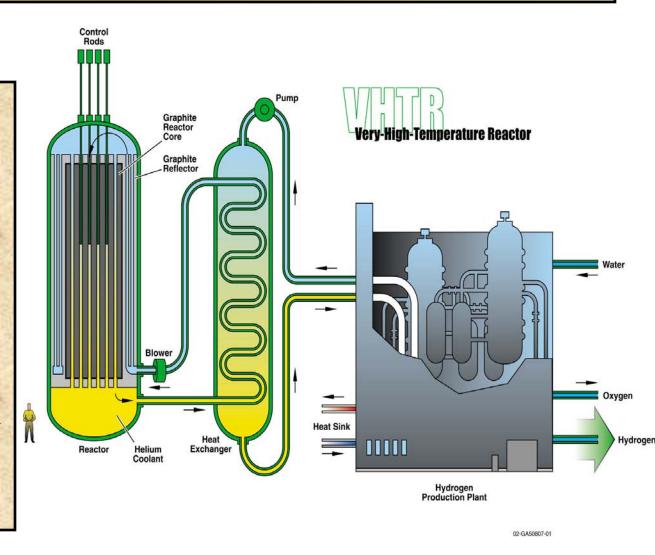

- Water coolant at supercritical conditions
- 500°C outlet temperature
- •1700 MWe
- Simplified balance of plant

Benefits

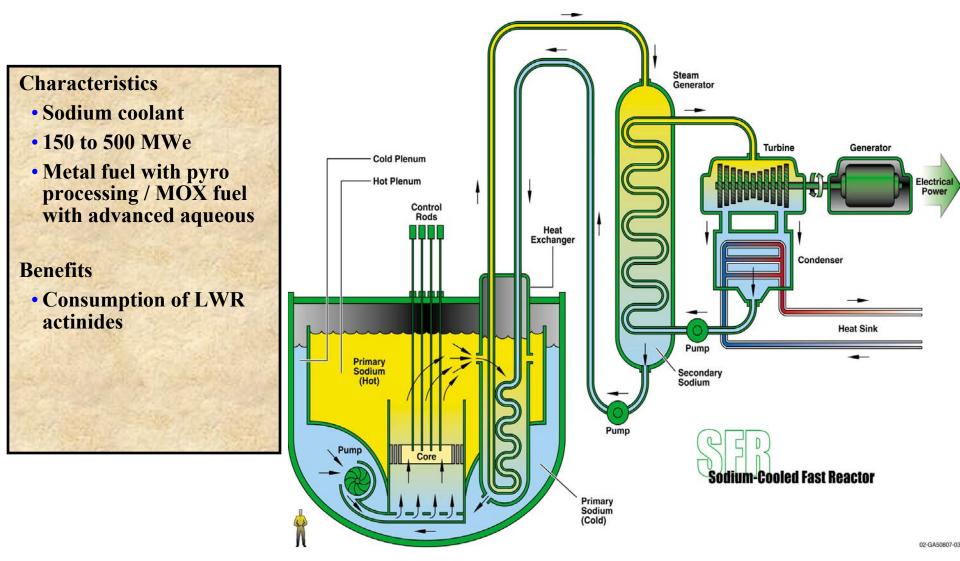
• Efficiency near 45% with excellent economics

Π

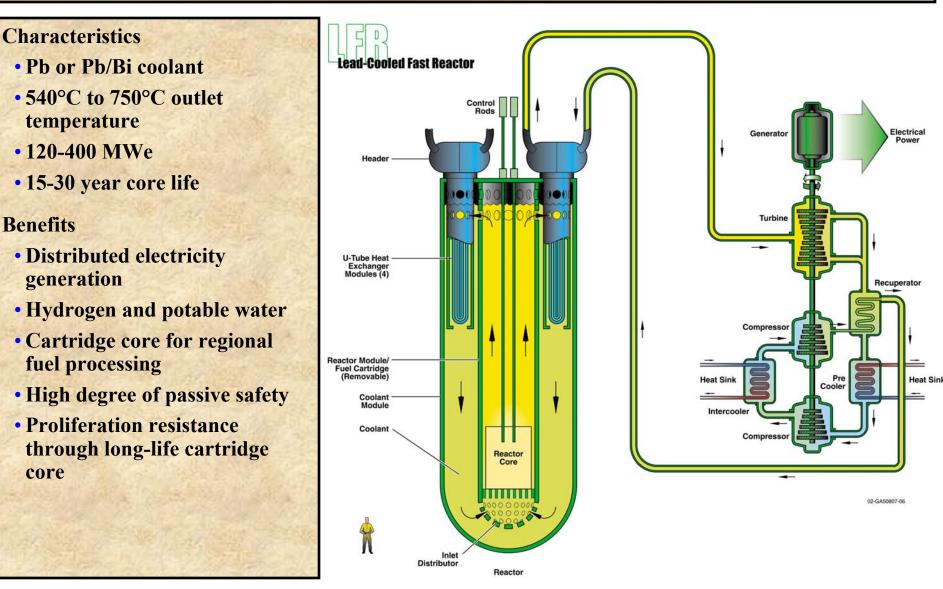
Thermal or fast neutron
spectrum

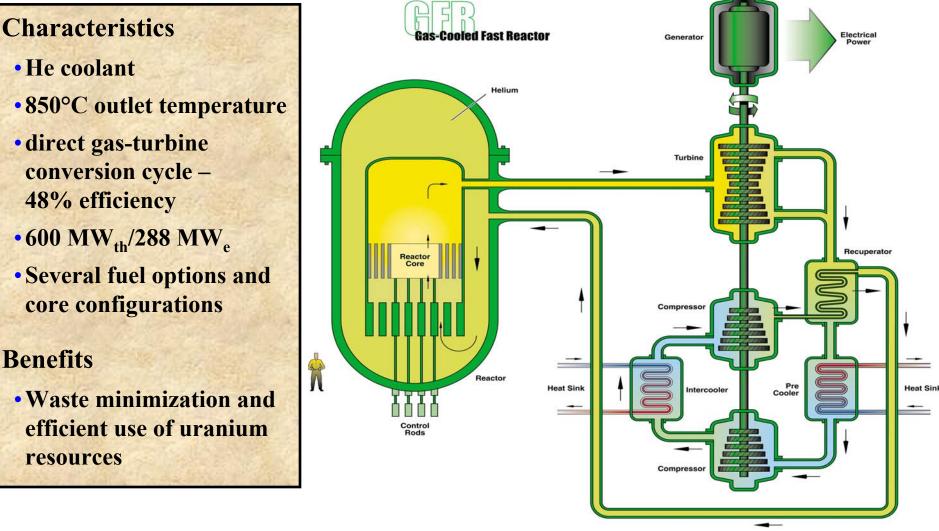

Very High-Temperature Reactor (VHTR)

Characteristics


- He coolant
- >1000°C outlet temperature
- 600 MWe
- Solid graphite block core based on GT-MHR

Benefits


- High thermal efficiency
- Hydrogen production
- Process heat applications
- High degree of passive safety

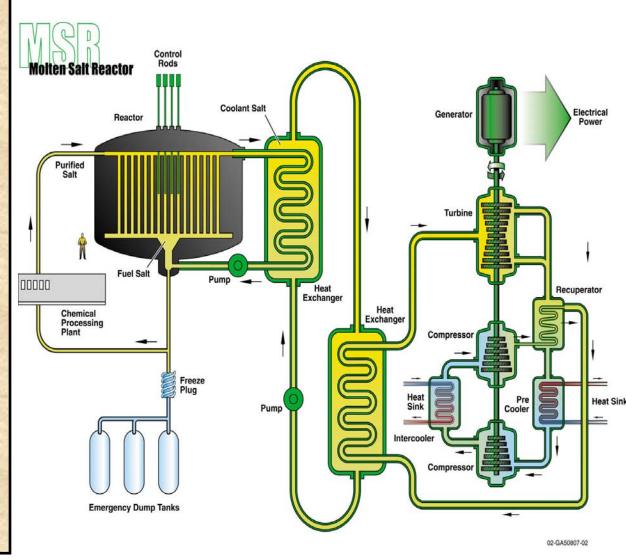

Sodium Liquid Metal-Cooled Reactor (Na LMR)

Pb/Bi Reactor - Cartridge Core (Pb/Bi Battery)

Gas-Cooled Fast Reactor (GFR)

Courtesy of U. S. DOE. Source: http://gen-iv.ne.doe.gov/.

02-GA50807-05


Molten Salt Reactor (MSR)

Characteristics

- Fuel: liquid Li, Be, Th and U fluorides
- 700°C outlet temperature
- 1000 MWe
- Low pressure (<0.5 MPa) & high temperature (>700°C)

Benefits

- Low source term due to online processing
- Waste minimization and efficient use of uranium resources
- Proliferation resistance through low fissile material inventory

METHODS OF HYDROGEN STORAGE TRANSPORT

- Compressed Gas
- Liquified Gas
- Metal Hydrides
- Borohydroxide $(NaBH_4 + 2H_2O \oslash 4H_2 + NaBO_2)$
- Amonia $(2NH_3 \oslash 3H_2 + N_2)$
- Cyclohexane $(2CH_4 + 2H_2 \oslash C_2H_6)$
- Bucky Balls and Tubes Trapping

METHODS OF HYDROGEN PRODUCTION

- Electrolysis $(2H_2O \oslash O_2 + 2H_2)$
- Metal-Water Reaction $(3Fe + 4H_2O \oslash Fe_3O4 + 4H_2)$
- Hydrocarbon Stripping
- Steam Reforming $(CH_4 + 2H_2O \oslash CO_2 + 4H_2)$
- Thermo Chemical

$$\begin{split} &H_2 SO_4 \oslash H_2 O + SO_2 + 1/2 O_2 \\ &I_2 + SO_2 + 2H_2 O \oslash 2HI + H_2 SO_4 \\ &2HI \oslash H_2 + I_2 \end{split}$$