
6.972: Game Theory March 8, 2005 

Lecture 10: Learning in Games 

1 Introduction 

In the next couple of lectures we will discuss learning in games. The reading for these classes is 
Fudenberg, Levine, “The Theory of Learning in Games”, Chapter 1,2 (and in part, Chapter 4 and 
8). The presentation of this material partially relies on the notes by Jonathan Levin. 

Most economic theory relies on equilibrium analysis (such as Nash Equilibrium or some variant). 
A justification of this kind of analysis is that equilibria naturally arise as a result of learning and 
adaptation. This has been shown through experminatal works. In this lecture we will review some 
learning methods and discuss whether the learning methods lead players to Nash equilibria. 

Learning in Games Our model of learning is as follows. We consider a strategic games that 
is repeatedly played. The players start with some a­priori belief about the strategy of the other 
players, and thereafter update this belief after each stage (i.e., after each completed game). We 
further assume that the players are myopic , i.e. the players wish to maximize their profit in each 
stage, based on their current belief about the strategy of the other players. 

2 Easiest Dynamics: Best Response 

We start by discussing a simple learning (i.e, update) rule which proceeds as follows: At each stage, 
every players chooses the best­response to the actions of all the other players in the previous round 
(i.e., the players ignore all history and simply let their belief on the strategy of the other players 

tbe based of the action of the other players in the previous round). More precisely, let s denote the i 

action of player i in stage t. Then, 

t si = bestresponsei(s−
t−

i 
1) 

Clearly, it follows that if the above dynamics reaches a steady state, then this state is a Nash 
Equilibrium. (Recall that this was the dynamics we used in an earlier class to find the NE of the 
Cournot competition). Nevertheless, there are no convergence results for general games using this 
dynamics. 

3 Fictitious Play 

Let us now turn to a more refined learning rule which involves the players to rely on the history 
of games previously played to form beliefs about the opponents play. We will focus on the earliest 
and simplest learning rule, called the fictitios play. 

On a high level the learning rule is as follows: Each player assumes that its opponent is using 
a stationnary mixed strategy. In order to estimate the mixed strategy of its opponent, each player 
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simply observes the statistical count of each opponent strategy (and thus gets a maximum liklihood 
estimate the mixed strategy). A­priori beliefs are incorporated in the model by specifying “false 
counts” that that the players add to the historical counts. 

More formally, 

•	 Consider two players that playing the strategic game G at times t = 0, 1, 2, .... Denote the 
stage payoff by gi(si, s−i). 

•	 Each player start with some a­priori belief on the strategy of the other player. This is specified 
by “false counts” (i.e., a fictitious past): ηi 

0(s−i). 

• Let ηt : S−i → N denote the number of times player i has observed the action s−i before i 
0stage t, including the fictitious past specified by the false counts. (For example, let n1(U) = 4, 

2and assume that player 1 observes the sequence {U,D}. Then n1(U) = 5.) 

•	 Each player assumes that his opponent is using a stationnary mixed strategy µi. 

•	 Each player uses the following forecast rule to predict the strategy of the opponents at stage 
t: 

t ui(s−i) = � 
ηi

t(si

η

) 

i
t(¯s̄−i∈S−i 

s−i) 

In other words, i forecasts (−i)’s strategy at time t to be the empirical frequence distrbution 
of the past play (including the fictiotious past). 

•	 Each player chooses actions in each stage that maximixes that stage’s expected payoff given 
the prediciton of the distribution of the opponents action in that stage, i.e., 

t	 t si ∈ arg max[gi(si, µ i)] 
si∈Si 

(Note that it is here that we the use the condition that players are myopic.) 

3.1 Example of a Fictitious Play 

We will consider the fictitious play of the following game: 

L R 
U 3, 3 0, 0 
D 4, 0 1, 1 

Before we begin the analysis of the fictitious play, note that the above game only one Nash 
equilibrium, namely (D,R), which is also the solution obtained by iterated removal of strictly 
dominated strategies. We proceed to the fictitious play. 

Stage 0. At the start, prior beliefs dictate play. 

Fictitious Past Predictions Actions 

ν0 
1 = (3, 0) µ0 

1 = (1, 0) s0 
1 = D 

ν0 
2 = (1, 2.5) µ0 

2 = (1/3.5, 2.5/3.5) s0 
2 = L 
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Stage 1. We proceed in the same way for Stage 1. 

Fictitious Past Predictions Actions 

ν1 
1 = (4, 0) µ1 

1 = (1, 0) s1 
1 = D 

ν1 
2 = (1, 3.5) µ1 

2 = (1/4.5, 3.5/4.5) s1 
2 = R 

Stage 2. Similarily, 

Fictitious Past Predictions Actions 

ν2 
1 = (4, 1) µ2 

1 = (4/5, 1/5) s1 
1 = D 

ν2 
2 = (1, 4.5) µ2 

2 = (1/4.5, 4.5/5.5) s1 
2 = R 

Reaching a Steady State Note that since D is a dominant strategy for player 1, he always 
tplaye D, which means that µ2 → (0, 1) with probability 1, as t grows. This results in player 2 

always playing R. We conclude that the fictitious play converges to the Nash. 

Remark We note that a striking feature of fictitious plays is that players do not have to know 
anything about the opponents’ payoffs. They only require a way of forming a belief about how the 
opponent will play. 

3.2 The Update Rule 

In this section, we discuss the update rule used in the fictitious play. As already mentionned, 
in each stage, each player predicts that his opponent’s strategy follows the empirical frequency 
distribution of the past play, including the fictitious past. 

This type of update rule has also been considered as the maximum likelihood estimation. That 
is, a player has observations of his opponent’s behavior and would like to use these observations 
to determine his opponent’s mixed strategy. He does so by picking the mixed strategy which 
maximizes the likelihood of the observations. Indeed, the simple manner in which our frequency 
counts are updated does exactly this! 

Another way for a player to predict the opponent’s strategy based on empirical observation 
is through the Bayesian approach. Here, instead of starting with a fictitious past, we assume 
that players have an a­priori belief, i.e. a probability distribution, on their opponents’ mixed 
strategies. Now, based on the empirical observations, each player updates their own belief about 
their opponents based on Bayes’ rule. More formally, 

•	 Each player i begins with a prior belief on Σ−i. That is, each player begins with ρi which is 
a probability distribution over Σ−i. ( Recall that Σ−i is the set of probability distributions 
over the actions S−i. ) 

•	 After round t, each player updates their belief about opponent strategies for round t+1 using 
Bayes rule to compute the posterior.


Even more formally, consider a sequence of n independent and identically distributed (i.i.d.

for short) trials where in each period, one of k outcomes occurs. Let pz denote the probability

of outcome z.
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Denote the outcome of the n trials by K, and the number of times that the outcome z occurs 
by Kz. (In other words, K is a vector of the values, and Kz is the number of times that 
outcome z occurs in K. This is a slight abuse of standard notation.) 

Define � � 

f(K|p) = 
K1!

n! 
Kk! 

p K1 Kk 
1 k· · · p 

· · ·
to be the probability that vector K occurs given the probability distribution p. Then, using 
Bayes rule, compute 

f(p|K) = γf(K p)f(p)|

where γ is a normalization factor equal to f(K|p)f(p)dp. 

Finally, compute the mixed strategy of the opponent by taking the expectation of p. 

Below, we show that the two approaches of using the maximum likelihood and the Bayesian 
approach can be reconciled if we assume that the players’ a­priori beliefs are Dirichlet distributions. 

Definition 1 (Dirichlet) Let p = (p1, . . . , pk) be a vector of probabilities where pi represents the 
probability of event i. A Dirichlet prior ρ with parameter α = (α1, . . . , αk) is described by the 
probability density function: 

k

f(p) = c p αz−1 
z 

z=1 

where c is a normalization constant. 

The marginal distribution of pz is 
αz

E[pz] = �k 
w=1 αw 

It follows that 
K

f(p|K) = p(αz+Kz)−1 
z 

z=1 

Finally, to compute the expectation of p, we use the following rule: � 1 � � � 
αz + Kz

E[pz|K] = 
pz=0 

pz
p1 p2 

. . . 
pz−1 

f(p|K) = �k αw + Kww=1 

which is the same rule used in the maximum likelihood method. 

3.3 Remark about Fictitious Play 

During fictitious play, player i assumes (incorrectly) that player j will play a stationary mixed 
strategy against him. Since player j is also applying a learning rule, this implies that player i’s 
belief about j will be wrong, even though i updates correctly from his prior. Nonetheless, fictitious 
play will sometimes converge to an equilibrium. 
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4 Convergence of Fictitious Play 

In this section, we establish a proposition regarding the convergence of Fictitious Play. First, we 
define the notion of convergence for a sequence of strategies. 

tDefinition 2 A sequence of strategies {s } converges to s if there exists a T such that for all t > T 
s s. t = 

tProposition 1 Let {s } be the sequence of strategies defined by a Fictitious Play. Then 

(a) if {st} converges to s, s is a Nash equilibrium, and 

(b) if sT = s∗ where s∗ is a strict Nash equilibrium, s = s∗ for all � > T . 

Proof: For (a), if fictitious play remains at a pure strategy profile s, then eventually, belief forecasts 
about the opponents strategy will also converge to s. Given that player i believes all other players 
play s−i, and given that fictitious play dictates that player i chooses si to maximize his utility given 
his belief, it follows that s is a Nash equilibrium. 

For (b), if st = s∗, we show that st+1 = s∗. Recall that the update rule is such that 

t+1 t t µi = (1− α)µi + αs t −i−i = (1− α)µi + αs∗ 

1where α is a normalization factor equal to α = “P ” . 
+1 s−i 

νi
t(s−i) 

Consider the utility function,gi, for stage t + 1. By the linearity of expectations of µ, we have 

t+1 t gi(ai, µ ) = (1 − α)gi(ai, µ i) + αgi(ai, s
∗ 

i −i) 

Since s∗ maximizes both terms (since it is a strict Nash), then si 
∗ will also be played at stage 

t + 1 which completes the proof. � 
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